JP2016149856A - 振動型モータ制御装置及びそれを有するレンズ装置及び撮像装置 - Google Patents

振動型モータ制御装置及びそれを有するレンズ装置及び撮像装置 Download PDF

Info

Publication number
JP2016149856A
JP2016149856A JP2015025011A JP2015025011A JP2016149856A JP 2016149856 A JP2016149856 A JP 2016149856A JP 2015025011 A JP2015025011 A JP 2015025011A JP 2015025011 A JP2015025011 A JP 2015025011A JP 2016149856 A JP2016149856 A JP 2016149856A
Authority
JP
Japan
Prior art keywords
frequency
speed
type motor
vibration type
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015025011A
Other languages
English (en)
Other versions
JP6478680B2 (ja
Inventor
俊輔 宮嶋
Shunsuke Miyajima
俊輔 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015025011A priority Critical patent/JP6478680B2/ja
Priority to EP16000296.0A priority patent/EP3057224B1/en
Priority to US15/016,339 priority patent/US10615719B2/en
Priority to CN201610084836.3A priority patent/CN105897045B/zh
Publication of JP2016149856A publication Critical patent/JP2016149856A/ja
Application granted granted Critical
Publication of JP6478680B2 publication Critical patent/JP6478680B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems

Abstract

【課題】 制御装置を複雑化することなく、通常動作中に共振周波数の変化を検知し、制御において使用する周波数を補正することで、環境変化による制御性の低下を抑制する振動型モータ制御装置を提供する。【解決手段】 位相差を有する2つの周波信号に基づいて、振動が励起される振動体を、該振動体に接触する接触体に対して相対移動させる振動型モータを制御する振動型モータ制御装置であって、前記2つの周波信号の周波数に対する前記振動体の速度特性を記憶する記憶手段と、前記2つの周波信号の周波数及び位相差のうちの少なくとも何れか一方を変化させて前記振動体の速度を制御する制御手段と、前記速度を検出する検出手段と、前記検出手段により検出された速度と、前記記憶手段により記憶された速度特性と、の比較に基づいて、前記制御手段による制御の起点となる起動周波数を変更する変更手段と、を有する。【選択図】 図1

Description

本発明は、振動型モータの駆動速度を制御する振動型モータ制御装置及びそれを有するレンズ装置及び撮像装置に関する。
振動型モータは、電気-機械エネルギー変換素子(圧電素子や電歪素子)が接合された金属弾性体等により形成された振動体と、該振動体に加圧接触する接触体とを有する。互いに位相差を有する複数の周波信号を圧電素子に印加すると、振動体に振動が励起され、該振動体に対して接触体が相対移動して駆動力が発生する。振動型モータは、印加する周波信号の位相差(以下、位相差)を大きくすることで速度が増加し、ある位相差で駆動方向が反転するという特性を有する。また、印加する周波信号の周波数(以下、周波数)を低くすることで速度が増加し、ある周波数で速度のピークを迎え、周波数をさらに低くすると急峻に速度が低下するという特性を有する。特に速度のピークを迎える周波数を共振周波数と呼ぶ。一般的な振動型モータの制御方法では、急峻に速度が低下する周波数領域での使用を避け、共振周波数から高周波側を使用する。しかしながら、振動型モータは環境変化(温度、湿度)の影響により共振周波数が変化するため、環境変化により速度特性の曲線が変化したことを使用者が知らずに振動型モータを使用して、不本意に共振周波数より低周波側を使用してしまう場合がある。また、共振周波数が変化することで、共振周波数より低周波側を使用していなくとも、制御装置が所望する速度特性を得られず、制御性が低下する場合がある。そのため、共振周波数の変化を検知し、それに対応する制御が必要であった。従来、環境変化などによる共振周波数の変化を検知し、対応する方法として様々な提案がなされている。特許文献1は、温度センサを使用して現在の温度を検知し、検知した温度によって補正値を周波数または周波信号の振幅に適用する方法が開示されている。また、特許文献2は、周波数を順次変更して、速度を計測することで共振周波数を探索する方法が開示されている。
特開2011―67035号公報 特開昭59―178984号公報
しかしながら、特許文献1に開示されている技術は、新たに温度センサを備える必要があり、構成が複雑化する。更に、補正値を周波数または振幅に適用する方法では補正値が代表値であり、振動型モータの個体差には対応しきれない。また、特許文献2に開示されている技術は、温度センサを構成することなく周波数を順次変更する検知動作を使用することで、個体ごとに共振周波数を検知することが可能である。しかし、通常動作とは異なる検知動作による共振周波数の検知方法は、検知のタイミングを使用者に委ねており、異変に気づくのが遅くなる場合がある。つまり、性能が大きく劣化してから気付き、検知動作を行うことになる可能性がある。
そこで、本発明の目的は制御装置を複雑化することなく、通常動作中に共振周波数の変化を検知し、制御において使用する周波数を補正することで、環境変化による制御性の低下を抑制する振動型モータ制御装置を提供することである。
上記目的を達成するために、本発明の振動型モータ制御装置は、位相差を有する2つの周波信号に基づいて、振動が励起される振動体を、該振動体に接触する接触体に対して相対移動させる振動型モータを制御する振動型モータ制御装置であって、前記2つの周波信号の周波数に対する前記振動体の速度特性を記憶する記憶手段と、前記2つの周波信号の周波数及び位相差のうちの少なくとも何れか一方を変化させて前記振動体の速度を制御する制御手段と、前記速度を検出する検出手段と、前記検出手段により検出された速度と、前記記憶手段により記憶された速度特性と、の比較に基づいて、前記制御手段による制御の起点となる起動周波数を変更する変更手段と、を有することを特徴とする。
本発明によれば制御装置を複雑化することなく、通常動作中に共振周波数の変化を検知し、制御において使用する周波数を補正することで、環境変化による制御性の低下を抑制することが可能となる。
本発明の振動型モータ制御装置の構成図 第1実施例の振動型モータ制御装置の、(a)基準速度特性(1点測定)、(b)導出した駆動速度と速度特性での速度の比較、(c)速度特性の変化、(d)速度特性の変化と制御性 第1実施例の振動型モータ制御装置で測定される速度、(a)基準速度特性(3点測定)、(b)速度特性が低周波数側に変化した場合(3点測定)、(c)速度特性が高周波数側に変化した場合(3点測定)、(d)速度特性が低周波数側に変化した場合(1点測定) 第2実施例の振動型モータ制御装置での、(a)基準速度特性、(b)速度特性が低周波数側に変化した場合、(c)速度特性が高周波数側に変化した場合 第3実施例の振動型モータ制御装置での、(a)基準速度特性、(b)速度特性が低周波数側に変化した場合、(c)速度特性が高周波数側に変化した場合 第4実施例のレンズ装置の構成図 STEP入力目標位置、(a)1点測定の場合、(b)2点測定の場合 低速駆動目標位置 トラッキング動作目標位置、(a)直線型の場合、(b)曲線型の場合
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。
本実施例における振動型モータ制御装置の構成を図1に示す。本発明は、位相差を有する2つの周波信号に基づいて振動が励起される振動体に接触する接触体を該振動体に対して相対移動させる振動型モータの駆動速度を制御する振動型モータ制御装置に関する。以下の説明では、本発明を分かり易くするために本発明の主要な部位のみ図示し、本発明の特徴ではない部位は省略した。
制御装置100は振動型モータ101の駆動制御を行い、例えばCPUやPCで構成される。
検出部(検出手段)102は例えばエンコーダであり、振動型モータ101の現在の情報(位置、速度)を後述するFol算出部104で演算するために必要な情報を検出する。
目標入力部103は振動型モータの駆動目標を入力し、例えばスイッチ、GUI(グラフィックユーザーインターフェイス)等の入力手段で構成されたり、演算によって駆動目標を算出したりしても良い。また、駆動目標は位置や速度とする。
Fol算出部(検出手段)104は検出部102からの出力に基づいて振動型モータ101の現在の情報を算出する。現在の情報は位置や速度とし、目標入力部103と同じ次元の情報とする。
制御量演算部105は例えばPID制御で構成され、駆動目標と振動型モータ101の現在の情報との差分(偏差)に基づいて制御量を算出する。PID制御は公知技術なため説明を省略する。
速度算出部106はFol算出部104の出力が振動型モータ101の位置情報の場合は、位置情報から速度を算出する。算出方法としては、例えば、今回の位置と少なくとも一つ前の位置の差分から算出してもよい。また、Fol算出部104の出力が振動型モータ101の速度の場合は、速度算出部106を構成しなくとも良い。
速度特性記憶部(記憶手段)107は振動型モータ101の周波数、位相差に対する速度特性を記憶する。速度特性は例えば、テーブル、又は、式であっても良い。
特性変化判定部(補正手段)108は後述する周波数、位相差決定部110にて決定された周波数、位相差の周波信号にて駆動した結果、導出される速度と速度特性記憶部107にて記憶されている速度特性を比較し、速度特性の変化を判定する。判定内容は共振周波数の変化方向と変化量である。判定方法の詳細は後述する。
起動周波数記憶部(記憶手段、補正手段)109は駆動制御の起点(始点)となる周波数(以下、起動周波数)を記憶し、特性変化判定部108の判定結果に基づいて起動周波数を変更(補正)する。一般的に起動周波数は使用する周波数範囲の中で最も高い周波数であり、振動型モータの駆動速度を速くするよう制御する場合は、起動周波数から周波数を下げる制御を行う。
周波数、位相差決定部110は制御量と起動周波数とに基づいて振動型モータ101に印加する周波信号の周波数と位相差を決定する。
周波信号生成部111は決定された周波数と位相差に基づいて振動型モータ101に印加する周波信号を生成する。
次に、特性変化判定部108の具体的な速度特性の変化の判定方法及び、起動周波数記憶部109に記憶している起動周波数の補正方法について説明する。
図2(a)は速度特性記憶部107に記憶している振動型モータ101の速度特性を示す。横軸に周波数、縦軸に速度、曲線はある位相差における周波数に対する速度を示す。本実施例では、位相差は常に一定であることを前提とする。周波数F20は共振周波数である。ここで、共振周波数F20より高周波な周波数F21で速度V21が得られるとする。図2(b)はある環境下において、共振周波数F20より高い周波数F21にて駆動し、算出した駆動速度を示す。周波数F21にて駆動した結果、得られた速度はV22であった。速度特性記憶部107に記憶している速度特性によると周波数F21では速度V21が得られるはずだが、図2(b)では速度V22が得られた。つまり、実際の速度特性は変化していることがわかる。よって、環境条件が変化したと推測できる。次に、図2(c)に速度特性の変化方向と変化量の算出方法を示す。実線の曲線は速度特性記憶部107に記憶されている速度特性、破線の曲線は図2(b)の環境下において変化した速度特性を示す。周波数F21にて駆動した結果、速度V22が得られたので、速度特性記憶部107に記憶している実線の曲線から速度V22が得られる周波数を探す。結果、周波数F20つまり、共振周波数にて速度V22が得られるとわかる。よって、周波数F21は実線の曲線では周波数F20に示す速度特性を得られるため、速度特性が高周波数側に変化したことがわかる。更に、変化量は周波数F21と周波数F20の差分となる。よって、図2(b)の環境下では、速度特性は高周波数側に周波数F21と周波数F20の差だけ変化したことがわかった。以上から、図2(b)の環境下では、振動型モータ101の速度特性は図2(c)中の破線の曲線に変化したと推測する。よって、起動周波数記憶部109に記憶している起動周波数を周波数F21と周波数F20の差分だけ高周波側に補正する。図2(d)に図2(c)と同様な速度特性を示す。振動型モータ101の速度特性が速度特性記憶部107に記憶している実線の速度特性を示す場合には、周波数F22を起動周波数とし、実線の矢印で示すように駆動速度の制御を行う。図2(b)の環境下では、振動型モータ101は図2(c)(d)に示した破線の速度特性を示すため、起動周波数は周波数F23とし、破線の矢印で示す制御を行う。よって、実線の矢印と破線の矢印は同等な速度特性を得られる起動周波数及び、同等な傾きを示すため、環境変化前後でも同等な制御性を得ることが可能となる。
以上、説明した方法により、環境変化による振動型モータ101の速度特性の変化方向と変化量を検知し、起動周波数を補正することで環境変化後も環境変化前と同等な制御性を得ることが可能となる。また、温度センサ等の新たな構成を追加しないため、構成を複雑化することなく実現可能である。
本実施例では、周波数F21の1点のみについて速度を算出し、速度特性の変化方向と変化量を判定したが、複数の周波数について速度を算出し、速度特性の変化方向と変化量を判定する方がより好ましい。図3(a)は図2(a)と同様な速度特性を示す。周波数F31、F32、F33に注目する。周波数F31Fは共振周波数F30に対して高周波数側の周波数であり、周波数F32は共振周波数F30に対して低周波数側の周波数である。速度特性において、周波数F31と周波数F32は同等な速度を得られる周波数である。周波数F33は周波数F31、F32より高い周波数であり、速度特性においては周波数F31、F32での速度より遅い速度を得られる周波数である。
互いに異なる2種類の環境下において各3点の周波数にて駆動した結果の速度特性をそれぞれ図3(b)、図3(c)に示す。図3(b)の場合、周波数F32にて駆動した速度が最も速く、次に周波数F31、更に次に周波数F33にて駆動した速度の順番となった。周波数F31、F32、F33において実測された速度と速度特性との比較によって、図3(b)の環境下における速度特性は図3(a)の基準となる速度特性に対して、速度特性の曲線全体が低周波数側に移動するように変化したことが分かる。次に、図3(c)の場合、周波数F31にて駆動した速度が最も速く、次に周波数F33、更に次に周波数F32にて駆動した速度の順番となった。よって、図3(c)の環境下における速度特性は図3(a)の基準となる速度特性に対して、曲線全体が高周波数側に移動するように変化したことが分かる。速度特性の変化量は図2(c)と同様にして周波数F31、F32、F33の1点または、平均値を算出する。ここで、図3(a)にて周波数F31と周波数F32が同等な速度を得られる場合のように、共振周波数F30の低周波数側と高周波数側で同等な速度を得られる場合があることに注目する。図3(d)に図3(b)と同じ環境下にて周波数F31の1点について速度を算出した場合を示す。図中、共振周波数より高周波数側の周波数F31と低周波数側の周波数F31’において共に同様な速度が得られる。つまり、ある周波数によって得られた駆動速度は、その環境下における速度特性の曲線の共振周波数の低周波数側で得られた速度なのか高周波数側で得られた速度なのかを判定することはできない。よって、図3(b)のように複数の周波数にて駆動速度を算出し、互いの駆動速度の関係を比較することで、図3(d)に示すような実線または破線のどちらの速度特性に変化したか判定することが可能となる。つまり、複数の周波数に関して速度を算出することで、速度を導出した周波数が共振周波数より高周波数側であるのかまたは、低周波数側であるのかを判定することが可能となる。
また、保存されている基準となる速度特性より同等な速度を得ることができる共振周波数の高周波数側及び低周波数側の2つの周波数において導出された速度の関係の変化に注目することで、共振周波数の変化方向を判定することが可能である。図3(a)に示すように、周波数F31と周波数F32は共振周波数の高周波数側及び低周波数側の2つの周波数であり、基準となる速度特性によると同等な速度を得ることができる周波数である。図3(b)では、周波数F32における速度の方が周波数F31における速度よりも速くなり、図3(c)では、周波数F31における速度の方が周波数F32における速度よりも速くなる。つまり、記憶している速度特性の共振周波数を挟んだ、同等の速度が得られる2つの周波数に注目し、この2つの周波数において実測された速度の大小関係に基づいて共振周波数の変化方向を判定することが可能である。
本実施例では、周波数F31と周波数F32は同じ速度を得られる周波数としたが、共振周波数に対して高周波数側と、低周波数側それぞれで、記憶された基準となる速度特性において同じ速度を得ることができる2つの周波数として扱うことができればこれに限らない。例えば、周波数F32と周波数F33を選択し、周波数F33にて得られる速度に周波数F32にて得られる速度との差分を加算することで、計算上は同じ速度として扱える。
本実施例では、速度特性は周波数と位相差に対する速度を示す特性としたが、周波数、位相差に対する加速度を示す特性としても本発明の効果を得ることができる。例えば、振動型モータ101が各周波数と各位相差に対してそれぞれ異なる加速度を示す場合、速度特性記憶部107は周波数と位相差に対する加速度を示す特性を記憶する。または、振動型モータ101が各周波数と各位相差に対して同じ加速度を示す場合、速度特性記憶部107は周波数と位相差に対する加速時間を示す特性を記憶する。
また、本実施例では、起動周波数のみを補正するとしたが、起動周波数に加えて、共振周波数を記憶する共振周波数記憶部(記憶手段)を更に構成し、共振周波数も補正することによっても同様の効果を得ることができる。一般的に共振周波数より低い周波数は使用しないため、共振周波数を記憶することで、共振周波数より低い周波数の使用を防止することが可能となる。つまり、共振周波数を低周波数側の制限値とする。また、補正方法は起動周波数と同じ量、方向を使用する。
これらは以降の実施例でも同様である。
第2実施例に係る振動型モータ制御装置について説明する。
第1実施例では、圧電素子に印加する周波信号の位相差を固定し、周波数を変化させて駆動する時(以下、周波数制御)に実測される速度に基づく、起動周波数の補正方法に関して説明した。本実施例では、圧電素子に印加する周波信号の周波数を固定し、位相差を変化させて駆動する時(以下、位相差制御)に実測される速度に基づく、起動周波数の補正方法に関して説明する。
本実施例において、速度特性記憶部107が記憶している速度特性を図4(a)に示す。横軸に周波数、縦軸に速度、曲線c41、c42はそれぞれ異なる位相差における速度特性(周波数に対する速度の特性)を示す。起動周波数である周波数F40において、速度特性c41では速度V41、速度特性c42では速度V42が得られる。本実施例では、2つの位相差で駆動した場合の速度に注目する。尚、1つの位相差で駆動した場合は実施例1と同様にして速度特性の変化方向と変化量を算出するため、本実施例では、周波数を起動周波数で一定とする条件の下で2つの位相差にて駆動した場合について説明する。速度特性記憶部107が記憶している速度特性の前提となっている環境条件とは異なる2種類の環境下において2つの位相差にて駆動した場合の速度をそれぞれ図4(b)、図4(c)に示す。図4(b)の場合、環境変化によりc41とは異なる曲線c41aでは速度V41a、 環境変化によりc42とは異なる曲線c42aでは速度V42aが得られた。ここで、速度V41と速度V42の速度の差と速度V41aと速度V42aの速度の差を比較する。図4(b)の場合における速度の差は図4(a)の場合に比べて小さくなっている。言い換えると位相差の変化に対する速度の変化が小さくなっている。図4(a)、図4(b)、図4(c)からわかるように、共振周波数(最大速度を示す周波数)よりも高周波数側では、周波数が高くなるほど、つまり速度が低下するほど位相差の変化に対する速度の変化量が減少する傾向にある。よって、図4(b)の場合、基準となる速度特性の曲線c41、c42は低周波数側に移動していると判定することができる。また、図4(c)の場合、速度V41bと速度V42bの差は図4(a)の場合に比べて増加している。よって、図4(c)の場合、基準となる速度特性の曲線c41、c42は高周波数側に移動していると判定することができる。更に、共振周波数より低周波数側では曲線c41と曲線c42が同じ周波数において、共振周波数より高周波数側に比較して位相差変化に対する速度差はかなり大きい。つまり、所定の値よりも速度差が大きくなった場合は、その速度差を得た周波数はその環境下における速度特性において共振周波数より低周波数側であると判定することが可能である。また、変化量は実施例1と同様にして導出することができる。
以上、説明した方法により実施例1で説明した周波数制御時と同様に位相差制御時も速度特性の変化方向と変化量を検知し、起動周波数を補正することで、環境変化前後でも同等の制御性を得ることが可能となる。
本実施例では、位相差制御した場合における起動周波数の補正、第1実施例では、周波数制御した場合における起動周波数の補正についてそれぞれ説明したが、位相差制御と周波数制御の両方を行う場合においても本発明の効果を得ることができる。例えば、振動型モータを低速で駆動する時は位相差制御を行い、高速で駆動する時は周波数制御を行う制御では、位相差制御を行っている時には第2実施例の補正方法を適用し、周波数制御を行っている時には第1実施例の補正方法を適用することにより、より好ましい効果を得ることが可能となる。
第3実施例に係る振動型モータ制御装置について説明する。
第3実施例では、第2実施例と同様に位相差制御時の速度特性の変化方向、変化量の検知、補正方法について説明する。第2実施例に対する本実施例の制御方法の最も特徴的な部分は、低位相差制御時の速度特性の特徴に注目した点にある。
本実施例において、速度特性記憶部107が記憶している速度特性を図5(a)に示す。横軸に周波数、縦軸に速度、曲線c51は位相差9°、曲線c52は位相差10°、曲線c53は位相差11°における速度特性(周波数に対する速度の特性)を示す。周波数は起動周波数である周波数F50固定とし、3つの位相差にて駆動した場合の速度特性に注目する。尚、1つの位相差で駆動した場合は実施例1、2つの位相差では実施例2と同様にして速度特性の変化方向と変化量を算出するため、本実施例では、3つの位相差にて駆動した場合について説明する。図5(a)は周波数F50において、位相差9°では速度が0であり、位相差10°、11°では、速度が0ではない。つまり、位相差9°では振動型モータ101は駆動しない。ここで、速度特性記憶部107に記憶された速度特性の前提となる環境条件とは異なる2種類の環境下において、位相差9°、10°、11°にて駆動した結果の速度特性をそれぞれ図5(b)、図5(c)に示す。図5(b)の環境下では、位相差9°、10°、11°すべて速度が0ではない。つまり、図5(a)では速度0だった位相差9°が図5(b)の環境下では速度が0ではなくなった。これは、図5(b)から分かるように速度特性が低周波数側に変化したためである。言い換えると、図5(a)で速度が0だった位相差9°が、図5(b)の環境下では速度が0ではなくなったので、速度特性が低周波数側に変化したと判定できる。また、図5(c)の環境下では、位相差9°、10°において速度が0となった。つまり、図5(a)では速度が0ではなかった位相差10°においても、図5(c)の環境下では速度が0となった。これは、図5(c)から分かるように速度特性が高周波数側に変化したためである。言い換えると、図5(a)で速度が0ではなかった位相差10°が図5(c)の環境下では速度が0となったので、速度特性が高周波数側に移動したと判定できる。変化量は、図5(b)、5(c)の環境下共に、駆動することが可能な位相差について実施例1と同様にして算出する。例えば図5(b)の場合、位相差11°に着目する。
以上、説明した方法により特に低位相差制御時は、駆動可能(速度が0ではない)な位相差と駆動不可能(速度が0)な位相差の境目の変化に注目することで速度特性の変化方向を検知することが可能となる。
第4実施例に係る振動型モータの制御方法について説明する。
本実施例では、レンズ装置のアクチュエータとして振動型モータを採用した場合について説明する。レンズ装置を動作させる環境も常に安定した環境とは限らない。つまり、レンズを駆動させるアクチュエータに振動型モータを採用した場合も、環境変化による速度特性の変化に対応する必要がある。本実施例では、レンズ装置を通常動作している最中に第1、第2及び第3実施例にて説明した起動周波数の補正方法を適用する動作について説明する。
本実施例におけるレンズ装置の構成を図6に示す。以下の説明では、本発明を分かり易くするために本発明の主要な部位のみ図示し、本発明の特徴ではない部位は省略した。また、本発明の主旨に関わらない部分や、公知技術に関しては説明を省略する。
レンズ装置600はフォーカスレンズ(可動光学部材)609を有し、光軸方向に移動してレンズ装置600の結像面の位置を変化させる。
ズームレンズ(可動光学部材)601は光軸方向に移動してレンズ装置600の焦点距離を変化させる。ズームレンズ601は、ズームモータ602が接続されている。ズームモータ602はズームドライバ603によって駆動され、ズームレンズ601を光軸方向に移動させる。ズームモータ602とズームドライバ603でズーム駆動手段を構成する。ズームレンズ601の位置は、ズームレンズ位置検出部604によって検出される。
可動絞り(可動光学部材)605には、アイリスモータ606が接続されている。アイリスモータ606はアイリスドライバ607によって駆動され、可動絞り605を駆動する。アイリスモータ606とアイリスドライバ607でアイリス駆動手段を構成する。可動絞り605の位置(開度)は、アイリス位置検出部608によって検出される。
フォーカスレンズ(可動光学部材)609には、フォーカスモータ610が接続されている。本実施例では、フォーカスモータ610は振動型モータとする。フォーカスモータ610はフォーカスドライバ611によって駆動され、フォーカスレンズ609を光軸方向に移動させる。フォーカスモータ610とフォーカスドライバ611でフォーカスレンズ駆動手段を構成する。フォーカスレンズ609の位置は、フォーカスレンズ位置検出部612によって検出される。
分光プリズム613は、フォーカスレンズ609とズームレンズ601を透過した光を2つの光束に分光する。分光プリズム613を透過した一方の光束は不図示のリレーレンズを通って撮像素子639に入射する。また、分光プリズム613で反射された他方の光束は、位相差検出方式の焦点検出部614に入射する。焦点検出部614は位相差検出レンズと位相差検出センサで構成され、位相差検出レンズによって分光された2つの光束により形成された一対の像(2像)を位相差センサにて光電変換する。一対の像信号に基づいて位相差AF目標位置算出部619にて位相差AFによる目標位置を算出する。
レンズ制御部615は、例えばマイコンであり、フォーカスレンズ駆動手段、ズームレンズ駆動手段、アイリス駆動手段を制御する。
通信部616は、不図示のカメラとの通信を行い、映像AFに関する情報の通信を行う。映像AF開始の指示をカメラから受信すると駆動方向判定部620にて、映像AFを行うための駆動方向、つまりコントラスト値のピーク方向を判定する。判定が行えない場合は、駆動方向判定目標位置算出部621にて駆動方向を判定するための目標位置を算出する。一方、駆動方向が判定できた場合は、コントラスト値のピークを探すため、駆動距離算出部622にて駆動距離を算出する。駆動距離の算出方法は、コントラスト値が低い場合は、ピークが遠い距離にあるので、比較的長い距離とする。ピークサーチ目標位置算出部623では、駆動距離算出部622にて算出された駆動距離に基づいて目標位置を算出する。
電子リング617は、操作により電位が変化する2相のデジタルパルスを出力し、フォーカスレンズ609の目標位置の算出に使用する。電子リング目標位置算出部624では2相のデジタルパルス出力を位置次元の量に変換し、目標位置を算出する。
ショットボタン618は、例えば、ボタンやスイッチであり、目標位置取得部625に記憶した目標位置にフォーカスレンズ609を駆動するトリガを出力する。
ズームレンズ位置算出部626はズームレンズ位置検出部604にて検出した情報を演算にて位置情報に変換する。トラッキング目標位置算出部628は、ズームレンズ601の位置とトラッキングカーブ記憶部627に記憶しているトラッキングカーブとフォーカスレンズ609の位置に基づいて、トラッキング目標位置を算出する。レンズ装置600はズームレンズ601よりフォーカスレンズ609が撮像素子側に位置するため、ズームレンズ601の駆動に追従するようにトラッキング動作を行う。
目標位置選定部629は、上記、説明した様々なフォーカスレンズ609の目標位置の中から1つを選定する。目標位置の更新が1つの場合は、更新された目標位置を採用する。一方、更新された目標位置が複数ある場合は、優先順位の高い目標位置を採用する。例えば、電子リング617の操作によって算出された目標位置とトラッキング目標位置が同時に更新された場合は、電子リング617の操作によって算出された目標位置を採用する。
差分算出部630は、目標位置選定部629にて選定された目標位置とフォーカスレンズ609の位置の差分を算出する。
制御量演算部631は、例えばPID制御で構成され、差分から制御量を算出する。
フォーカスレンズ位置算出部632は、フォーカスレンズ位置検出部612にて検出した情報を演算にて位置情報に変換する。
駆動速度算出部633はフォーカスレンズ609の位置情報に基づいて駆動速度を算出する。算出方法は、例えば今回の位置と少なくとも一つ前の位置の差分とする。
特性変化判定部634は、後述する位相差、周波数決定部637にて決定した位相差と周波数によって構成される周波信号でフォーカスモータ(振動型モータ)610を駆動した結果、算出される駆動速度と速度特性記憶部635にて記憶している速度特性から速度特性の変化を判定する。判定結果に基づいて起動周波数記憶部636にて記憶している起動周波数を補正する。詳細な補正方法は第1、第2及び第3実施例にて説明した。
位相差、周波数決定部637は、制御量演算部631にて算出された制御量と起動周波数から振動型モータ610に印加する周波信号の位相差と周波数を決定する。
周波信号生成部638は振動型モータ610に印加する周波信号を生成する。
以上、説明した構成について目標位置毎における補正方法を説明する。図7(a)、図7(b)、図8、図9(a)及び図9(b)にフォーカスレンズ609の目標位置と、フォーカスレンズ609の駆動軌跡を示す。
図7(a)、図7(b)に1回の入力にてフォーカスレンズ609の現在位置から大きく乖離した目標位置が算出される場合(STEP入力)を示す。横軸は時間、縦軸は位置、実線は目標位置、破線はフォーカスレンズ609の位置を示す。レンズ装置600において図7(a)のような目標位置が入力される可能性は、ショットボタン、大ボケからの位相差AF、コントラスト値が低い状態からの映像AFによる目標位置が算出された場合である。または、位置検出に相対値エンコーダを使用した場合の原点リセット動作も図7(a)の目標位置が算出される可能性がある。次に、図7(a)における起動周波数の補正方法にていて説明する。時刻T70にて目標位置がX70からX71に更新される。更新された目標位置とフォーカスレンズ609の位置の差分に基づいて制御量が算出される。次に、フォーカスレンズ609は目標位置に向かって、駆動を始める。時刻T70から時刻T71までは、加速時間であり、時刻T71から時刻T72は一定速度であり、時刻T72以降は減速時間である。つまり、時刻T71から時刻T72間は一定速度(実質オープン制御)なため、駆動速度の算出に十分な情報を得ることができる。よって、時刻T71から時刻T72間にて算出した駆動速度を使用して、第1、第2及び第3実施例の補正方法を使用する。つまり、レンズ装置600の通常動作中に速度特性の変化を検知し、起動周波数を補正することが可能となる。別の方法として、図7(b)は、目標位置に到達するまでに、2つの速度(2つの周波数または、2つの位相差)にて駆動した場合を示す。図7(a)と同様な図であり、加速時間を経た後、時刻T71から時刻T73間を速度V1が得られる周波数、位相差にて駆動し、時刻T73から時刻T72間を速度V2が得られる周波数、位相差にて駆動する。よって、一つの目標位置に到達するまでに2つの速度(周波数、位相差)にて駆動するため、速度特性上の2点を使用して変化方向、変化量を検知し、起動周波数を補正することが可能となる。以上、説明した方法により通常動作中の規定動作において振動型モータの速度を測定することで、速度特性の変化方向と変化量を検知し、速度特性の変化を判定することで、起動周波数を補正することが可能である。よって、レンズ装置600の通常動作中に速度特性の変化を検知し、起動周波数を補正することで速度特性の変化前後でも同等な制御性を得ることが可能となる。
次に、図8に低速駆動時の目標位置が算出される場合を示す。横軸に時間、縦軸に位置、実線が目標位置、破線がフォーカスレンズ609の位置を示す。レンズ装置600において図8のような目標位置が入力される可能性は、ピント合わせを行う時の電子リング617、コントラスト値が高い状態からの映像AFによる目標位置が算出された場合である。図8に示す低速駆動の場合、目標位置までの距離が短いため、低速駆動となるような位相差、周波数にてフォーカスレンズ609を駆動する。低速駆動のため、制御装置は細かな制御を行う。つまり、位相差、周波数を変更する回数が多いことが予想される。よって、速度特性上の測定点が増える。更に、第3実施例で説明した速度が0になる位相差と速度が0ではない位相差の境目を探しやすくなる。また、低速駆動時は、加速に要する時間が高速駆動時に比べ、短いため、位相差、周波数を変更する回数が多い細かな制御でも、速度の算出に十分な情報を得ることが可能である。以上、説明した方法により低速駆動時にも、速度特性の変化を判定し、起動周波数を補正することが可能である。よって、レンズ装置600の通常動作中に速度特性の変化を検知し、起動周波数を補正することで速度特性の変化前後でも同等な制御性を得ることが可能となる。
次に、図9(a)にトラッキング動作時の目標位置が算出される場合を示す。横軸にズームレンズ位置、縦軸にフォーカスレンズ位置、実線はある被写体距離におけるズームレンズ位置に対するフォーカスレンズ位置を示す。ズームレンズ位置Z90がWide側、ズームレンズ位置Z92がTele側を表す。図9(a)から分かるように、ズームレンズ位置がTele側の方がWide側よりズームレンズ位置の変化に対してフォーカスレンズ位置の変化が大きくなる。また、ズームレンズ601の駆動速度に応じてフォーカスレンズ609の駆動速度も変化する。図9(a)の場合、ズームレンズ位置Z91からズームレンズ位置Z92間は傾きが一定であることが分かる。よって、ズームレンズ位置Z91からズームレンズ位置Z92の間はフォーカスレンズ609の駆動速度が一定となる可能性が高いため、フォーカスレンズ609の駆動速度の算出に十分な情報を得ることが可能である。つまり、トラッキング動作のように事前に目標位置が予測できる場合は、速度が一定となる区間において振動型モータの駆動速度を算出することが可能である。次に、図9(b)に図9(a)と同様なトラッキング動作時の目標位置を示す。図9(b)の場合、2次関数のような曲線を描いており、図9(a)のように傾きが一定となる区間がない。この場合、ズームレンズ位置Z94からズームレンズ位置Z95の区間を直線近似して、傾きが一定となる区間を作る。よって、フォーカスレンズの駆動速度の算出に十分な情報を得ることが可能である。更に、ズームレンズ位置Z96からズームレンズ位置Z97間も直線近似することで2つの速度においてフォーカスレンズの駆動速度を算出することが可能となる。以上、説明した方法によりトラッキング動作時にも速度特性の変化を判定し、起動周波数を補正することが可能である。よって、レンズ装置600の通常動作中に速度特性の変化を検知し、起動周波数を補正することで速度特性の変化前後でも同等な制御性を得ることが可能となる。
以上、目標位置の種類毎に説明した方法により、レンズ装置600は通常動作中に振動型モータであるフォーカスモータ610の速度特性の変化を検知し、起動周波数を補正することで、速度特性変化の前後でも同等な制御性を得ることが可能となる。更に、温度センサ等の追加の構成や、通常動作とは異なる検知動作等の専用の動作を構成することなく、実現可能である。
本実施例で説明した目標位置は一例であり、駆動速度を算出できればこれに限らない。例えば、電子リング617の操作により一定時間一定速度で駆動する目標位置を算出した場合は、一定速度の区間で駆動速度を算出することが可能である。
本実施例では、一つの入力に対して複数の駆動速度の算出方法を説明したが、複数種類の目標位置を組み合わせて複数の駆動速度を算出しても良い。例えば、レンズ装置600に駆動速度記憶部(記憶手段)を追加し、図7(a)の目標位置にて駆動速度を算出し、駆動速度記憶部に記憶する。次に、図9(a)の目標位置にて駆動速度を算出する。次に、図7(a)の目標位置にて算出した駆動速度と図9(a)の目標位置にて算出した駆動速度の2つを使用して速度特性の変化方向と変化量を判定する。また、駆動速度記憶部にて駆動速度を記憶する場合は振動型モータ(フォーカスモータ610)に印加した周波信号の位相差と周波数も合わせて記憶する。尚、レンズ装置600の電源が切れるまたは、一定時間が経過した場合、環境が更に変化している可能性があるため駆動速度記憶部にて記憶している情報を削除することが好ましい。
また、上記の実施例に記載した振動型モータ制御装置を有するレンズ装置と、撮像素子とを含むことを特徴とする撮像装置を構成することによって、本発明の効果を奏することができる撮像装置を実現することができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
100:振動型モータ制御装置
101:振動型モータ
102:検出部(検出手段)
104:Fol算出部(検出手段)
106:速度算出部(検出手段)
107、635:速度特性記憶部(記憶手段)
108、634:特性変化判定部(補正手段)
109、636:起動周波数記憶部(補正手段)

Claims (14)

  1. 位相差を有する2つの周波信号に基づいて、振動が励起される振動体を、該振動体に接触する接触体に対して相対移動させる振動型モータを制御する振動型モータ制御装置であって、
    前記2つの周波信号の周波数に対する前記振動体の速度特性を記憶する記憶手段と、
    前記2つの周波信号の周波数及び位相差のうちの少なくとも何れか一方を変化させて前記振動体の速度を制御する制御手段と、
    前記速度を検出する検出手段と、
    前記検出手段により検出された速度と、前記記憶手段により記憶された速度特性と、の比較に基づいて、前記制御手段による制御の起点となる起動周波数を変更する変更手段と、
    を有することを特徴とする振動型モータ制御装置。
  2. 前記補正手段は、前記比較に基づいて、前記速度特性の変化量及び変化方向を取得し、該変化量及び該変化方向に基づいて、前記起動周波数を補正する、ことを特徴とする請求項1に記載の制御装置。
  3. 前記補正手段による前記比較に供される前記駆動速度は、前記速度特性における最大速度を示す周波数より高い、少なくとも1つ以上の周波数における駆動速度である、ことを特徴とする請求項1又は2に記載の振動型モータ制御装置。
  4. 前記補正手段による前記比較に供される前記駆動速度は、前記速度特性における最大速度を示す周波数より低い、少なくとも1つ以上の周波数における駆動速度である、ことを特徴とする請求項1又は2に記載の振動型モータ制御装置。
  5. 前記補正手段による前記比較に供される前記駆動速度は、前記速度特性における最大速度を示す周波数より高い周波数及び低い周波数を含む複数の周波数における駆動速度である、ことを特徴とする請求項1又は2に記載の振動型モータ制御装置。
  6. 前記補正手段は、検出された前記駆動速度が前記速度特性にて示される周波数に対する速度より速い場合は、前記変化方向は高周波数側であると判定して前記起動周波数を補正する、ことを特徴とする請求項3に記載の振動型モータ制御装置。
  7. 前記補正手段は、検出された前記駆動速度が前記速度特性にて示される周波数に対する速度より速い場合は、前記変化方向は低周波数側であると判定して前記起動周波数を補正する、ことを特徴とする請求項4に記載の振動型モータ制御装置。
  8. 前記複数の周波数は、前記速度特性において互いに等しい駆動速度を示す第1の周波数と第2の周波数であって、前記速度特性において最大速度を示す周波数より低い第1の周波数と高い第2の周波数を含み、
    前記補正手段は、前記第1の周波数で検出された駆動速度の方が前記第2の周波数で検出された駆動速度より速い場合は、前記変化方向は低周波数側であると判定して前記起動周波数を補正する、
    ことを特徴とする請求項5に記載の振動型モータ制御装置。
  9. 前記記憶手段は、前記振動型モータの位相差及び周波数に対する速度特性を記憶し、
    前記駆動速度は、前記速度特性における最大速度を示す周波数より高い周波数における駆動速度であって、
    前記補正手段は、検出された前記駆動速度が前記速度特性にて示される該位相差に対する速度より速い場合は、前記変化方向は高周波数側であると判定して前記起動周波数を補正する、
    ことを特徴とする請求項1又は2に記載の振動型モータ制御装置。
  10. 前記記憶手段は、前記振動型モータの位相差及び周波数に対する速度特性を記憶し、
    前記駆動速度は、前記速度特性における最大速度を示す周波数より高い周波数における駆動速度であって、
    前記補正手段は、2つの位相差において検出された駆動速度の差が、前記速度特性にて示される前記2つの位相差に対する駆動速度の差より大きい場合は、前記変化方向は高周波数側であると判定して前記起動周波数を補正する、
    ことを特徴とする請求項1又は2に記載の振動型モータ制御装置。
  11. 前記補正手段は、前記速度特性において前記駆動速度が得られる周波数と、前記第1の導出手段が導出した前記駆動速度が得られた周波数との差分を前記変化量として前記速度特性を補正する、ことを特徴とする請求項1乃至10のいずれか1項に記載の振動型モータ制御装置。
  12. 前記記憶手段は、前記起動周波数を記憶する、ことを特徴とする請求項1乃至11のいずれか1項に記載の振動型モータ制御装置。
  13. 可動光学部材と、該可動光学部材の駆動手段として請求項1乃至12のいずれか1項に記載の振動型モータ制御装置と、を有することを特徴とするレンズ装置。
  14. 請求項13に記載のレンズ装置と、撮像素子と、を含むことを特徴とする撮像装置。
JP2015025011A 2015-02-12 2015-02-12 制御装置、レンズ装置、および撮像装置 Expired - Fee Related JP6478680B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015025011A JP6478680B2 (ja) 2015-02-12 2015-02-12 制御装置、レンズ装置、および撮像装置
EP16000296.0A EP3057224B1 (en) 2015-02-12 2016-02-05 Vibration motor controller, lens apparatus including the same, and image pickup apparatus including the same
US15/016,339 US10615719B2 (en) 2015-02-12 2016-02-05 Vibration motor controller, lens apparatus including the same, and image pickup apparatus including the same
CN201610084836.3A CN105897045B (zh) 2015-02-12 2016-02-14 振动电机控制器、透镜装置及摄像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025011A JP6478680B2 (ja) 2015-02-12 2015-02-12 制御装置、レンズ装置、および撮像装置

Publications (2)

Publication Number Publication Date
JP2016149856A true JP2016149856A (ja) 2016-08-18
JP6478680B2 JP6478680B2 (ja) 2019-03-06

Family

ID=55352989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025011A Expired - Fee Related JP6478680B2 (ja) 2015-02-12 2015-02-12 制御装置、レンズ装置、および撮像装置

Country Status (4)

Country Link
US (1) US10615719B2 (ja)
EP (1) EP3057224B1 (ja)
JP (1) JP6478680B2 (ja)
CN (1) CN105897045B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501515A (zh) * 2018-05-16 2019-11-26 日本电子株式会社 自动分析装置和自动分析方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9715162B2 (en) * 2015-08-19 2017-07-25 Canon Kabushiki Kaisha Vibration motor controller, and lens apparatus and image pickup apparatus that include the same
CN109361337B (zh) * 2018-12-13 2024-01-12 上海艾为电子技术股份有限公司 线性谐振装置的驱动电压波形的频率校准方法及相关装置
CN109818526B (zh) * 2019-04-02 2020-03-20 苏州大学 粘滑式惯性压电驱动器的运动控制方法及装置
CN110418055B (zh) * 2019-07-08 2021-08-20 Oppo广东移动通信有限公司 对焦方法、图像传感器及计算机存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156493A (ja) * 1993-12-07 1995-06-20 Canon Inc プリンタ
JPH11265213A (ja) * 1998-01-08 1999-09-28 Canon Inc 振動型モータの制御装置およびこれを用いた装置
JP2008054448A (ja) * 2006-08-25 2008-03-06 Canon Inc 振動波モータ制御装置、振動波モータ制御方法、プログラム、及び記憶媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178984A (ja) 1983-03-25 1984-10-11 Canon Inc 振動波モ−タの制御装置
JP3412923B2 (ja) * 1994-09-14 2003-06-03 キヤノン株式会社 振動波駆動装置の制御装置
JP3437359B2 (ja) 1996-01-08 2003-08-18 キヤノン株式会社 振動波駆動装置の制御装置
JP4541785B2 (ja) 2003-09-01 2010-09-08 キヤノン株式会社 振動型アクチュエータ駆動制御装置および振動型アクチュエータ駆動制御方法
JP2008054418A (ja) 2006-08-24 2008-03-06 Fujikura Ltd 電気接続箱及びその製造方法
JP5553564B2 (ja) * 2009-09-18 2014-07-16 キヤノン株式会社 振動型モータ制御装置および撮像装置
JP5704826B2 (ja) 2010-03-19 2015-04-22 キヤノン株式会社 振動型アクチュエータの駆動装置
JP5679781B2 (ja) * 2010-11-26 2015-03-04 キヤノン株式会社 振動型アクチュエータの制御装置
JP2019178984A (ja) 2018-03-30 2019-10-17 住鉱潤滑剤株式会社 グリースの品質判定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156493A (ja) * 1993-12-07 1995-06-20 Canon Inc プリンタ
JPH11265213A (ja) * 1998-01-08 1999-09-28 Canon Inc 振動型モータの制御装置およびこれを用いた装置
US20020008439A1 (en) * 1998-01-08 2002-01-24 Canon Kabushiki Kaisha Control device for vibration type motor and apparatus using thereof
JP2008054448A (ja) * 2006-08-25 2008-03-06 Canon Inc 振動波モータ制御装置、振動波モータ制御方法、プログラム、及び記憶媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501515A (zh) * 2018-05-16 2019-11-26 日本电子株式会社 自动分析装置和自动分析方法

Also Published As

Publication number Publication date
JP6478680B2 (ja) 2019-03-06
US10615719B2 (en) 2020-04-07
EP3057224B1 (en) 2019-12-11
US20160241167A1 (en) 2016-08-18
EP3057224A1 (en) 2016-08-17
CN105897045A (zh) 2016-08-24
CN105897045B (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
JP6478680B2 (ja) 制御装置、レンズ装置、および撮像装置
USRE45692E1 (en) Automatic focusing apparatus and image pickup apparatus
US10812722B2 (en) Imaging apparatus, shake correction method, lens unit, and body unit
US7403230B2 (en) Image-taking apparatus
JP2008203294A (ja) 撮像装置
US8121470B2 (en) Focusing device, image pick-up apparatus, and control method
JP5335445B2 (ja) レンズ制御装置、光学機器およびレンズ制御方法
JP4532865B2 (ja) 撮像装置および撮像装置のフォーカス制御方法
US20110267706A1 (en) Lens apparatus
JP2008026788A (ja) 撮像装置及びフォーカス制御方法
JP2005234325A (ja) レンズ制御装置、撮像装置およびレンズ制御方法
EP1895768B1 (en) Focus adjustment apparatus, image pickup apparatus, and control method
JP4481610B2 (ja) 撮像装置および撮像装置のフォーカス制御方法
WO2006075657A1 (ja) オートフォーカス装置
JP2006343651A (ja) 光学機器
WO2019172453A1 (ja) レンズ鏡筒および撮像装置
US10367991B2 (en) Focus adjustment device and control method of focus adjustment device
JP5930979B2 (ja) 撮像装置
JP2011133700A (ja) 焦点調節方法、焦点調節装置、及び撮像装置
KR20160026036A (ko) 오토포커싱 구동장치 및 그 제어방법
JP2016080892A (ja) 像ぶれ補正装置、焦点調節装置、制御ユニットおよび光学機器
JP2020148841A (ja) レンズ装置および撮像装置
JP6529558B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2023129030A (ja) 制御装置、撮像装置、制御方法、およびプログラム
JP2022072522A (ja) 制御装置、レンズ装置、撮像装置、制御方法、およびプログラム

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R151 Written notification of patent or utility model registration

Ref document number: 6478680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees