JP2015195262A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2015195262A
JP2015195262A JP2014072115A JP2014072115A JP2015195262A JP 2015195262 A JP2015195262 A JP 2015195262A JP 2014072115 A JP2014072115 A JP 2014072115A JP 2014072115 A JP2014072115 A JP 2014072115A JP 2015195262 A JP2015195262 A JP 2015195262A
Authority
JP
Japan
Prior art keywords
opening
film
insulating film
semiconductor device
protruding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014072115A
Other languages
English (en)
Inventor
健 岸田
Takeshi Kishida
健 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to JP2014072115A priority Critical patent/JP2015195262A/ja
Priority to US14/663,878 priority patent/US10134742B2/en
Publication of JP2015195262A publication Critical patent/JP2015195262A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/377DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate having a storage electrode extension located over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】複数のピラーを支持する梁の強度を高める。【解決手段】本発明による半導体装置は、半導体基板の表面に対して垂直方向に延在する複数のピラーと、前記複数のピラーを支持し、複数の第1開口を有する第1の梁と、を備え、前記第1の梁は、前記半導体基板の表面に対して平行に延在し前記垂直方向における膜厚が第1の膜厚である平面部と、前記第1開口のパターンに沿って延在すると共に前記垂直方向における膜厚が前記第1の膜厚より厚い第2の膜厚である梁突き出し部とを含む。本発明によれば、第1の梁を全体的に厚くするのではなく、部分的に厚くしていることから、第1の梁を全体的に厚くした場合の問題を生じることなく、第1の梁の強度が高められるとともに、ピラーが第1の梁から外れにくくなる。【選択図】図1

Description

本発明は、半導体装置およびその製造方法に関し、特に、キャパシタの下部電極等のピラー状の構造体をサポート膜(梁)で支持する構造を有する半導体装置およびその製造方法に関する。
キャパシタの下部電極をサポート膜で支持する構造を有する半導体装置は、例えば特許文献1および特許文献2に記載されている。特許文献1および特許文献2に記載された半導体装置は、複数の絶縁性梁を有する。その製造方法は、複数の絶縁性梁を下層側から順番に形成していくというものである。
具体的には、第1の犠牲絶縁膜の上に第1の絶縁梁膜を形成し、形成した第1の絶縁梁膜を選択的にエッチングして所望のパターンを持つ第1の絶縁体梁を形成する。次に、第1の絶縁体梁と露出する第1の犠牲絶縁膜の上に第2の犠牲絶縁膜と第2の絶縁梁膜を順次形成する。次に、第1の絶縁梁膜の場合と同様にして、第2の絶縁梁膜を選択的にエッチングし、所望のパターンを持つ第2の絶縁体梁とする。
その後、第2の絶縁体梁、第2の犠牲絶縁膜、第1の絶縁体梁及び第1の犠牲絶縁膜を貫くスルーホールを形成し、スルーホールの内表面を覆うようにキャパシタの下部電極となる導電膜を形成する。形成された導電膜は、スルーホール内に露出する第2の絶縁体梁及び第1の絶縁体梁に接続される。
その後、第2の犠牲絶縁膜及び第1の犠牲絶縁膜を除去する。そして、第2の犠牲絶縁膜及び第1の犠牲絶縁膜が除去されても、下部電極は、第2の絶縁体梁及び第1の絶縁体梁によって支持される。これにより、下部電極の倒壊等が防止され、より高いアスペクト比を持つ王冠型のキャパシタを形成することができる。
特開2003−142605号公報 特開2011−61067号公報
上述した関連する半導体装置の製造方法は、複数の絶縁体梁を下層側から一つずつ形成し、その後スルーホールを形成するというものである。さらに、スルーホール内に下部電極が形成される。結果的に、スルーホール内に形成される下部電極は、その外周側面に絶縁体梁が接する構成となり下部電極の倒壊や捩れが軽減される。
しかし、下部電極のアスペクト比が大きくなると、サポート膜の強度が不足したり、サポート膜から下部電極が外れたりするおそれが生じる。これを解決するためには、サポート膜の膜厚を厚くすればよいが、この場合、第1の絶縁梁膜に形成された開口部を第2の犠牲絶縁膜によって完全に埋設することが困難となる。かかる問題は、キャパシタの下部電極をサポート膜で支持する場合のみならず、ピラー状である任意の構造体をサポート膜で支持する場合において共通に生じる問題である。
特に、ピラー状の構造体が下部電極である場合、微細化によって下部電極の膜厚を薄くせざるを得なくなると、下部電極自体の機械的強度が低下するため、複数の下部電極が全て絶縁体梁に接続されたとしても、下部電極の捩れに起因するペアビット不良の発生が増加する。ペアビット不良を低減するためには、下部電極の高さ方向の中間に位置する第1絶縁体梁自体の膜厚を厚くすることが有効と考えられる。しかし、第1絶縁体梁自体を厚膜化すると、得られるキャパシタ容量が低減するという問題が発生する。
本発明の一実施形態に係わる半導体装置は、半導体基板の表面に対して垂直方向に延在する複数のピラーと、前記複数のピラーを支持し、複数の第1開口を有する第1の梁と、を備え、前記第1の梁は、前記半導体基板の表面に対して平行に延在し前記垂直方向における膜厚が第1の膜厚である平面部と、前記第1開口のパターンに沿って延在すると共に前記垂直方向における膜厚が前記第1の膜厚より厚い第2の膜厚である梁突き出し部とを含む。
本発明の一実施形態に係わる半導体装置の製造方法は、半導体基板上に第1絶縁膜を形成する工程と、第1絶縁膜上に、上面が前記第1絶縁膜の上面よりも突出した開口突き出し部を形成する工程と、前記開口突き出し部が形成された前記第1絶縁膜上に、前記第1絶縁膜の前記上面を覆う平面部及び前記開口突き出し部の側面を覆う梁突き出し部を含む、第1の梁を形成する工程と、前記第1の梁に第1開口を形成する工程と、前記第1開口を介して前記第1絶縁膜及び前記開口突き出し部を除去する工程と、を備える。
本発明によれば、第1の梁を全体的に厚くするのではなく、部分的に厚くしていることから、第1の梁を全体的に厚くした場合の問題を生じることなく、第1の梁の強度が高められるとともに、ピラーが第1の梁から外れにくくなる。特に、ピラーとしてキャパシタの下部電極を用いた場合には、キャパシタ容量の低下を防止することも可能となる。
本発明の実施形態による半導体装置の断面図である。 本発明の実施形態による半導体装置の平面図である。 図2に示す第1開口OP11を拡大した図である。 下部電極18と第1の梁11との接触状態を説明するための斜視図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 本発明の実施形態による半導体装置の製造方法を説明するための工程図である。 変形例1において下部電極18と第1の梁11との接触状態を説明するための斜視図である。 変形例1による半導体装置の製造方法を説明するための工程図である。 変形例1による半導体装置の製造方法を説明するための工程図である。 変形例1による半導体装置の製造方法を説明するための工程図である。
本発明の実施形態について、図1から図19を用いて説明する。
(半導体装置)
最初に、図1から図4を用いて本実施形態による半導体装置の構成について説明する。本実施形態の半導体装置はDRAM(Dynamic Random Access Memory)を構成する。
図1は、後述する図2に示す平面図のA−A'断面を示している。本実施形態によるDRAMは、複数のキャパシタが形成されるメモリセル領域MCAと周辺回路領域PCAを有している。メモリセル領域MCAに位置する半導体基板1の表面に、複数の埋め込みゲート電極2と、埋め込みゲート電極2の上面を覆うキャップ絶縁膜3が配置される。キャップ絶縁膜3に隣接する半導体基板1には、トランジスタのソースまたはドレインとなる不純物拡散層(以下、拡散層)4が形成される。半導体基板1上に配置された第1層間絶縁膜5を貫通し拡散層4に接続する複数のコンタクトプラグ6が配置される。第1層間絶縁膜5には、図示しないビット線が埋め込まれている。周辺回路領域PCAの第1層間絶縁膜5上には周辺回路7が配置される。第1層間絶縁膜5、コンタクトプラグ6、周辺回路7を覆うようにストッパーシリコン窒化膜8が配置されている。ストッパーシリコン窒化膜8を貫通し、各々のコンタクトプラグ6の上面に接続する8個の下部電極18が半導体基板の表面に平行なX方向(第1方向)に配列されている。下部電極18はピラーを構成する。本実施形態では、ピラーである下部電極18が王冠構造であるが、本発明がこれに限定されるものではなく、単なる円柱状の電極であっても構わない。各々の下部電極18は、半導体基板1の表面1aに垂直なZ方向(第3方向)に延在している。説明の便宜上、一部の下部電極18にはc5、c6、a5、a6の符号を付加している。なお、後述の説明では、c5、c6、a5、a6の符号を各々対応するキャパシタの符号として記載する場合がある。
各々の下部電極18の上端部は第2の梁14で相互に連結されている。第2の梁14には、後述する第2開口OP12、OP22が離間して設けられている。また、各々の下部電極18の半導体基板1の表面1aに垂直な方向となるZ方向(第3方向)の中間には第1の梁11が配置され、各々の下部電極18を相互に連結する構成となっている。第1の梁11には、第1開口OP11、OP21が離間して設けられている。図1ではX方向の同じ位置に設けられる第1開口OP11と第2開口OP12は同じパターンでZ方向に位置整合するように構成されている。他の位置に設けられる開口も同様である。第1の梁11は、半導体基板1の表面1aに平行な平面部11Bと、第1開口OP11の端部において平面部11BからZ方向に突き出す梁突き出し部11Aと、で構成される。平面部11Bは上面11bと下面11cとでZ方向に挟まれる第1の膜厚T1を有し、梁突き出し部11Aは上面11dと下面11cとでZ方向に挟まれる第2の膜厚T2を有している。また、第2の梁14は同様にZ方向に第3の膜厚T3を有している。
平面部11Bの膜厚T1は、第2の梁14の膜厚T3の1/10〜1/5の範囲で設定される。例えば、第2の梁14の膜厚T3を200nmとした場合、平面部11Bの膜厚T1は20〜40nmとすることができる。梁突き出し部11Aの膜厚T2は平面部11Bの膜厚T1の3〜5倍の範囲で設定される。例えば、平面部11Bの膜厚T1を20nmとした場合、梁突き出し部11Aの膜厚T2は60〜100nmの範囲とすることができる。平面部11Bの膜厚T1を40nmとした場合、梁突き出し部11Aの膜厚T2は120〜200nmの範囲とすることができる。また、平面部11Bは、下部電極18の高さH1の半分より高く、上端18bからH1の1/4より低い位置に配置することが好ましい。例えば、下部電極18の高さH1を1600nmとした場合、上端から400nmより深く、800nmより浅い位置に配置される。
メモリセル領域MCAにおいては、ストッパーシリコン窒化膜8の上面の一部、各々の下部電極18の表面、第1の梁11の表面、第2の梁14の表面を覆うように図示しない容量絶縁膜が設けられる。容量絶縁膜の表面を覆うと共に各下部電極18の間の空間および下部電極18の内部空間を埋設するように上部電極22が配置される。これにより、メモリセル領域MCAに島状のキャパシタモールド18Aが構成される。キャパシタモールド18Aを覆い周辺回路領域PCAを埋設するように第2層間絶縁膜23が配置される。第2層間絶縁膜23を貫通し、上部電極22に接続されるビアプラグ24が配置される。さらに、第2層間絶縁膜23上には、ビアプラグ24の上面に接続する給電配線25が配置される。給電配線25上には、図示しない層間絶縁膜および配線が繰り返し配置されてDRAMが構成される。
次に、図2の平面図を参照する。図2は、図1に示した断面図において、第1の梁11と第2の梁14の間の位置で、半導体基板表面1aに平行な面で切断した場合のXY平面図である。なお、上部電極22の記載は省略している。したがって、メモリセル領域MCAには第1の梁11が現れ、周辺回路領域PCAには第2層間絶縁膜23が現れている。
第1の梁11には、複数の第1開口(例えば、OP11、OP21)が各々離間した状態で配置される。図2には現れないが、第2の梁14も、第1開口と各々同一パターンで、且つZ方向に位置整合して重なる位置に第2開口OP12、OP22を有する構成となる。各々の第1開口は概ね長方形で構成され、その開口端部に交差するように8個のキャパシタ(下部電極)が配置される。例えば、第1開口OP11に注目すると、開口のコーナー部には4個のキャパシタc1、c2、c7、c8が重なって配置される。また、一方の長辺にc3、c5、他方の長辺にはc4、c6の合計4個のキャパシタが重なって配置される。
図3は第1開口OP11を拡大したものである。第1開口OP11の開口端部11fに沿って第1の梁11の梁突き出し部11Aが配置される。つまり、隣接する2つの下部電極18間に梁突き出し部11Aが位置することになる。梁突き出し部11Aは、上面11dを有している。平面視において、各々の下部電極の側面の一部18cが第1開口OP11内に露出する構成となる。
図4は、各々の下部電極18と第1の梁11との接触状態を説明するための斜視図である。一例として、c3、c4、c5、c6の4個の下部電極を抜き出して示している。各々の下部電極18は、第1の梁11に食い込むように配置されている。したがって、下部電極18の側面は、第1の梁11の平面部11Bからなる円弧部11rと、梁突き出し部11Aからなる断面部11gと、が接する構成となる。これにより、円弧部11rだけが接する場合に比べて、断面部11gの断面積分の接触面積を増大させることができ、支持強度が増大し下部電極の捩れの抑制に効果的となる。一方、円弧部11rでは、平面部11Bが直接接する構成となっており、梁突き出し部11Aを伴わないので下部電極の側面面積の減少を軽減してキャパシタ容量の低減防止に寄与している。第1開口OP11内には、円弧部11rおよび梁突き出し部11Aの断面部11gのいずれにも接しない各々の下部電極の側面の一部18cが露出する構成となる。図3に示すように、上記の構成を有するためには、梁突き出し部11AのX方向およびY方向の幅W1を下部電極18の直径の1/5〜2/5の範囲とすることが好ましい。
上記のように、本実施形態に係わる半導体装置は、半導体基板1の表面1aに垂直な第3方向に延在する複数の下部電極18と、複数の下部電極18の第3方向の中間に位置し複数の第1開口OP11を有する第1の梁11と、を少なくとも備え、第1の梁11は半導体基板1の表面1aに平行に延在し第1の膜厚T1を有する平面部11Bと、前記第1開口OP11のパターンに沿って延在すると共に平面部11Bから第3方向に突き出し第1の膜厚T1より厚い第2の膜厚T2を有する梁突き出し部11Aと、からなり、下部電極18は平面視において第1開口OP11の開口端部11fに重なって配置され、下部電極18の側面の一部は、平面部11Bと梁突き出し部11Aの両方に接する構成となっている。
また、第1開口および第2開口に面しない下部電極18は、外側面の全周囲に渡って第2の梁14および第1の梁11が接触する構成となる。この場合、第1の梁11は、平面部11Bが接し、梁突き出し部11Aは接しない構成となる。
(半導体装置の製造方法)
次に、本発明の実施形態に係る半導体装置の製造方法について、図5乃至図15を参照して、詳細に説明する。ここでは、半導体装置の一例としてDRAMを例示するが、本発明は、高アスペクト比のピラー状構造物をサポート膜(梁)で支持するDRAM以外の半導体装置にも適用可能である。
(第1シリンダ層間膜(第1絶縁膜)形成工程)
まず、図5(a)の断面図および図5(b)の平面図を参照する。図5(b)は、図2に対応する平面図である。図5(a)は、図5(b)に示すA−A'断面に相当する。図5(a)には、キャパシタが配置される半導体基板1の構成の一例が示されている。
図5(a)の半導体基板1の構成は、概略以下のように製造される。半導体基板1のメモリセル領域MCAに、ドライエッチング法によりゲートトレンチを形成する。ゲートトレンチを埋設するように全面に導体をCVD法により形成する。導体をエッチバックしてゲートトレンチ内に導体からなる埋め込みゲート電極2を形成する。さらに、埋め込みゲート電極2の上面を覆いゲートトレンチを埋設するキャップ絶縁膜3を形成する。埋め込みゲート電極2に隣接する半導体基板1の表面1aに、イオン注入法により不純物拡散層4を形成する。次に、半導体基板1上に第1層間絶縁膜5を形成する。さらに、第1層間絶縁膜5を貫くコンタクトプラグ6を形成する。周辺回路領域PCAには、周辺回路7等が形成される。次に、厚さが例えば50nmのストッパーシリコン窒化膜8を全面に形成する。さらに、厚さが例えば900nmの第1シリンダ層間膜(第1絶縁膜)9をCVD法により形成する。第1シリンダ層間膜は、BPSG(Boro-Phospho Silicate Glass)膜などの不純物含有シリコンが用いられる。
(開口突き出し部形成工程)
次に、図5(a)、図5(b)に示すように、メモリセル領域MCAに開口突き出し部10を形成する。まず、メモリセル領域MCAに位置する第1シリンダ層間膜9上に図示しない第1マスク膜をリソグラフィ法を用いて形成する。第1マスク膜パターンは、第1開口OP11、OP21の反転パターンOP11a、OP21aとして形成する。反転パターンのX方向の幅W2は例えば120nmとする。次に、第1マスク膜をマスクとし、フッ素含有プラズマを用いる異方性ドライエッチング法により第1シリンダ層間膜9を深さd1だけエッチングする。この時、深さd1は、例えば80nmとする。次に、第1マスク膜を除去する。これにより、上面10cと、X方向に対向する一対の側面10aを有する開口突き出し部10が形成される。また、第1シリンダ層間膜9には新たな上面9aが形成される。
(第1の梁および第1開口形成工程)
次に、図6に示すように、第1の梁となるシリコン窒化膜(第1の梁材料)11Dを熱CVD法により形成する。シリコン窒化膜11Dの厚さは例えば20nmとする。熱CVD法で形成するシリコン窒化膜11Dはステップカバレージが良いので、側面10aにおける厚さも20nmとなる。開口突き出し部10の上面10cに形成されたシリコン窒化膜11Dは、上面シリコン窒化膜11uを構成する。次に、上面シリコン窒化膜11uを埋設するように、有機塗布膜12を形成する。有機塗布膜12は塗布法を用いて形成するので、上面は平坦となる。
次に、図7に示すように、上面シリコン窒化膜11uが除去されるまで有機塗布膜12および上面シリコン窒化膜11uをドライエッチング法により全面エッチバックする。このドライエッチングでは、フッ素および酸素の混合ガスプラズマを用いる。上面シリコン窒化膜11uを除去することにより開口突き出し部10の上面10cが露出する。これにより、平面部11Bおよび梁突き出し部11Aからなる第1の梁11が形成される。梁突き出し部11Aは、開口突き出し部10の全ての周囲側面に形成される。梁突き出し部11Aで囲まれる第1開口OP11、OP21が形成される。第1開口OP11、OP21の側面は、梁突き出し部11Aの第1開口側に位置する開口端部11fを構成する。また、梁突き出し部11Aの上面11dが露出する。この段階では、第1開口OP11、OP21は第1シリンダ層間膜9で埋設されている。第1の梁11の平面部11BのZ方向の膜厚(第1の膜厚)T1は20nmとなり、梁突き出し部11AのX方向の幅W1も20nmとなる。また、梁突き出し部11AのZ方向の厚さ(第2の膜厚)T2は80nmとなり平面部11Bの4倍となっている。
(第2シリンダ層間膜(第2絶縁膜)形成工程)
次に、図8(a)、図8(b)を参照する。図8(b)は、図2、図5(b)に対応する平面図である。図8(a)は、図8(b)に示すA−A'断面に相当する。
図7で残存していた有機塗布膜12を酸素プラズマを用いたドライエッチング法により選択的に除去する。次に、厚さが例えば600nmの第2シリンダ層間膜(第2絶縁膜)13をCVD法により形成する。第2シリンダ層間膜13にはノンドープシリコン酸化膜を用いる。
(シリンダホール形成工程)
次に、厚さが例えば200nmの第2シリコン窒化膜(第2の梁材料)14a、ハードマスク膜15、有機マスク膜16を順次積層形成する。ハードマスク膜15は、非晶質シリコン膜15a、シリコン酸化膜15b、非晶質カーボン膜15cの積層膜で構成される。次に、リソグラフィとドライエッチング法により有機マスク膜16に複数の円状シリンダホールパターン17aを形成する。シリンダホールパターンの直径W2は、例えば100nmとする。シリンダホールの直径は、後で形成される下部電極の外径に等しくなる。前述のように、梁突き出し部11AのX方向の幅W1は20nmとなっている。したがって、本実施形態では、梁突き出し部11AのX方向の幅W1は下部電極の外径の1/5となっている。また、隣接するシリンダホールのX方向およびY方向の間隔W3は20nmとする。前述のように、一部のシリンダホールパターン17aは第1開口OP11、OP21の開口端部11fに重なるように位置整合して形成される。
次に、図9(a)、図9(b)を参照する。図9(a)は、図8(b)の平面図におけるA−A'断面に対応し、図9(b)は、図8(b)の平面図におけるB−B'断面に対応する。まず、有機マスク膜16をマスクとする異方性ドライエッチング法によりハードマスク膜15をエッチングする。これにより、シリンダホールパターン17aが非晶質シリコン膜15aに転写される。次に、非晶質シリコン膜15aをマスクとする異方性ドライエッチング法により第2シリコン窒化膜14a、第2シリンダ層間膜13、第1シリコン窒化膜(第1の梁)11、第1シリンダ層間膜9ストッパーシリコン窒化膜8を貫通するシリンダホール17を形成する。これにより、シリンダホール17の底面にはコンタクトプラグ6の上面が露出する。次に、非晶質シリコン膜15aを選択的に除去する。図9(b)に示す断面では、シリンダホールパターン17aが形成されないので、図9(a)のシリンダホール17は形成されない。
(第2の梁および第2開口形成工程)
次に、図10(a)、図10(b)、図11(a)、図11(b)に示すように、第2の梁14の形成工程を実施する。図10(a)は、図10(b)に示すA−A'断面に相当する。図11(a)は、図11(b)に示すA−A'断面に相当する。
まず、図10(a)に示すように、シリンダホール17の内面を含む全面に厚さが10nmの下部電極材料18aをCVD法により形成する。下部電極材料18aには窒化チタンなどの金属を用いることができる。前述のように、シリンダホールの直径を100nmとしているので、下部電極材料18aを形成してもシリンダホール内は埋設されることなく空間が残存している。
次に、プラズマCVD法を用いてシリコン酸化膜からなる保護膜19aを全面に形成する。保護膜19aの膜厚は、例えば100nmとする。プラズマCVD法で形成する保護膜19aはステップカバレージが悪い。したがって、図10(a)に示すようにシリンダホール17の内部には形成されず、上端部を閉塞した状態となる。保護膜19aは、後の工程で実施するリソグラフィ工程において、ホトレジストからなるマスク膜がシリンダホール20内に形成されるのを防止するために形成される。アスペクト比の大きいシリンダホール内に有機物が埋設されてしまうと除去することが困難となるからである。
次に、保護膜19a上に、リソグラフィにより第2開口パターンを有するマスク膜20を形成する。これにより、周辺回路領域PCAには周辺開口21が形成され、図10(b)に示すようにメモリセル領域MCAを覆うマスク膜20が形成される。マスク膜20には、第1開口と同様の第2開口OP12、OP22に対応するパターンが形成され、一つの第2開口は8個のシリンダホールに跨るように形成される。第2開口パターンは、第1開口に対してZ方向に位置整合するように形成される。
次に、図11(a)に示すように、マスク膜20をマスクとして、周辺開口21および第2開口OP12、OP22内に露出する保護膜19aを除去する。シリコン酸化膜からなる保護膜19aの除去には、フッ素含有プラズマによる異方性ドライエッチング法を用いる。これにより、各々の開口内には下部電極材料18aが露出する。次に、塩素含有プラズマを用いる異方性ドライエッチング法により、下部電極材料18aを除去する。さらに、露出する下層の第2シリコン窒化膜14aをフッ素含有プラズマを用いる異方性ドライエッチングにより除去する。同時にマスク膜20もエッチングされ消滅する。これにより、各々の開口内には、第2シリンダ層間膜13が露出する。また、図11(a)に示すようにメモリセル領域MCAには、シリコン窒化膜14aからなる第2の梁14が形成される。
(第2シリンダ層間膜除去工程)
次に、図12に示すように、第2シリンダ層間膜13を除去する。第2シリンダ層間膜13の除去にはフッ酸含有溶液を用いる。フッ酸含有溶液は等方的に拡散するので、周辺開口21および第2開口OP12、OP22を介して横方向にも拡散し、第2の梁14の下に位置する第2シリンダ層間膜13もエッチングすることができる。
次に、図13に示すように、周辺開口21に露出する第1の梁11の平面部11Bを除去する。具体的には第2の梁14の上面に形成されている下部電極材料18aをマスクとする異方性ドライエッチング法によりシリコン窒化膜からなる平面部11Bを除去する。このドライエッチングには金属からなる下部電極材料18aに対してエッチングの選択比を確保できるフッ素含有プラズマを用いる。これにより、各々の開口内には第1シリンダ層間膜9の上面が露出する。
次に、第2の梁14の上面に形成されている下部電極材料18aを塩素含有プラズマを用いるドライエッチング法により選択的に除去する。これにより、各々のシリンダホール17に対応する独立した複数の下部電極18が形成される。例えば、第2開口に接する下部電極c5、c6、a5、a6が形成される。
(第1シリンダ層間膜除去工程)
次に、図14に示すように、フッ酸含有溶液を用いて第2シリンダ層間膜と同様に、第1シリンダ層間膜9を除去する。図15は、図11(b)に示したB−B'線における断面に相当する。第1シリンダ層間膜9を除去することにより、第1の梁11と第2の梁14に支持される複数の下部電極18が形成される。下部電極18は各々の梁と接触する外側面の一部以外の全ての側面が露出されキャパシタとして機能する。
以上の製造工程により、複数の下部電極18のZ方向の上端部を連結する第2の梁14と、第1の膜厚を有する平面部11Bと第1の膜厚より厚い第2の膜厚を有する梁突き出し部11Aとからなり複数の下部電極18のZ方向の中間部を連結する第1の梁と、で側面が支持される下部電極が形成される。
(キャパシタモールド形成工程)
次に、図1を参照する。下部電極18の内面および外側面、第2の梁14の表面、第1の梁11の表面およびストッパーシリコン窒化膜の上面を覆う図示しない厚さ7nmの容量絶縁膜を周知のALD(Atomic Layer Deposition)法により形成する。容量絶縁膜には酸化ジルコニウム、酸化アルミニウムなどを用いることができる。次に、容量絶縁膜の表面を覆うと共に、下部電極内の空間および下部電極間の空間を埋設する上部電極22をCVD法により形成する。上部電極には窒化チタン膜などを用いることができる。次に、リソグラフィとドライエッチング法により、周辺回路領域PCAに形成された上部電極22を除去する。これによりメモリセル領域MCAにはキャパシタモールド18Aが形成される。次に、キャパシタモールド18Aを覆い、周辺回路領域上に存在する凹部を埋設する第2層間絶縁膜23を形成する。次に、第2層間絶縁膜23の上面をCMP法により平坦化する。次に、第2層間絶縁膜23を貫通し上部電極22に接続するビアプラグ24を形成する。次に、第2層間絶縁膜上にビアプラグ24に接続する給電配線25を形成する。さらに、図示しない層間絶縁膜の形成および配線層の形成を繰り返し、DRAMを製造することができる。
上記の工程によれば、半導体基板1上に第1絶縁膜(第1シリンダ層間膜)9を形成する工程と、第1絶縁膜の上面に開口突き出し部10を形成する工程と、側面10aを含む全面に第1の梁材料を形成する工程と、開口突き出し部10の周囲底面に位置する平面部11Bと、側面10aに位置し平面部11Bから垂直方向に突き出る梁突き出し部11Aと、からなる第1の梁11を形成し、これにより開口突き出し部10の上面に第1開口を形成する工程と、平面視において梁突き出し部11Aに重なる位置に下部電極を形成する工程と、を少なくとも含んで構成される半導体装置の製造方法が提供される。
(変形例1)
上記の実施形態では、第1の梁11が、平面部11Bと平面部11Bから上方に突き出る梁突き出し部11Aとで構成される例について説明した。本変形例1では、梁突き出し部11Aが上方および下方に突き出る例について、図16〜図19を用いて説明する。
図16は、下部電極18と第1の梁11との接触状態を示す斜視図である。本変形例1の第1の梁11は、半導体基板1の上面に平行なX方向およびY方向に延在する平面部11Bと、半導体基板1の上面に垂直なZ方向において平面部11Bから上方に突き出る梁突き出し部11Aと、に加え、平面部11Bから下方に突き出る梁下方突き出し部11Cを備える構成を有している。したがって、第1開口OP11に面して位置する下部電極18の側面には、平面部11Bの円弧部11rと梁突き出し部11Aの断面部および梁下方突き出し部11Cの断面部のいずれもが接触する構成となる。
図17〜図19は、変形例1の製造工程を示す断面図である。前述の実施形態で説明した図5(a)と同様に第1シリンダ層間膜9の上面にマスク膜を形成した後、異方性ドライエッチングを実施して開口突き出し部10を形成するが、この異方性ドライエッチング時の条件を制御して開口突き出し部10の側面直下にサブトレンチ10dを形成する。サブトレンチ10dは平面視において、開口突き出し部10の全周囲に連続して配置される。サブトレンチの形成にはガスプラズマ中のイオン衝撃の大小が大きく影響し、バイアスパワーを大きくするほど発生しやすくなる。サブトレンチ10dの第1シリンダ層間膜9の上面9aからの深さは30nm程度に形成することができる。サブトレンチ形成以外の条件は前述の実施形態と同じである。
サブトレンチ10dを形成した後、図18に示すように、第1シリコン窒化膜11Dを形成し、さらに有機塗布膜12を形成する。次に、図19に示すように、ドライエッチング法により全面エッチバックして開口突き出し部10の上面10cに形成されている上面シリコン窒化膜11uを除去する。これにより、第1開口OP11、OP21が形成されると共に、平面部11Bに加えて梁突き出し部11Aおよび梁下方突き出し部11Cが形成される。本変形例1の場合、前述の実施形態で得られる梁突き出し部11Aの膜厚T2の80nmに加えて梁下方突き出し部11Cの深さ30nmを加えて合計110nmの高さを有する突き出し部を形成することができる。
さらに、変形例2として、上述した変形例1における第1の梁11から梁突き出し部11Aを削除した構成を採用することも可能である。この場合、第1の梁11が、平面部11Bと、平面部11Bから下方に突き出る梁下方突き出し部11Cとで構成される。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施形態では、キャパシタの下部電極を支持する梁を備えた半導体装置に本発明を適用した場合について説明したが、本発明の適用対象がこれに限定されるものではなく、半導体基板の表面に対して垂直方向に延在する複数のピラーを支持する梁を備えた半導体装置に広く本発明を適用することが可能である。
1 半導体基板
1a 半導体基板の表面
2 ゲート電極
3 キャップ絶縁膜
4 不純物拡散層
5 層間絶縁膜
6 コンタクトプラグ
7 周辺回路
8 ストッパーシリコン窒化膜
9 シリンダ層間膜
9a シリンダ層間膜の上面
10 開口突き出し部
10a 開口突き出し部の側面
10c 開口突き出し部の上面
10d サブトレンチ
11 第1の梁
11A 梁突き出し部
11B 平面部
11C 梁下方突き出し部
11D シリコン窒化膜
11b 第1の梁の上面
11c 第1の梁の下面
11d 第1の梁の上面
11f 開口端部
11g 断面部
11r 円弧部
11u 上面シリコン窒化膜
12 有機塗布膜
13 シリンダ層間膜
14 第2の梁
14a シリコン窒化膜
15 ハードマスク膜
15a 非晶質シリコン膜
15b シリコン酸化膜
15c 非晶質カーボン膜
16 有機マスク膜
17 シリンダホール
17a シリンダホールパターン
18 下部電極
18A キャパシタモールド
18a 下部電極材料
18b 下部電極の上端
18c 下部電極の側面の一部
19a 保護膜
20 シリンダホール
20 マスク膜
21 周辺開口
22 上部電極
23 層間絶縁膜
24 ビアプラグ
25 給電配線
MCA メモリセル領域
OP11,OP12,OP21,OP22 開口
OP11a,OP21a 反転パターン
PCA 周辺回路領域

Claims (16)

  1. 半導体基板の表面に対して垂直方向に延在する複数のピラーと、
    前記複数のピラーを支持し、複数の第1開口を有する第1の梁と、を備え、
    前記第1の梁は、前記半導体基板の表面に対して平行に延在し前記垂直方向における膜厚が第1の膜厚である平面部と、前記第1開口のパターンに沿って延在すると共に前記垂直方向における膜厚が前記第1の膜厚より厚い第2の膜厚である梁突き出し部とを含む、半導体装置。
  2. 前記複数のピラーを支持し、複数の第2開口を有する第2の梁をさらに備え、
    前記第1の梁は、前記半導体基板と前記第2の梁との間に位置する、請求項1に記載の半導体装置。
  3. 前記梁突き出し部は、隣接するピラー間に位置する、請求項1又は2に記載の半導体装置。
  4. 前記複数のピラーは、前記平面部及び前記梁突き出し部の両方に接する第1ピラーと、前記梁突き出し部に接することなく前記平面部に接する第2ピラーを含む、請求項1乃至3のいずれか一項に記載の半導体装置。
  5. 前記第1ピラーは、前記平面部に接する第1側面と、前記梁突き出し部に接する第2側面と、前記第1開口に露出する第3側面を有する、請求項4に記載の半導体装置。
  6. 前記梁突き出し部は、前記平面部から前記垂直方向における上方へ突き出した部分を有する、請求項1乃至5のいずれか一項に記載の半導体装置。
  7. 前記梁突き出し部は、前記平面部から前記垂直方向における下方へ突き出した部分を有する、請求項1乃至5のいずれか一項に記載の半導体装置。
  8. 前記梁突き出し部は、前記平面部から前記垂直方向における上方へ突き出した部分と下方へ突き出した部分を有する、請求項1乃至5のいずれか一項に記載の半導体装置。
  9. 前記複数のピラーは、導電材料を含む、請求項1乃至8のいずれか一項に記載の半導体装置。
  10. 前記複数のピラーは、キャパシタの下部電極を構成する、請求項9に記載の半導体装置。
  11. 前記下部電極を覆う上部電極と、前記下部電極と前記上部電極との間に設けられた容量絶縁膜とをさらに備える、請求項10に記載の半導体装置。
  12. 半導体基板上に第1絶縁膜を形成する工程と、
    第1絶縁膜上に、上面が前記第1絶縁膜の上面よりも突出した開口突き出し部を形成する工程と、
    前記開口突き出し部が形成された前記第1絶縁膜上に、前記第1絶縁膜の前記上面を覆う平面部及び前記開口突き出し部の側面を覆う梁突き出し部を含む、第1の梁を形成する工程と、
    前記第1の梁に第1開口を形成する工程と、
    前記第1開口を介して前記第1絶縁膜及び前記開口突き出し部を除去する工程と、を備える半導体装置の製造方法。
  13. 前記第1開口は、前記第1の梁のうち前記開口突き出し部の前記上面を覆う部分を除去することにより形成される、請求項12に記載の半導体装置の製造方法。
  14. 前記第1開口を形成した後、前記第1絶縁膜及び前記開口突き出し部を除去する前に、
    前記第1の梁を介して前記第1絶縁膜上に第2絶縁膜を形成する工程と、
    前記第2絶縁膜、前記第1の梁及び前記第1絶縁膜を貫通する複数のホールパターンを形成する工程と、
    前記ホールパターンの内壁を覆う導電膜を形成する工程と、をさらに備える、請求項12又は13に記載の半導体装置の製造方法。
  15. 前記複数のホールパターンは、前記梁突き出し部に対応する位置に形成される、請求項14に記載の半導体装置の製造方法。
  16. 前記第2絶縁膜を形成した後、前記第2絶縁膜上に第2開口を有する第2の梁を形成する工程と、
    前記第2開口を介して前記第2絶縁膜を除去する工程と、をさらに備える、請求項14又は15に記載の半導体装置の製造方法。
JP2014072115A 2014-03-31 2014-03-31 半導体装置及びその製造方法 Pending JP2015195262A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014072115A JP2015195262A (ja) 2014-03-31 2014-03-31 半導体装置及びその製造方法
US14/663,878 US10134742B2 (en) 2014-03-31 2015-03-20 Semiconductor device including a semiconductor substrate, a pillar, and a beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072115A JP2015195262A (ja) 2014-03-31 2014-03-31 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2015195262A true JP2015195262A (ja) 2015-11-05

Family

ID=54191480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072115A Pending JP2015195262A (ja) 2014-03-31 2014-03-31 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US10134742B2 (ja)
JP (1) JP2015195262A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102397893B1 (ko) 2017-04-17 2022-05-16 에스케이하이닉스 주식회사 반도체장치 및 그 제조 방법
US10833092B2 (en) 2019-01-23 2020-11-10 Micron Technology, Inc. Methods of incorporating leaker-devices into capacitor configurations to reduce cell disturb, and capacitor configurations incorporating leaker-devices
KR102657082B1 (ko) * 2019-08-05 2024-04-16 삼성전자주식회사 반도체 메모리 소자
KR20210032844A (ko) * 2019-09-17 2021-03-25 삼성전자주식회사 집적회로 소자 및 그 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667502B1 (en) * 1999-08-31 2003-12-23 Micron Technology, Inc. Structurally-stabilized capacitors and method of making of same
EP1312120A1 (en) * 2000-08-14 2003-05-21 Matrix Semiconductor, Inc. Dense arrays and charge storage devices, and methods for making same
JP4060572B2 (ja) 2001-11-06 2008-03-12 株式会社東芝 半導体記憶装置及びその製造方法
US7125781B2 (en) * 2003-09-04 2006-10-24 Micron Technology, Inc. Methods of forming capacitor devices
JP4552946B2 (ja) * 2007-01-31 2010-09-29 エルピーダメモリ株式会社 半導体記憶装置および半導体記憶装置の製造方法
JP2010153418A (ja) * 2008-12-24 2010-07-08 Elpida Memory Inc 半導体装置及び半導体装置の製造方法
US8058126B2 (en) * 2009-02-04 2011-11-15 Micron Technology, Inc. Semiconductor devices and structures including at least partially formed container capacitors and methods of forming the same
JP2011061067A (ja) 2009-09-11 2011-03-24 Elpida Memory Inc 半導体装置の製造方法及び半導体装置
KR101116354B1 (ko) * 2009-09-30 2012-03-09 주식회사 하이닉스반도체 단일측벽콘택에 연결된 매립비트라인을 갖는 반도체장치 및 그제조 방법
JP2012174790A (ja) * 2011-02-18 2012-09-10 Elpida Memory Inc 半導体装置及びその製造方法
US8878278B2 (en) * 2012-03-21 2014-11-04 Sandisk Technologies Inc. Compact three dimensional vertical NAND and method of making thereof

Also Published As

Publication number Publication date
US10134742B2 (en) 2018-11-20
US20150279845A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
KR102321868B1 (ko) 반도체 메모리 장치
KR102490277B1 (ko) 반도체 장치 및 그 제조 방법
US9613967B1 (en) Memory device and method of fabricating the same
US8120103B2 (en) Semiconductor device with vertical gate and method for fabricating the same
KR20140028910A (ko) 비대칭 비트라인 컨택을 갖는 반도체 소자 및 그 제조방법
KR20170010498A (ko) 액티브 패턴들 형성 방법, 액티브 패턴 어레이, 및 반도체 장치 제조 방법
JP2010147078A (ja) 半導体装置及びその製造方法
JP5748195B2 (ja) 半導体装置及びその製造方法
JP2010226109A (ja) キャパシタ構造物とその製造方法、及び前記キャパシタを含む半導体装置とその製造方法
TW201303980A (zh) 製造具有垂直閘極之半導體裝置的方法
JP2011142214A (ja) 半導体装置およびその製造方法
WO2014109310A1 (ja) 半導体装置及びその製造方法
WO2014123170A1 (ja) 半導体装置及びその製造方法
WO2014083924A1 (ja) 半導体装置およびその製造方法
JP2013030557A (ja) 半導体装置の製造方法
JP2015195262A (ja) 半導体装置及びその製造方法
KR102110464B1 (ko) 반도체 소자 및 그 제조 방법
JP2014045003A (ja) 半導体装置及びその製造方法
JP2010153509A (ja) 半導体装置およびその製造方法
JP2014022457A (ja) 半導体装置及びその製造方法
US9362421B2 (en) Semiconductor device including a support structure
JP2010153418A (ja) 半導体装置及び半導体装置の製造方法
WO2014115641A1 (ja) 半導体装置の製造方法
WO2014092003A2 (ja) 半導体装置およびその製造方法
JP2015035619A (ja) 半導体装置