JP2015220387A - 表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法 - Google Patents

表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法 Download PDF

Info

Publication number
JP2015220387A
JP2015220387A JP2014104094A JP2014104094A JP2015220387A JP 2015220387 A JP2015220387 A JP 2015220387A JP 2014104094 A JP2014104094 A JP 2014104094A JP 2014104094 A JP2014104094 A JP 2014104094A JP 2015220387 A JP2015220387 A JP 2015220387A
Authority
JP
Japan
Prior art keywords
region
display panel
oxide semiconductor
semiconductor layer
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014104094A
Other languages
English (en)
Inventor
岳 大野
Takeshi Ono
岳 大野
正美 林
Masami Hayashi
正美 林
井上 和式
Kazunori Inoue
和式 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014104094A priority Critical patent/JP2015220387A/ja
Publication of JP2015220387A publication Critical patent/JP2015220387A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】より高い開口率を有する表示用パネル基板を提供すること。
【解決手段】酸化物半導体層91は、チャネル領域91cと、チャネル領域91cに隣り合う第1の隣接領域91sと、チャネル領域91cに隣り合いチャネル領域91cによって第1の隣接領域91sから隔てられた第2の隣接領域91pとを有する。絶縁層94はチャネル領域91cおよび2の隣接領域91pの上に設けられている。金属電極62は、酸化物半導体層91の第1の隣接領域91sに接しており、第2の隣接領域91pから離れている。第2の隣接領域91pは、チャネル領域91cが有する導電性よりも高い導電性を有する。
【選択図】図9

Description

本発明は、表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法に関するものである。
表示装置として、近年、CRT(Cathode Ray Tube)に代わり、フラットパネルディスプレイが広く用いられており、特に液晶表示装置(Liquid Crystal Display:LCD)は広く普及している。LCDは一般に液晶表示パネルを有する。液晶表示パネルは、表示用パネル基板と対向基板との間に液晶層が設けられた構造を有する。表示用パネル基板としては一般にTFT(Thin Film Transistor:薄膜トランジスタ)基板が用いられる。TFT基板および対向基板の外側にはそれぞれ偏光板が設けられる。またカラー表示のLCDでは、たとえば対向基板に1色または2色以上のカラーフィルタが設けられる。また透過型および半透過型のLCDではTFT基板または対向基板の外側にバックライトユニットが設けられる。
TFT基板には画素毎にスイッチング素子としてのTFTが設けられる。TFT基板はTFTアレイ基板またはTFTアクティブ基板と呼ばれる場合もある。また、TFTがマトリックス状に配列されたTFT基板は、TFTマトリックス基板またはTFTアクティブマトリックス基板と呼ばれる場合もある。
たとえば特開平10−268353号公報(特許文献1)によれば、LCD用のTFT基板の代表的な構造が開示されている。当該TFT基板はボトムゲートのバックチャネル型TFTを有する。またTFTと電気的に接続された画素電極が最上層に形成されている。
TFTが有するチャネル層(「活性層」とも呼ばれる)の材料としてはアモルファスシリコンが一般的であるが、近年、新たな材料として酸化物半導体が盛んに検討されている。酸化物半導体はアモルファスシリコンよりも高い移動度を有するため、これを用いて小型で高性能なTFTを実現することができる。酸化物半導体としては、たとえば酸化亜鉛(ZnO)系材料がある。また、酸化亜鉛に酸化ガリウム(Ga23)、酸化インジウム(In23)、酸化すず(SnO2)などを添加した材料も、酸化物半導体として利用される。酸化物半導体をチャネル層に用いる技術は、たとえば特許文献2、3および非特許文献1に開示されている。
特開平10−268353号公報 特開2005−77822号公報 特開2007−281409号公報
TFTは、通常、ソース電極およびドレイン電極の2つの電極を有する。これらの材料としては、通常、導電性を考慮して、純金属または合金(本明細書においては、純金属および合金の両者を総称して「金属」と称する)が用いられる。すなわち、1対の金属電極であるソース電極およびドレイン電極が形成される。しかしながら、TFTが設けられる装置によっては、このような電極構造が好ましくない場合があり、より多様な電極構造の選択肢が望まれる。
特に、TFTが表示用パネル基板に設けられる場合、上記1対の金属電極が光の進行を妨げることで開口率が低下してしまう。表示の高解像度化に伴い各画素の大きさが小さくなると、TFTが各画素を占める面積が相対的に大きくなることから、この問題はより深刻となる。
本発明は以上のような課題を解決するためになされたものであり、その一の目的は、より高い開口率を有する表示用パネル基板を提供することである。
本発明の表示用パネル基板は、支持基板と、支持基板に支持された薄膜トランジスタとを有する。薄膜トランジスタは酸化物半導体層と絶縁層と金属電極とを有する。酸化物半導体層は、チャネル領域と、チャネル領域に隣り合う第1の隣接領域と、チャネル領域に隣り合いチャネル領域によって第1の隣接領域から隔てられた第2の隣接領域とを有する。絶縁層はチャネル領域および2の隣接領域の上に設けられている。金属電極は、酸化物半導体層の第1の隣接領域に接しており、第2の隣接領域から離れている。第2の隣接領域は、チャネル領域が有する導電性よりも高い導電性を有する。
本発明によれば、酸化物半導体層のうち高い導電性を有する第2の隣接領域が、薄膜トランジスタのソース電極またはドレイン電極として利用される。よってソース電極またはドレイン電極を、金属層ではなく、透光性を確保しやすい材料である酸化物半導体層によって構成することができる。これにより表示パネル基板の開口率を高めることができる。
本発明の実施の形態1におけるLCDの構成を概略的に示す分解斜視図である。 図1のTFT基板の構成を概略的に示す平面図である。 図2のTFT基板における各画素の構成を概略的に示す回路図である。 図1のTFT基板における各画素の構成を、配向膜の図示を省略して示した概略部分平面図である。 図4の共通電極の図示を省略した概略部分平面図である。 図5の保護膜の図示を省略した概略部分平面図である。 図6のソース配線およびソース電極の図示を省略した概略部分平面図である。 図5〜図7の酸化物半導体層の各々を構成する複数の領域の配置を、図4〜図7の各々と同様の視野で概略的に示す部分平面図である。 図4〜図8の各々の線IX−IXに沿う概略部分断面図である。 図1のTFT基板におけるゲート端子近傍の構成を概略的に示す部分平面図である。 図1のTFT基板におけるソース端子近傍の構成を概略的に示す部分平面図である。 図9のTFT基板の製造方法の第1工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第2工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第3工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第4工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第5工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第6工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第7工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第8工程を概略的に示す部分断面図である。 図9のTFT基板の製造方法の第9工程を概略的に示す部分断面図である。 本発明の実施の形態2におけるTFT基板の構成を概略的に示す図であり、図9と同様の視野による概略部分断面図である。 図21のTFT基板の製造方法の第1工程を概略的に示す部分断面図である。 図21のTFT基板の製造方法の第2工程を概略的に示す部分断面図である。 図21のTFT基板の製造方法の第3工程を概略的に示す部分断面図である。
以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
(実施の形態1)
下記において、まず図1〜図3を参照してLCDおよびそれに含まれる部材について、主に一般的内容について説明する。その後、図4以降の図面を参照して、本実施の形態におけるTFT基板(表示用パネル基板)の具体的構成について詳しく説明する。
<LCD>
図1を参照して、本実施の形態のLCD1(表示装置)は液晶パネル10(表示パネル)およびバックライトユニット20を有する。液晶パネル10は、画素がマトリックス状に配列されている表示領域11と、表示領域11の外側に位置し表示領域11を取り囲む額縁領域(「周辺領域」とも呼ばれる)12とに大別される。バックライトユニット20は、液晶パネル10の液晶層35(変調層)に光を供給するために液晶パネル10の背面に設けられた面状光源装置である。
なお、液晶パネル10において、ユーザが表示内容を視認する側の主面が前面(図中、左下の面)であり、前面とは反対側の主面が背面である。液晶パネル10およびバックライトユニット20は、筐体(図示せず)内に収容されている。また必要に応じて液晶パネル10用の外付装置が設けられる。バックライトユニット20用の外付装置についても同様である。外付装置は、たとえば電源回路、信号処理回路などである。
<液晶パネル>
液晶パネル10は、TFT基板30(表示用パネル基板)と、液晶層35と、対向基板40とを有する。TFT基板30および対向基板40は、一定の間隙(「セルギャップ」とも呼ばれる)を介して互いに貼り合わされている。両者の間には、液晶が閉じ込められることで液晶層35が設けられている。対向基板40は、たとえば、カラーフィルタ、ブラックマトリックス、配向膜などを有するカラーフィルタ基板である。またTFT基板30および対向基板40の各々の外面上には、偏光板、位相差板などが配置されている。
TFT基板30は、詳しくは後述するが、各画素における液晶の配向状態を制御するための構造を有している。概略として、TFT基板30には画素ごとに、画素電極、当該画素電極に接続されたスイッチング素子としてのTFT(画素TFT)、配向膜などが設けられている。
液晶層35(変調層)は、TFT基板30からの制御により光を変調するものである。具体的には液晶層35は、TFT基板30に設けられた画素の各々から発生する電界に応じて光を変調するものである。具体的には、液晶層35において液晶の配向状態が制御されることによって、表示動作が行なわれる。配向状態の制御は、各々から発生する電界が調整可能に構成された複数の画素によって行なわれる。
液晶の配向状態を制御する方式として、本実施の形態においてはFFS(Fringe Field Switching)方式が用いられる。FFS方式のTFT基板30は電極間絶縁膜を介して対向する2種類の電極を有している。電極間絶縁膜の上層に配置された電極である上層電極(すなわち、液晶層に近い側に配置された電極)には、スリット状の開口が設けられている。他方、電極間絶縁膜の下層に配置された電極である下層電極は、上層電極の開口に対向する領域にも延在している。上層電極と下層電極との間に電圧を与えると、液晶層35にも及ぶ電界(いわゆるフリンジ電界)が発生する。このフリンジ電界によって液晶層35の配向制御が行なわれる。
上層電極および下層電極のうち、画素ごとの表示電圧が印加される方が画素電極と呼ばれ、画素に拠らず共通の電圧が印加される方が共通電極と呼ばれる。FFS方式における共通電極はTN方式(Twisted Nematic)における補助容量電極を兼ねており、画素電極と共通電極との重畳領域によって補助容量が形成される。
<TFT基板の概略的構成>
図2を参照して、TFT基板30は透明基板50(支持基板)を有する。透明基板50の一方の主面(すなわち液晶層に向く主面)上に各種の要素が配置されている。透明基板50はガラスなどの透明かつ絶縁性の材料で構成されている。
TFT基板30は複数のゲート配線51と複数のソース配線52とを有する。またTFT基板30は複数の共通配線53を有してもよい。
ゲート配線51は互いに平行に延在している。図2の例では、ゲート配線51の各々は透明基板50の長辺と平行に延在しており、複数のゲート配線51の各々は透明基板50の短辺と平行に延在している。ゲート配線51は、表示領域11内の全体に渡って延在しているとともに、ゲート配線51の少なくとも一端が額縁領域12に引き出されている。
ソース配線52は互いに平行に延在している。図2の例では、ソース配線52の各々は透明基板50の短辺と平行に、換言すればゲート配線51と直交する方向に延在している。また複数のソース配線52は透明基板50の長辺と平行な方向に、換言すればゲート配線51の延在方向に並んでいる。ソース配線52は表示領域11内の全体に渡って延在しているとともに、ソース配線52の少なくとも一端が額縁領域12に引き出されている。
共通配線53は、図2の例では、ゲート配線51と交互に配置されている。すなわち、共通配線53は、隣接する2本ゲート配線51の間に延在している。このため共通配線53の各々は、ゲート配線51と平行に延在しており、ゲート配線51の配列方向と同じ方向に並んでいる。共通配線53は表示領域11内の全体に渡って延在しているとともに、共通配線53の少なくとも一端が額縁領域12に引き出されている。複数の共通配線53は額縁領域12において電気的に接続されている。
隣接する2本のゲート配線51と隣接する2本のソース配線52とで囲まれた領域によって1つの画素PXが規定されている。このため複数の画素PXがマトリックス状に配置されている。
図3を参照して、各画素PXには少なくとも1つの画素TFT60が設けられている。画素TFT60はゲート配線51とソース配線52との交差点近傍に配置されている。画素TFT60のゲート電極61はゲート配線51に接続されており、画素TFT60のソース電極62はソース配線52に接続されている。
画素TFT60のドレイン電極63は画素電極73に接続されている。画素電極73は共通電極74との組み合わせによって、いわゆる液晶容量70および補助容量80を構成している。共通電極74は共通配線53に接続されている。
再び図2を参照して、TFT基板30は額縁領域12において、走査信号駆動回路55と、表示信号駆動回路56と、接続基板57,58とを含んでいる。
走査信号駆動回路55は、ゲート配線51が額縁領域12に引き出されている側に配置されており、ゲート配線51と接続されている。表示信号駆動回路56は、ソース配線52が額縁領域12に引き出されている側に配置されており、ソース配線52と接続されている。なお、図面の煩雑化を避けるため、図2では、走査信号駆動回路55とゲート配線51との接続の様子、および、表示信号駆動回路56とソース配線52との接続の様子については、図示を省略している。
接続基板57,58は、TFT基板30を外部と接続するための部材であり、FPC(Flexible Printed Circuit)などの配線基板によって構成されている。接続基板57は、走査信号駆動回路55の近傍に配置され、走査信号駆動回路55に接続されている。接続基板58は、表示信号駆動回路56の近傍に配置されており、表示信号駆動回路56に接続されている。
<表示動作>
接続基板57,58を介して走査信号駆動回路55および表示信号駆動回路56に外部からの各種信号が供給される。走査信号駆動回路55は、外部から入力される制御信号に基づいてゲート信号(「走査信号」とも呼ばれる)をゲート配線51に供給する。このゲート信号によってゲート配線51が順次選択される。表示信号駆動回路56は、外部から入力される、制御信号、表示データなどに基づいて、表示信号をソース配線52に供給する。これにより、表示データに応じた表示電圧が各画素PXに供給される。
TFT60は、画素電極73に表示電圧を供給するためのスイッチング素子として機能する。TFT60のオンおよびオフは、ゲート配線51から入力されるゲート信号によって制御される。
ゲート配線51に所定の電圧が印加されてTFT60がオンされ、またソース配線52に電流が流されると、ソース配線52から、TFT60のドレイン電極63に接続された画素電極73に表示電圧が印加される。それにより、画素電極73と共通電極74との間に、印加された表示電圧に応じた電界が生じる。画素電極73に表示電圧が印加されると液晶容量70および補助容量80が充電され、それにより、その画素PXにおいて表示電圧が一定期間保持される。
画素電極73と共通電極74とによって生じる電界によって液晶が駆動される。すなわち、液晶の配向方向が変化する。これにより、液晶層35(図1)を通過する光の偏光状態が変化する。具体的には、バックライトユニット20の出力光は、TFT基板30側の偏光板によって直線偏光になる。そして、この直線偏光が液晶層を通過することによって、偏光状態が変化する。液晶層を通過した光の偏光状態によって、対向基板40側の偏光板を通過する光量が変化する。すなわち、液晶パネル10を通過した光のうちで視認側の偏光板を通過できた光によって、視認される光量が決まる。
液晶の配向方向は、印加される表示電圧によって変化する。したがって、表示電圧を制御することによって、視認される光量を変化させることができる。すなわち、画素PXごとに表示電圧を変えることによって、所望の画像を表示することができる。
<TFT基板の具体的構成>
図4は、TFT基板30の構成を、配向膜98(図9)の図示を省略して示した概略部分平面図である。図5は、図4の共通電極74の図示を省略したものである。図6は、図5の保護膜92の図示を省略したものである。図7は、図6のソース配線52およびソース電極62の図示を省略したものである。図8は、図5〜図7の酸化物半導体層91の各々を構成する複数の領域の配置を、図4〜図7の各々と同様の視野で概略的に示す部分平面図である。図9は、図4〜図8の線IX−IXに沿う概略部分断面図である。
はじめにTFT60の構成の要部について、以下に説明する。
TFT基板30は、透明基板50(図9)と、透明基板50に支持され、かつ画素PX(図2)の各々に設けられたTFT60(図3)とを有する。TFT60(図9)は、ゲート電極61(図5〜図7および図9)と、ソース電極62(金属電極)(図5、図6および図9、)とゲート絶縁膜90(図9)と、酸化物半導体層91(図5〜図9)と、絶縁層94(図9)とを有する。透明基板50上には、ゲート電極61、ゲート絶縁膜90、酸化物半導体層91がこの順に積層されている。つまりTFT60はボトムゲート構造を有する。
酸化物半導体層91(図9)は、下面S1(第1の面)と上面S2(第1の面と反対の第2の面)とを有する。下面S1はゲート絶縁膜90に面しており、またゲート絶縁膜90を介して透明基板50に面している。上面S2は絶縁層94に面している。また酸化物半導体層91は、透明材料、すなわち透光性の高い材料、から作られており、ソース電極62の金属材料と比して顕著に高い透光性を有する。酸化物半導体層91は上面S2上において、図8に示すように、チャネル領域91cと、隣接領域91s(第1の隣接領域)と、高導電性隣接領域91p(第2の隣接領域)とを有する。隣接領域91sはチャネル領域91cに隣り合っている。高導電性隣接領域91pは、チャネル領域91cに隣り合っており、チャネル領域91cによって隣接領域91sから隔てられている。なお図8の例のように酸化物半導体層91はさらに高導電性領域91xおよび91yを有してもよい。また、本実施の形態1においては、隣接領域91s(第1の隣接領域)は実質的にはチャネル領域91cと同じであり、ソース電極62との接続部を示す便宜上の呼称として扱っている。しかし、この形態に追加して、高導電性隣接領域91p(第2の隣接領域)と同様に高導電化した部位としてもかまわない。
高導電性隣接領域91pは、下面S1の側に位置する主部91Mと、上面S2の側に位置する還元部91Rとを有する。還元部91Rは、主部91Mの酸素欠陥濃度に比して高い酸素欠陥濃度を有する。言い換えれば、高導電性隣接領域91pの酸素欠陥濃度は下面S1上に比して上面S2上において、より高い。よって厚さ方向について平均化して考えれば、高導電性隣接領域91pの酸素欠陥濃度はチャネル領域91cの酸素欠陥濃度よりも高い。これにより高導電性隣接領域91pは、チャネル領域91cが有するキャリア濃度よりも高いキャリア濃度を有する。よって高導電性隣接領域91pは、チャネル領域91cが有する導電性よりも高い導電性を有する。言いかえれば、高導電性隣接領域91pはチャネル領域91cよりも低いシート抵抗を有する。
高導電性隣接領域91pは、チャネル領域91cに直接隣接した高導電性の領域である。これにより高導電性隣接領域91pはドレイン電極63(図3)としての機能を有する。また高導電性隣接領域91pはさらに画素PX内において広範囲に広がっていることで、画素電極73(図3)としての機能を有する。
高導電性隣接領域91pの水素原子濃度はチャネル領域91cの水素原子濃度よりも高くされ得る。この場合、水素の還元作用によって高導電性隣接領域91pの酸素欠陥濃度をチャネル領域91cの酸素欠陥濃度よりも高くすることができる。
なお下面S1における酸素欠陥濃度は、高導電性隣接領域91pおよびチャネル領域91cの間で同程度であってもよく、あるいは、高導電性隣接領域91pにおいて相対的に高くチャネル領域91cにおいて相対的に低くてもよい。
隣接領域91sの酸素欠陥濃度および導電性はチャネル領域91cと同様であってよい。高導電性領域91xおよび91y(図8)が設けられる場合、酸素欠陥濃度および導電性は高導電性隣接領域91pと同様である。
ソース電極62(図9)は、酸化物半導体層91の隣接領域91sに接しており、高導電性隣接領域91pから離れている。ソース電極62は金属から作られている。
絶縁層94はチャネル領域91cおよび高導電性隣接領域91pの上に設けられている。絶縁層94は保護膜92(図5および図9)および層間絶縁膜93(図9)を有する。保護膜92は、酸化物半導体層91の上面S2(図9)上においてチャネル領域91cを覆っており、高導電性隣接領域91pを露出している。層間絶縁膜93は上面S2上において高導電性隣接領域91pを覆っている。
本実施の形態においては、酸化物半導体層91上において、ソース電極62および保護膜92がこの順に積層されている部分が設けられている。すなわち保護膜92は、ソース電極62上に位置する縁を有する。
層間絶縁膜93の水素原子濃度は保護膜92の水素原子濃度よりも高いことが好ましい。保護膜92は、酸化シリコンなどの絶縁材料によって構成されている。層間絶縁膜93は、窒化シリコン、酸化シリコンなどの絶縁材料によって構成されている。また層間絶縁膜93を複数の絶縁膜の積層膜によって構成してもよい。保護膜92の厚さは、たとえば100nm程度である。層間絶縁膜93の厚さは、たとえば300nm程度である。
次にTFT基板30の構成の細部について、以下に説明する。
透明基板50の一方の主面(図9における上面であり、以下「素子配置面」と呼ぶ場合もある)上に、ゲート配線51と、ゲート電極61とが配置されている。
具体的には、ゲート配線51は一方向(図5〜図7における横方向)に直線状に延在している。ゲート配線51は自身の延在方向に直交する方向に突出した部分を有しており(特に図7参照)、その突出部分がゲート電極61を構成している。
ゲート配線51およびゲート電極61は、たとえば、Cr、Al、Ta、Ti、Mo、W、Ni、Cu、Au、Ag、または、これらを主成分とする合金で構成されている。またこれらの材料のうちの2つ以上で構成された積層膜によってゲート配線51およびゲート電極61を構成してもよい。
ゲート配線51およびゲート電極61の上にゲート絶縁膜90(図9)が配置されている。具体的にはゲート絶縁膜90はゲート配線51およびゲート電極61を覆って透明基板50の素子配置面上に配置されている。ゲート絶縁膜90は、ここでは透明基板50の素子配置面の全体に広がっている。
ゲート絶縁膜90は、窒化シリコン、酸化シリコンなどの絶縁材料によって構成されている。また、複数の絶縁膜の積層膜によってゲート絶縁膜90を構成してもよい。
ゲート絶縁膜90上には酸化物半導体層91が配置されている(図9参照)。具体的には、酸化物半導体層91は、ゲート絶縁膜90を介してゲート電極61に対向するように配置されている。また、酸化物半導体層91は、平面視(図6参照)において、ゲート配線51およびソース配線52で囲まれた各領域に、言いかえれば各画素PXに、配置されている。
酸化物半導体層91とゲート絶縁膜90とゲート電極61との積層構造(図9)によって、酸化物半導体層91のチャネル領域91cをチャネルとするMIS(Metal Insulator Semiconductor)構造が構成されている。
酸化物半導体層91の材料は、たとえば、酸化インジウム(In23)および酸化すず(SnO2)が添加された酸化亜鉛(ZnO)、つまりIn―Zn−Sn−O系の酸化半導体、または、酸化ガリウム(Ga23)および酸化インジウム(In23)が添加された酸化亜鉛(ZnO)、つまりIn−Ga−Zn−O系の酸化半導体、が挙げられる。
酸化物半導体層91上にはソース電極62および保護膜92が配置されている(図9参照)。具体的には保護膜92は、酸化物半導体層91の上面の一部を覆うようにゲート電極61の領域内に島状に配置されており(図5参照)、酸化物半導体層91のチャネル領域91cに接している(図8参照)。ソース電極62は、酸化物半導体層91の上面のうちで保護膜92に覆われていない隣接領域91s(図8)に配置されており、それによりソース電極62と酸化物半導体層91とが接続されている。
保護膜92は、酸化物半導体層91上から酸化物半導体層91近傍のゲート絶縁膜90上にも広がっており、酸化物半導体層91の側面の一部も覆っている(図5参照)。また、ソース電極62は、酸化物半導体層91上から酸化物半導体層91近傍のゲート絶縁膜90上にも広がっており、酸化物半導体層91の側面の一部も覆っている(図6参照)。
また、酸化物半導体層91において、ソース電極62と保護膜92によって覆われていない部分の表面(図8においてハッチングを付した領域)は、還元されることによって導電性が高められている。この表面のうち高導電性隣接領域91pからなる領域、言い換えれば還元部91R(図9)、はTFT基板30の画素電極73(図3)としての機能を有する。
ソース電極62は、図6に示すように、ソース配線52の一部を使って構成されている。具体的にはソース配線52は、酸化物半導体層91上に乗り上げる部分を有しており、その部分がソース電極62を構成している(図9参照)。本実施の形態にいおいては、図5に示すように、ソース配線52のうちでソース電極62を構成する部分は、ソース配線52の延在方向に直交する方向かつ保護膜92に近づく方向(図中、右方向)に突出している。
ソース配線52およびソース電極62は、金属から作られており、好ましくは合金から作られている。たとえば、ソース配線52およびソース電極62は、Cr、Al、Ta、Ti、Mo、W、Ni、Cu、Au、Ag、または、これらを主成分とする合金で構成されている。また、これらの材料のうちの2つ以上で構成された積層膜によって、ソース配線52およびソース電極62を構成してもよい。
ソース配線52とソース電極62と保護膜92との上には層間絶縁膜93(図9)が配置されている。具体的には、層間絶縁膜93は、ソース配線52とソース電極62と保護膜92とを覆ってゲート絶縁膜90上に配置されている。層間絶縁膜93はゲート絶縁膜90の全体に広がっている。
画素電極73(図3)としての高導電性隣接領域91p(図8)は、平面視(図4参照)において共通電極74と重なる領域を有している。この領域において共通電極74は、FFS方式に必要なスリットSL(図4)を有する。また上記重なりが層間絶縁膜93を介して設けられることで、補助容量80(図3参照)が構成されている。
額縁領域12(図2)では、走査信号駆動回路55とゲート配線51とを接続するためのゲート端子103(図10)がゲート配線51と同じ層に形成されており、当該ゲート端子用のコンタクトホール101が設けられている。また表示信号駆動回路56とソース配線52とを接続するためのソース端子104(図11)がソース配線52と同じ層に形成されており、当該ソース端子用のコンタクトホール102が設けられている。
なおTFT基板30は配向膜98(図9)を有しない部品として構成されてもよい。この場合、配向膜98は必要時に付加されればよい。
<製造方法>
図12〜図20は、TFT基板30の製造方法を工程順に、図9と同じ視野で概略的に示す部分断面図である。
図12を参照して、透明基板50の素子配置面上の全面に導電膜を堆積し、当該導電膜をパターニングすることによって、ゲート電極61およびゲート配線51(図12おいて図示せず)が形成される。
上記導電膜は、たとえば、Cr、Al、Ta、Ti、Mo、W、Ni、Cu、Au、Ag、または、これらを主成分とする合金で構成されている。また、これらの材料のうちの2つ以上で構成された積層膜によって、上記導電膜を構成してもよい。上記導電膜の成膜には、スパッタ法、蒸着法などが用いられる。たとえばスパッタ法でMo合金膜を200nmの厚さで形成することによって、上記導電膜が形成される。
上記導電膜のパターニングは、写真製版技術および微細加工技術によって行なわれる。すなわち、パターニング対象である上記導電膜上にフォトレジストを塗布し、塗布したフォトレジストをフォトマスク越しに露光してレジストを感光し、感光したフォトレジストを現像してフォトレジストをパターニングする。これら一連の工程が写真製版技術である。その後、フォトレジストパターンをマスクにして上記導電膜をエッチングし、その後、フォトレジストパターンを除去する。これらの一連の工程が微細加工技術である。
図13を参照して、ゲート配線51とゲート電極61とを覆うように、透明基板50の素子配置面上の全面に、ゲート絶縁膜90が形成される。ゲート絶縁膜90は、上記のように、窒化シリコン、酸化シリコンなどの絶縁材料によって構成されている。また複数の絶縁膜の積層膜によってゲート絶縁膜90を構成してもよい。ゲート絶縁膜90の成膜には、プラズマCVD、常圧CVD、減圧CVDなどが用いられる。なお、ピンホールなどの膜欠陥(短絡の原因になる)を防止するため、複数回の成膜によってゲート絶縁膜90を形成することが好ましい。たとえば、プラズマCVD法で窒化シリコン膜を200nmの厚さで形成し、その上にプラズマCVD法で酸化シリコン膜を100nmの厚さで形成することで得られた積層膜をゲート絶縁膜90として用いてもよい。
図14を参照して、ゲート絶縁膜90上の全面に酸化物半導体層を堆積し、当該酸化物半導体層をパターニングすることによって、酸化物半導体層91が形成される。酸化物半導体層の堆積には、スパッタ法、蒸着法、ミストCVD法、塗布法などが用いられる。たとえば、スパッタ法でIn−Ga−Zn−O酸化物半導体(原子組成比に関してIn:Ga:Zn:O=1:1:1:4)が40nmの厚さで形成される。パターニングには、写真製版技術および微細加工技術を用い得る。たとえば酸化物半導体層91の材料としてIn−Ga−Zn−O酸化物半導体が用いられる場合、カルボン酸(シュウ酸など)を含むエッチング薬液を用いてのエッチングが可能である。
図15を参照して、酸化物半導体層91が設けられたゲート絶縁膜90の上の全面に導電膜を堆積し、当該導電膜をパターニングすることによって、ソース電極62およびソース配線52(図15において図示せず)が形成される。上記導電膜は、Cr、Al、Ta、Ti、Mo、W、Ni、Cu、Au、Ag、または、これらを主成分とする合金で構成されている。また、これらの材料のうちの2つ以上で構成された積層膜によって、上記導電膜を構成してもよい。上記導電膜の堆積には、スパッタ法、蒸着法などが用いられる。たとえば、スパッタ法でMo合金膜が100nmの厚さで堆積される。
図16および図17を参照して、酸化物半導体層91、ソース電極62およびソース配線52(図16において図示せず)が設けられたゲート絶縁膜90の上の全面に絶縁膜を堆積し、当該絶縁膜をパターニングすることによって、保護膜92が形成される。保護膜92用の上記絶縁膜は、前述のように酸化シリコンなどの絶縁材料によって構成されている。また、複数の絶縁膜の積層膜によって当該絶縁膜を構成してもよい。当該絶縁膜の堆積には、プラズマCVD、常圧CVD、減圧CVDなどが用いられる。たとえばプラズマCVD法で酸化シリコン膜が100nmの厚さで堆積される。
図18を参照して、ソース電極62とソース配線52(図18において図示せす)と保護膜92とを覆うように、ゲート絶縁膜90上の全面に層間絶縁膜93が堆積される。層間絶縁膜93は、前述のように、窒化シリコン、酸化シリコンなどの絶縁材料によって構成されている。
本実施の形態においては、後述するアニール処理によって層間絶縁膜93中の水素をドレイン電極および画素電極の機能を担う酸化物半導体層91の表面へ拡散させるため、堆積される層間絶縁膜93は保護膜92に比して高い水素原子濃度を有するものとされる。たとえば、プラズマCVD法で200℃〜270℃で、水素を含有する窒化シリコン膜が堆積される。
図19を参照して、層間絶縁膜93を覆うようにITO、IZOなどの透明導電膜をスパッタ法などによって基板全面に堆積し、当該透明導電膜をパターニングすることで、共通電極74が形成される。
なお、額縁領域12では、走査信号駆動回路55(図2)と接続するためのゲート端子103がゲート配線51と同じ層に形成され、ゲート端子103用のコンタクトホール101が形成される(図10参照)。同様に、表示信号駆動回路56(図2)と接続するためのソース端子104がソース配線52と同じ層に形成され、ソース端子104用のコンタクトホール102が形成される(図11参照)。
図20を参照して、酸化物半導体層91および層間絶縁膜93に対するアニールが行なわれる。これにより酸化物半導体層91の上面S2のうち層間絶縁膜93に接する部分が、層間絶縁膜93からの水素の拡散を受けることで還元される。この結果、還元部91Rを有する高導電性隣接領域91pが形成される。アニールは、たとえば、250〜350℃の間で大気中または窒素雰囲気中で30〜60分程度で行なわれる。酸化物半導体層91が還元される際、酸化物半導体層91のうちチャネル領域91cは保護膜92によって覆われている。これによりチャネル領域91cが還元されることが防止される。
以上によりTFT基板30が得られる。その後の工程において、TFT基板30上に配向膜98(図9)が形成される。また、別途製造された対向基板40上にも配向膜が形成される。これらの配向膜には、配向処理(「ラビング処理」とも呼ばれる)によって、その表面(すなわち、液晶との接触面)に一方向にミクロな傷がつけられる。
次に、シール材が塗布され、TFT基板30と対向基板40とが貼り合わされる。そして、真空注入法などを用いて液晶注入口から液晶が注入され、注入終了後に液晶注入口が封止される。その後、TFT基板30および対向基板40に偏光板が貼り付けられる。駆動回路およびバックライトユニット20を取り付けることによって、液晶表示装置1(図1)が完成される。
<効果>
本実施の形態のTFT60によれば、高い導電性を有する高導電性隣接領域91pをTFT60のドレイン電極および画素電極として利用することができる。よって酸化物半導体層91を用いて、チャネル領域だけでなく、ドレイン電極および画素電極を構成することができる。また本実施の形態のTFT基板30によれば、各画素PXに上述したTFT60が用いられることにより、ドレイン電極としての機能を有する部分を、ソース電極62の材料のような金属層ではなく、透光性を確保しやすい材料である酸化物半導体層91からなる高導電性隣接領域91pによって構成することができる。これによりTFT基板30の開口率を高めることができる。また本実施の形態の液晶パネル10(図1)によれば、開口率の高いTFT基板30を用いることで、液晶層35のうち実際に表示に寄与することができる面積を高めることができる。また本実施の形態のLCD1(図1)によれば、開口率の高いTFT基板30を用いることで、バックライトユニット20の光をより効率的に用いることができる。よって消費電力を削減することができる。
また画素電極が酸化物半導体層91の高導電性隣接領域91pによって構成されるので、画素電極のパターニングのためのマスクを必要としない。これによりマスク数をより少なくすることができる。
またソース電極62と、ドレインの機能を有する高導電性隣接領域91pとが別レイヤーのため、両者は異なる写真製版工程においてパターニングされる。このため、ソースおよびドレインの間の距離、すなわちチャネル長、は、ソース電極62のパターニング工程と酸化物半導体層91のパターニング工程との組み合わせによって調整可能である。よってチャネル長を小さくすることも容易に行い得る。なお、従来から広く用いられている、ソース電極とドレイン電極とが一の金属膜のパターニングによって同時に形成される方法によると、チャネル長は、たとえば、パターン解像度、重ね合わせ精度、両電極のサイドエッチング量によって制限される。
上記のようにチャネル長が小さくされることにより、TFTの大きさを小さくしたり、TFTのゲートがオンしたときの電流を大きくしたりすることができる。これにより、ゲート電極61へ出力される電気信号を小さくしてもTFTを動作させることができる。また、TFT60は表示領域11内に設けられていることに鑑みると、TFT60が小さくなることによって、画素開口率が向上する。
高導電性隣接領域91pの酸素欠陥濃度はチャネル領域91cの酸素欠陥濃度よりも高い。これにより、高導電性隣接領域91pの導電性を酸素欠陥を用いて高めることができる。
高導電性隣接領域91pの水素原子濃度はチャネル領域の水素原子濃度よりも高い。これにより高導電性隣接領域91pの導電性を、水素による還元作用を用いて高めることができる。
高導電性隣接領域91pの酸素欠陥濃度は下面S1上に比して上面S2上においてより高い。これにより、上面S2における酸素欠陥を用いて高導電性隣接領域91pの導電性を高めつつ、下面S1まで酸素欠陥濃度が高められる場合に比して高導電性隣接領域91pの透過性の低下を抑えることができる。
絶縁層94は、上面S2上においてチャネル領域91cを覆い高導電性隣接領域91pを露出する保護膜92を含む。これにより、チャネル領域91cが還元されることを防ぎつつ、高導電性隣接領域91pを還元することができる。よってチャネル領域91cへの影響を抑えつつ、高導電性隣接領域91pの導電性を高めることができる。
層間絶縁膜93の水素原子濃度は保護膜92の水素原子濃度よりも高い。これにより、高導電性隣接領域91pに接し、かつ保護膜92によってチャネル領域91cから隔てられた層間絶縁膜93中の水素を利用して、チャネル領域91cへの影響を抑えつつ高導電性隣接領域91pを選択的に還元することができる。
TFT60がボトムゲート構造を有することにより、トップゲート構造を有する場合に比して、バックライトユニット20からの光が透明基板50のを通って酸化物半導体層91へ入射するのを抑えることができる。これにより、TFTを長時間動作させたときの閾値シフトを抑制することができる。
<変形例>
上述した本実施の形態によれば、高導電性隣接領域91pを形成するための酸化物半導体層91の部分的な還元が、層間絶縁膜93が含有する水素を用いて行なわれる(図19および図20参照)。しかしながら、酸化物半導体層91を部分的に還元する方法は、この方法に限定されるものではない。たとえば、図17に示す構成が得られた時点で、つまり層間絶縁膜93が形成される前に、酸化物半導体層91の上面S2のうち露出された領域を還元する処理が行なわれてもよい。具体的には、保護膜92およびソース電極62をマスクとして用いて、酸化物半導体層91の上面S2に対して還元処理が行なわれてもよい。還元処理としては、たとえば、250℃、ガス圧2Pa、RF(Radio Frequency)出力100W程度で、水素プラズマ処理が行なわれ得る。この場合、層間絶縁膜93が水素を含んでいる必要はない。
(実施の形態2)
上記実施の形態1においては、ソース電極62のパターニングのためのエッチング工程(図15)において、チャネル領域91cがエッチングによる影響を受ける。つまり実施の形態1のTFT基板30は、バックチャネルエッチ型のTFTを有する。本実施の形態においては、バックチャネルエッチ型ではなくエッチングストッパ型のTFTを有するTFT基板について説明する。
図21は、本実施の形態におけるTFT基板30V(表示用パネル基板)の構成を概略的に示す図であり、実施の形態1の図9と同様の視野による概略部分断面図である。その平面図は、図4とおおよそ同様であるため省略する。
実施の形態1のTFT基板30(図9)と異なり、TFT基板30Vにおいては、酸化物半導体層91上において、保護膜92およびソース電極62がこの順に積層されている部分が設けられている。つまりソース電極62は、保護膜92上に位置する縁EGを有する。このため、チャネル領域91cの上面および側面は、部分的に、保護膜92およびソース電極62によってこの順で覆われている。
なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
図22〜図24は、TFT基板30Vの製造方法を工程順に、図21と同じ視野で概略的に示す部分断面図である。なお図14の工程までは実施の形態1と本実施の形態とで共通である。
図22を参照して、酸化物半導体層91が設けられたゲート絶縁膜90の上の全面に絶縁膜を堆積し、当該絶縁膜をパターニングすることによって、保護膜92が形成される。
図23を参照して、酸化物半導体層91および保護膜92が設けられたゲート絶縁膜90の上の全面に導電膜42が堆積される。導電膜42は、後述するエッチングによってその一部がソース配線52およびソース電極62(図6参照)となるものである。次に、導電膜42上にフォトレジストパターン72が形成される。次に、フォトレジストパターン72をエッチングマスクとして用いて導電膜42がエッチングされる。エッチングは、たとえばウェットエッチングによって行なわれる。
図24を参照して、上記エッチングにより、上述した導電膜42からソース電極62およびソース配線52(図24において図示せず)が形成される。このエッチングの際に、酸化物半導体層91のチャネル領域91cはエッチングストッパとしての保護膜92によって保護されている。
導電膜42が、たとえば、Al、Mo、AgまたはCu系の材料から作られている場合、そのエッチングに、リン酸を含むエッチング液、たとえばリン酸と硝酸と酢酸の混酸(Phosphoric acid,Acetic acid,Nitric acid)、を用い得る。その場合、酸化物半導体層91が、たとえばIn−Ga−Zn−O酸化物半導体から作られていると、酸化物半導体層91のうちエッチング液にさらされた部分はダメージを受けやすい。保護膜92は、このようなダメージからチャネル領域91cを保護する。
次にフォトレジストパターン72が除去される。その後、実施の形態1の図18以降とほぼ同様の工程が行なわれることで、TFT基板30V(図21)が得られる。なお還元部91Rを形成する方法としては、実施の形態1およびその変形例と同様、層間絶縁膜93の水素を利用する方法、および層間絶縁膜93の形成前に還元処理を行なう方法のいずれも利用可能である。
本実施の形態によれば、実施の形態1と同様の効果が得られる。さらに、上述したように、ソース電極62のエッチングの際にチャネル領域91cが保護される。よってエッチングダメージに起因したTFT性能の低下が防止される。
(付記)
LCDは直視型(図1:LCD1)に限定されるものではなく投写型であってもよい。またLCDは、透過型または半透過型のものに限定されるものではなく、たとえば、バックライトユニット20(図1)を有しない反射型のものであってもよい。液晶パネルは、平坦なもの(図1:LCD1)に限定されるものではなく、湾曲したものであってもよい。
バックライトユニットは、液晶パネルの前面から見て液晶パネルと同じ寸法および形状のもの(図1:バックライトユニット20)に限定されるものではなく、液晶パネル10の表示領域11に照明光を供給可能なものであればよい。またバックライトユニットは、液晶パネル10のTFT基板30の側に配置されたもの(図1:バックライト20)に限定されるものではなく、対向基板40の側に配置されてもよい。
FFS方式における共通電極は、上層電極として設けられるもの(図9:共通電極74)に限定されるものではなく、下層電極として設けられてもよい。この場合、酸化物半導体層91の高導電性隣接領域91pが、スリットを有する上層電極として配置され得る。液晶パネルにおいて液晶の配向状態を制御する方式は、上述したFFS方式に限定されるものではなく、たとえば、TN方式、IPS(In-Plane Switching)方式、またはVA(Vertical Alignment)方式であってもよい。共通電極が設けられる基板は、FFS方式、IPS方式などにおいては上述したようにTFT基板であるが、たとえばTN方式では、TFT基板ではなく対向基板である。また、本実施の形態においては逆スタガ型薄膜トランジスタを例にとって説明したが、トップゲート型でもコプラナー型でも本発明の形態を適用することは可能である。
表示用パネル基板において、画素の配列はマトリックス状のもの(図2:画素PX)に限定されるものではない。TFTにおけるソースおよびドレインが入れ替えられた構成が用いられてもよい。走査信号駆動回路および表示信号駆動回路は、TFT基板上に設けられたもの(図2:走査信号駆動回路55および表示信号駆動回路56)に限定されるものではなく、たとえばTCP(Tape Carrier Package)によって提供してもよい。支持基板は、透明基板50(図2)のように長方形の基板に限定されるものではなく、他の形状の基板であってもよい。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 LCD(表示装置)、10 液晶パネル(表示パネル)、20 バックライトユニット、30,30V TFT基板(表示用パネル基板)、35 液晶層(変調層)、40 対向基板、42 導電膜、50 透明基板(支持基板)、51 ゲート配線、52 ソース配線、53 共通配線、55 走査信号駆動回路、56 表示信号駆動回路、60 TFT(薄膜トランジスタ)、61 ゲート電極、62 ソース電極(金属電極)、73 画素電極、74 共通電極、80 補助容量、90 ゲート絶縁膜、91 酸化物半導体層、91M 主部、91R 還元部、91c チャネル領域、91p 高導電性隣接領域(第2の隣接領域)、91s 隣接領域(第1の隣接領域)、92 保護膜、93 層間絶縁膜、94 絶縁層、98 配向膜。

Claims (12)

  1. 支持基板と、
    前記支持基板に支持された薄膜トランジスタとを備え、前記薄膜トランジスタは、
    チャネル領域と、前記チャネル領域に隣り合う第1の隣接領域と、前記チャネル領域に隣り合い前記チャネル領域によって前記第1の隣接領域から隔てられた第2の隣接領域とを有する酸化物半導体層と、
    前記チャネル領域および前記2の隣接領域の上に設けられた絶縁層と、
    前記酸化物半導体層の前記第1の隣接領域に接し前記第2の隣接領域から離れた金属電極とを含み、
    前記第2の隣接領域は、前記チャネル領域が有する導電性よりも高い導電性を有する、
    表示用パネル基板。
  2. 前記第2の隣接領域の酸素欠陥濃度は前記チャネル領域の酸素欠陥濃度よりも高い、請求項1に記載の表示用パネル基板。
  3. 前記第2の隣接領域の水素原子濃度は前記チャネル領域の水素原子濃度よりも高い、請求項2に記載の表示用パネル基板。
  4. 前記酸化物半導体層は第1の面と前記第1の面と反対の第2の面とを有し、前記第2の面は前記絶縁層に面しており、
    前記第2の隣接領域の酸素欠陥濃度は前記第1の面上に比して前記第2の面上においてより高い、請求項2または3に記載の表示用パネル基板。
  5. 前記絶縁層は、前記チャネル領域を覆い第2の隣接領域を露出する保護膜を含む、請求項2から4のいずれか1項に記載の表示用パネル基板。
  6. 前記金属電極は、前記保護膜上に位置する縁を有する、請求項5に記載の表示用パネル基板。
  7. 前記絶縁層は、前記第2の面上において前記第2の隣接領域を覆う層間絶縁膜を含み、
    前記層間絶縁膜の水素原子濃度は前記保護膜の水素原子濃度よりも高い、請求項5または6に記載の表示用パネル基板。
  8. 前記表示用パネル基板には複数の画素が設けられており、
    前記薄膜トランジスタは前記複数の画素の各々に設けられている、請求項1から7のいずれか1項に記載の表示用パネル基板。
  9. 前記第2の隣接領域は画素電極として機能することを特徴とする、請求項1から8のいずれか1項に記載の表示用パネル基板。
  10. 請求項1から9のいずれか1項に記載の表示用パネル基板と、
    前記表示用パネル基板からの制御により光を変調する変調層とを備える、
    表示パネル。
  11. 請求項10に記載の表示パネルと、
    前記変調層に光を供給する光源とを備える、
    表示装置。
  12. 支持基板と、前記支持基板に支持された薄膜トランジスタとを有する表示用パネルの製造方法であって、
    チャネル領域と、前記チャネル領域に隣り合う第1の隣接領域と、前記チャネル領域に隣り合い前記チャネル領域によって前記第1の隣接領域から隔てられた第2の隣接領域とを有する酸化物半導体層を前記支持基板上に形成する工程と、
    前記酸化物半導体層の前記第1の隣接領域に接し、かつ前記酸化物半導体層の前記第2の隣接領域から離れた金属電極を形成する工程と、
    前記酸化物半導体層の前記チャネル領域を覆い、かつ前記酸化物半導体層の前記第2の隣接領域を露出する保護膜を形成する工程と、
    前記酸化物半導体層を還元する工程とを備え、前記酸化物半導体層を還元する工程において前記酸化物半導体層の前記チャネル領域は前記保護膜によって覆われている、
    表示用パネル基板の製造方法。
JP2014104094A 2014-05-20 2014-05-20 表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法 Pending JP2015220387A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014104094A JP2015220387A (ja) 2014-05-20 2014-05-20 表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104094A JP2015220387A (ja) 2014-05-20 2014-05-20 表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019097555A Division JP6703169B2 (ja) 2019-05-24 2019-05-24 表示用パネル基板、表示パネル、および表示装置

Publications (1)

Publication Number Publication Date
JP2015220387A true JP2015220387A (ja) 2015-12-07

Family

ID=54779521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104094A Pending JP2015220387A (ja) 2014-05-20 2014-05-20 表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法

Country Status (1)

Country Link
JP (1) JP2015220387A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138495A1 (ja) * 2018-01-11 2019-07-18 シャープ株式会社 表示デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040343A (ja) * 2006-08-09 2008-02-21 Nec Corp 薄膜トランジスタアレイ、その製造方法及び液晶表示装置
JP2011029304A (ja) * 2009-07-23 2011-02-10 Seiko Epson Corp 半導体装置、半導体装置の製造方法、および電子機器
WO2013005604A1 (ja) * 2011-07-07 2013-01-10 シャープ株式会社 半導体装置およびその製造方法
WO2013150981A1 (ja) * 2012-04-04 2013-10-10 シャープ株式会社 半導体装置およびその製造方法
WO2013151002A1 (ja) * 2012-04-06 2013-10-10 シャープ株式会社 半導体装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040343A (ja) * 2006-08-09 2008-02-21 Nec Corp 薄膜トランジスタアレイ、その製造方法及び液晶表示装置
JP2011029304A (ja) * 2009-07-23 2011-02-10 Seiko Epson Corp 半導体装置、半導体装置の製造方法、および電子機器
WO2013005604A1 (ja) * 2011-07-07 2013-01-10 シャープ株式会社 半導体装置およびその製造方法
WO2013150981A1 (ja) * 2012-04-04 2013-10-10 シャープ株式会社 半導体装置およびその製造方法
WO2013151002A1 (ja) * 2012-04-06 2013-10-10 シャープ株式会社 半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138495A1 (ja) * 2018-01-11 2019-07-18 シャープ株式会社 表示デバイス
CN111566719A (zh) * 2018-01-11 2020-08-21 夏普株式会社 显示设备

Similar Documents

Publication Publication Date Title
US10120247B2 (en) Manufacturing method for TFT substrate and TFT substrate manufactured by the manufacturing method thereof
US9059296B2 (en) Oxide thin film transistor and method of fabricating the same
US9461077B2 (en) Active matrix substrate and method for manufacturing the same
JP6128961B2 (ja) 薄膜トランジスタ、表示パネル用基板、表示パネル、表示装置および薄膜トランジスタの製造方法
JP6124668B2 (ja) 薄膜トランジスタ基板およびその製造方法
US10050059B2 (en) Thin film transistor substrate and method for manufacturing the same
JP5717546B2 (ja) 薄膜トランジスタ基板およびその製造方法
JP2016134388A (ja) 表示装置
JP6785563B2 (ja) 非線形素子、アレイ基板、およびアレイ基板の製造方法
JP6501514B2 (ja) 薄膜トランジスタ基板およびその製造方法
KR101697586B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
TW201330277A (zh) 薄膜電晶體基板及具備其之顯示裝置以及薄膜電晶體基板之製造方法
JP2013097349A (ja) 配線構造及びそれを備える薄膜トランジスタアレイ基板並びに表示装置
US9726946B2 (en) Liquid crystal display device and production method for same
JP6482256B2 (ja) 薄膜トランジスタ基板および液晶表示装置
JP6025595B2 (ja) 薄膜トランジスタの製造方法
US20200192168A1 (en) Thin film transistor substrate, display apparatus, and liquid crystal display
JP5667424B2 (ja) 薄膜トランジスタ、アクティブマトリクス基板、およびそれらの製造方法
JP6703169B2 (ja) 表示用パネル基板、表示パネル、および表示装置
JP2015220387A (ja) 表示用パネル基板、表示パネル、表示装置、および表示用パネル基板の製造方法
JP6120794B2 (ja) 薄膜トランジスタ基板およびその製造方法
US10741690B2 (en) Thin film transistor, thin film transistor substrate, and liquid crystal display device
JP6180200B2 (ja) アクティブマトリクス基板およびその製造方法
JP2020031107A (ja) 薄膜トランジスタ、薄膜トランジスタ基板及びその製造方法
JP6425676B2 (ja) 表示装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305