JP2015500661A - バイオマスからの糖およびアルコールの生成 - Google Patents

バイオマスからの糖およびアルコールの生成 Download PDF

Info

Publication number
JP2015500661A
JP2015500661A JP2014548918A JP2014548918A JP2015500661A JP 2015500661 A JP2015500661 A JP 2015500661A JP 2014548918 A JP2014548918 A JP 2014548918A JP 2014548918 A JP2014548918 A JP 2014548918A JP 2015500661 A JP2015500661 A JP 2015500661A
Authority
JP
Japan
Prior art keywords
biomass
cellulose
microorganism
paper
lignocellulosic biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014548918A
Other languages
English (en)
Other versions
JP6595769B2 (ja
Inventor
メドフ,マーシャル
マスターマン,トーマス
ムン,ジェウン
ヨシダ,アイイチロ
Original Assignee
ザイレコ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザイレコ,インコーポレイテッド filed Critical ザイレコ,インコーポレイテッド
Publication of JP2015500661A publication Critical patent/JP2015500661A/ja
Application granted granted Critical
Publication of JP6595769B2 publication Critical patent/JP6595769B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • C12P7/20Glycerol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本明細書中に開示される工程は、セルロースまたはリグノセルロース系バイオマスを糖化し、そして糖を発酵させて糖アルコールを生成することを包含する。【選択図】図1

Description

関連出願の相互参照
本出願は、米国特許仮出願第61/579,576号(2011年12月22日出願)の利益を主張する。上記出願の全開示内容は、参照により本明細書中で援用される。
本発明の分野
本発明は、生成物、例えば糖アルコール、例えばエリトリトールの生成に関する。
石油に対する需要が増大するのと同じように、バイオ燃料および生化学物質を製造するための再生可能原料が関心を集めている。このような製造工程のための供給原料としてのリグノセルロース系バイオマスの使用は、1970年代以来研究されてきた。リグノセルロース系バイオマスは、豊富で、再生可能で、自国で製造されるため、そして食品産業用途と競合しないため、魅力的である。
多数の潜在的リグノセルロース原料、例えば少数の例を挙げると、農業残渣、木材バイオマス、地方自治体廃棄物、脂肪種子/固形採油残渣および海藻が、今日利用可能である。目下、これらの材料は、動物飼料、バイオ堆肥材料として用いられるか、あるいは熱電併給施設で焼却されるかまたは埋め立てられる。
リグノセルロース系バイオマスは、植物細胞壁が剛性で且つ緊密な構造を有するので、難分解性である。当該構造は、リグニンに取り囲まれた半セルロースマトリクス中に埋め込まれた結晶セルロース繊維を含む。この緊密なマトリクスは、酵素または他の化学的、生化学的および生物学的工程により査定するのが難しい。セルロース性バイオマス材料(例えば、実質的にすべてのリグニンが除去されたバイオマス材料)は、酵素またはその他の転嫁工程により接近することが可能になるが、しかしそういう場合でも、天然セルロース物質は、加水分解酵素と接触されると、しばしば低収量(理論的収量に比して)を有する。リグノセルロース系バイオマスは、酵素攻撃に対してさらに難分解性である。さらに、各型のリグノセルロース系バイオマスは、セルロース、半セルロースおよびリグニンのその自身の特異的組成物を有する。
リグノセルロース系バイオマスから構造性炭水化物を抽出するために多数の方法が試みられてきたが、それらは高価すぎるか、収量が低すぎるか、結果的に生じる物質中に望ましくない化学物質を残しているか、あるいは簡単に糖を分解する。
再生可能バイオマス供給源からの糖類は、石油およびその他の化石供給原料に取って代わり、補足し、または置換することにより化学および燃料産業の基礎になる。しかしながら、これらの単糖を、大量に、そして許容可能な純度および価格で利用可能にする技術が開発される必要がある。
1つ以上の糖を含有するセルロースまたはリグノセルロース系バイオマスから糖アルコールを製造するための方法であって、セルロースまたはリグノセルロース系バイオマスを、糖のうちの少なくとも1つを糖アルコールに転化し得る微生物と組み合わせること、そして微生物が糖のうちの少なくとも1つを糖アルコールに転化することができる条件下で、微生物‐バイオマス組合せを保持することを包含する方法が提供される。いくつかの実行において、当該方法は、セルロースまたはリグノセルロース系バイオマスを提供すること(この場合、セルロースまたはリグノセルロース系バイオマスは、1つ以上の糖を含有する);糖のうちの少なくとも1つを糖アルコールに転化し得る微生物を提供すること;セルロースまたはリグノセルロース系バイオマスを微生物と組み合わせ、それにより微生物‐バイオマス組合せを生成すること;そして微生物が糖のうちの少なくとも1つを糖アルコールに転化することができる条件下で、微生物‐バイオマス組合せを保持し;それによりセルロースまたはリグノセルロース系バイオマスから糖アルコールを製造することを包含する。
本明細書中で提供される方法のいずれかは、糖化に対するセルロースまたはリグノセルロース系バイオマスの難分解性を低減した後に、それを微生物と組み合わせることを包含し得る。難分解性は、以下の:電子による衝撃、音波処理、酸化、熱分解、水蒸気爆発、化学的処理、機械的処理および凍結粉砕からなる群から選択される処理方法により低減され得る。当該処理方法は、電子による衝撃であり得る。
本明細書中で提供される方法のいずれかは、セルロースまたはリグノセルロース系バイオマスを機械的に処理して、その嵩密度を低減し、および/またはその表面積を増大することも包含し得る。例えば、セルロースまたはリグノセルロース系バイオマスは細砕され得るし、例えばそれは、乾式粉砕されるかまたは湿式粉砕され得る。
本明細書中で提供される方法のいずれかにおいて、バイオマスは、1つ以上のセルラーゼで糖化され得る。当該方法のいずれかは、セルロースまたはリグノセルロース系バイオマスを微生物と組み合わせる前に、1つ以上の糖を分離することも包含し得るし、あるいは当該方法は、セルロースまたはリグノセルロース系バイオマスを微生物と組み合わせる前に、1つ以上の糖を濃縮することを包含し得る。当該方法は、セルロースまたはリグノセルロース系バイオマスを微生物と組み合わせる前に、1つ以上の糖を濃縮し且つ分離することも包含し得る。糖化バイオマスは、少なくとも5重量%の初期グルコース濃度を有するよう調整され得る。糖化バイオマスは、さらにまた、例えば金属イオンの除去により精製され得る。
本明細書中に開示される方法のいずれかは、セルロースまたはリグノセルロース系バイオマスを微生物と組み合わせる前に、微生物を細胞増殖相において培養することも包含し得る。
本明細書中で提供される方法のいずれかにおいて、糖アルコールは、グリコール、グリセロール、エリトリトール、トレイトール、アラビトール、キシリトール、リビトール、マンニトール、ソルビトール、ガラクチトール、イジトール、イノシトール、ボレミトール、イソマルト、マルチトール、ラクチトール、マルトトリイトール、マルトテトライトールまたはポリグリシトールであり得る。
微生物は、モニリエラ・ポリニス、モニリエラ・メガチリエンシス、ヤロウィア・リポリチカ、アウレオバシジウム種、トリコスポロノイデス種、トリゴノプシス・バリアビリス、トリコスポロン種、モニリエラアセトアブタンス種、チフラ・バリアビリス、カンジダ・マグノリエ、ウスチラギノミセテス種、シュードザイマ・ツクバエンシス;ジゴサッカロミセス属、デバリオミセス属、ハンセヌラ属およびピキア属の酵母種;あるいはトルラ属類皮の真菌であり得る。微生物は、モニリエラの一種、例えばM.ポリニス、例えば菌株CBS461.67、またはM.メガチリエンシス菌株CBS567.85であり得る。
本明細書中で提供される方法のいずれかにおいて、セルロースまたはリグノセルロース系バイオマスは、以下の:紙、紙製品、紙廃棄物、紙パルプ、着色紙、上塗り紙、被覆紙、充填紙、雑誌、印刷物、印刷用紙、ポリコーティング紙、硬い厚紙、ボール紙、板紙、綿、木材、パーティクルボード、林業系廃棄物、おがくず、アスペン材、木材チップ、草、スイッチグラス、ススキ、ミクリ、クサヨシ、穀粒残渣、コメ籾殻、オートムギ籾殻、コムギ籾殻、オオムギ籾殻、農業廃棄物、貯蔵牧草、キャノーラ藁、コムギ藁、オオムギ藁、オートムギ藁、コメ藁、ジュート、麻、亜麻、竹、サイザルアサ、マニラ麻、トウモロコシ穂軸、トウモロコシ飼葉、ダイズ飼葉、トウモロコシ繊維、アルファルファ、干し草、ココヤシ表面毛、糖加工残渣、バガス、ビートパルプ、リュウゼツランバガス、藻類、海藻、堆肥、下水汚物、腐肉、農業または工業廃棄物、アラカチャ、ソバ、バナナ、オオムギ、キャッサバ、葛、アンデスカタバミ、サゴヤシ、モロコシ、ジャガイモ、サツマイモ、タロイモ、ヤムイモ、ダイズ、ソラマメ、レンズマメ、エンドウおよびこれらのいずれかの混合物であり得る。
本発明はこの概要に開示された実施形態に限定されるものではなく、本発明は、特許請求の範囲により定義されるように、本発明の精神および範囲内である修正を包含するよう意図される、と理解されるべきである。
添付の図面(同一参照数字は、異なる図面全体を通して同一部分を指す)に示されているように、本発明の実施形態例についての以下のさらに特定的説明から、上記の説明は明らかになる。図は、必ずしも同一縮尺ではなく、代わりに、本発明の実施形態を例証する時に強調される。
グルコースへのセルロースの酵素的加水分解を示す図である。セルロース基質(A)は、エンドセルラーゼ(i)によりセルロース(B)に転化され、これは、エキソセルラーゼ(ii)によりセルロビオース(C)に転化され、これは、セロビアーゼ(ベータ・グルコシダーゼ)(iii)によりグルコース(D)に転化される。 1つ以上の生成物へのバイオマス供給原料の転化を示す流れ図である。供給原料は、物理的に前処理され(例えば、そのサイズを低減するため)(200)、任意に、その難分解性を低減するために処理され(210)、糖化されて、糖溶液を生成し(220)、その溶液は(例えばパイプライン、鉄道車輛により)製造プラントに運搬され(230)(あるいは糖化が途中で実施される場合、供給原料、酵素および水が運搬される)、糖化供給原料はバイオプロセシングされて、所望の生成物(例えば、アルコール)(240)を生成し、生成物は、例えば蒸留によりさらに加工処理されて、最終生成物を生成する(250)。難分解性のための処理は、リグニン含量を測定すること(201)および工程パラメーターを設定するかまたは調整すること(205)により、改変され得る。供給原料を糖化すること(220)は、供給原料を培地および酵素(221)と混合することにより改変され得る。
詳細な説明
本発明は、バイオマス供給原料物質(例えば、バイオマス材料またはバイオマス由来材料、例えばセルロースまたはリグノセルロース系材料)を加工処理して、糖アルコール、例えばエリトリトール(2R,3S)‐ブタン‐1,2,3,4‐テトラオールまたはその異性体または混合物を得る方法に関する。
Figure 2015500661
いくつかの場合、供給原料の難分解性は、糖化前に低減される。いくつかの場合、供給原料の難分解性を低減することは、供給原料を処理することを包含する。処理は、例えば放射、例えば電子線放射、音波処理、熱分解、酸化、水蒸気爆発、化学的処理、またはこれらのいずれかの組合せであり得る。
いくつかの実行において、当該方法は、その難分解性を低減する前および/または後に、供給原料を機械的に処理することも包含する。機械的処理としては、例えば、切断すること、粉砕すること、例えばハンマーミリング、圧縮すること、磨り潰すこと、剪断すること、および切り刻むことが挙げられる。機械的処理は、供給原料の嵩密度を低減し、および/または供給原料の表面積を増大し得る。いくつかの実施形態では、機械的処理後、材料は、0.75g/cm3未満、例えば約0.7未満、0.65、0.60、0.50、0.35、0.25、0.20、0.15、0.10、0.05以下、例えば0.025g/cm3未満の嵩密度を有する。嵩密度は、ASTM D1895Bを用いて決定される。いくつかの環境下では、機械的処理は難分解性を除去するかまたは低減し得る。
一態様において、本発明は、セルロースまたはリグノセルロース系供給原料を糖化することにより生成される糖を微生物と接触させて、生成物、例えば糖アルコール、例えばエリトリトールを生成することを包含する方法を特徴とする。他の生成物としては、例えばクエン酸、リシンおよびグルタミン酸が挙げられる。
いくつかの実行では、微生物としては、モニリエラ・ポリニス、モニリエラ・メガチリエンシス、ヤロウィア・リポリチカ、アウレオバシジウム種、トリコスポロノイデス種、トリゴノプシス・バリアビリス、トリコスポロン種、モニリエラアセトアブタンス種、チフラ・バリアビリス、カンジダ・マグノリエ、ウスチラギノミセテス種、シュードザイマ・ツクバエンシス;ジゴサッカロミセス属、デバリオミセス属、ハンセヌラ属およびピキア属の酵母種;あるいはトルラ属類皮の真菌が挙げられる。
いくつかの実行において、接触ステップは、細胞増殖ステップおよび発酵ステップを含む二段階工程を包含する。任意に、発酵は、発酵開始時に少なくとも5重量%の開始グルコース濃度を有するグルコース溶液を用いて実施される。さらに、グルコース溶液は、発酵が開始した後、希釈され得る。
図1に示したように、例えば糖化中、セルロース基質(A)は、最初に、無作為位置でエンドグルカナーゼ(i)により加水分解されて、オリゴマー中間体(例えばセルロース)を生じる(B)。これらの中間体は、その場合、グルカナーゼ(ii)、例えばセロビオヒドロラーゼを外分解して、セルロースポリマーの末端からセロビオースを生成するための基質である。セロビオースは、グルコースの水溶性1,4‐連結二量体である。最後に、セロビアーゼ(iii)はセロビオースを切断して(C)、グルコースを生じる(D)。したがって、エンドグルカナーゼは、セルロースの結晶部分を攻撃するのに、そしてエキソセルラーゼの有効性を増大してセロビオースを生成し、これは次に、グルコースを生成するためにセロビオースの特異性を要する。したがって、セルロース基質の性質および構造によって、3つの異なる酵素の量および種類が改質される必要があり得る、ということは明白である。
いくつかの実行において、酵素は、真菌により、例えばセルロース分解性糸状菌トリコデルマ・リーセイにより産生される。例えばトリコデルマ・リーセイの高収率セルラーゼ突然変異体、例えばRUT‐NG14、PC3‐7、QM9414および/またはRut‐C30が用いられ得る。このような菌株は、例えば「Selective Screening Methods for the Isolation of High Yielding Cellulase Mutants of Trichoderma reesei,” Montenecourt,B.S. and Everleigh,D.E.,Adv.Chem.Ser.181,289−301(1979)(この記載内容は参照により本明細書中で援用される)に記載されている。その他のセルラーゼ産生微生物も、用いられ得る。
図2に示したように、糖アルコールを製造するための工程は、例えば、供給原料を、任意に物理的に処理すること(例えば、そのサイズを低減するため)(200)、この処理の前および/または後に、任意に、その難分解性をさらに低減するために別の物理的処理で供給原料を処理すること(210)、次いで、酵素複合体を用いて供給原料を糖化して、糖溶液を生成すること(220)を包含し得る。任意に、当該方法は、例えばパイプライン、鉄道車輛、トラックまたは艀により、溶液(またはあるいは糖化が途中で実施される場合、供給原料、酵素および水)を製造プラントに運搬すること(230)も包含し得る。いくつかの場合、糖化供給原料はさらにバイオプロセシング(例えば、発酵)されて、所望の生成物、例えば、アルコールを生成する(240)。この結果的に生じた生成物は、いくつかの実行においては、例えば蒸留(250)によりさらに加工処理されて、最終生成物を生成し得る。供給原料の難分解性を低減する一方法は、供給原料の電子衝撃による。所望により、供給原料のリグニン含量を測定するステップ(201)およびこの測定の工程パラメーターを設定するかまたは調整する工程(205)は、米国特許出願公告2010/0203495 A1(MedoffおよびMasterman;2010年8月12日公開;これらの全記載内容は参照により本明細書中で援用される)に記載されたように、当該工程の種々の段階で実施され得る。供給原料を糖化すること(220)は、供給原料を培地および酵素(221)と混合することにより改変され得る。
いくつかの場合、米国特許シリアル番号13/276,192(2011年10月18日出願)に記載されているように、供給原料は、糖化前に熱水中で煮沸され、浸され、または煮られる。
上記の工程は、製造プラントにおいてタンク(例えば、少なくとも4000、40,000または500,000Lの容積を有するタンク)中で部分的にまたは完全に実施され得るし、および/または輸送中に、例えば鉄道車輛、タンカートラックにおいて、またはスーパータンカーまたは船の船倉で、部分的にまたは完全に実施され得る。米国特許出願公告2010/0064746 A1(2010年3月18日公開;この記載内容は参照により本明細書中で援用される)に記載されたように、可動性発酵槽が利用され得る。
タンクおよび/または発酵槽内容物は、例えば、米国特許出願公告2010/0297705 A1(2010年5月18日出願および2012年11月25日公開)、米国特許出願公告2012/0100572 A1(2011年11月10日出願および2012年4月26日公開)、米国特許出願公告2012/0091035 A1(2011年11月10日出願および2012年4月19日公開)に記載されたようなジェットミキシングを用いて、全部または一部の当該工程の間に混合される、というのが一般的に好ましい。
添加物、例えば界面活性剤または栄養素の付加は、糖化の速度を増強し得る。界面活性剤の例としては、非イオン性界面活性剤、例えばトゥイーン(登録商標)20またはトゥイーン(登録商標)80ポリエチレングリコール界面活性剤、イオン性界面活性剤または両イオン性界面活性剤が挙げられる。
1つ以上の有用な生成物が生成され得る。例えば、グリコール、グリセロール、エリトリトール、トレイトール、アラビトール、キシリトール、リビトール、マンニトール、ソルビトール、ガラクチトール、イジトール、イノシトール、ボレミトール、イソマルト、マルチトール、ラクチトール、マルトトリイトール、マルトテトライトールおよびポリグリシトールが、発酵により生成され得る。さらに、酪酸、グルコン酸およびクエン酸も生成され得る。
いくつかの実施形態では、ポリオール、例えば単量体ポリオール、例えばグリセリン、ペンタエリトリトール、エチレングリコールおよびスクロースは、発酵により作られ得る。]これらは、高分子ポリオール、例えばポリエーテルポリオールに増大され得る。
いくつかの実施形態では、任意に機械的におよび/または物理的に処理される供給原料は、糖化のために酵素複合体と組み合わされ得るし、放出糖の少なくとも一部を糖アルコールに発酵させる生物体とも組み合わされる。次いで、糖アルコールは他の生成物および非発酵物質、例えば個体、非発酵糖および細胞破砕屑から単離される。
任意に機械的におよび/または物理的に処理される供給原料は、糖化のために酵素複合体とも組み合わされ、糖化が少なくとも部分的に完了した後、混合物は、糖アルコールを産生する生物体と組み合わされる。糖化の条件(例えば、温度、撹拌、曝気)は、発酵のための条件とは異なり得る。発酵のための最適pHは、一般的に、約pH4〜6である。典型的発酵時間は、約24〜120時間であり、温度は25℃〜40℃、例えば25℃〜30℃の範囲である。発酵は、典型的には、約10%より上の(例えば約20%より上の)溶解酸素レベルを保持するために、スパージング管および空気および/または酸素供給を用いて曝気により実行される。糖化および発酵は、同一のまたは異なる反応器/容器中でなされ得る。次いで、糖アルコールが単離される。上記のように、発酵は運搬工程中に実施され得る。
一般的に、発酵開始時の高い初期糖濃度は、糖アルコールの生成を促進する。したがって、糖化供給原料溶液は、糖アルコールを産生する生物体との組合せの前に濃縮されて、溶液のグルコースレベルを増大し得る。濃縮は、任意の所望の技法により実行され得る。例えば濃縮は、加熱、冷却、遠心分離、逆浸透圧法、クロマトグラフィー、沈降、結晶化、蒸発、吸着およびその組合せによりなされ得る。好ましくは、濃縮は、糖化供給原料からの液体の少なくとも一部分の蒸発により実行される。濃縮は、好ましくは、グルコース含量を約5重量%より多く、10重量%より多く、15重量%より多く、20重量%より多く、30重量%より多く、40重量%より多く、50重量%より多くさえ増大するために実行される。発酵からの生成物は、次に、単離される。
糖化供給原料は、濃縮の前または後にも精製され得る。精製は、好ましくは、グルコース含量を水以外の全組成物の約50重量%より多く(例えば、約60重量%より多く、約70重量%より多く、約80重量%より多く、約90重量%より多く、そして約99重量%より多くさえある)に増大するために実行される。精製は、任意の所望の技法により、例えば加熱、冷却、遠心分離、逆浸透圧法、クロマトグラフィー、沈降、結晶化、蒸発、吸着およびこれらのいずれかの組合せによりなされ得る。
いくつかの実行において、発酵は、細胞増殖相と生成物産生相を有する二段階である。増殖相では、条件は、細胞増殖を最適化するために選択されるが、一方、産生相では、条件は、所望の発酵生成物の産生を最適化するために選択される。一般的に、増殖培地中での低糖レベル(例えば、0.1〜10重量%、0.2〜5重量%)は細胞増殖を促し、そして発酵培地中の高糖レベル(例えば、5重量%より多く、約10重量%より多く、20重量%より多く、30重量%より多く、40重量%より多い)は、生成物産生を促す。他の条件、例えば温度、撹拌、糖レベル、栄養素および/またはpHは、任意に、各段階で改変され得る。各段階での条件のモニタリングは、当該工程を最適化するために実行され得る。例えば、増殖をモニタリングして、最適密度、例えば約50g/L(例えば60g/Lより大きく、70g/Lより大きく、または約75g/Lより大きく)を達成し得るし、濃縮糖化溶液を付加して、生成物生成の開始を誘発し得る。任意に、例えば、細胞増殖および生成物生成を制御するためにプローブおよび自動供給装置を用いて、pHまたは酸素化レベルをモニタリングし、調整することにより、当該工程は最適化され得る。さらに、他の栄養素(例えば、アミノ酸、ビタミン、金属イオン、酵母抽出物、野菜抽出物、ペプトン、炭素源およびタンパク質)を制御し、モニタリングすることにより、当該工程を最適化し得る。
二段階発酵は、Biotechnological production of erythritol and its applications, Hee−Jung Moon et al.,Appl.Microbiol.Biotechnol.(2010)86:1017−1025に記載されている。一般的に、発酵開始時のグルコースの高い初期濃度はエリトリトール産生を促すが、この高濃度が長期間保持されすぎると、それは生物体にとって有害であり得る。高初期グルコース濃度は、上記のように糖化の最中または糖化後にグルコースを濃縮することにより達成され得る。発酵の開始を可能にするための初期発酵時間後、発酵培地は適切な希釈剤で希釈され、したがって、グルコースレベルは、約60重量%より低く(例えば、約50重量%より低く、約40重量%より低く)され得る。希釈剤は、水、あるいはアミノ酸、ビタミン、金属イオン、酵母抽出物、野菜抽出物、ペプトン、炭素源およびタンパク質のような付加的構成成分を伴う水であり得る。
バイオマス材料
本明細書中で用いる場合、「バイオマス材料」という用語は、リグノセルロース、セルロース、デンプンおよび微生物材料を包含する。
リグノセルロース材料としては、木材、パーティクルボード、林業系廃棄物(例えば、おがくず、アスペン材、木材チップ)、草(例えば、スイッチグラス、ススキ、ミクリ、クサヨシ)、穀粒残渣(例えば、コメ籾殻、オートムギ籾殻、コムギ籾殻、オオムギ籾殻)、農業廃棄物(例えば、貯蔵牧草、キャノーラ藁、コムギ藁、オオムギ藁、オートムギ藁、コメ藁、ジュート、麻、亜麻、竹、サイザルアサ、マニラ麻、トウモロコシ穂軸、トウモロコシ飼葉、ダイズ飼葉、トウモロコシ繊維、アルファルファ、干し草、ココヤシ表面毛)、糖加工残渣(例えば、バガス、ビートパルプ、リュウゼツランバガス)、藻類、海藻、堆肥、下水汚物、およびこれらのいずれかの混合物が挙げられるが、これらに限定されない。
いくつかの場合、リグノセルロース材料はトウモロコシ穂軸を包含する。粉砕または破砕トウモロコシ穂軸は、照射のために相対的に均一な厚みで広げられ、照射後、さらなる加工処理のために媒質中に分散するのが容易になる。収穫および収集を助長するために、いくつかの場合には、トウモロコシ植物全体、例えばトウモロコシ茎、トウモロコシ穀粒、そしていくつかの場合には、植物体の根系でも用いられ得る。
トウモロコシ穂軸あるいは有意量のトウモロコシ穂軸を含有するセルロースまたはリグノセルロース材料の発酵中は、付加的栄養成分(窒素源、例えば尿素またはアンモニア以外)を必要としない、というのが有益である。
トウモロコシ穂軸は、細砕の前および後に、搬送および分散するのも容易であり、他のセルロースまたはリグノセルロース材料、例えば干し草および草より空気中で爆発性混合物を生じ難い傾向を有する。
セルロース材料としては、例えば紙、紙製品、紙廃棄物、紙パルプ、着色紙、上塗り紙、被覆紙、充填紙、雑誌、印刷物(例えば、書物、カタログ、マニュアル、ラベル、カレンダー、挨拶状、小冊子、内容見本、新聞印刷用紙)、印刷用紙、ポリコーティング紙、硬い厚紙、ボール紙、板紙、高α‐セルロース含量を有する材料、例えば綿、ならびにこれらのいずれかの混合物が挙げられる。例えば、米国特許出願13/396,365(“Magazine Feedstocks”;Medoff等;2012年2月14日出願;この記載内容は参照により本明細書中で援用される)に記載されたような紙製品。
セルロース材料は、脱リグニン化されたリグノセルロース材料も含み得る。
デンプン材料としては、デンプンそれ自体、例えばコーンスターチ、コムギデンプン、ジャガイモデンプンまたはコメデンプン、デンプンの誘導体、あるいは食料品または穀物のようなデンプンを含む材料が挙げられる。例えば、デンプン材料は、アラカチャ、ソバ、バナナ、オオムギ、キャッサバ、葛、アンデスカタバミ、サゴヤシ、モロコシ、普通の家庭用ジャガイモ、サツマイモ、タロイモ、ヤムイモ、あるいは1つ以上の豆類、例えばソラマメ、レンズマメまたはエンドウであり得る。任意の2つ以上のデンプン材料の配合物も、デンプン材料である。デンプン、セルロースおよび/またはリグノセルロース材料の混合物も、用いられ得る。例えばバイオマスは、全植物、植物の一部分、または植物の異なる部分、例えばコムギ植物体、綿植物体、トウモロコシ植物体、コメ植物体または樹木であり得る。デンプン材料は、本明細書中に記載される方法のいずれかにより処理され得る。
微生物材料としては、任意の天然または遺伝子修飾微生物、または炭水化物(例えばセルロース)の供給源を含有するかまたは提供し得る生物体、例えば原生生物、例えば動物原生生物(例えば、鞭毛虫類、アメーバ類、繊毛虫類および胞子虫類のような原生動物)および植物原生生物(例えば、藻類、例えばアルベオラータ類、クロロラクニオン藻類、クリプトモナド類、ミドリムシ類、灰色藻類、ハプト藻類、紅藻類、黄金色藻類および緑藻類)が挙げられるが、これらに限定されない。その他の例としては、海藻、プランクトン(例えば、マクロプランクトン、メソプランクトン、ミクロプランクトン、ナノプランクトン、ピコプランクトンおよびフェムトプランクトン)、植物プランクトン、細菌(例えば、グラム陽性細菌、グラム陰性細菌および好極限性細菌)、酵母および/またはこれらの混合物が挙げられる。いくつかの場合には、微生物バイオマスは、天然供給源から、例えば海、湖、水本体、例えば塩水または真水から、あるいは陸上で得られる。代替的にはまたはさらに、微生物バイオマスは、培養系、例えば大規模乾式および湿式培養および発酵系から得られる。
バイオマス材料は、腐肉および同様の材料供給源も包含し得る。
他の実施形態では、バイオマス材料、例えばセルロース、デンプンおよびリグノセルロース供給材料は、野生型変種に関して修飾されたトランスジェニック微生物および植物から獲得され得る。このような修飾は、例えば、植物における所望の形質をえるための選択および育種の反復ステップによるものであり得る。さらに、植物は、野生型変種に関して除去され、修飾され、サイレンス化され、および/または付加される遺伝物質を有し得た。例えば遺伝子修飾植物は、組換えDNA法(この場合、遺伝子修飾は、親変種からの特定遺伝子を導入するかまたは修飾することを包含する)により、あるいは例えば、トランスジェニック育種(この場合、単数または複数の特定遺伝子が異なる種の植物および/または細菌からある植物に導入される)を用いることにより、産生され得る。遺伝子変異を作成するための別の方法は、突然変異育種による(この場合、新規対立遺伝子は、内因性遺伝子から人工的に作成される)。人工遺伝子は、種々の方法により、例えば化学的突然変異誘発因子(例えば、アルキル化剤、エポキシド、アルカロイド、過酸化物、ホルムアルデヒドを使用する)、照射(例えば、X線、ガンマ線、中性子、ベータ粒子、アルファ粒子、陽子、重水素、UV線)および温度ショックまたはその他の外的ストレス、ならびにその後の選択技法により、作成され得る。修飾遺伝子を提供するその他の方法は、エラープローンPCRおよびDNAシャッフリングとその後の所望の修飾DNAの所望の植物または種子への挿入による。種子または植物における所望の遺伝子変異を導入する方法としては、例えば、細菌キャリア、微粒子銃、リン酸カルシウム沈降、電気穿孔、遺伝子スプライシング、遺伝子サイレンシング、リポフェクション、マイクロインジェクションおよびウィルスキャリアが挙げられる。付加的遺伝子修飾材料は、米国特許出願13/396,369(2012年2月14日出願;この記載内容は参照により本明細書中で援用される)に記載されている。
本明細書中に記載される方法のいずれかが、本明細書中に記載される任意のバイオマス材料の混合物で実行され得る。
バイオマス材料調製 ‐ 機械的処理
バイオマスは、乾燥形態であり、例えば約35%未満(例えば、約20%未満、約15%未満、約10%未満、約5%未満、約4%未満、約3%未満、約2%未満、あるいは約1%未満でさえある)の含水量を有する。バイオマスは、さらにまた、湿潤状態で、例えば湿潤固体、スラリーまたは懸濁液として送達され、少なくとも約10重量%(例えば、少なくとも約20重量%、少なくとも約30重量%、少なくとも約40重量%、少なくとも約50重量%、少なくとも約60重量%、少なくとも約70重量%)固体を有し得る。
本明細書中に開示される工程は、低嵩密度材料、例えば約0.75g/cm、例えば約0.7未満、0.65、0.60、0.50、0.35、0.25、0.20、0.15、0.10、0.05またはそれ未満、例えば約0.025g/cm未満の嵩密度を有するセルロースまたはリグノセルロース供給材料を利用し得る。嵩密度は、ASTM D1895Bを用いて確定される。要するに、当該方法は、既知容積のメスシリンダーに試料を充填すること、そして思慮の重量を得ることを包含する。嵩密度は、試料の重量(グラム)をシリンダーの既知容積(立方センチメートル)で割ることにより算定される。所望により、例えば米国特許第7,971,809号(Medoff;この記載内容は参照により本明細書中で援用される)に記載された方法により、低嵩密度材料は密度を上げられ得る。
いくつかの場合、前処理工程は、バイオマス材料のスクリーニングを包含する。スクリーニングは、メッシュを通して、または所望の開口サイズ、例えば約6.35mm(1/4インチ、0.25インチ)未満、(例えば、約3.18mm(1/8インチ、0.125インチ)未満、約1.59mm(1/16インチ、0.0625インチ)未満を有するメッシュまたは穿孔プレートにより、約0.79mm(1/32インチ、0.03125インチ)、例えば約0.51mm(1/50インチ、0.02000インチ)未満、約0.40mm(1/64インチ、0.015625インチ)未満、約0.23mm(0.009インチ)未満、約0.20mm(1/128インチ、0.0078125インチ)未満、約0.18mm(0.007インチ)未満、約0.13mm(0.005インチ)未満、または約0.10mm(1/256インチ、0.00390625インチ)未満でさえある)である。一形状では、所望のバイオマスは、穿孔またはスクリーンを通して落下し、したがって、穿孔またはスクリーンより大きいバイオマスは照射されない。これらの大型材料は、例えば細砕により再加工処理され得るし、あるいはそれらは、単に加工処理から除去され得る。別の形状では、穿孔より大きい材料が照射され、より小さい材料はスクリーニング工程により除去されるか、または再循環される。この種類の形状では、コンベヤーそれ自体(例えばコンベヤーの一部分)が穴を開けられるか、またはメッシュで作られ得る。例えば、特定の一実施形態では、バイオマス材料は湿潤性であり得るし、照射前に、穿孔またはメッシュがバイオマスから水を排出できる。
材料のスクリーニングは、手動方法により、例えば望ましくない材料を除去するオペレーターまたはメカノイド(例えば、色、反射性またはその他のセンサーを装備したロボット)によりなされ得る。スクリーニングは、磁気スクリーニングによってもなされ得るが、この場合、時期は搬送材料近くに配置され、磁性材料は磁気的に除去される。
任意の前処理加工は、材料を加熱することを包含し得る。例えば、コンベヤーの一部分は、加熱帯を通して送られ得る。加熱帯は、例えばIR放射線、マイクロ波、燃焼(例えば、ガス、石炭、油、バイオマス)、抵抗加熱および/または誘導コイルにより、作成され得る。加熱は、少なくとも一側面から、または1つより多い側面から適用され、転属的または定期的であり、そして材料の一部分だけ、または材料全体に適用され得る。例えば、搬送溝の一部分は、加熱外被の使用により加熱され得る。加熱は、例えば材料を乾燥するという目的のためであり得る。材料を乾燥するという場合、これは、それが搬送されるものである場合、バイオマスの上の、および/または通した、ガス(例えば空気、酸素、窒素、He、CO、アルゴン)の移動により、加熱を伴っても伴わなくても、助長され得る。
任意に、前処理加工は、材料を冷却することを包含し得る。材料の冷却は、米国特許第7,900,857号(Medoff;この記載内容は参照により本明細書中で援用される)に記載されている。例えば、冷却は、冷却用流体、例えば水(例えば、グリセロールを伴う)または窒素(例えば、液体窒素)を搬送溝の底に供給することによりなされ得る。代替的には、冷却用ガス、例えば冷却窒素は、バイオマス材料の上に、または搬送系の下に吹き付けられ得る。
別の任意の前処理加工方法は、バイオマスに材料を付加することを包含し得る。付加的材料は、例えば、搬送される場合、バイオマス上に材料を浴びせること、撒き散らすこと、および/または注ぐことにより、付加され得る。付加され得る材料としては、米国特許出願公告2010/0105119 A1(2009年10月26日出願)および米国特許出願公告2010/0159569 A1(2009年12月16日出願)(これらの記載内容は各々、参照により本明細書中で援用される)に記載されているように、例えば金属、セラミックおよび/またはイオンが挙げられる。付加され得る任意の材料としては、酸および塩基が挙げられる。付加され得る他の材料は、酸化剤(例えば、過酸化物、塩素酸塩)、ポリマー、重合可能単量体(例えば、不飽和結合を含有する)、水、触媒、酵素および/または生物体である。材料は、例えば純粋形態で、溶媒(例えば水または有機溶媒)中の溶液として、および/または溶液として付加され得る。いくつかの場合、溶媒は揮発性であり、例えば前記のようなガスを加熱および/または煮沸することにより蒸発させられ得る。付加材料は、バイオマス上の均質コーチングを形成し得るし、あるいは異なる構成成分(例えばバイオマスおよび付加材料)の均質混合物であり得る。付加材料は、照射の効率を増大し、照射を減衰し、または照射の効果を変える(例えば電子線からX線または熱に)ことにより、その後の照射ステップを調整し得る。当該方法は、照射に影響を及ぼし得ないが、しかしさらなる下流加工処理のために有用であり得る。付加材料は、例えば塵埃レベルを低下させることにより、材料を搬送するのに役立ち得る。
バイオマスは、ベルトコンベヤー、空気コンベヤー、スクリューコンベヤー、ホッパー、パイプにより、手動で、またはこれらの組合せにより、コンベヤーに送達され得る。バイオマスは、例えば、これらの方法のいずれかにより、コンベヤー上に滴下され、注がれ、および/または配置され得る。いくつかの実施形態では、材料は、封入材料分配系を用いてコンベヤーに送達されて、低酸素大気を保持し、および/または塵埃および細粒を制御するのに役立つ。飛ばされたり空気懸濁されたバイオマスの微粒および塵埃は、爆発の危険を生じたり、電子銃のウィンドウフォイルを損害し得るため(このような装置が材料を処理するために用いられる場合)、望ましくない。
材料は、約0.0312〜5インチ(例えば、約0.0625〜2.000インチ、約0.125〜1インチ、約0.125〜0.5インチ、約0.3〜0.9インチ、約0.2〜0.5インチ、約0.25〜1.0インチ、約0.25〜0.5インチ、0.100+/−0.025インチ、0.150+/−0.025インチ、0.200+/−0.025インチ、0.250+/−0.025インチ、0.300+/−0.025インチ、0.350+/−0.025インチ、0.400+/−0.025インチ、0.450+/−0.025インチ、0.500+/−0.025インチ、0.550+/−0.025インチ、0.600+/−0.025インチ、0.700+/−0.025インチ、0.750+/−0.025インチ、0.800+/−0.025インチ、0.850+/−0.025インチ、0.900+/−0.025インチ、0.900+/−0.025インチの均一厚を形成するために、均一化され得る。
一般的に、電子線を介して最大処理量に、できるだけ迅速に材料を搬送するのが好ましい。例えば材料は、少なくとも1ft/分、例えば少なくとも2ft/分、少なくとも3ft/分、少なくとも4ft/分、少なくとも5ft/分、少なくとも10ft/分、少なくとも15ft/分、20、25、30、35、40、45、50ft/分の速度で搬送され得る。搬送速度はビーム電流に関連しており、例えば、1/4インチ厚バイオマスに関して、100mAでは、コンベヤーは約20ft/分移動して、有用な照射投与量を提供し、50mAでは、コンベヤーは約10ft/分移動して、ほぼ同一の照射投与量を提供し得る。
バイオマス材料が放射線帯を通って搬送された後、任意の後処理加工が実行され得る。任意の後処理加工は、例えば、前照射加工処理に関して記載した工程であり得る。例えばバイオマスは、スクリーニングされ、加熱され、冷却され、および/または添加物と併合され得る。後照射に独自に、ラジカルのクエンチング、例えば圧力、熱および/またはラジカル掃去剤の付加を用いる流体またはガス(例えば、酸素、亜酸化窒素、アンモニア、液体)の付加によるラジカルのクエンチングが起こり得る。例えばバイオマスは、封入コンベヤーの外側に搬送されて、ガス(例えば酸素)に曝露され、ここでそれは区園地され、カルボキシル化基を生成し得る。一実施形態では、バイオマスは、照射中に反応性ガスまたは流体に曝露される。照射されたバイオマスのクエンチングは、米国特許第8,083,906号(Medoff;この記載内容は参照により本明細書中で援用される)に記載されている。
所望により、バイオマス材料の難分解性をさらに低減するために、照射のほかに、1つ以上の機械的処理が用いられ得る。これらの工程は、照射の前、最中および/または後に適用され得る。
いくつかの場合、機械的処理は、受容時の供給原料の初期調製、例えば細砕による、例えば切断し、磨り潰し、剪断し、粉々にし、または切り刻むことによる、材料のサイズ低減を包含し得る。例えば、いくつかの場合、剪断または細断により、目の粗い供給原料(例えば、リサイクル紙、デンプン材料またはスイッチグラス)が調製される。機械的処理は、バイオマス材料の嵩密度を低減し、バイオマス材料の表面積を増大し、および/またはバイオマス材料の1つ以上の寸法を減少する。
代替的には、またはさらに、供給材料は、先ず、他の物理的処理方法、例えば化学的処理、放射線、音波処理、酸化、熱分解または水蒸気爆発のうちの1つ以上により物理的に処理され得る。この一連の方法は、他の処理、例えば照射または熱分解のうちの1つ以上により処理される材料がより脆くなる傾向があり、したがって、機械的処理により材料の構造をさらに変えることが容易であり得るため、有益であり得る。例えば供給材料は、本明細書中に記載されるようにコンベヤーを用いて放射線をイオン化することにより搬送されて、次に機械的に処理され得る。化学的処理は、リグニンのうちのいくつかまたはすべてを除去し(例えば化学的パルプ化)、そして部分的にまたは完全に材料を加水分解し得る。当該方法は、前加水分解化材料に関しても用いられ得る。当該方法は、前加水分解されていない材料に関しても用いられ得る。当該方法は、例えば約50%以上の非加水分解化材料、約60%以上の非加水分解化材料、約70%以上の非加水分解化材料、約80%以上の非加水分解化材料を伴い、90%以上でさえある非加水分解化材料を有する加水分解化および非加水分解化材料の混合物に関して、用いられ得る。
加工処理の最初および/または後期に実施され得るサイズ低減のほかに、機械的処理は、バイオマス材料を「開口し」、「圧迫し」、分断するかまたは打ち砕き、当該材料のセルロースを、物理的処理中の鎖切断および/または結晶構造の崩壊に対してより感受性にするためにも、有益である。
バイオマス材料を機械的に処理する方法としては、例えば粉砕または磨り潰しが挙げられる。粉砕は、例えばミル、ボールミル、コロイドミル、コニカルまたはコーンミル、ディスクミル、エッジミル、ウィリーミル、グリストミルまたはその他のミルを用いて実施され得る。磨り潰しは、例えば切断/衝撃型グラインダーを用いて実施され得る。いくつかの例示的グラインダーとしては、石材用グラインダー、ピングラインダー、コーヒーグラインダーおよびブーア(burr)グラインダーが挙げられる。磨り潰しまたは粉砕は、例えば、ピンミルの場合のように、往復運動ピンまたは他の要素により、提供され得る。その他の機械的処理方法としては、機械的切り裂き、引き裂き、剪断または切り刻み、繊維に圧力を適用する他の方法、および空気磨滅粉砕が挙げられる。適切な機械的処理はさらに、以前の加工処理ステップにより開始された材料の内部構造の崩壊を継続する任意の他の技法を包含する。
機械的供給調製系は、例えば、特定最大サイズ、特定の長さ対幅、または特定の表面積比のような特定の特質を有する流れを生じるよう設計され得る。物理的調製は、反応速度を増大し、コンベヤー上の材料の動きを改良し、材料の照射プロフィルを改良し、材料の放射線均一性を改良し、または材料を切開して、それらが加工および/または試薬、例えば溶液中の試薬により近づけるようにすることによって必要とされる加工時間を低減し得る。
供給原料の嵩密度は、制御され(例えば増大され)得る。いくつかの状況では、例えば材料の密度を上げて(高密度化は、別の部位に運搬するのを容易に且つ低コストにし得る)、次に材料をより低い嵩密度状態に戻す(例えば運搬後に)ことにより、低嵩密度材料を調製することが望ましい。当該材料は、例えば、約0.2g/cc未満から約0.9g/ccより大に(例えば、約0.3未満〜約0.5より大、約0.3未満〜約0.9g/ccより大、約0.5未満〜約0.9より大、約0.3未満〜約0.8g/ccより大、約0.2未満〜約0.5g/ccより大)、高密度化され得る。例えば、材料は、米国特許第7,932,065号(Medoff)および国際公告WO 2008/073186(2007年10月26日出願;英語で公開;米国を指名)(これらの記載内容は、参照により本明細書中で援用される)に開示された方法および設備により高密度化され得る。高密度化材料は、本明細書中に記載される方法のいずれかにより加工処理され得るし、あるいは本明細書中に記載される方法のいずれかにより加工処理される任意の材料は、その後、高密度化され得る。
いくつかの実施形態では、加工処理されるべき材料は、繊維源を剪断することにより提供される繊維を含む繊維性材料の形態である。例えば、剪断は、回転式ナイフカッターで実施され得る。
例えば、難分解性であるか、または低減されたその難分解性レベルを有する繊維源は、例えば回転式ナイフカッターで剪断されて、一次繊維性材料を提供し得る。一次繊維性材料は、例えば1.59mm以下(1/16インチ、0.0625インチ)の平均開口サイズを有する一次スクリーンに通されて、二次繊維性材料を提供する。所望により、繊維源は、例えばシュレッダーで、剪断前に切断され得る。例えば、紙が繊維源として用いられる場合、紙は、シュレッダー、例えばMunson(Utica,N.Y.)製造の卓上回転式スクリュー式シュレッダーを用いて、細片(例えば、1/4〜1/2インチ幅)に先ず切断され得る。細断に代わるものとして、ギロチンカッターを用いて、所望サイズに切断することにより、紙はサイズを低減され得る。例えば、ギロチンカッターは、例えば幅10インチ、長さ12インチのシートに紙を切断するために用いられ得る。
いくつかの実施形態では、繊維源の剪断、およびその結果生じる一次繊維性材料を一次スクリーンに通すことは、同時発生的に実施される。剪断および通過は、バッチ型工程でも実施され得る。
例えば、回転式ナイフカッターを用いて、同時発生的に、繊維源を剪断し、一次繊維性材料をスクリーニングし得る。回転式ナイフカッターは、繊維源を細断することにより調製される細断済み繊維源を載せられ得るホッパーを包含する。細断済み繊維源。
いくつかの実行において、供給原料は、糖化および/または発酵前に物理的に処理される。物理的処理工程は、本明細書中に記載される工程、例えば機械的処理、化学的処理、照射、音波処理、酸化、熱分解または水蒸気爆発のいずれかのうちの1つ以上を包含し得る。処理方法は、これらの技法のうちの2、3、4、またはすべての組合せ(任意の順序で)で用いられ得る。1つより多い処理方法が用いられる場合、当該方法は、同時に、または異なる時点で適用され得る。バイオマス供給原料の分子構造を変える他の工程も、単独で、または本明細書中に開示される工程と組合せて用いられ得る。
用いられ得る機械的処理、ならびに機械的処理されるバイオマス材料の特質は、米国特許出願公告2012/0100577 A1(2011年10月18日出願;この記載内容は参照により本明細書中で援用される)にさらに詳細に記載されている。
バイオマス材料の処理 ‐ 粒子衝撃
エネルギー粒子衝撃による1つ以上の処理を用いて、広範囲の異なる供給源からの生供給原料を加工処理して、供給原料から有用な物質を抽出し、部分的に分解された有機材料(これはさらなる加工処理ステップおよび/またはシーケンスへのインプットとして機能する)を提供し得る。粒子衝撃は、供給原料の分子量および/または結晶性を低減し得る。いくつかの実施形態では、その原子軌道から電子を放出する材料中に預託されたエネルギーが、材料を処理するために用いられ得る。衝撃は、重度荷電粒子(例えばアルファ粒子または陽子)、電子(例えば、ベータ崩壊または電子線加速器で生成される)または電磁線(例えばガンマ線、X線または紫外線)により提供され得る。代替的には、放射性物質により生成される放射線は、供給原料を処理するために用いられ得る。これらの処理の、任意の順序での、または同時発生的での、任意の組合せが利用され得る。別のアプローチでは、電磁線(例えば、電子線放出器を用いて生成)を用いて、供給原料を処理し得る。
各型のエネルギーは、特定の相互作用によりバイオマスをイオン化する。重度荷電粒子は、主にクーロン散乱により物質をイオン化する;さらに、これらの相互作用は、物質をさらにイオン化し得るエネルギー性電子を生じる。アルファ粒子は、ヘリウム原子の核と同一であり、種々の放射性核、例えばビスマス、ポロニウム、アスタチン、ラドン、フランシウム、ラジウム、いくつかのアクチニド、例えばアクチニウム、トリウム、ウラニウム、ネプツニウム、キュリウム、カリフォルニウム、アメリシウムおよびプルトニウムの同位体のアルファ崩壊により生成される。
粒子が利用される場合、それらは中性(非荷電)、正電荷または負電荷であり得る。荷電される場合、荷電粒子は、単一の正または負電荷、あるいは多重電荷、例えば1、2、3または4つ、あるいはそれ以上の電荷を保有し得る。鎖切断が望まれる場合、一部はそれらが酸性であるために、正荷電粒子が望ましい。粒子が利用される場合、当該粒子は、静止電子の質量、あるいはそれ以上、例えば静止電子の質量の500、1000、1500または2000倍またはそれ以上の質量を有し得る。例えば、粒子は、約1原子単位〜約150原子単位、例えば約1原子単位〜約50原子単位、または約1〜約25、例えば1、2、3、4、5、10、12または15原子単位の質量を有し得る。粒子を加速するために用いられる加速器は、静電DC、電気力学的DC、RFリニア、磁気誘導型リニアまたは連続波であり得る。例えば、サイクロトロン型加速器、例えばRhodotron(商標)系は、IBA(Ion Beam Accelerators, Louvain−la−Neuve, Belgium)から入手可能であり、一方、DC型加速器、例えばDynamitron(商標)は、RDI(現在、IBA Industrial)から入手可能である。イオンおよびイオン加速器は、Introductory Nuclear Physics, Kenneth S. Krane, John Wiley & Sons, Inc. (1988), Krsto Prelec, FIZIKA B 6 (1997) 4, 177−206;Chu, William T., “Overview of Light−Ion Beam Therapy”, Columbus−Ohio, ICRU−IAEA Meeting, 18−20 Mar. 2006;Iwata,Y.et al., “Alternating−Phase−Focused IH−DTL for Heavy−Ion Medical Accelerators”, Proceedings of EPAC 2006, Edinburgh,Scotland;およびLeitner, C. M. et al., “Status of the Superconducting ECR Ion Source Venus”, Proceedings of EPAC 2000,Vienna,Austriaで考察されている。
適用される線量は、所望の作用および特定の供給原料によって決まる。例えば、高線量は、供給原料構成成分内の化学結合を分断し得るし、低線量は、供給原料構成成分内の化学結合(例えば架橋)を増大し得る。
いくつかの場合には、鎖切断が望ましいか、および/またはポリマー鎖官能化が望ましい場合、電子より重い粒子、例えば陽子、ヘリウム核、アルゴンイオン、ケイ素イオン、ネオンイオン、炭素イオン、リンイオン、酸素イオンまたは窒素イオンが利用され得る。開環鎖切断が所望される場合、開環鎖切断増強のために、正荷電粒子がそれらのルイス酸特性のために利用され得る。例えば、酸素含有官能基が所望される場合、酸素の存在下での処理、または酸素イオンでの処理でさえ、実施され得る。例えば、窒素含有官能基が望ましい場合、窒素の存在下での処理、または窒素イオンでの処理さえ、実施され得る。
他の型のエネルギー
電子は、クーロン散乱、または電子の速度の変化により生成される制動放射線により相互作用する。電子は、ベータ崩壊を受ける放射性核、例えばヨウ素、セシウム、テクネチウムおよびイリジウムの同位体により生成され得る。代替的には、熱電子放出による電子供給源として、電子銃が用いられ得る。
電磁放射線は、3工程を介して相互作用する:すなわち、光電吸収、コンプトン散乱および電子対生成である。優位相互作用は、入射放射線のエネルギーおよび材料の原子数により確定される。セルロース材料中の吸収放射線に寄与する相互作用の合計は、質量吸収係数により表され得る。
電磁放射線は、波長によって、ガンマ線、X線、紫外線、赤外線、マイクロ波または電波として細分類される。
例えば、ガンマ線は、材料を処理するために用いられ得る。ガンマ線は、試料中の種々の材料中への有意の浸透深度という利点を有する。ガンマ線の供給源としては、放射性核、例えば、コバルト、カルシウム、テクネチウム、クロム、ガリウム、インジウム、ヨウ素、鉄、クリプトン、サマリウム、セレニウム、ナトリウム、タリウムおよびキセノンの同位体が挙げられる。
X線の供給源としては、金属標的、例えばタングステンまたはモリブデンまたは合金との電子線衝突、あるいは小型光源、例えばLynceanにより商業的に製造されるものが挙げられる。
紫外線のための供給源としては、重水素またはカドミウムランプが挙げられる。
赤外線のための供給源としては、サファイア、亜鉛またはセレン化合物ウィンドウセラミックランプを包含する。
マイクロ波のための供給源としては、クリプトン、スレビン型RF源、あるいは水素、酸素または窒素ガスを用いる原子線源が挙げられる。
種々のその他の装置、例えばフィールドイオン化源、静電イオン分離器、フィールドイオン化発生器、熱電子放出源、マイクロ波放電イオン源、再循環または静電加速器、動的直線型加速器、ファンデグラーフ加速器、および折り返し型タンデム加速器が、本明細書中に開示される方法に用いられ得る。このような装置は、例えば米国特許第7,931,784 B2号(この記載内容は参照により本明細書中で援用される)に開示されている。
バイオマス材料の処理 ‐ 電子衝撃
供給原料は、電子衝撃で処理されて、その構造を改変し、それによりその難分解性を低減し得る。このような処理は、例えば、供給原料の平均分子量を低減し、供給原料の結晶構造を変え、および/または供給原料の表面積および/または多孔度を増大する。
電子線による電子衝撃が一般的に好ましいが、それは、非常に高い処理量を提供するためであり、そして相対的低電圧/高出力電子線装置は、「セルフシールド」され、安全で効率的工程を提供するので、このような装置の使用が高価なコンクリート製丸天井型遮蔽の必要性を排除するためである。「セルフシールド」装置は遮蔽(例えば金属板遮蔽)を包含するが、それらは、コンクリート製丸天井の構築を必要とせず、資本支出を大きく低減し、そしてしばしば、高価な修正なしに現存製造設備の使用を可能にする。電子線加速器は、例えばIBA(Ion Beam Applications, Louvain−la−Neuve, Belgium)、Titan Corporation(San Diego, California, USA)およびNHV Corporation(Nippon High Voltage, Japan)から入手可能である。
電子衝撃は、10MeV未満、例えば7MeV未満、5MeV未満または2MeV未満、例えば約0.5〜1.5MeV、約0.8〜1.8MeV、約0.7〜1MeVまたは約1〜3MeVの公称エネルギーを有する電子線装置を用いて実施され得る。いくつかの実行において、公称エネルギーは約500〜800keVである。
電子線は、相対的に高い総ビーム出力(全加速ヘッドの併合ビーム出力、または多重加速器が用いられる場合、全加速器および全ヘッドの併合ビーム出力)、例えば少なくとも25kW、例えば少なくとも30、40、50、60、65、70、80、100、125または150kWを有し得る。いくつかの場合、出力は、500kW、750kWまたは1000kW以上という高さでさえある。いくつかの場合、電子線は、1200kW以上のビーム出力を有する。
この高い総ビーム出力は、通常は、多重加速ヘッドを利用することにより達成される。例えば電子線装置は、2、4またはそれより多い加速ヘッドを包含し得る。その各々が相対的低ビーム出慮億を有する多重ヘッドの使用は、当該材料中の過剰温度上昇を防止し、それにより当該材料の燃焼を防止し、さらにまた、材料の総の厚みを通して線量の均一性を増大する。
いくつかの実行においては、電子衝撃中に材料を冷却することが望ましい。例えば、当該材料は、例えば単軸押出機またはその他の搬送装置により搬送されている間、冷却され得る。
難分解性低減工程により必要とされるエネルギーを低減するために、できるだけ迅速に材料を処理することが望ましい。概して、処理は約0.25Mrad/秒より大きい、例えば約0.5、0.75、1、1.5、2、5、7、10、12、15より大きく、あるいは約20Mrad/秒より大きいことさえあり、例えば約0.25〜2Mrad/秒の線量率で実施される、ということが好ましい。材料の熱分解を回避するためには、線量率が高いほど、一般的に高ライン速度を要する。一実行において、加速器は、3MeV、50mAmpビーム流に設定され、約20mmの試料厚に関してはライン速度は24フィート/分である(例えば、0.5g/cmの嵩密度を有する細砕トウモロコシ穂軸材料)。
いくつかの実施形態では、電子衝撃は、材料が少なくとも0.5Mrad、例えば少なくとも5、10、20、30または少なくとも40Mradの総線量を受けるまで実施される。いくつかの実施形態では、処理は、約0.5Mrad〜約150Mrad、約1Mrad〜約100Mrad、約2Mrad〜約75Mrad、10Mrad〜約50Mrad、例えば約5Mrad〜約50Mrad、約20Mrad〜約40Mrad、約10Mrad〜約35Mradまたは約25Mrad〜30Mradの線量を材料が受けるまで実施される。いくつかの実行において、25〜35Mradの総線量が選択され、理想的には2〜3秒間、例えば5Mrad/通過(pass)で適用され、各通過(pass)は、約1秒間適用される。7〜8Mrad/通過(pass)より多い線量の適用は、いくつかの場合、供給材料の熱分解を引き起こす。
上記のような多重ヘッドを用いて、当該物質は、多重通過(pass)で、例えば2通過(pass)を、10〜20Mrad/通過(pass)で、例えば12〜18Mrad/通過(pass)で、2〜3秒のクールダウンを挟んで、あるいは3通過(pass)を、7〜12Mrad/通過(pass)、例えば9〜11Mrad/通過(pass)で、処理され得る。上記のように、1つの高線量でというよりむしろ、いくつかの相対的に低い線量での材料の処理は、材料の過熱を防止し、さらにまた材料の厚み全体を通しての線量均一性を増大する傾向がある。いくつかの実行において、材料は各通過(pass)の最中または後に撹拌されるか、そうでなければ混合されて、次に、再び均一層にならした後、次の通過(pass)に進んで、処理均一性をさらに増強する。
いくつかの実施形態では、電子は、例えば光の速度の75%より速い速度に、例えば光の速度の85、90、95または99%より速い速度に加速される。
いくつかの実施形態では、本明細書中に記載される任意の加工処理は、獲得された場合の乾燥を保持する、または、例えば熱および/または減圧を用いて乾燥されたリグノセルロース材料において生じる。例えば、いくつかの実施形態では、セルロースおよび/またはリグノセルロース材料は、25℃で50%の相対湿度で測定して、約5重量%未満の保持水分量を有する。
電子衝撃は、セルロースおよび/またはリグノセルロース材料が空気、酸素濃化空気に、または酸素それ自体にも曝露されるか、あるいは不活性ガス、例えば窒素、アルゴンまたはヘリウムにより覆われる間、適用され得る。最大酸化が所望される場合、酸化環境、例えば空気または酸素が利用され、ビーム源からの距離が最適化されて、反応性ガス生成、例えばオゾンおよび/または窒素の酸化物を最大にする。
いくつかの実施形態では、2つ以上の電子供給源、例えば2つ以上のイオン化源が用いられる。例えば、試料は、任意の順序で、電子のビームで、その後、ガンマ線及び紫外線(約100nm〜約280nmの波長を有する)で処理され得る。いくつかの実施形態では、試料は3つのイオン化放射線源、例えば電子のビーム、ガンマ線およびエネルギー性UV光で処理される。バイオマスは、それが電子で衝撃を与えられ得る処理帯を通して搬送される。バイオマス材料床は、処理されている間、前記のように、相対的に均一の厚みを有する、というのが一般的に好ましい。
バイオマスの難分解性をより十分に低減し、および/またはバイオマスをさらに改質するために処理を反復することは有益であり得る。特に、工程パラメーターは、材料の難分解性によって、第一(例えば、第二、第三、第四またはそれ以上の)通過(pass)後に調整され得る。いくつかの実施形態では、バイオマスが上記のような種々の工程を通して多重回数搬送される循環系を含むコンベヤーが用いられ得る。いくつかの他の実施形態では、多重処理装置(例えば、電子線発生器)を用いて、バイオマスを多数(例えば、2、3、4またはそれ以上)回、処理する。さらに他の実施形態では、単一電子線発生器は、バイオマスの処理のために用いられ得る多重ビーム(例えば2、3、4またはそれ以上のビーム)の供給源であり得る。
バイオマス材料の分子/超分子構造を変えるに際して、および/または難分解性を低減するに際しての有効性は、用いられる電子エネルギーおよび適用される線量によって決まり、一方、曝露時間は出力および線量によって決まる。
いくつかの実施形態では、処理(任意の電子源または供給源の組合せを用いる)は、少なくとも約0.05Mrad、例えば少なくとも約0.1、0.25、0.5、0.75、1.0、2.5、5.0、7.5、10.0、15、20、25、30、40、50、60、70、80、90、100、125、150、175または200Mradの線量を当該材料が受容するまで、実施される。いくつかの実施形態では、処理は、0.1〜100Mrad、1〜200、5〜200、10〜200、5〜150、5〜100、5〜50、5〜40、10〜50、10〜75、15〜50、20〜35Mradの線量を受容するまで実施される。
いくつかの実施形態では、処理は、5.0〜1500.0キロrads/時、例えば10.0〜750.0キロrads/時または50.0〜350.0キロrads/時の線量率で実施される。他の実施形態では、処理は、10〜10000キロrads/時、100〜1000キロrad/時または500〜1000キロrads/時の線量率で実施される。
電子供給源
電子は、クーロン散乱、および電子の速度の変化により生成される制動放射線により相互作用する。電子は、ベータ崩壊を受ける放射性核、例えばヨウ素、セシウム、テクネチウムおよびイリジウムの同位体により生成され得る。代替的には、熱電子放出による電子供給源として、電子銃が用いられ、加速電位により加速され得る。電子銃は、電子を生成し、それらを大電位(例えば約500,000より大きい、約100万より大きい、約200万より大きい、約500万より大きい、約600万より大きい、約700万より大きい、約800万より大きい、約900万より大きい、または1000万ボルトより大きいことさえある)により加速し、そして次に、x‐y平面で機械的にそれらを走査するが、この場合、電子は、最初は管を下がってz方向に加速され、そしてフォイルウィンドウを通して引き出される。電子線を走査することは、走査ビームを通して搬送される材料、例えばバイオマスを照射する場合、照射表面を増大するために有用である。電子線の走査は、さらにまた、ウィンドウ上に均質に熱負荷を分配し、電子線による局所加熱のためのフォイルウィンドウ破裂を低減するのを助ける。ウィンドウフォイル破裂は、その後に必要な修復および電子銃の再開のために有意の休止時間の一因である。
種々のその他の照射装置、例えばフィールドイオン化源、静電イオン分離器、フィールドイオン化発生器、熱電子放出源、マイクロ波放電イオン源、再循環または静電加速器、動的直線型加速器、ファンデグラーフ加速器、および折り返し型タンデム加速器が、本明細書中に開示される方法に用いられ得る。このような装置は、例えば米国特許第7,931,784号(Medoff等;この記載内容は参照により本明細書中で援用される)に開示されている。
電子のビームは、放射線源として用いられ得る。電子のビームは、高線量率(例えば1、5または10Mrad/秒でさえある)、高処理量、低汚染物質、および低閉じ込め設備という利点を有する。電子線は、高電気効率(例えば80%)も有し、他の放射線法に比して低いエネルギー使用量を可能にし、これが、より少量の使用エネルギーに対応して、低操作経費および低温室ガス放出に変え得る。電子は、例えば静電発生器、カスケード型発電機、変圧発電機、走査系を有する低エネルギー加速器、線形陰極を有する低エネルギー加速器、線形加速器およびパルス化加速器により生成され得る。
電子は、さらにまた、例えば鎖切断の機序により、バイオマス材料の分子構造における変化を引き起こす時点でより効率的であり得る。さらに、0.5〜10MeVのエネルギーを有する電子は、低密度物質、例えば本明細書中に記載されるバイオマス材料、例えば0.5g/cm未満の嵩密度および0.3〜10cmの深度を有する材料を貫通し得る。イオン化放射線源としての電子は、例えば、約0.5インチ未満、例えば約0.4インチ未満、0.3インチ、0.25インチまたは約0.1インチ未満の、相対的に薄いパイル、材料の層または床に関して有用であり得る。いくつかの実施形態では、電子線の各電子のエネルギーは、約0.3MeV〜約2.0MeV(ミリオン電子ボルト)、例えば約0.5MeV〜約1.5MeVまたは約0.7MeV〜約1.25MeVである。物質の照射方法は、米国特許出願公告2012/0100577 A1(2011年10月18日出願;この記載内容は参照により本明細書中で援用される)で考察されている。
電子線照射装置は、Ion Beam Applications(Louvain−la−Neuve,Belgium)、the Titan Corporation(San Diego,California,USA)およびNHV Corporation(Nippon High Voltage,Japan)から商業的に入手され得る。典型的電子エネルギーは、0.5MeV、1MeV、2MeV、4.5MeV、7.5MeVまたは10MeVであり得る。典型的電子線照射装置出力は、1KW、5KW、10KW、20KW、50KW、60KW、70KW、80KW、90KW、100KW、125KW、150KW、175KW、200KW、250KW、300KW、350KW、400KW、450KW、500KW、600KW、700KW、800KW、900KWであり、または1000KWでさえあり得る。
電子線照射装置出力仕様書を考察するに際しての相殺条件としては、運転費用、資本費、減価償却および装置設置面積が挙げられる。電子線照射の曝露線量レベルを考察するに際しての相殺条件は、エネルギー費用、ならびに環境、安全性および健康(ESH)問題である。典型的には、発電機は、特に工程において生成されるX線からの産生のために、例えば鉛またはコンクリートの丸天井中に収容される。電子エネルギーを考察するに際しての相殺条件としては、エネルギー費用が挙げられる。
電子線照射装置は、固定ビームまたは走査ビームを生じ得る。走査ビームは、これが大型固定ビーム幅に有効に取って代わる場合、大きい走査スイープの長さおよび高さ走査速度に関して有益であり得る。さらに、0.5m、1m、2mまたはそれ以上の利用可能なスイープ幅が利用可能である。走査ビームは、より大きい走査幅、ならびに局所加熱およびウィンドウの不全の可能性低減のため、本明細書中に記載されるほとんどの実施形態において選択される。
バイオマス材料の処理 ‐ 音波処理、熱分解、酸化、水蒸気爆発
所望により、バイオマス材料の難分解性をさらに低減するために、他の処理に加えて、またはその代わりに、1つ以上の音波処理、熱分解、酸化または水蒸気爆発法が用いられ得る。これらの方法は、別の単数または複数の処理の前、最中および/または後に適用され得る。これらの方法は、米国特許第7,932,065号(Medoff;この記載内容は参照により本明細書中で援用される)に詳細に記載されている。
処理済みバイオマス材料の使用
本明細書中に記載される方法を用いて、出発バイオマス材料(例えば、植物バイオマス、動物バイオマス、紙および地方自治体廃棄物バイオマス)は、供給原料として用いられて、有用な中間物質および生成物、例えば有機酸、有機酸の塩、無水物、有機酸のエステルおよび燃料、例えば内部燃焼エンジンのための燃料または燃料電池のための供給原料を生成し得る。容易に入手可能であるが、しかししばしば加工処理するのが困難であり得るセルロースおよび/またはリグノセルロース材料、例えば地方自治体廃棄物ストリームおよび廃棄物紙ストリーム、例えば新聞、クラフト紙、段ボール紙またはこれらの混合物を含むストリームを供給原料として用い得るシステムおよび工程が、本明細書中で記載される。
容易に加工処理され得る形態に供給原料を転換するために、供給原料中のグルカン‐またはキシラン‐含有セルロースは、糖化剤、例えば酵素または酸により、低分子量炭水化物、例えば糖に加水分解され得る(糖化と呼ばれる工程)。次に、低分子量炭水化物は、例えば現存製造プラントにおいて、例えば単一細胞タンパク質プラント、酵素製造プラント、または燃料プラント、例えばエタノール製造施設において、用いられ得る。
供給原料は、酵素を用いて、例えば溶媒中で、例えば水溶液中で、材料および酵素を併合することにより、加水分解され得る。
代替的には、酵素は、バイオマス、例えばバイオマスのセルロースおよび/またはリグニン部分を分解し、種々のセルロース分解酵素(セルラーゼ)、リグニナーゼまたは種々の小分子バイオマス分解代謝物質を含有するかまたは製造する生物体により供給され得る。これらの酵素は、結晶セルロースまあはバイオマスのリグニン部分を分解するために相乗的に作用する酵素の複合体であり得る。セルロース分解酵素の例としては、以下のものが挙げられる:エンドグルカナーゼ、セロビオヒドロラーゼおよびセロビアーゼ(ベータ・グルコシダーゼ)。
糖化中、セルロース性物質は、最初は、無作為位置でエンドグルカナーゼにより加水分解されて、オリゴマー中間体を生成し得る。これらの中間体は、その場合、セルロースポリマーの末端からセロビオースを生成するためのセロビオヒドロラーゼのような外分割グルカナーゼのための基質である。セロビオースは、グルコースの水溶性1,4‐結合二量体である。最後に、セロビアーゼは、セロビオースを切断して、グルコースを産生する。この工程の効率(例えば、加水分解するための時間および/または加水分解の終始)は、セルロース性物質の難分解性によって決まる。
中間体および生成物
本明細書中に記載される工程は、好ましくは、ブタノール、例えばイソブタノールまたはn‐ブタノールおよび誘導体を生成するために用いられる。しかしながら、当該工程は、他の生成物、共生成物および中間体、例えば米国特許出願公告2012/0100577 A1(2011年10月18日出願、2012年4月26日公開;この記載内容は参照により本明細書中で援用される)に記載される生成物を生成するために用いられ得る。
本明細書中で記載される工程を用いて、バイオマスは、1つ以上の生成物、例えばエネルギー、燃料、食物および材料に転化され得る。生成物の具体的例としては、水素、糖(例えば、グルコース、キシロース、アラビノース、マンノース、ガラクトース、フルクトース、二糖、オリゴ糖および多糖)、アルコール(例えば、一価アルコールまたは二価アルコール、例えばエタノール、n‐プロパノール、イソブタノール、sec‐ブタノール、tert‐ブタノールまたはn‐ブタノール)、水和または水性アルコール(例えば、10%、20%、30%より多い、または40%より多いことさえある水を含有)、バイオディーゼル、有機酸、炭化水素(例えば、メタン、エタン、プロパン、イソブテン、ペンタン、n‐ヘキサン、バイオディーゼル、バイオガソリンおよびその混合物)、共生成物(例えば、タンパク質、例えばセルロース分解タンパク質(酵素)または単一細胞タンパク質)、ならびに任意の組合せまたは相対濃度での、ならびに任意に、任意の添加物(例えば、燃料添加物)と組合せたこれらのいずれかの混合物が挙げられるが、これらに限定されない。その他の例としては、カルボン酸、カルボン酸の塩、カルボン酸とカルボン酸の塩およびカルボン酸のエステルの混合物(例えば、メチル、エチルおよびn‐プロピルエステル)、ケトン(例えば、アセトン)、アルデヒド(例えば、アセトアルデヒド)、アルファおよびベータ不飽和酸(例えば、アクリル酸)およびオレフィン(例えば、エチレン)が挙げられる。その他のアルコールおよびアルコール誘導体としては、プロパノール、プロピレングリコール、1,4−ブタンジオール、1,3−プロパンジオール、糖アルコールおよびポリオール(例えば、グリコール、グリセロール、エリトリトール、トレイトール、アラビトール、キシリトール、リビトール、マンニトール、ソルビトール、ガラクチトール、イジトール、イノシトール、ボレミトール、イソマルト、マルチトール、ラクチトール、マルトトリイトール、マルトテトライトールおよびポリグリシトール、ならびにその他のポリオール)、ならびにこれらのアルコールのメチルまたはエチルエステルが挙げられる。その他の生成物としては、メチルアクリレート、メチルメタクリレート、乳酸、クエン酸、蟻酸、酢酸、プロピオン酸、酪酸、コハク酸、吉草酸、カプロン酸、3−ヒドロキシプロピオン酸、パルミチン酸、ステアリン酸、シュウ酸、マロン酸、グルタル酸、オレイン酸、リノール酸、グリコール酸、ガンマ-ヒドロキシ酪酸、およびその混合物、これらの酸のいずれかの塩、酸の混合物およびそれらのそれぞれの塩のいずれかの混合物が挙げられる。
上記の生成物と互いとのおよび/または上記生成物と他の生成物(他の生成物は、本明細書中に記載される工程により、または他の方法で製造され得る)との任意の組合せは、一緒に包装され、製品として販売され得る。当該生成物は、併合され、例えば混合され、配合され、または共溶解され得るし、あるいは単に一緒に包装され、販売され得る。
本明細書中に記載される生成物または生成物の組合せのいずれかは、製品販売の前に、例えば精製または単離後、あるいは包装後でも、生成物(単数または複数)中に存在し得る1つ以上の潜在的に望ましくない夾雑物を中和するために、衛生的にされるかまたは滅菌され得る。このような衛生処理は、電子衝撃で実行され、例えば約20Mrad未満、例えば約0.1〜15Mrad、約0.5〜7Mrad、または約1〜3Mradの投与量であり得る。
本明細書中に記載される工程は、プラントの他の部分で用いられるべき、あるいは公開市場で販売されるべき水蒸気および電気(共発生)を生成するために有用な種々の副産物ストリームを産生し得る。例えば、燃焼副産物ストリームから生成される水蒸気は、蒸留工程に用いられ得る。別の例として、燃焼副産物ストリームから生成される電気は、前処理に用いられる発電機を作動するために用いられ得る。
水蒸気および電気を生成するために用いられる副産物は、工程全体を通して多数の供給源から得られる。例えば廃水の嫌気性消化は、メタン濃度が高いバイオガスと、少量の廃棄物バイオマス(スラッジ)を生じ得る。別の例として、糖化後および/または蒸留後固体(例えば、前処理および一次工程から残存する非転化リグニン、セルロースおよびヘミセルロース)が用いられ、例えば燃料として燃焼され得る。
得られる生成物の多くは、例えばエタノールまたはn‐ブタノールは、車、トラック、トラクター、船または汽車を動かすための燃料として、例えば内燃燃料として、または燃料電池供給原料として、利用され得る。得られる生成物の多くは、航空機、例えばジェットエンジンを有する飛行機またはヘリコプターを動かすためにも利用され得る。さらに、本明細書中に記載される生成物は、発電のために、例えば慣用的水蒸気生成プラントで、または燃料電池プラントで利用され得る。
その他の中間体および生成物、例えば食品および薬学的製品は、米国特許出願公告2010/0124583 A1(Medoff;2010年5月20日公開;この記載内容は参照により本明細書中で援用される)に記載されている。
後処理
生成物の精製のための工程は、イオン交換樹脂、活性炭、濾過、蒸留、遠心分離、クロマトグラフィー、沈降、結晶化、蒸発、吸着およびその組合せを用いることを包含し得る。いくつかの場合、発酵産物は、熱または照射によっても滅菌される。
糖化
難分解性低減化供給原料からフルクトース溶液を得るために、処理済みバイオマス材料は、一般的に、流体媒質中、例えば水溶液中で当該材料とセルラーゼ酵素を組み合わせることにより、糖化され得る。いくつかの場合、米国特許出願公告2012/0100577 A1(MedoffおよびMasterman;2012年4月26日公開)(この記載内容は参照により本明細書中で援用される)に記載されているように、当該材料は、糖化前に熱水中で煮沸され、浸され、または煮られる。
糖化工程は、製造プラントにおいてタンク(例えば、少なくとも4000、40,000または500,000Lの容積を有するタンク)中で部分的にまたは完全に実施され得るし、および/または輸送中に、例えば鉄道車輛、タンカートラックにおいて、またはスーパータンカーまたは船の船倉で、部分的にまたは完全に実施され得る。完全糖化に要する時間は、工程条件、ならびに用いられるバイオマス材料および酵素によって決まる。糖化が制御条件下で製造プラントにおいて実施される場合、セルロースは、約12〜96時間で、実質的に完全に、糖、例えばグルコースに転化され得る。糖化が輸送中に部分的にまたは完全に実施される場合、糖化はより長い時間を要し得る。
例えば、国際出願PCT/US2010/035331(2010年5月18日出願;WO 2010/135380として英語で公開され、米国を指定;この記載内容は参照により本明細書中で援用される)に記載されたようなジェットミキシングを用いて、糖化中にタンク内容物が混合される、というのが一般的に好ましい。
界面活性剤の付加は、糖化の速度を増強し得る。界面活性剤の例としては、非イオン性界面活性剤、例えばトゥイーン(登録商標)20またはトゥイーン(登録商標)80ポリエチレングリコール界面活性剤、イオン性界面活性剤または両イオン性界面活性剤が挙げられる。
糖化に起因する糖溶液の濃度は、相対的に高く、例えば40重量%より高く、あるいは50、60、70、80、90より高く、あるいは95重量%より高いことさえある、というのが一般的に好ましい。水は、例えば蒸発により除去されて、糖溶液の濃度を増大し得る。これは、出荷されるべき容積を低減し、溶液中での微生物増殖も抑制する。
代替的には、低濃度の糖溶液が用いられ得るが、この場合、抗菌性添加物、例えば広範囲抗生物質を、低濃度で、例えば50〜150ppmで付加するのが望ましい。その他の適切な抗生物質としては、アンフォテリシンB、アンピシリン、クロラムフェニコール、シプロフロキサシン、ゲンタマイシン、ヒグロマイシンB、カナマイシン、ネオマイシン、ペニシリン、プロマイシン、ストレプトマイシンが挙げられる。抗生物質は、運搬および貯蔵中の微生物の増殖を抑制し、適切な濃度で、例えば15〜1000重量ppm、例えば25〜500ppmまたは50〜150ppmで用いられ得る。所望により、抗生物質は、糖濃度が相対的に高い場合でも、含まれ得る。代替的には、防腐特性を有する抗菌性のその他の添加物が用いられ得る。好ましくは、抗菌性添加物(単数または複数)は、食品等級である。
酵素を有するバイオマス材料に付加される水の量を限定することにより、相対的に高濃度の溶液が得られる。濃度は、例えば糖化が起きる程度を制御することにより、制御され得る。例えば、濃度は、溶液により多くのバイオマス材料を付加することにより、増大され得る。溶液中に生成されている糖を保持するために、界面活性剤、例えば上記の界面活性剤の1つが付加され得る。溶液の温度を増大することにより、溶解度も増大される。例えば、溶液は、40〜50℃、60〜80℃、またはそれより高く保持され得る。
グルコースイソメラーゼをタンクの内容物に付加することにより、タンク中の糖によって抑制されている糖化を伴わずに高濃度のフルクトースが得られる。グルコースイソメラーゼは、任意の量で付加され得る。例えば、その濃度は、約500U/セルロース1gより低い(100U/セルロース1g以下、50U/セルロース1g以下、10U/セルロース1g以下、5U/セルロース1g以下)。濃度は、少なくとも約0.1U/セルロース1g(少なくとも約0.5U/セルロース1g、少なくとも約1U/セルロース1g、少なくとも約2U/セルロース1g、少なくとも約3U/セルロース1g)である。
グルコースイソメラーゼの付加は、生成される糖の量を少なくとも5%(少なくとも10%、少なくとも15%、少なくとも20%)増大する。
溶液中の糖の濃度は、酵素とともに供給原料に付加される水の量を限定することによっても増強され得るし、および/または濃度は、糖化中に溶液により多くの供給原料を付加することにより増大され得る。溶液中で生成されるものである糖を保持するために、界面活性剤、例えば上記の界面活性剤のうちの1つが付加され得る。溶液の温度を増大することにより、溶解度も増大され得る。例えば、溶液は、40〜50℃、60〜80℃、またはそれ以上の温度に保持され得る。
糖化剤
適切なセルロース分解酵素としては、セルラーゼが挙げられる。セルラーゼは、例えば以下の属の種から得られる:バシラス属、ヒトヨタケ属、ミセリオフィトラ属、セファロスポリウム属、シタリジウム属、ペニシリウム属、アスペルギルス属、シュードモナス属、フミコラ属、フザリウム属、チエラビア属、アクレモニウム属、クリソスポリウム属およびトリコデルマ属、特にアスペルギルス種(例えば、欧州特許公開番号0 458 162参照)、フミコラ・インソレンス(シタリジウム・テルモフィルムとして再分類;例えば、米国特許第4,435,307号参照)、コプリヌス・シエレウス、フザリウム・オキシスポルム、ミセリオフィトラ・テルモフィラ、メリピルス・ギガンテウス、チエラビア・テレストリス、アクレモニウム種(例えば、A.ペルシシヌム、A.アクレモニウム、A.ブラキペニウム、A.ジクロモスポルム、A.オブクラバツム、A.ピンケルトニエ、A.ロゼオグリセウム、A.インコロラツムおよびA.フラツム(これらに限定されない))。好ましい菌株としては、フミコラ・インソレンス DSM1800、フザリウム・オキシスポルム DSM2672、ミセリオフィトラ・テルモフィラ CBS117.65、セファロスポリウム種 RYM−202、アクレモニウム種 CBS478.94、アクレモニウム種 CBS265.95、アクレモニウム・ペルシシヌム CBS169.65、アクレモニウム・アクレモニウム AHU9519、セファロスポリウム種 CBS535.71、アクレモニウム・ブラキペニウム CBS866.73、アクレモニウム・ジクロモスポルム CBS683.73、アクレモニウム・オブクラバツム CBS311.74、アクレモニウム・ピンケルトニエ CBS157.70、アクレモニウム・ロゼオグリセウム CBS134.56、アクレモニウム・インコロラツム CBS146.62およびアクレモニウム・フラツム CBS299.70Hが挙げられる。セルロース分解酵素は、クリソスポリウム属、好ましくはクリソスポリウム・ルクノウエンスの菌株からも得られる。用いられ得る付加的菌株としては、トリコデルマ属(特に、T.ビリデ、T.リーセイおよびT.コニンギー)、好アルカリ性バシラス属(例えば米国特許第3,844,890号および欧州特許公開番号0 458 162参照)、ならびにストレプトミセス属(例えば、欧州特許公開番号0 458 162参照)が挙げられるが、これらに限定されない。
バイオマス材料を糖化し、糖を生成するために用いられ得る多数の微生物はさらにまた、糖を有用な生成物に発酵し、転化するために用いられ得る。
本明細書中に記載される工程において、例えば糖化後、糖(例えば、グルコースおよびキシロース)が単離され得る。例えば糖は、沈降、結晶化、クロマトグラフィー(例えば、擬似移動床クロマトグラフィー、高圧クロマトグラフィー)、遠心分離、抽出、当該技術分野で既知の任意の他の単離方法、およびその組合せにより単離され得る。
水素添加およびその他の化学的変換
本明細書中に記載される工程は、水素添加を包含し得る。例えば、グルコースおよびキシロースは、それぞれソルビトールおよびキシリトールに水素添加され得る。水素添加は、高圧(例えば、10〜12000psi)下で、Hと組合せて、触媒(例えば、Pt/ガンマ‐Al、Ru/C、ラネーニッケル、または当該技術分野で既知のその他の触媒)の使用により成し遂げられ得る。本明細書中に記載される工程からの生成物の他の型の化学的変換、例えば有機糖由来生成物(例えば、フルフラルおよびフルフラル由来生成物)の生成が、用いられ得る。糖由来生成物の化学的変換は、米国特許仮出願第61/667,481号(2012年7月3日出願;この記載内容は参照により本明細書中で援用される)に記載されている。
発酵
好ましくは、糖(例えば、フルクトース)をブタノールに転化するために、クロストリジウム種が用いられ得る。発酵のための最適pHは、約pH4〜7である。例えば、酵母のための最適pHは約pH4〜5であるが、一方、ザイモモナス属のためのpHは約5〜6である。典型的発酵時間は、約24〜168時間(例えば24〜96時間)で、温度は20℃〜40℃(例えば、26℃〜40℃)の範囲であるが、しかしながら好熱性微生物はより高温を選択する。
いくつかの実施形態では、例えば嫌気性生物が用いられる場合、発酵の少なくとも一部分は、酸素の非存在下で、例えば不活性ガス、例えばN、Ar、He、COまたはその混合物のブランケット下で、実行される。付加的には、混合物は、発酵の一部または全部の間、タンクを通して流れる不活性ガスの不断のパージを有し得る。いくつかの場合、嫌気性条件は、発酵中の二酸化炭素生成により達成されるかまたは保持され、付加的不活性ガスは必要でない。
いくつかの実施形態では、発酵工程の全部または一部は、低分子量糖が完全に生成物(例えば、エタノール)に転化される前に、遮断され得る。中間発酵産物としては、高濃度での糖および炭水化物が挙げられる。糖および炭水化物は、当該技術分野で既知の任意の手段により単離され得る。これらの中間発酵産物は、ヒトまたは動物消費のための食物の調製に用いられ得る。付加的には、または代替的には、中間発酵産物は、ステンレススチール製の実験室ミルで微細粒子サイズに磨り潰されて、小麦粉様物質を生じる。
ジェットミキシングは、発酵中に用いられ、いくつかの場合、糖化および発酵は、同一タンク中で実施される。
微生物のための栄養素は、糖化および/または発酵中に付加され、例えば食物ベースの栄養素パッケージは、米国特許出願公告2012/0052536(2011年7月15日出願;この記載内容は参照により本明細書中で援用される)に記載されている。
「発酵」は、米国特許仮出願61/579,559(2012年12月22日出願)および米国特許仮出願61/579,576(2012年12月22日出願)(これらの記載内容はともに、参照により本明細書中で援用される)に開示されている方法および生成物を包含する。
国際出願PCT/US2007/074028(2007年7月20日出願;WO2008/011598として英語で公開され、米国を指定)(この記載内容は参照により本明細書中で援用される)に記載されているように、可動性発酵槽が利用され得る。同様に、糖化設備は、可動性であり得る。さらに、糖化および/または発酵は、輸送中に、一部または完全に実施され得る。
発酵剤
クロストリジウムが好ましいが、他の微生物を用いることもできる。例えば、酵母およびザイモモナス属細菌は、発酵、または他のアルコール(単数または複数)への糖(単数または複数)の転化のために用いられ得る。他の微生物は、以下で考察される。それらは、天然微生物および/または工学処理微生物であり得る。例えば、微生物は、細菌(例えば、セルロース分解性細菌(これに限定されない))、真菌(例えば酵母(これに限定されない))、植物、原生生物、例えば原生動物または真菌様原生生物(例えば、粘菌(これに限定されない))、または藻類であり得る。生物体が適合性である場合、生物体の混合物が利用され得る。
適切な発酵微生物は、炭水化物、例えばグルコース、フルクトース、キシロース、アラビノース、マンノース、ガラクトース、オリゴ糖または多糖を発酵産物に転化する能力を有する。発酵微生物としては、以下の属の菌株が挙げられる:サッカロミセス種(例えば出芽酵母(パン酵母)、S.ディスタチクス、S.ウバルム(これらに限定されない))、クルイベロミセス属(例えば、K.マルキシアヌス、K.フラギリス(これらに限定されない))、カンジダ属(例えば、C.シュードトロピカリスおよびC.ブラッシケ(これらに限定されない))、ピキア・スチピチス(カンジダ・シェハテの共通系統)、クラビスポラ属(例えば、C.ルシタニエおよびC.オプンチエ(これらに限定されない))、パチソレン属(例えば、P.タンノフィルス(これに限定されない))、ブレタンノミセス属(例えば、B.クラウセニイ(Philippidis, G. P., 1996, Cellulose bioconversion technology, in Handbook on Bioethanol: Production and Utilization, Wyman, C.E., ed., Taylor & Francis, Washington, DC, 179−212))。その他の適切な微生物としては、例えば、ザイモモナス・モビリス、クロストリジウム種(例えば、C.テルモセルム(Philippidis, 1996,上記)、C.サッカロブチラセトニクム、C.サッカロブチリクム、C.プニセウム、C.ベイジェルンキイおよびC.アセトブチリクム(これらに限定されない))、モニリエラ・ポリニス、モニリエラ・メガチリエンシス、ラクトバシルス種、ヤロウィア・リポリチカ、アウレオバシジウム種、トリコスポロノイデス種、トリゴノプシス・バリアビリス、トリコスポロン種、モニリエラアセトアブタンス種、チフラ・バリアビリス、カンジダ・マグノリエ、ウスチラギノミセテス種、シュードザイマ・ツクバエンシス、ジゴサッカロミセス属、デバリオミセス属、ハンセヌラ属およびピキア属の酵母種、ならびにトルラ属類皮の真菌が挙げられる。
例えば、クロストリジウム種は、エタノール、ブタノール、酪酸、酢酸およびアセトンを生成するために用いられ得る。ラクトバシルス種は、乳酸を生成するために用いられ得る。
多数のこのような微生物菌株は、商業的に、あるいは例えばATCC(American Type Culture Collection, Manassas, Virginia, USA)、NRRL(Agricultural Research Service Culture Collection, Peoria, Illinois, USA)またはDSMZ(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany)のような保管所を通して、公的に入手可能である。
市販の酵母としては、例えばレッドスター(Red Star)(登録商標)/レサッフレ・エタノールレッド(Lesaffre Ethanol Red)(Red Star/Lesaffre,USAから入手可能)、FALI(登録商標)(Fleischmann’s Yeast, a division of Burns Philip Food Inc., USAから入手可能)、スーパースタート(SUPERSTART)(登録商標)(Alltech、現在はLalemandから入手可能)、GERT STRAND(登録商標)(Gert Strand AB,Swedenから入手可能)およびFERMOL(登録商標)(DSM Specialtiesから入手可能)が挙げられる。
バイオマス材料を糖化し、糖を生成するために用いられ得る多数の微生物は、それらを発酵し、有用な生成物に転化するためにも用いられ得る。
蒸留
発酵後、その結果生じた流体は、例えば「ビールカラム」を用いて蒸留されて、大多数の水および残留固体からエタノールおよびその他のアルコールを分離し得る。ビールカラムを出る蒸気は、例えば、35重量%エタノールであり、精留塔に供給され得る。精留塔からのほぼ共沸混合性(92.5%)のエタノールおよび水の混合物は、蒸気相分子篩を用いて、純(99.5%)エタノールに精製され得る。ビールカラム底は、三重効用蒸発器の第一効用に送られ得る。精留塔還流冷却器は、この第一効用のために熱を提供する。第一効用後、個体は、遠心分離器を用いて分離されて、回転乾燥機中で乾燥される。遠心分離流出液の一部分(25%)は、発酵に再循環され、残りは第二および第三蒸発器効用に送られる。蒸発器凝縮物のほとんどが、かなり透明な凝縮物として当該工程に戻され、小部分が、廃水処理に分けられて、低沸点化合物の増加を防止する。
本明細書中の実施例における以外に、または別記しない限り、本明細書および添付の特許請求の範囲の以下の部分における、数的範囲、量、値およびパーセンテージ、例えば材料、元素含量、反応の時間および温度、量の比率等はすべて、「約」という用語が値、量または範囲を伴って明らかに出現し得ない場合でも、「約」という語が前置きされているかのように理解され得る。したがって、そうでないことが示されない限り、以下の明細書および添付の特許請求の範囲において記述される数的パラメーターは、本発明により得られることが求められる所望の特性によって変わり得る概数である。非常に少なくではあるが、そして本発明の範囲と糖化の見解の適用を限定するものではなく、各数的パラメーターは、少なくとも、報告された有意の数字の数にかんがみて、そして普通の丸め技法を適用することにより、解釈されるべきである。
本発明の広範囲を記述する数的範囲およびパラメーターが概数であるにもかかわらず、具体例に記述される数値は、できるだけ精確に報告される。しかしながら、任意の数値は、その基礎をなすそれぞれの試験測定値に見出される標準偏差に必然的に起因する誤差を固有に含有する。さらに、数的範囲が本明細書中で記述される場合、これらの範囲は、列挙範囲終点(すなわち、終点が用いられ得る)を含む。重量パーセンテージが本明細書中で用いられる場合、報告される数値は、総重量に対する割合である。
さらにまた、本明細書中で列挙される任意の数的範囲は、そこに組み込まれたすべての亜範囲を包含するよう意図される、と理解されるべきである。例えば、「1〜10」の範囲は、1という記載最小値と10という記載最大値との間の(含めた)すべての亜範囲を包含する、すなわち、1または1より大きい最小値、および10以下の最大値を有するよう意図される。「1つの(one)」、「1つの(a)」または「1つの(an)」という用語は、本明細書中で用いる場合、別記しない限り、「少なくとも1つ」または「1つ以上」を包含するよう意図される。
実施例
実施例1. 材料および方法
種培養の調製: −80℃で保存したモニリエラ細胞を用いて、増殖培地(20g/L 麦芽抽出物、1g/Lペプトン、20g/Lグルコース)に接種して、200rpmで撹拌しながら72時間、30℃でインキュベートした。次に、エリトリトール生成のために培養をバイオリアクター(3L、20Lまたは400L)に移した。
主培養: エリトリトール産生培地は、10g/L酵母抽出物、1g/Lフィチン酸、1g/L硝酸カリウム、100g/L塩化カルシウム、10mg/L硫酸銅、50mg/L塩化亜鉛、および300g/Lグルコース(試薬等級;Sigma)かまたは精製糖化トウモロコシ穂軸(企業内調製)で構成される。
トウモロコシ穂軸は、電子線からの35Mradで処理し、企業内調製されたセルラーゼで糖化した。次に、糖化トウモロコシ穂軸を、陽イオン交換(Diaion PK228、 Mitsubishi Chemical Corporation)および陰イオン交換(Diaion JA300、 Mitsubishi Chemical Corporation)により精製した。
実施例2. 培養条件の決定
バイオリアクター培養は、3L容器中に1.5L、20L容器中に10Lまたは400L容器中に250L存在した。各々に関する接種物は、バイオリアクターにおける容量の5%で付加した72時間培養種培養で構成された。曝気を0.3〜1 VVMに調整し、撹拌は300〜1000rpmであり、温度は35°Cであった。アンチフォーム204を、1.5ml/L/日の割合で継続的に付加した。
12の異なる酵母抽出物を、エリトリトール産生に及ぼすそれらの作用に関して試験した。結果は、以下の通りであった:Granulated Fisher(105g/Lエリトリトール産生)、Thermo Oxoid(30g/L)、Bacto Tech(94g/L)、Fluka(108g/L)、Thermo Remel(111g/L)、Teknova(108g/L)、Acros(93g/L)、Boston(96g/L)、Sunrise(8g/L)、US Biochem(88g/L)、Sigma(76g/L)およびBD(90〜120g/L)。Granulated Fisherm Bacto Tech、Fluka、Thermo Remel、Teknova、Acros、Boston、US BiochemおよびBDは、付加的試験のために持ち越した。
12の異なる消泡剤を試験した。これらを以下に示す:アンチフォーム(Antifoam)A、B、C、O−30、SE−15、Y−30、シリコーン・アンチフォーム、アンチフォーム204(すべて、Sigma Chemical Company,St,Louis,Missouri,USAから)、アンチフォームAF(Fisherから)、KFO 880、KFO 770およびフォーム・ブラスト(Foam Blast)779(Emerald Performance Materialsから)。
Figure 2015500661
Figure 2015500661
実施例3. 3Lバイオリアクター中でのモニリエラのバイオリアクター培養
モニリエラ・ポリニス(菌株CBS 461.67; Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands)を、種々の培地構成成分条件(表1a)を有する3Lバイオリアクター(1.5L培養容量)中の産生培地中で培養した。フィチン酸は、培養期間を3〜4日に短縮したが、一方、フィチン酸を用いないエリトリトール産生に関しては10〜12日を要した(表1a)。各構成成分(フィチン酸、酵母抽出物、一塩基性リン酸ナトリウム、塩化カルシウム、グルコース、硫酸銅、塩化亜鉛、硝酸カリウム)を、最適濃度を得るために試験した(表1a)。物理的条件、例えば撹拌、温度も試験した(表1b)。典型的エリトリトール産生は、300g/Lのグルコースから80〜120g/Lのエリトリトールであった。
以下の表は、最適濃度の培地構成成分(300g/Lグルコース、10g/L酵母抽出物、1g/Lフィチン酸、1g/L硝酸カリウム)を有するモニリエラ菌株CBS461.67の3Lバイオリアクター培養におけるエリトリトール産生を示す。
Figure 2015500661
実施例4. 20Lバイオリアクター中でのモニリエラのバイオリアクター培養
撹拌速度は、エリトリトール産生に大きく影響することが判明した。 Erythritol was produced in a 10L culture volume in a 20L bioreactor at three different speeds 酵母抽出物(10g/L)、KNO(1g/L)、フィチン酸(1g/L)、CuSO(2mg/L)で構成される培地中で、3つの異なる速度で(300rpm、400rpm、650rpm)、1 VVMおよび35°Cで、20Lバイオリアクター中で10L培養容量で、エリトリトールを産生した。400rpmおよび650rpm培養は、3つのインペラも包含した。650rpm培養を、0.6VVM(1 VVMではなく)で曝気した。
300rpmの撹拌速度でのバイオリアクター培養は、650rpmでの同一培養より非常に低いエリトリトール産生を生じた。他方で、エリトリトール産生は、撹拌速度増大により低減された。
Figure 2015500661
Figure 2015500661
実施例5. 400Lバイオリアクター中でのモニリエラのバイオリアクター培養
酸素透過率は、400Lバイオリアクター中でのエリトリトール産生における重要因子である、ということが判明した。2つの浸漬管を用いて、乱流を増大し、空気吹込みを容器の底に取り付けて、アスペクト比を増大させた。結果(g/L)を、以下の表に示す。
Figure 2015500661
実施例6. 糖化生成物の精製
トウモロコシ穂軸を糖化し、その結果生じた糖混合物をイオン交換により精製した。陽イオン交換および陰イオン交換を用いて、以下の表に列挙した金属構成成分を除去した。
Figure 2015500661
次に、2つの異なるモニリエラ菌株CBS461.67(モニリエラ・ポリニス)およびCBS567.85(モニリエラ・メガチリエンシス)によるエリトリトール産生のために、精製糖化トウモロコシ穂軸溶液を用いた。フラスコ培養を用いた。培地構成成分は、10g/L酵母抽出物、1g/L硝酸カリウム、0.3g/Lフィチン酸、2mg/Lの硫酸銅、ならびに精製糖化トウモロコシ穂軸を含んだ。グルコースは2日で消費され、キシロースはほとんど消費されなかった。
Figure 2015500661
エリトリトール産生収率は、CBS461.67で21%およびCBS567.85で28%であった。この収率は、試薬等級グルコース(収率30〜40%)を用いたエリトリトール産生に匹敵する。
参照により本明細書中で援用されると言われる任意の特許、出版物、またはその他の開示は、全体でまたは一部は、組み入れられた試料がこの開示に記述される現存する定義、記述またはその他の開示と矛盾しない程度に本明細書中で援用される。このようなものとして、そして必要な程度に、本明細書中に明白に記述されるような開示は、参照により本明細書中に組み入れられた任意の相反する資料に取って代わる。本明細書中に参照により組み入れられるといわれる、しかし本明細書中に記述される現行の定義、記述またはその他の開示資料と相反する任意の資料またはその部分は、組み入れられた資料と現行開示資料との間に相反が生じない程度に援用されるに過ぎない。
本発明を特定的に示しその好ましい実施形態に関して説明してきたが、添付の特許請求の範囲に包含される本発明の範囲を逸脱しない限り、形態および詳細における変更がなされ得る、当業者は理解する。

Claims (26)

  1. 以下の:
    セルロースまたはリグノセルロース系バイオマスを、糖のうちの少なくとも1つを糖アルコールに転化し得る微生物と組み合わせ、そして前記微生物が前記糖のうちの少なくとも1つを糖アルコールに転化することができる条件下で、微生物‐バイオマス組合せを保持することにより、1つ以上の糖を含有するセルロースまたはリグノセルロース系バイオマスから糖アルコールを製造すること
    を包含する方法。
  2. 前記バイオマスを前記微生物と接触させる前に、セルロースまたはリグノセルロース系バイオマスの難分解性を低減することをさらに包含する、請求項1に記載の方法。
  3. 前記セルロースまたはリグノセルロース系バイオマスを糖化することをさらに包含する、請求項1または2記載の方法。
  4. 前記糖アルコールが、以下の:グリコール、グリセロール、エリトリトール、トレイトール、アラビトール、キシリトール、リビトール、マンニトール、ソルビトール、ガラクチトール、イジトール、イノシトール、ボレミトール、イソマルト、マルチトール、ラクチトール、マルトトリイトール、マルトテトライトールおよびポリグリシトールからなる群から選択される、請求項1〜3のいずれか1項に記載の方法。
  5. 前記糖アルコールがエリトリトールを含む、請求項4に記載の方法。
  6. 前記微生物が、モニリエラ・ポリニス、モニリエラ・メガチリエンシス、ヤロウィア・リポリチカ、アウレオバシジウム種、トリコスポロノイデス種、トリゴノプシス・バリアビリス、トリコスポロン種、モニリエラアセトアブタンス種、チフラ・バリアビリス、カンジダ・マグノリエ、ウスチラギノミセテス種、シュードザイマ・ツクバエンシス;ジゴサッカロミセス属、デバリオミセス属、ハンセヌラ属およびピキア属の酵母種;ならびにトルラ属類皮の真菌からなる群から選択される、請求項1〜5のいずれか1項に記載の方法。
  7. 前記微生物がモニリエラの一種である、請求項6に記載の方法。
  8. 前記微生物がM.ポリニスである、請求項7に記載の方法。
  9. 前記微生物がM.ポリニス菌株CBS461.67である、請求項8に記載の方法。
  10. 前記微生物がM.メガチリエンシスである、請求項7に記載の方法。
  11. 前記微生物がM.メガチリエンシス菌株CBS567.85である、請求項10に記載の方法。
  12. 前記セルロースまたはリグノセルロース系バイオマスが、以下の:紙、紙製品、紙廃棄物、紙パルプ、着色紙、上塗り紙、被覆紙、充填紙、雑誌、印刷物、印刷用紙、ポリコーティング紙、硬い厚紙、ボール紙、板紙、綿、木材、パーティクルボード、林業系廃棄物、おがくず、アスペン材、木材チップ、草、スイッチグラス、ススキ、ミクリ、クサヨシ、穀粒残渣、コメ籾殻、オートムギ籾殻、コムギ籾殻、オオムギ籾殻、農業廃棄物、貯蔵牧草、キャノーラ藁、コムギ藁、オオムギ藁、オートムギ藁、コメ藁、ジュート、麻、亜麻、竹、サイザルアサ、マニラ麻、トウモロコシ穂軸、トウモロコシ飼葉、ダイズ飼葉、トウモロコシ繊維、アルファルファ、干し草、ココヤシ表面毛、糖加工残渣、バガス、ビートパルプ、リュウゼツランバガス、藻類、海藻、堆肥、下水汚物、腐肉、農業または工業廃棄物、アラカチャ、ソバ、バナナ、オオムギ、キャッサバ、葛、アンデスカタバミ、サゴヤシ、モロコシ、ジャガイモ、サツマイモ、タロイモ、ヤムイモ、ダイズ、ソラマメ、レンズマメ、エンドウおよびこれらのいずれかの混合物からなる群から選択される、請求項1〜11のいずれか1項に記載の方法。
  13. 前記難分解性が、以下の:電子による衝撃、音波処理、酸化、熱分解、水蒸気爆発、化学的処理、機械的処理および凍結粉砕からなる群から選択される処置方法により低減される、請求項2に記載の方法。
  14. 前記処理方法が電子による衝撃である、請求項13に記載の方法。
  15. 前記バイオマス材料がリグノセルロース系バイオマスである、請求項1〜14のいずれか1項に記載の方法。
  16. セルロースまたはリグノセルロース系バイオマスを機械的に処理して、その嵩密度を低減し、および/またはその表面積を増大することをさらに包含する、請求項1〜15のいずれか1項に記載の方法。
  17. 前記セルロースまたはリグノセルロース系バイオマスが細砕される、請求項16に記載の方法。
  18. 前記細砕が乾式粉砕である、請求項17に記載の方法。
  19. 前記細砕が湿式粉砕である、請求項17に記載の方法。
  20. 前記バイオマスが1つ以上のセルラーゼで糖化される、請求項3に記載の方法。
  21. 前記セルロースまたはリグノセルロース系バイオマスを前記微生物と組み合わせる前に1つ以上の糖を分離することをさらに包含する、請求項1〜20のいずれか1項に記載の方法。
  22. 前記セルロースまたはリグノセルロース系バイオマスを前記微生物と組み合わせる前に1つ以上の糖を濃縮することをさらに包含する、請求項1〜21のいずれか1項に記載の方法。
  23. 前記セルロースまたはリグノセルロース系バイオマスを前記微生物と組み合わせる前に前記微生物を細胞増殖相において培養することをさらに包含する、請求項1〜22のいずれか1項に記載の方法。
  24. 前記糖化バイオマスが少なくとも5重量%の初期グルコース濃度を有するよう調整される、請求項3に記載の方法。
  25. 前記糖化バイオマスを精製することをさらに包含する、請求項3に記載の方法。
  26. 前記精製が金属イオンの除去を包含する、請求項25に記載の方法。
JP2014548918A 2011-12-22 2012-12-20 バイオマスからの糖およびアルコールの生成 Expired - Fee Related JP6595769B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161579576P 2011-12-22 2011-12-22
US61/579,576 2011-12-22
PCT/US2012/071083 WO2013096693A1 (en) 2011-12-22 2012-12-20 Production of sugar and alcohol from biomass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017164472A Division JP2018029593A (ja) 2011-12-22 2017-08-29 バイオマスからの糖およびアルコールの生成

Publications (2)

Publication Number Publication Date
JP2015500661A true JP2015500661A (ja) 2015-01-08
JP6595769B2 JP6595769B2 (ja) 2019-10-23

Family

ID=47599159

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014548918A Expired - Fee Related JP6595769B2 (ja) 2011-12-22 2012-12-20 バイオマスからの糖およびアルコールの生成
JP2017164472A Pending JP2018029593A (ja) 2011-12-22 2017-08-29 バイオマスからの糖およびアルコールの生成

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017164472A Pending JP2018029593A (ja) 2011-12-22 2017-08-29 バイオマスからの糖およびアルコールの生成

Country Status (18)

Country Link
US (3) US9963727B2 (ja)
EP (1) EP2794892A1 (ja)
JP (2) JP6595769B2 (ja)
KR (1) KR102039203B1 (ja)
CN (3) CN108220347A (ja)
AP (1) AP2014007713A0 (ja)
AU (3) AU2012358368B2 (ja)
BR (1) BR112014015296A8 (ja)
CA (1) CA2858286A1 (ja)
EA (2) EA030075B1 (ja)
IL (1) IL233255A0 (ja)
IN (1) IN2014MN00993A (ja)
MX (2) MX366769B (ja)
MY (2) MY169799A (ja)
PH (1) PH12014501148A1 (ja)
SG (2) SG10201607158UA (ja)
UA (1) UA116098C2 (ja)
WO (1) WO2013096693A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534712A (ja) * 2014-09-26 2017-11-24 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 部分フッ素化ウレタン系コーティング

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2890488A4 (en) 2012-10-10 2016-07-27 Xyleco Inc TREATMENT OF BIOMASS
CA2885398A1 (en) 2012-10-10 2014-04-17 Xyleco, Inc. Processing materials
NZ706072A (en) 2013-03-08 2018-12-21 Xyleco Inc Equipment protecting enclosures
EP2896681A1 (en) * 2014-01-21 2015-07-22 Comet AG Biorefinery of biomass using irradiation process
WO2015142541A1 (en) 2014-03-21 2015-09-24 Xyleco, Inc. Method and structures for processing materials
WO2016164616A1 (en) 2015-04-07 2016-10-13 Xyleco, Inc. Monitoring methods and systems for processing biomass
KR101806201B1 (ko) 2015-04-09 2017-12-07 한국과학기술연구원 바이오 화학물질 및 연료 생산 증진을 위한 해조류 및 목질계 혼합 바이오매스 당화액 및 그 제조방법
CN106148425B (zh) * 2015-04-17 2018-05-08 成都远泓生物科技有限公司 肌醇的制备方法
KR20180026663A (ko) 2015-07-07 2018-03-13 질레코 인코포레이티드 다량의 가스를 발효 브로쓰에 제공하기 위한 장치
PL3416740T3 (pl) 2016-02-19 2021-05-17 Intercontinental Great Brands Llc Procesy tworzenia wielu strumieni wartości ze źródeł biomasy
KR101856849B1 (ko) * 2016-06-24 2018-05-10 울산대학교 산학협력단 배추 폐기물로부터 포도당을 생산하는 방법 및 포도당을 포함하는 미세조류 배양액
CN109370848B (zh) * 2018-11-05 2022-03-15 福建农林大学 一种红曲龙舌兰酒的加工方法
CN110438168B (zh) * 2019-08-17 2021-09-14 浙江金晟环保股份有限公司 一种利用甘蔗渣生物催化合成木糖醇的方法
CN110878261B (zh) * 2019-11-14 2022-05-06 上海交通大学 合成木糖醇的重组解脂耶氏酵母的构建方法及其菌株
IL293686A (en) 2019-12-10 2022-08-01 The Fynder Group Inc Methods for the propagation of filamentous fungi in fermentation media
CN112980894A (zh) * 2021-03-04 2021-06-18 广东丰绿源生物医药科技有限公司 一种薯蓣渣-蔗渣混合发酵乙醇的方法
EP4202050A1 (en) * 2021-12-21 2023-06-28 Conzil Estate GmbH Method for the biotechnological production of erythritol
CN114181268B (zh) * 2021-12-26 2023-08-11 浙江华康药业股份有限公司 一种木糖母液联产赤藓糖醇和阿拉伯糖的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503844A (ja) * 1990-01-15 1993-06-24 キシロフィン オイ キシリトールおよびエタノールの同時生産方法
JPH0630592B2 (ja) * 1983-08-24 1994-04-27 シ−・ピ−・シ−・インタ−ナシヨナル・インコ−ポレイテツド 糖類の発酵によりポリオール混合物を工業的規模で製造、採取する方法
JPH09154589A (ja) * 1995-10-04 1997-06-17 Mitsubishi Chem Corp エリスリトールの製造方法
JPH1096A (ja) * 1996-06-13 1998-01-06 Nikken Chem Co Ltd 微生物を用いるエリスリトールの製造方法
JPH10215887A (ja) * 1996-12-02 1998-08-18 Mitsubishi Chem Corp エリスリトールの製造方法
WO1998044089A1 (fr) * 1997-04-02 1998-10-08 Mitsubishi Chemical Corporation Micro-organisme generateur d'erythritol et son procede d'obtention
US20020132313A1 (en) * 2001-01-12 2002-09-19 Shie-Jea Lin Erythritol - producing moniliella strains
JP2009148211A (ja) * 2007-12-21 2009-07-09 National Institute Of Advanced Industrial & Technology D−アラビトールの発酵製造方法及びその実施に用いる微生物
US20090246843A1 (en) * 2006-10-03 2009-10-01 Jungbunzlauer Austria Ag Process for producing erythritol using moniliella tomentosa strains in the presence of neutral inorganic nitrates, such as potassium nitrate, ammonium nitrate or sodium nitrate, as nitrogen source
JP2010104361A (ja) * 2008-10-02 2010-05-13 Musashino Chemical Laboratory Ltd リグノセルロース系バイオマスを用いた糖化液の製造方法
US20100200806A1 (en) * 2009-02-11 2010-08-12 Xyleco, Inc. Saccharifying biomass
US20100297705A1 (en) * 2009-05-20 2010-11-25 Xyleco, Inc. Processing biomass

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028515B2 (ja) 1971-09-30 1975-09-16
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
US4939091A (en) 1986-09-09 1990-07-03 Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Novel auerobasidium sp. microorganisms, method for obtaining the same and method for preparing erythritol with the same
JPH0427386A (ja) 1990-05-24 1992-01-30 Kao Corp プロテアーゼ耐性セルラーゼ、これを産生する微生物及び該セルラーゼの製造法
JP3423842B2 (ja) 1996-01-19 2003-07-07 日研化学株式会社 変異株及び該変異株又は親株を用いるエリスリトールの製造方法
EP0845538B1 (en) 1996-12-02 2003-04-02 Mitsubishi Chemical Corporation Method of producing erythritol
KR19980075195A (ko) 1997-03-26 1998-11-16 손경식 트리코스포로노이데스 속 변이균주 및 이를 이용한 에리스리톨의 제조방법
KR100541578B1 (ko) 1997-12-04 2006-04-06 미쓰비시 가가꾸 가부시키가이샤 에리트리톨 생산방법
JP4194152B2 (ja) * 1997-12-04 2008-12-10 三菱化学株式会社 エリスリトールの製造方法
KR100246820B1 (ko) 1997-12-30 2000-03-15 정수련 신균주 트리고높시스 배리아빌리스에 의한 에리쓰리톨의 제조방법
FR2780414B1 (fr) 1998-06-24 2001-06-08 Roquette Freres Procede de production d'erythritol par fermentation discontinue alimentee repetee
KR100271137B1 (ko) 1998-06-24 2000-11-01 유병택 신규 미생물 트리코스포로노이데스 마디다 디에스911 및 이 균주를 이용한 에리스리톨의 제조방법
KR100277489B1 (ko) 1998-07-20 2001-01-15 유연우 칸디다 속의 내염성 돌연변이주 및 이를 이용한 에리트리톨의 생산방법
US6001616A (en) 1998-09-16 1999-12-14 Dong Cheon Consulting Co., Ltd. Process for preparing erythritol using novel cell of pichia
EP1092781B1 (en) 1999-09-28 2006-03-01 Bolak Co., Ltd. Fermentation process for preparing erythritol by a high salt tolerant mutant of candida sp.
AU1693000A (en) 1999-12-10 2001-06-18 Biongene Co. Ltd. A fermentation process for preparing erythritol using mother liquor produced from purification process of palatinose
US6300107B1 (en) 2000-06-02 2001-10-09 Food Industry Research & Development Institute Erythritol-producing yeast strains
KR100434518B1 (ko) 2002-03-20 2004-06-05 주식회사 바이오앤진 신균주 슈도지마 츄쿠밴시스에 의한 에리스리톨의 발효제조방법
MXPA04012978A (es) * 2002-07-01 2005-09-12 Arkion Life Sciences Llc D B A Proceso y material para la produccion de glucosamina y n-acetilglucosamina.
JP2006055823A (ja) * 2004-07-23 2006-03-02 Nisso Engineering Co Ltd メタン発酵方法及び装置
LT3081307T (lt) 2005-03-24 2018-03-12 Xyleco, Inc. Kompozitinio darinio gavimo būdas
WO2007005299A1 (en) 2005-06-30 2007-01-11 Cargill, Incorporated A process for producing erythritol
MX2009000712A (es) 2006-07-21 2009-03-23 Xyleco Inc Sistemas para conversion de biomasa.
SG174746A1 (en) 2006-10-26 2011-10-28 Xyleco Inc Processing biomass
US20100124583A1 (en) 2008-04-30 2010-05-20 Xyleco, Inc. Processing biomass
PT103714B (pt) * 2007-04-11 2020-07-28 73100 - Setenta E Três Mil E Cem, Lda. Processo para a obtenção de um polímero à base de galactose
US7807419B2 (en) * 2007-08-22 2010-10-05 E. I. Du Pont De Nemours And Company Process for concentrated biomass saccharification
BRPI0816467A2 (pt) * 2007-08-30 2015-03-24 Iogen Energy Corp Processo de remoção de cálcio e obtenção de sais de sulfato a partir de uma solução aquosa de açúcar
US8212087B2 (en) 2008-04-30 2012-07-03 Xyleco, Inc. Processing biomass
US7931784B2 (en) 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
NZ714365A (en) * 2008-04-30 2017-08-25 Xyleco Inc Producing modified saccharides by processing biomass
US7846295B1 (en) * 2008-04-30 2010-12-07 Xyleco, Inc. Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials
US7900857B2 (en) 2008-07-17 2011-03-08 Xyleco, Inc. Cooling and processing materials
JP2010054241A (ja) * 2008-08-26 2010-03-11 Mitsui Eng & Shipbuild Co Ltd メタンの測定方法及び発生制御方法
US8597472B2 (en) 2008-10-28 2013-12-03 Xyleco, Inc. Processing materials
UA117022C2 (uk) 2008-12-19 2018-06-11 Ксілеко, Інк. Спосіб переробки біомаси
SI3095512T1 (sl) 2009-02-11 2018-12-31 Xyleco, Inc. Obdelava biomase z ionizirajočim sevanjem
WO2010135377A1 (en) 2009-05-20 2010-11-25 Xyleco, Inc. Bioprocessing
MX344902B (es) 2009-05-20 2017-01-11 Xyleco Inc Procesar materiales conteniendo hidrocarburo.
EP2432865B1 (en) * 2009-05-20 2018-04-25 Xyleco, Inc. Processing biomass
NZ708842A (en) 2010-07-19 2017-01-27 Xyleco Inc Processing biomass
CN106399392A (zh) 2010-10-20 2017-02-15 希乐克公司 通过用电子束照射来处理木质纤维素材料的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630592B2 (ja) * 1983-08-24 1994-04-27 シ−・ピ−・シ−・インタ−ナシヨナル・インコ−ポレイテツド 糖類の発酵によりポリオール混合物を工業的規模で製造、採取する方法
JPH05503844A (ja) * 1990-01-15 1993-06-24 キシロフィン オイ キシリトールおよびエタノールの同時生産方法
JPH09154589A (ja) * 1995-10-04 1997-06-17 Mitsubishi Chem Corp エリスリトールの製造方法
JPH1096A (ja) * 1996-06-13 1998-01-06 Nikken Chem Co Ltd 微生物を用いるエリスリトールの製造方法
JPH10215887A (ja) * 1996-12-02 1998-08-18 Mitsubishi Chem Corp エリスリトールの製造方法
WO1998044089A1 (fr) * 1997-04-02 1998-10-08 Mitsubishi Chemical Corporation Micro-organisme generateur d'erythritol et son procede d'obtention
US20020132313A1 (en) * 2001-01-12 2002-09-19 Shie-Jea Lin Erythritol - producing moniliella strains
US20090246843A1 (en) * 2006-10-03 2009-10-01 Jungbunzlauer Austria Ag Process for producing erythritol using moniliella tomentosa strains in the presence of neutral inorganic nitrates, such as potassium nitrate, ammonium nitrate or sodium nitrate, as nitrogen source
JP2009148211A (ja) * 2007-12-21 2009-07-09 National Institute Of Advanced Industrial & Technology D−アラビトールの発酵製造方法及びその実施に用いる微生物
JP2010104361A (ja) * 2008-10-02 2010-05-13 Musashino Chemical Laboratory Ltd リグノセルロース系バイオマスを用いた糖化液の製造方法
US20100200806A1 (en) * 2009-02-11 2010-08-12 Xyleco, Inc. Saccharifying biomass
US20100297705A1 (en) * 2009-05-20 2010-11-25 Xyleco, Inc. Processing biomass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCESS BIOCHEMISTRY, vol. Vol.45, JPN6016035397, 2010, pages 973 - 979 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534712A (ja) * 2014-09-26 2017-11-24 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 部分フッ素化ウレタン系コーティング

Also Published As

Publication number Publication date
AU2012358368B2 (en) 2016-11-03
JP6595769B2 (ja) 2019-10-23
CA2858286A1 (en) 2013-06-27
EA201890345A3 (ru) 2018-11-30
PH12014501148A1 (en) 2014-07-28
AU2018260890A1 (en) 2018-11-29
BR112014015296A2 (pt) 2017-06-13
KR20140111670A (ko) 2014-09-19
EP2794892A1 (en) 2014-10-29
JP2018029593A (ja) 2018-03-01
AU2017200438B2 (en) 2018-08-09
MX366769B (es) 2019-07-24
CN108220347A (zh) 2018-06-29
AU2012358368A1 (en) 2014-06-12
AU2017200438A1 (en) 2017-02-16
US20140004574A1 (en) 2014-01-02
NZ719871A (en) 2017-10-27
EA030075B1 (ru) 2018-06-29
MX348055B (es) 2017-05-25
US20180216150A1 (en) 2018-08-02
UA116098C2 (uk) 2018-02-12
WO2013096693A1 (en) 2013-06-27
CN104011215A (zh) 2014-08-27
IN2014MN00993A (ja) 2015-04-24
MY169799A (en) 2019-05-16
EA201890345A2 (ru) 2018-06-29
IL233255A0 (en) 2014-08-31
MX2014007583A (es) 2014-09-12
US20200017894A1 (en) 2020-01-16
SG10201607158UA (en) 2016-10-28
CN104011215B (zh) 2018-04-13
BR112014015296A8 (pt) 2017-07-04
US9963727B2 (en) 2018-05-08
SG11201402958WA (en) 2014-09-26
EA201490895A1 (ru) 2014-12-30
NZ625335A (en) 2016-02-26
KR102039203B1 (ko) 2019-10-31
MY171298A (en) 2019-10-07
NZ716083A (en) 2016-12-23
CN108315360A (zh) 2018-07-24
AP2014007713A0 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6595769B2 (ja) バイオマスからの糖およびアルコールの生成
AU2018203843B2 (en) Processing Biomass
JP6295203B2 (ja) バイオマス加工
NZ625335B2 (en) Production of sugar and alcohol from biomass
OA16927A (en) Production of sugar and alcohol from biomass.
NZ719871B2 (en) Production Of Sugar And Alcohol From Biomass
NZ716083B2 (en) Production of Sugar and Alcohol from Biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170905

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190927

R150 Certificate of patent or registration of utility model

Ref document number: 6595769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees