JP2015187695A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2015187695A
JP2015187695A JP2014168107A JP2014168107A JP2015187695A JP 2015187695 A JP2015187695 A JP 2015187695A JP 2014168107 A JP2014168107 A JP 2014168107A JP 2014168107 A JP2014168107 A JP 2014168107A JP 2015187695 A JP2015187695 A JP 2015187695A
Authority
JP
Japan
Prior art keywords
film
oxide semiconductor
semiconductor film
oxide
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014168107A
Other languages
English (en)
Other versions
JP2015187695A5 (ja
JP6483375B2 (ja
Inventor
亮 初見
Akira Hatsumi
亮 初見
大介 久保田
Daisuke Kubota
大介 久保田
三宅 博之
Hiroyuki Miyake
博之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2014168107A priority Critical patent/JP6483375B2/ja
Publication of JP2015187695A publication Critical patent/JP2015187695A/ja
Publication of JP2015187695A5 publication Critical patent/JP2015187695A5/ja
Application granted granted Critical
Publication of JP6483375B2 publication Critical patent/JP6483375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Abstract

【課題】光漏れが少なく、コントラストの優れた表示装置を提供する。または、開口率が高く、且つ電荷容量を増大させることが可能な容量素子を有する表示装置を提供する。または、寄生容量による配線遅延が低減された表示装置を提供する。
【解決手段】基板上のトランジスタと、トランジスタと接続する画素電極と、トランジスタと電気的に接続される信号線と、トランジスタと電気的に接続され、且つ信号線と交差する走査線と、画素電極及び信号線上に絶縁膜を介して設けられるコモン電極とを有し、コモン電極は、信号線と交差する方向に延伸した縞状の領域を有する表示装置である。
【選択図】図1

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、それらの駆動方法、または、それらの製造方法に関する。特に、本発明の一態様は、表示装置及びその作製方法に関する。
近年、液晶は多様なデバイスに利用されており、特に薄型、軽量の特徴を持つ液晶表示装置(液晶ディスプレイ)は幅広い分野のディスプレイにおいて用いられている。
液晶表示装置に含まれる液晶分子に電界を印加する方法として、縦電界方式または横電界方式がある。横電界方式の液晶表示パネルとしては、画素電極及びコモン電極が同一絶縁膜上に設けられるIPS(In−Plane Switching)モードと、絶縁膜を介して画素電極及びコモン電極が重なるFFS(Fringe Field Switching)モードとがある。
FFSモードの液晶表示装置は、画素電極にスリット状の開口部を有し、該開口部において画素電極及びコモン電極の間で生じる電界を液晶分子に印加することで、液晶分子の配向を制御する。
FFSモードの液晶表示装置は、高開口率であり、広い視野角を得ることができると共に画像コントラストを改善できるという効果があり、近年、多く用いられるようになってきている(特許文献1参照。)。
特開2000−89255号公報
本発明の一態様は、寄生容量による配線遅延が低減された表示装置を提供する。または、本発明の一態様は、光漏れが少なく、コントラストの優れた表示装置を提供する。または、本発明の一態様は、開口率が高く、且つ電荷容量を増大させることが可能な容量素子を有する表示装置を提供する。または、本発明の一態様は、消費電力が低減された表示装置を提供する。または、本発明の一態様は、電気特性の優れたトランジスタを有する表示装置を提供する。または、本発明の一態様は、新規な表示装置を提供する。または、本発明の一態様は、少ない工程数で、高開口率であり、広い視野角が得られる表示装置の作製方法を提供する。または、本発明の一態様は、新規な表示装置の作製方法を提供する。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、絶縁表面上のトランジスタと、トランジスタと接続する画素電極と、トランジスタと接続する信号線と、トランジスタと接続し、且つ信号線と交差する走査線と、画素電極及び信号線上に絶縁膜を介して設けられるコモン電極とを有し、コモン電極は、信号線と交差する方向に延伸した縞状の領域を有する表示装置である。
なお、トランジスタは、走査線と電気的に接続されるゲート電極と、ゲート電極と重なる半導体膜と、ゲート電極及び半導体膜の間のゲート絶縁膜と、信号線及び半導体膜に電気的に接続される第1の導電膜と、画素電極及び半導体膜に電気的に接続される第2の導電膜と、を有し、第2の導電膜は、走査線及びコモン電極の縞状の領域と平行な領域を有する。
本発明の一態様は、絶縁表面上に、信号線、走査線、トランジスタ、画素電極、コモン電極、及び容量素子を有する表示装置である。トランジスタは、走査線と電気的に接続されるゲート電極と、ゲート電極と重なる半導体膜と、ゲート電極及び半導体膜の間のゲート絶縁膜と、信号線及び半導体膜に電気的に接続される第1の導電膜と、画素電極及び半導体膜に電気的に接続される第2の導電膜と、を有する。容量素子は、画素電極と、コモン電極と、画素電極及びコモン電極の間に設けられる窒化物絶縁膜と、を有する。コモン電極は、信号線と交差する方向に延伸した縞状の領域を有する。
なお、第2の導電膜は、走査線及びコモン電極の縞状の領域と平行な領域を有する。
また、コモン電極は、縞状の領域のそれぞれが、走査線と平行に配置された複数の画素電極に、またがって延伸していてもよい。
また、コモン電極と信号線とが交差する角度は、70°以上110°以下であることが好ましい。
また、画素電極は、マトリクス状に設けられている。また、コモン電極は、走査線と交差し、且つ縞状の領域と接続される領域を有する。また、半導体膜及び画素電極は、ゲート絶縁膜と接する。
また、半導体膜及び画素電極は、In−Ga酸化物、In−Zn酸化物、またはIn−M−Zn酸化物(MはAl、Ga、Y、Zr、La、Ce、またはNd)を有する。
また、半導体膜及び画素電極は、第1の膜及び第2の膜を含む多層構造であり、第1の膜は、第2の膜と金属元素の原子数比が異なる。
本発明の一態様により、寄生容量による配線遅延が低減された表示装置を提供することができる。または、本発明の一態様により、光漏れが少なく、コントラストの優れた表示装置を提供することができる。または、本発明の一態様により、開口率が高く、且つ電荷容量を増大させることが可能な容量素子を有する表示装置を提供することができる。または、本発明の一態様により、消費電力が低減された表示装置を提供することができる。本発明の一態様により、電気特性の優れたトランジスタを有する表示装置を提供することができる。または、本発明の一態様により、少ない工程数で、高開口率であり、広い視野角が得られる表示装置を作製することができる。
表示装置の一形態を説明する断面図及び上面図である。 表示装置の一形態を説明する上面図である。 表示装置の一形態を説明するブロック図及び回路図である。 表示装置の一形態を説明する上面図である。 トランジスタの一形態を説明する断面図である。 トランジスタの作製方法の一形態を説明する断面図である。 トランジスタの作製方法の一形態を説明する断面図である。 トランジスタの作製方法の一形態を説明する断面図である。 表示装置の一形態を説明する上面図及び断面図である。 表示装置の一形態を説明する上面図である。 表示装置の一形態を説明する上面図である。 トランジスタの一形態を説明する断面図である。 トランジスタの作製方法の一形態を説明する断面図である。 トランジスタの一形態を説明する断面図である。 表示モジュールを説明する図である。 実施の形態に係る、電子機器の外観図を説明する図である。 試料1及び試料2の上面図及び透過率の分布を示す図。 試料3及び試料4の上面図及び透過率の分布を示す図。 表示装置の一形態を説明する上面図である。 トランジスタの一形態を説明する断面図である。 トランジスタの一形態を説明する断面図である。 トランジスタの一形態を説明する断面図である。 トランジスタの一形態を説明する断面図である。 表示装置の一形態を説明する上面図である。 表示装置の一形態を説明する上面図である。 導電率の温度依存性を説明する図。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。また、以下に説明する実施の形態及び実施例において、同一部分または同様の機能を有する部分には、同一の符号または同一のハッチパターンを異なる図面間で共通して用い、その繰り返しの説明は省略する。
なお、本明細書で説明する各図において、各構成の大きさ、膜の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
また、本明細書にて用いる第1、第2、第3などの用語は、構成要素の混同を避けるために付したものであり、数的に限定するものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。
また、「ソース」や「ドレイン」の機能は、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができるものとする。
また、電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただし、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差のことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い。このため、本明細書では特に指定する場合を除き、電位を電圧と読み替えてもよいし、電圧を電位と読み替えてもよいこととする。
なお、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有する素子などが含まれる。
(実施の形態1)
本実施の形態では、本発明の一態様である表示装置について、図面を用いて説明する。
図1(A)はFFSモードの液晶表示装置の断面図であり、図1(B)は、該液晶表示装置に含まれる表示部の一画素10の上面図である。なお、図1(A)は、図1(B)の一点鎖線A−Bの断面図に相当する。また、図1(B)において、基板1、絶縁膜3、絶縁膜8、絶縁膜60、基板61、遮光膜62、着色膜63、絶縁膜64、絶縁膜65、及び液晶層66を省略する。
図1に示すように、FFSモードの液晶表示装置は、アクティブマトリクス型の液晶表示装置であり、表示部に設けられる画素10ごとにトランジスタ102及び画素電極7を有する。
図1(A)に示すように、液晶表示装置は、基板1上のトランジスタ102と、トランジスタ102に接続する画素電極7と、トランジスタ102及び画素電極7に接する絶縁膜8と、絶縁膜8に接するコモン電極9と、絶縁膜8及びコモン電極9に接し、且つ配向膜として機能する絶縁膜60と、を有する。
また、基板61に接する遮光膜62及び着色膜63と、基板61、遮光膜62、及び着色膜63に接する絶縁膜64と、絶縁膜64に接し、且つ配向膜として機能する絶縁膜65とを有する。また、絶縁膜60及び絶縁膜65の間に液晶層66を有する。なお、図示しないが、基板1及び基板61の外側に偏光板が設けられる。
トランジスタ102は、順スタガ型、逆スタガ型、コプレナー型等のトランジスタを適宜用いることができる。また、逆スタガ型の場合、チャネルエッチ構造、チャネル保護構造等を適宜用いることができる。
本実施の形態に示すトランジスタ102は、逆スタガ型であり、且つチャネルエッチ構造のトランジスタである。トランジスタ102は、基板1上の、ゲート電極として機能する導電膜2と、基板1及び導電膜2上のゲート絶縁膜として機能する絶縁膜3と、絶縁膜3を介して導電膜2と重なる半導体膜4と、半導体膜4と接する導電膜5及び導電膜6と、を有する。なお、導電膜2は、ゲート電極と共に、走査線として機能する。即ち、ゲート電極は走査線の一部である。また、導電膜5は、信号線として機能する。また、導電膜5、6はソース電極及びドレイン電極として機能する。即ち、ソース電極及びドレイン電極の一方は、信号線の一部である。これらのため、トランジスタ102は、走査線及び信号線と電気的に接続される。なお、ここでは、導電膜2は、ゲート電極と共に走査線として機能するが、ゲート電極及び走査線を、別々に形成してもよい。また、導電膜5は、ソース電極及びドレイン電極の一方、並びに信号線として機能するが、ソース電極及びドレイン電極の一方、並びに信号線を、別々に形成してもよい。
なお、トランジスタ102において、半導体膜4は、シリコン、シリコンゲルマニウム、酸化物半導体等の半導体材料を適宜用いることができる。また、半導体膜4は適宜、非晶質構造、微結晶構造、多結晶構造、単結晶構造等とすることができる。
図1(B)に示すように、画素電極7は、画素10において、矩形状である。また、本実施の形態に示す表示装置は、アクティブマトリクス型の液晶表示装置であるため、画素電極7がマトリクス状に配置される。画素電極7及びコモン電極9は透光性を有する膜で形成される。
なお、画素電極7の形状は、矩形状に限定されず、画素10の形状に合わせて適切な形状とすることができる。なお、画素電極7は、画素10において、走査線として機能する導電膜2及び信号線として機能する導電膜5に囲まれる領域において、広く形成されることが好ましい。この結果、画素10における開口率を高めることができる。
コモン電極9は、信号線として機能する導電膜5と交差する方向に延伸する領域(第1の領域)を複数有する。すなわち、信号線として機能する導電膜5と交差する方向に延伸した縞状の領域(複数の第1の領域)を有する。なお、該縞状の領域は、信号線として機能する導電膜5と平行または略平行な方向に延伸した領域(第2の領域)と接続する。すなわち、コモン電極9は、縞状の領域(複数の第1の領域)と、該縞状の領域に接続する接続領域(第2の領域)とで構成される。
言い換えると、コモン電極9は、画素電極7上に、走査線として機能する導電膜2と平行または略平行な方向に延伸する領域(第1の領域)を複数有する。すなわち、走査線として機能する導電膜2と平行または略平行な方向に延伸した縞状の領域(複数の第1の領域)を有する。なお、該縞状の領域は、走査線として機能する導電膜2と交差する方向に延伸した領域(第2の領域)と接続する。
コモン電極9における縞状の領域(複数の第1の領域)が延伸する方向と、信号線として機能する導電膜5が延伸する方向とが交差する角度は、70°以上110°以下が好ましい。このような角度で交差することで、光漏れを低減することが可能である。また、基板1において全面のコモン電極9が形成されず、縞状の領域(複数の第1の領域)を有するため、走査線として機能する導電膜2及び信号線として機能する導電膜5と、コモン電極9との間に発生する寄生容量を低減することが可能である。
また、コモン電極9において縞状の領域(複数の第1の領域)は、直線状とすることができる。または、コモン電極9において縞状の領域(複数の第1の領域)は、ジグザグ状の折れ線、波状等の曲線が繰り返された形状とすることができる。コモン電極9において、縞状の領域(複数の第1の領域)が、折れ線または曲線が繰り返された形状の場合、液晶分子の配向状態がマルチドメイン化し視野角改善効果が得られる。
コモン電極9は縞状であるため、画素電極7に電圧が印加されると、画素電極7及びコモン電極9の間において、図1(A)の破線矢印で示すように、放物線状の電界が発生する。この結果、液晶層66に含まれる液晶分子を配向させることができる。
なお、画素電極7及びコモン電極9が重なる領域において、画素電極7、絶縁膜8、及びコモン電極9が容量素子として機能する。画素電極7及びコモン電極9は透光性を有する膜で形成されるため、開口率が高まるとともに、容量素子に蓄積される電荷容量を高めることができる。また、画素電極7及びコモン電極9の間の絶縁膜8を比誘電率の高い材料を用いて形成することで、容量素子において、大きな電荷容量を蓄積させることが可能である。比誘電率の高い材料としては、窒化シリコン、酸化アルミニウム、酸化ガリウム、酸化イットリウム、酸化ハフニウム、ハフニウムシリケート(HfSiO)、窒素が添加されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネート(HfAl)等がある。
遮光膜62は、ブラックマトリクスとして機能する。着色膜63は、カラーフィルタとして機能する。なお、着色膜63は、必ずしも設ける必要はなく、例えば、液晶表示装置が白黒表示の場合は、着色膜63を設けない構成としてもよい。
着色膜63としては、特定の波長帯域の光を透過する着色膜であればよく、例えば、赤色の波長帯域の光を透過する赤色(R)の膜、緑色の波長帯域の光を透過する緑色(G)の膜、青色の波長帯域の光を透過する青色(B)の膜などを用いることができる。
遮光膜62としては、特定の波長帯域の光を遮光する機能を有していればよく、金属膜または黒色顔料等を含んだ有機絶縁膜などを用いることができる。
絶縁膜65は、平坦化層としての機能、または着色膜63が含有しうる不純物を液晶素子側へ拡散するのを抑制する機能を有する。
なお、図示しないが、基板1及び基板61の間には、シール材が設けられており、基板1、基板61、及びシール材により液晶層66を封止している。また、絶縁膜60及び絶縁膜64の間に液晶層66の厚さ(セルギャップともいう)を維持するスペーサを設けてもよい。
次に、本実施の形態に示す液晶表示装置の駆動方法について、図2を用いて説明する。
図2は、FFSモードの液晶表示装置の画素部に含まれる画素の上面図であり、隣り合う2つの画素10a、10bを示す。図2(A)及び図2(B)において、コモン電極9は、走査線として機能する導電膜2と平行または略平行な方向に延伸している。すなわち、画素10a、10bにまたがっている。
図2(A)及び図2(B)は、信号線として機能する導電膜5a、5bと交差する方向に延伸する縞状の領域を有するコモン電極9を設けた画素10a、10bであり、図2(C)及び図2(D)は、走査線として機能する導電膜2と交差する方向に延伸する縞状の領域を有するコモン電極9を設けた画素10a、10bである。各画素において、初期状態を黒表示とし、画素電極に電圧を印加することで白表示とする画素における表示素子の駆動方法、すなわちノーマリー・ブラックモードの表示素子の駆動方法について説明する。なお、ここで、表示素子とは、画素電極7、コモン電極9、及び液晶層に含まれる液晶分子のことをいう。なお、本実施の形態では、ノーマリー・ブラックモードの駆動方法を用いて説明するが、適宜ノーマリー・ホワイトモードの駆動方法を用いることもできる。
なお、黒表示の場合は、トランジスタをオン状態とする電圧を走査線に印加し、信号線及びコモン電極に0V印加する。この結果、画素電極に0V印加される。すなわち、画素電極及びコモン電極の間に電界が発生せず、液晶分子は動作しない。
白表示の場合は、トランジスタをオン状態とする電圧を走査線に印加し、信号線に液晶分子を動作させる電圧、たとえば6V印加し、コモン電極に0V印加する。この結果、画素電極に6V印加される。すなわち、画素電極及びコモン電極の間に電界が発生し、液晶分子が動作する。
また、ここでは、ネガ型の液晶材料を用いて説明するため、初期状態において、液晶分子はコモン電極と直交する方向に配向させる。このように、初期状態における液晶分子の配向を初期配向という。また、画素電極及びコモン電極間に電圧を印加することで、基板に対して平行な面内において、液晶分子を回転動作させる。なお、本実施の形態では、ネガ型の液晶材料を用いて説明するが、適宜ポジ型の液晶材料を用いることもできる。
また、図1(A)に示す基板1及び基板61の外側に偏光板が設けられる。基板1の外側に設けられる偏光板に含まれる偏光子と、基板61の外側に設けられる偏光板に含まれる偏光子は互いに直交するように配置されたクロスニコルである。このため、走査線として機能する導電膜2または信号線として機能する導電膜5a、5bと平行な方向に、液晶分子が配向すると、偏光板において光が吸収され、黒表示となる。なお、本実施の形態では、偏光子の位置をクロスニコルとして説明するが、適宜パラレルニコルとすることもできる。
図2において、走査線として機能する導電膜2、半導体膜4a、信号線として機能する導電膜5a、導電膜6a、画素電極7a、及びコモン電極9を有する画素を画素10aとし、走査線として機能する導電膜2、半導体膜4b、信号線として機能する導電膜5b、導電膜6b、画素電極7b、及びコモン電極9を有する画素を画素10bとする。また、図2(A)及び図2(C)は、初期状態を示し、図2(B)及び図2(D)は、画素10bを白表示とする状態を示す。
図2(C)及び図2(D)に示す画素10a、10bは、コモン電極9が信号線として機能する導電膜5a、5bと平行または略平行な方向に延伸するため、図2(C)に示す初期状態(黒表示)では、液晶分子Lは、信号線として機能する導電膜5a、5bと垂直な方向に配向する。
図2(D)に示すように、画素10aを黒表示、画素10bを白表示とする場合について説明する。信号線として機能する導電膜5a及びコモン電極9に0V印加する。また、信号線として機能する導電膜5bに6V印加する。この結果、画素10bにおいて、画素電極7bに6V印加され、図の矢印で示すように、画素電極7b及びコモン電極9の間に電界が発生し、それに合わせて液晶分子Lが配向する。ここでは、液晶分子Lが45°回転した状態を示す。
なお、画素10aにおいて、画素電極7aの電位は0Vであり、画素電極7aの近傍に設けられる信号線として機能する導電膜5bの電位は6Vである。このため、画素10aにおいても、図の矢印で示すように、画素電極7a及び信号線として機能する導電膜5bの間に電界が発生し、それに合わせて液晶分子Lが配向してしまう。この結果、黒表示するべき画素10aにおいて、一部液晶分子Lの配向状態が変化し、光漏れが生じてしまう。
一方、図2(A)及び図2(B)に示す画素10a、10bは、コモン電極9が信号線として機能する導電膜5a、5bと直交する方向に延伸するため、初期状態(黒表示)では、液晶分子Lは、信号線として機能する導電膜5a、5bと平行または略平行な方向に配向する。
図2(B)に示すように、画素10aを黒表示、画素10bを白表示とする場合について説明する。信号線として機能する導電膜5a及びコモン電極9に0V印加する。また、信号線として機能する導電膜5bに6V印加する。この結果、画素10bにおいて、画素電極7bに6V印加され、図の矢印で示すように、画素電極7b及びコモン電極9の間に電界が発生し、それに合わせて液晶分子Lが配向する。ここでは、液晶分子Lが−45°回転した状態を示す。
なお、画素10aにおいて、画素電極7aの電位が0Vであり、画素電極7aの近傍に設けられる信号線として機能する導電膜5bの電位が6Vである。しかしながら、信号線として機能する導電膜5b及びコモン電極9が交差するため、画素電極7a及び信号線として機能する導電膜5bの間に発生する第1の電界F1が液晶分子Lの長軸と直交する。この結果、液晶分子Lはネガ型液晶であるため、液晶分子Lが動作せず、光漏れを抑制することができる。
以上のことから、FFSモードの液晶表示装置において、信号線と交差する方向に延伸したコモン電極を設けることで、コントラストの優れた表示装置を作製することができる。
また、本実施の形態に示すコモン電極9は、基板上において全面に形成されない。このため、信号線として機能する導電膜5a、5bと重なる領域を減らすことが可能であり、信号線とコモン電極9の間に発生する寄生容量を低減することが可能である。この結果、大面積基板を用いて形成される表示装置において、配線遅延を低減することが可能である。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、本発明の一態様である表示装置について、図面を用いて説明する。また、本実施の形態では、トランジスタに含まれる半導体膜として酸化物半導体膜を用いて説明する。
図3(A)に示す表示装置は、画素部101と、走査線駆動回路104と、信号線駆動回路106と、各々が平行または略平行に配設され、且つ走査線駆動回路104によって電位が制御されるm本の走査線107と、各々が平行または略平行に配設され、且つ信号線駆動回路106によって電位が制御されるn本の信号線109と、を有する。さらに、画素部101はマトリクス状に配設された複数の画素103を有する。また、信号線109に沿って、各々が平行または略平行に配設されたコモン線115を有する。また、走査線駆動回路104及び信号線駆動回路106をまとめて駆動回路部という場合がある。
各走査線107は、画素部101においてm行n列に配設された画素103のうち、いずれかの行に配設されたn個の画素103と電気的に接続される。また、各信号線109は、m行n列に配設された画素103のうち、いずれかの列に配設されたm個の画素103に電気的と接続される。m、nは、ともに1以上の整数である。また、各コモン線115は、m行n列に配設された画素103のうち、いずれかの列に配設されたm個の画素103と電気的に接続される。
図3(B)は、図3(A)に示す表示装置の画素103に用いることができる回路構成の一例を示している。
図3(B)に示す画素103は、液晶素子121と、トランジスタ102と、容量素子105と、を有する。
液晶素子121の一対の電極の一方は、トランジスタ102と接続し、電位は、画素103の仕様に応じて適宜設定される。液晶素子121の一対の電極の他方は、コモン線115と接続し、電位は共通の電位(コモン電位)が与えられる。液晶素子121は、トランジスタ102に書き込まれるデータにより、液晶分子の配向状態が制御される。
なお、液晶素子121は、液晶分子の光学的変調作用によって光の透過または非透過を制御する素子である。なお、液晶分子の光学的変調作用は、液晶分子にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制御される。なお、液晶素子121に用いる液晶材料としては、ネマチック液晶、コレステリック液晶、スメクチック液晶、サーモトロピック液晶、ライオトロピック液晶、強誘電液晶、反強誘電液晶等が挙げられる。
液晶素子121を有する表示装置の駆動方法としては、FFSモードを用いる。
また、ブルー相(Blue Phase)を示す液晶材料とカイラル剤とを含む液晶組成物により液晶素子を構成してもよい。ブルー相を示す液晶は、応答速度が1msec以下と短く、光学的等方性であるため、配向処理が不要であり、視野角依存性が小さい。
図3(B)に示す画素103の構成において、トランジスタ102のソース電極及びドレイン電極の一方は、信号線109に電気的に接続され、他方は液晶素子121の一対の電極の一方に電気的に接続される。また、トランジスタ102のゲート電極は、走査線107に電気的に接続される。トランジスタ102は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
図3(B)に示す画素103の構成において、容量素子105の一対の電極の一方は、トランジスタ102に接続される。容量素子105の一対の電極の他方は、コモン線115に電気的に接続される。コモン線115の電位の値は、画素103の仕様に応じて適宜設定される。容量素子105は、書き込まれたデータを保持する保持容量としての機能を有する。なお、本実施の形態において、容量素子105の一対の電極の一方は、液晶素子121の一対の電極の一方である。また、容量素子105の一対の電極の他方は、液晶素子121の一対の電極の他方である。
次に、表示装置に含まれる素子基板の具体的な構成について説明する。ここでは、複数の画素103a、103b、103cの上面図を図4に示す。
図4において、走査線として機能する導電膜13は、信号線に略直交する方向(図中左右方向)に延伸して設けられている。信号線として機能する導電膜21aは、走査線に略直交する方向(図中上下方向)に延伸して設けられている。なお、走査線として機能する導電膜13は、走査線駆動回路104(図3を参照。)と電気的に接続されており、信号線として機能する導電膜21aは、信号線駆動回路106(図3(A)を参照。)に電気的に接続されている。
トランジスタ102は、走査線及び信号線が交差する領域に設けられている。トランジスタ102は、ゲート電極として機能する導電膜13、ゲート絶縁膜(図4に図示せず。)、ゲート絶縁膜上に形成されたチャネル領域が形成される酸化物半導体膜19a、ソース電極及びドレイン電極として機能する導電膜21a、21bにより構成される。なお、導電膜13は、走査線としても機能し、酸化物半導体膜19aと重畳する領域がトランジスタ102のゲート電極として機能する。また、導電膜21aは、信号線としても機能し、酸化物半導体膜19aと重畳する領域がトランジスタ102のソース電極またはドレイン電極として機能する。また、図4において、走査線は、上面形状において端部が酸化物半導体膜19aの端部より外側に位置する。このため、走査線はバックライトなどの光源からの光を遮る遮光膜として機能する。この結果、トランジスタに含まれる酸化物半導体膜19aに光が照射されず、トランジスタの電気特性の変動を抑制することができる。
また、導電膜21bは、画素電極19bと電気的に接続されている。また、画素電極19b上において、絶縁膜を介してコモン電極29が設けられている。画素電極19b上に設けられる絶縁膜には、一点鎖線で示す開口部40が設けられている。開口部40において、画素電極19bは、窒化物絶縁膜(図4に図示せず。)と接する。
コモン電極29は、信号線と交差する方向に延伸した縞状の領域(複数の第1の領域)を有する。また、該複数の第1の領域は、信号線と平行または略平行な方向に延伸した第2の領域と接続される。このため、縞状の領域(複数の第1の領域)を有するコモン電極29は、複数の第1の領域のそれぞれが同電位である。
容量素子105は、画素電極19b及びコモン電極29が重なる領域で形成される。画素電極19b及びコモン電極29は透光性を有する。即ち、容量素子105は透光性を有する。
図4に示すように、本実施の形態に示す液晶表示装置は、FFSモードであり、さらに信号線と交差する方向に延伸した縞状の領域を有するコモン電極29が設けられるため、コントラストの優れた表示装置を作製することができる。
また、容量素子105は透光性を有するため、画素103内に容量素子105を大きく(大面積に)形成することができる。従って、開口率を高めつつ、代表的には50%以上、好ましくは60%以上とすることが可能であると共に、電荷容量を増大させた表示装置を得ることができる。例えば、解像度の高い表示装置、例えば液晶表示装置においては、画素の面積が小さくなり、容量素子の面積も小さくなる。このため、解像度の高い表示装置において、容量素子に蓄積される電荷容量が小さくなる。しかしながら、本実施の形態に示す容量素子105は透光性を有するため、当該容量素子を画素に設けることで、各画素において十分な電荷容量を得つつ、開口率を高めることができる。代表的には、画素密度が200ppi以上、さらには300ppi以上、更には500ppi以上である高解像度の表示装置に好適に用いることができる。
また、液晶表示装置において、容量素子の容量値を大きくするほど、電界を加えた状況において、液晶素子の液晶分子の配向を一定に保つ期間を長くすることができる。静止画を表示させる場合、当該期間を長くできるため、画像データを書き換える回数を削減することが可能であり、消費電力を低減することができる。また、本実施の形態に示す構造により、高解像度の表示装置においても、開口率を高めることができるため、バックライトなどの光源の光を効率よく利用することができ、表示装置の消費電力を低減することができる。
なお、本発明の実施形態の一態様の上面図は、これに限定されない。様々な構成をとることができる。例えば、図19のように、コモン電極29において、接続領域が各信号線として機能する導電膜上に形成されてもよい。
次いで、図4の一点鎖線A−B、C−Dにおける断面図を図5に示す。図5に示すトランジスタ102は、チャネルエッチ型のトランジスタである。なお、一点鎖線A−Bは、トランジスタ102のチャネル長方向、及び容量素子105の断面図であり、C−Dにおける断面図は、トランジスタ102のチャネル幅方向の断面図である。
図5に示すトランジスタ102は、シングルゲート構造のトランジスタであり、基板11上に設けられるゲート電極として機能する導電膜13を有する。また、基板11及びゲート電極として機能する導電膜13上に形成される窒化物絶縁膜15と、窒化物絶縁膜15上に形成される酸化物絶縁膜17と、窒化物絶縁膜15及び酸化物絶縁膜17を介して、ゲート電極として機能する導電膜13と重なる酸化物半導体膜19aと、酸化物半導体膜19aに接する、ソース電極及びドレイン電極として機能する導電膜21a、21bとを有する。また、酸化物絶縁膜17、酸化物半導体膜19a、及びソース電極及びドレイン電極として機能する導電膜21a、21b上には、酸化物絶縁膜23が形成され、酸化物絶縁膜23上には酸化物絶縁膜25が形成される。酸化物絶縁膜23、酸化物絶縁膜25、導電膜21b上には窒化物絶縁膜27が形成される。また、画素電極19bが、酸化物絶縁膜17上に形成される。画素電極19bは、ソース電極及びドレイン電極として機能する導電膜21a、21bの一方、ここでは導電膜21bに接続する。また、コモン電極29が、窒化物絶縁膜27上に形成される。
また、画素電極19bと、窒化物絶縁膜27と、コモン電極29とが重なる領域が容量素子105として機能する。
なお、本発明の実施形態の一態様の断面図は、これに限定されない。様々な構成をとることができる。例えば、画素電極19bは、スリットを有してもよい。または、画素電極19bは櫛歯形状でもよい。その場合の断面図の例を、図20に示す。または、図21に示すように、窒化物絶縁膜27の上に、絶縁膜26bが設けられてもよい。例えば、絶縁膜26bとして、有機樹脂膜を設けてもよい。これにより、絶縁膜26bの表面を平坦にすることができる。つまり、絶縁膜26bは、一例としては、平坦化膜としての機能を有することができる。または、コモン電極29と、導電膜21bとが重なるようにして、容量素子105bを形成してもよい。その場合の断面図の例を、図22、図23に示す。
以下に、表示装置の構成の詳細について説明する。
基板11の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サファイア基板等を、基板11として用いてもよい。また、シリコンや炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板等を適用することも可能であり、これらの基板上に半導体素子が設けられたものを、基板11として用いてもよい。なお、基板11として、ガラス基板を用いる場合、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)等の大面積基板を用いることで、大型の表示装置を作製することができる。
また、基板11として、可撓性基板を用い、可撓性基板上に直接、トランジスタ102を形成してもよい。または、基板11とトランジスタ102の間に剥離層を設けてもよい。剥離層は、その上に表示装置を一部あるいは全部完成させた後、基板11より分離し、他の基板に転載するのに用いることができる。その際、トランジスタ102は耐熱性の劣る基板や可撓性の基板にも転載できる。
ゲート電極として機能する導電膜13は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属元素を用いてもよい。また、ゲート電極として機能する導電膜13は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた1または複数の元素を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、ゲート電極として機能する導電膜13は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
窒化物絶縁膜15は、酸素の透過性の低い窒化物絶縁膜を用いることが可能である。更には、酸素、水素、及び水の透過性の低い窒化物絶縁膜を用いることが可能である。酸素の透過性の低い窒化物絶縁膜、酸素、水素、及び水の透過性の低い窒化物絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜、窒化アルミニウム膜、窒化酸化アルミニウム膜等がある。また、酸素の透過性の低い窒化物絶縁膜、酸素、水素、及び水の透過性の低い窒化物絶縁膜の代わりに、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ガリウム膜、酸化窒化ガリウム膜、酸化イットリウム膜、酸化窒化イットリウム膜、酸化ハフニウム膜、酸化窒化ハフニウム膜等の酸化物絶縁膜を用いることができる。
窒化物絶縁膜15の厚さは、5nm以上100nm以下、より好ましくは20nm以上80nm以下とするとよい。
酸化物絶縁膜17は、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn系金属酸化物などを用いればよく、積層または単層で設ける。
また、酸化物絶縁膜17として、ハフニウムシリケート(HfSiO)、窒素が添加されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどの比誘電率の高い材料を用いることでトランジスタのゲートリークを低減できる。
酸化物絶縁膜17の厚さは、5nm以上400nm以下、より好ましくは10nm以上300nm以下、より好ましくは50nm以上250nm以下とするとよい。
酸化物半導体膜19aは、代表的には、In−Ga酸化物、In−Zn酸化物、In−M−Zn酸化物(MはAl、Ga、Y、Zr、La、Ce、またはNd)がある。
なお、酸化物半導体膜19aがIn−M−Zn酸化物膜であるとき、InおよびMの和を100atomic%としたとき、InとMの原子数比率は、Inが25atomic%より高く、Mが75atomic%未満、好ましくはInが34atomic%より高く、Mが66atomic%未満とする。
酸化物半導体膜19aは、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタ102のオフ電流を低減することができる。
酸化物半導体膜19aの厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
酸化物半導体膜19aがIn−M−Zn酸化物膜(MはAl、Ga、Y、Zr、La、Ce、またはNd)の場合、In−M−Zn酸化物膜を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2が好ましい。なお、成膜される酸化物半導体膜19aの原子数比はそれぞれ、誤差として上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
酸化物半導体膜19aとしては、キャリア密度の低い酸化物半導体膜を用いる。例えば、酸化物半導体膜19aは、キャリア密度が1×1017個/cm以下、好ましくは1×1015個/cm以下、さらに好ましくは1×1013個/cm以下、より好ましくは1×1011個/cm以下の酸化物半導体膜を用いる。
なお、これらに限られず、必要とするトランジスタの半導体特性及び電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、酸化物半導体膜19aのキャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
なお、酸化物半導体膜19aとして、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜を用いることで、さらに優れた電気特性を有するトランジスタを作製することができ好ましい。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損量の少ない)ことを高純度真性または実質的に高純度真性とよぶ。高純度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が少ないため、キャリア密度を低くすることができる場合がある。従って、当該酸化物半導体膜にチャネル領域が形成されるトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著しく小さく、チャネル幅が1×10μmでチャネル長Lが10μmの素子であっても、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲において、オフ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×10−13A以下という特性を得ることができる。従って、当該酸化物半導体膜にチャネル領域が形成されるトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる場合がある。不純物としては、水素、窒素、アルカリ金属、またはアルカリ土類金属等がある。
酸化物半導体膜に含まれる水素は金属原子と結合する酸素と反応して水になると共に、酸素が脱離した格子(または酸素が脱離した部分)に酸素欠損が形成される。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合することで、キャリアである電子を生成する場合がある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。
このため、酸化物半導体膜19aは酸素欠損と共に、水素ができる限り低減されていることが好ましい。具体的には、酸化物半導体膜19aにおいて、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、5×1019atoms/cm以下、好ましくは1×1019atoms/cm以下、好ましくは5×1018atoms/cm以下、好ましくは1×1018atoms/cm以下、より好ましくは5×1017atoms/cm以下、さらに好ましくは1×1016atoms/cm以下とする。
酸化物半導体膜19aにおいて、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体膜19aにおいて酸素欠損が増加し、n型化してしまう。このため、酸化物半導体膜19aにおけるシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体膜19aにおいて、二次イオン質量分析法により得られるアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。アルカリ金属及びアルカリ土類金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため、酸化物半導体膜19aのアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。
また、酸化物半導体膜19aに窒素が含まれていると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。従って、当該酸化物半導体膜において、窒素はできる限り低減されていることが好ましい、例えば、二次イオン質量分析法により得られる窒素濃度は、5×1018atoms/cm以下にすることが好ましい。
また、酸化物半導体膜19aは、例えば非単結晶構造でもよい。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、後述する微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
酸化物半導体膜19aは、例えば非晶質構造でもよい。非晶質構造の酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。
なお、酸化物半導体膜19aが、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域の二種以上の領域を有する混合膜であってもよい。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域を有する単層構造の場合がある。また、混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域の積層構造を有する場合がある。
画素電極19bは、酸化物半導体膜19aと同時に形成された酸化物半導体膜を加工して形成される。このため、画素電極19bは、酸化物半導体膜19aと同様の金属元素を有する膜である。また、酸化物半導体膜19aと同様の結晶構造、または異なる結晶構造を有する膜である。しかしながら、酸化物半導体膜19aと同時に形成された酸化物半導体膜に、不純物または酸素欠損を有せしめることで、導電性を有する膜となり、画素電極19bとして機能する。酸化物半導体膜に含まれる不純物としては、水素がある。なお、水素の代わりに不純物として、ホウ素、リン、スズ、アンチモン、希ガス元素、アルカリ金属、アルカリ土類金属等が含まれていてもよい。または、画素電極19bは、酸化物半導体膜19aと同時に形成された膜であり、プラズマダメージ等により酸素欠損が形成され、導電性が高められた膜である。または、画素電極19bは、酸化物半導体膜19aと同時に形成された膜であり、且つ不純物を含むと共に、プラズマダメージ等により酸素欠損が形成され、導電性が高められた膜である。
このため、酸化物半導体膜19a及び画素電極19bは共に、酸化物絶縁膜17上に形成されるが、不純物濃度が異なる。具体的には、酸化物半導体膜19aと比較して、画素電極19bの不純物濃度が高い。例えば、酸化物半導体膜19aに含まれる水素の濃度は、5×1019atoms/cm以下、好ましくは1×1019atoms/cm以下、好ましくは5×1018atoms/cm以下、好ましくは1×1018atoms/cm以下、より好ましくは5×1017atoms/cm以下、さらに好ましくは1×1016atoms/cm以下であり、画素電極19bに含まれる水素の濃度は、8×1019atoms/cm以上、好ましくは1×1020atoms/cm以上、より好ましくは5×1020atoms/cm以上である。また、酸化物半導体膜19aと比較して、画素電極19bに含まれる水素の濃度は2倍、好ましくは10倍以上である。
また、酸化物半導体膜19aと同時に形成された酸化物半導体膜をプラズマに曝すことにより、酸化物半導体膜にダメージを与え、酸素欠損を形成することができる。例えば、酸化物半導体膜上に、プラズマCVD法またはスパッタリング法で膜を成膜すると、酸化物半導体膜がプラズマに曝され、酸素欠損が生成される。または、酸化物絶縁膜23及び酸化物絶縁膜25を形成するためのエッチング処理において酸化物半導体膜がプラズマに曝されることで、酸素欠損が生成される。または、酸化物半導体膜が、酸素及び水素の混合ガス、水素、希ガス、アンモニア等のプラズマに曝されることで、酸素欠損が生成される。この結果、酸化物半導体膜は導電性が高くなり、画素電極19bとして機能する。
即ち、画素電極19bは、導電性の高い酸化物半導体膜で形成されるともいえる。また、画素電極19bは、導電性の高い金属酸化物膜で形成されるともいえる。
また、窒化物絶縁膜27として、窒化シリコン膜を用いる場合、窒化シリコン膜は水素を含む。このため、窒化物絶縁膜27の水素が酸化物半導体膜19aと同時に形成された酸化物半導体膜に拡散すると、該酸化物半導体膜において水素は酸素と結合し、キャリアである電子が生成される。また、窒化シリコン膜をプラズマCVD法またはスパッタリング法で成膜すると、酸化物半導体膜がプラズマに曝され、酸素欠損が生成される。当該酸素欠損に、窒化シリコン膜に含まれる水素が入ることで、キャリアである電子が生成される。これらの結果、酸化物半導体膜は導電性が高くなり、画素電極19bとなる。
酸素欠損が形成された酸化物半導体に水素を添加すると、酸素欠損サイトに水素が入り伝導帯近傍にドナー準位が形成される。この結果、酸化物半導体は、導電性が高くなり、導電体化する。導電体化された酸化物半導体を酸化物導電体ということができる。すなわち、画素電極19bは、酸化物導電体膜で形成されるということができる。一般に、酸化物半導体は、エネルギーギャップが大きいため、可視光に対して透光性を有する。一方、酸化物導電体は、伝導帯近傍にドナー準位を有する酸化物半導体である。したがって、該ドナー準位による吸収の影響は小さく、可視光に対して酸化物半導体と同程度の透光性を有する。
画素電極19bは、酸化物半導体膜19aより抵抗率が低い。画素電極19bの抵抗率が、酸化物半導体膜19aの抵抗率の1×10−8倍以上1×10−1倍未満であることが好ましく、代表的には1×10−3Ωcm以上1×10Ωcm未満、さらに好ましくは、抵抗率が1×10−3Ωcm以上1×10−1Ωcm未満であるとよい。
ソース電極及びドレイン電極として機能する導電膜21a、21bは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンからなる単体金属、またはこれを主成分とする合金を単層構造または積層構造として用いる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
酸化物絶縁膜23または酸化物絶縁膜25として、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を用いることが好ましい。ここでは、酸化物絶縁膜23として、酸素を透過する酸化物絶縁膜を形成し、酸化物絶縁膜25として、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を形成する。
酸化物絶縁膜23は、酸素を透過する酸化物絶縁膜である。このため、酸化物絶縁膜23上に設けられる、酸化物絶縁膜25から脱離する酸素を、酸化物絶縁膜23を介して酸化物半導体膜19aに移動させることができる。また、酸化物絶縁膜23は、後に形成する酸化物絶縁膜25を形成する際の、酸化物半導体膜19aへのダメージ緩和膜としても機能する。
酸化物絶縁膜23としては、厚さが5nm以上150nm以下、好ましくは5nm以上50nm以下の酸化シリコン膜、酸化窒化シリコン膜等を用いることができる。なお、本明細書中において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多い膜を指し、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多い膜を指す。
また、酸化物絶縁膜23は、欠陥量が少ないことが好ましく、代表的には、ESR測定により、g=2.001に現れる信号のスピン密度が3×1017spins/cm以下であることが好ましい。なお、g=2.001に現れる信号はシリコンのダングリングボンドに由来する。これは、酸化物絶縁膜23に含まれる欠陥密度が多いと、当該欠陥に酸素が結合してしまい、酸化物絶縁膜23における酸素の透過量が減少してしまうためである。
また、酸化物絶縁膜23と酸化物半導体膜19aとの界面における欠陥量が少ないことが好ましく、代表的には、ESR測定により、酸化物半導体膜19aの欠陥に由来するg=1.93に現れる信号のスピン密度が1×1017spins/cm以下、さらには検出下限以下であることが好ましい。
なお、酸化物絶縁膜23においては、外部から酸化物絶縁膜23に入った酸素が全て酸化物絶縁膜23の外部に移動する場合がある。または、外部から酸化物絶縁膜23に入った酸素の一部が、酸化物絶縁膜23にとどまる場合もある。また、外部から酸化物絶縁膜23に酸素が入ると共に、酸化物絶縁膜23に含まれる酸素が酸化物絶縁膜23の外部へ移動することで、酸化物絶縁膜23において酸素の移動が生じる場合もある。
酸化物絶縁膜23に接するように酸化物絶縁膜25が形成されている。酸化物絶縁膜25は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を用いて形成する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、加熱により酸素の一部が脱離する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物絶縁膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
酸化物絶縁膜25としては、厚さが30nm以上500nm以下、好ましくは50nm以上400nm以下の、酸化シリコン膜、酸化窒化シリコン膜等を用いることができる。
また、酸化物絶縁膜25は、欠陥量が少ないことが好ましく、代表的には、ESR測定により、g=2.001に現れる信号のスピン密度が1.5×1018spins/cm未満、更には1×1018spins/cm以下であることが好ましい。なお、酸化物絶縁膜25は、酸化物絶縁膜23と比較して酸化物半導体膜19aから離れているため、酸化物絶縁膜23より、欠陥密度が多くともよい。
窒化物絶縁膜27は、窒化物絶縁膜15と同様に酸素の透過性の低い窒化物絶縁膜を用いることが可能である。更には、酸素、水素、及び水の透過性の低い窒化物絶縁膜を用いることが可能である。
窒化物絶縁膜27としては、厚さが50nm以上300nm以下、好ましくは100nm以上200nm以下の、窒化シリコン膜、窒化酸化シリコン膜、窒化アルミニウム膜、窒化酸化アルミニウム膜等がある。
酸化物絶縁膜23または酸化物絶縁膜25において、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜が含まれると、酸化物絶縁膜23または酸化物絶縁膜25に含まれる酸素の一部を酸化物半導体膜19aに移動させ、酸化物半導体膜19aに含まれる酸素欠損量を低減することが可能である。
酸化物半導体膜中に酸素欠損が含まれている酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナス方向に変動しやすく、ノーマリーオン特性となりやすい。これは、酸化物半導体膜に含まれる酸素欠損に起因して電荷が生じ、低抵抗化するためである。トランジスタがノーマリーオン特性を有すると、動作時に動作不良が発生しやすくなる、または非動作時の消費電力が高くなるなどの、様々な問題が生じる。また、経時変化やストレス試験により、トランジスタの電気特性、代表的にはしきい値電圧の変動量が増大するという問題がある。
しかしながら、本実施の形態に示すトランジスタ102は、酸化物半導体膜19a上に設けられる酸化物絶縁膜23または酸化物絶縁膜25が、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜である。この結果、酸化物絶縁膜23または酸化物絶縁膜25に含まれる酸素が、効率よく酸化物半導体膜19aに移動し、酸化物半導体膜19aの酸素欠損量を低減することが可能である。この結果、ノーマリーオフ特性を有するトランジスタとなる。また、経時変化やストレス試験による、トランジスタの電気特性、代表的にはしきい値電圧の変動量を低減することができる。
コモン電極29は、透光性を有する導電膜を用いる。透光性を有する導電膜は、酸化タングステンを含むインジウム酸化物膜、酸化タングステンを含むインジウム亜鉛酸化物膜、酸化チタンを含むインジウム酸化物膜、酸化チタンを含むインジウム錫酸化物膜、インジウム錫酸化物(以下、ITOと示す。)膜、インジウム亜鉛酸化物膜、酸化ケイ素を添加したインジウム錫酸化物膜等がある。
コモン電極29は、信号線として機能する導電膜21aと交差する方向に、縞状に延伸する領域を有する。このため、画素電極19b及び導電膜21a近傍において、液晶分子の意図しない配向を防ぐことが可能であり、光漏れを抑制することができる。この結果、コントラストの優れた表示装置を作製することができる。
また、本実施の形態に示す表示装置の素子基板は、トランジスタの酸化物半導体膜と同時に、画素電極が形成される。画素電極は容量素子の一方の電極として機能する。また、コモン電極は容量素子の他方の電極として機能する。これらのため、容量素子を形成するために、新たに導電膜を形成する工程が不要であり、作製工程を削減できる。また、容量素子は透光性を有する。この結果、容量素子の占有面積を大きくしつつ、画素の開口率を高めることができる。
次に、図5に示すトランジスタ102及び容量素子105の作製方法について、図6乃至図8を用いて説明する。
図6(A)に示すように、基板11上に導電膜13となる導電膜12を形成する。導電膜12は、スパッタリング法、化学気相堆積(CVD)法(有機金属化学気相堆積(MOCVD)法、メタル化学気相堆積法、原子層成膜(ALD)法あるいはプラズマ化学気相堆積(PECVD)法を含む。)、蒸着法、パルスレーザー堆積(PLD)法等により形成する。有機金属化学気相堆積(MOCVD)法、メタル化学気相堆積法、原子層成膜(ALD)法を用いることで、プラズマによるダメージの少ない導電膜を形成することができる。
ここでは、基板11としてガラス基板を用いる。また、導電膜12として、厚さ100nmのタングステン膜をスパッタリング法により形成する。
次に、導電膜12上に、第1のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成する。次に、該マスクを用いて導電膜12の一部をエッチングして、図6(B)に示すように、ゲート電極として機能する導電膜13を形成する。この後、マスクを除去する。
なお、ゲート電極として機能する導電膜13は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジェット法等で形成してもよい。
ここでは、ドライエッチング法によりタングステン膜をエッチングして、ゲート電極として機能する導電膜13を形成する。
次に、図6(C)に示すように、ゲート電極として機能する導電膜13上に、窒化物絶縁膜15と、後に酸化物絶縁膜17となる酸化物絶縁膜16を形成する。次に、酸化物絶縁膜16上に、後に酸化物半導体膜19a、画素電極19bとなる酸化物半導体膜18を形成する。
窒化物絶縁膜15及び酸化物絶縁膜16は、スパッタリング法、化学気相堆積(CVD)法(有機金属化学気相堆積(MOCVD)法、メタル化学気相堆積法、原子層成膜(ALD)法あるいはプラズマ化学気相堆積(PECVD)法を含む。)、蒸着法、パルスレーザー堆積(PLD)法、塗布法、印刷法等により形成する。有機金属化学気相堆積(MOCVD)法、メタル化学気相堆積法、原子層成膜(ALD)法を用いることで、プラズマによるダメージの少ない窒化物絶縁膜15及び酸化物絶縁膜16を形成することができる。また、原子層成膜(ALD)法を用いることで、窒化物絶縁膜15及び酸化物絶縁膜16の被覆性を高めることが可能である。
ここでは、シラン、窒素、及びアンモニアを原料ガスとしたプラズマCVD法を用いて、窒化物絶縁膜15として、厚さ300nmの窒化シリコン膜を形成する。
酸化物絶縁膜16として酸化シリコン膜、酸化窒化シリコン膜、または窒化酸化シリコン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
酸化物絶縁膜16として酸化ガリウム膜を形成する場合、MOCVD法を用いて形成することができる。
ここでは、シラン及び一酸化二窒素を原料ガスとしたプラズマCVD法を用いて、酸化物絶縁膜16として、厚さ50nmの酸化窒化シリコン膜を形成する。
酸化物半導体膜18は、スパッタリング法、化学気相堆積(CVD)法(有機金属化学気相堆積(MOCVD)法、原子層成膜(ALD)法あるいはプラズマ化学気相堆積(PECVD)法を含む)、パルスレーザー蒸着法、レーザーアブレーション法、塗布法等を用いて形成することができる。有機金属化学気相堆積(MOCVD)法、原子層成膜(ALD)法を用いることで、プラズマによるダメージの少ない酸化物半導体膜18を形成することができるとともに、酸化物絶縁膜16へのダメージを低減することができる。また、原子層成膜(ALD)法を用いることで、酸化物半導体膜18の被覆性を高めることが可能である。
スパッタリング法で酸化物半導体膜を形成する場合、プラズマを発生させるための電源装置は、RF電源装置、AC電源装置、DC電源装置等を適宜用いることができる。
スパッタリングガスは、希ガス(代表的にはアルゴン)、酸素ガス、希ガス及び酸素の混合ガスを適宜用いる。なお、希ガス及び酸素の混合ガスの場合、希ガスに対して酸素のガス比を高めることが好ましい。
また、ターゲットは、形成する酸化物半導体膜の組成にあわせて、適宜選択すればよい。
高純度真性または実質的に高純度真性である酸化物半導体膜を得るためには、チャンバー内を高真空排気するのみならずスパッタガスの高純度化も必要である。スパッタガスとして用いる酸素ガスやアルゴンガスは、露点が−40℃以下、好ましくは−80℃以下、より好ましくは−100℃以下、より好ましくは−120℃以下にまで高純度化したガスを用いることで酸化物半導体膜に水分等が取り込まれることを可能な限り防ぐことができる。
ここでは、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=1:1:1)を用いたスパッタリング法により、酸化物半導体膜として厚さ35nmのIn−Ga−Zn酸化物膜を形成する。
次に、酸化物半導体膜18上に、第2のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成した後、該マスクを用いて酸化物半導体膜の一部をエッチングすることで、図6(D)に示すような、素子分離された酸化物半導体膜19a、19cを形成する。この後、マスクを除去する。
ここでは、酸化物半導体膜18上にマスクを形成し、ウエットエッチング法により酸化物半導体膜18の一部を選択的にエッチングすることで、酸化物半導体膜19a、19cを形成する。
次に、図7(A)に示すように、のちに導電膜21a、21bとなる導電膜20を形成する。
導電膜20は、導電膜12と同様の方法を適宜用いて形成することができる。
ここでは、厚さ50nmのタングステン膜及び厚さ300nmの銅膜を順にスパッタリング法により積層する。
次に、導電膜20上に第3のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成する。次に、該マスクを用いて導電膜20をエッチングして、図7(B)に示すように、ソース電極及びドレイン電極として機能する導電膜21a、21bを形成する。この後、マスクを除去する。
ここでは、銅膜上にフォトリソグラフィ工程によりマスクを形成する。次に、当該マスクを用いてタングステン膜及び銅膜をエッチングして、導電膜21a、21bを形成する。なお、ウエットエッチング法を用いて銅膜をエッチングする。次に、SFを用いたドライエッチング法により、タングステン膜をエッチングすることで、該エッチングにおいて、銅膜の表面にフッ化物が形成される。該フッ化物により、銅膜からの銅元素の拡散が低減され、酸化物半導体膜19aにおける銅濃度を低減することができる。
次に、図7(C)に示すように、酸化物半導体膜19a、19c、及び導電膜21a、21b上に、後に酸化物絶縁膜23となる酸化物絶縁膜22、及び後に酸化物絶縁膜25となる酸化物絶縁膜24を形成する。酸化物絶縁膜22及び酸化物絶縁膜24は、窒化物絶縁膜15及び酸化物絶縁膜16と同様の方法を適宜用いて形成することができる。
なお、酸化物絶縁膜22を形成した後、大気に曝すことなく、連続的に酸化物絶縁膜24を形成することが好ましい。酸化物絶縁膜22を形成した後、大気開放せず、原料ガスの流量、圧力、高周波電力及び基板温度の一以上を調整して、酸化物絶縁膜24を連続的に形成することで、酸化物絶縁膜22及び酸化物絶縁膜24における界面の大気成分由来の不純物濃度を低減することができると共に、酸化物絶縁膜24に含まれる酸素を酸化物半導体膜19aに移動させることが可能であり、酸化物半導体膜19aの酸素欠損量を低減することができる。
酸化物絶縁膜22としては、プラズマCVD装置の真空排気された処理室内に載置された基板を280℃以上400℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力を20Pa以上250Pa以下、さらに好ましくは100Pa以上250Pa以下とし、処理室内に設けられる電極に高周波電力を供給する条件により、酸化シリコン膜または酸化窒化シリコン膜を形成することができる。
酸化物絶縁膜22の原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
上記条件を用いることで、酸化物絶縁膜22として酸素を透過する酸化物絶縁膜を形成することができる。また、酸化物絶縁膜22を設けることで、後に形成する酸化物絶縁膜25の形成工程において、酸化物半導体膜19aへのダメージ低減が可能である。
当該成膜条件において、基板温度を上記温度とすることで、シリコン及び酸素の結合力が強くなる。この結果、酸化物絶縁膜22として、酸素が透過し、緻密であり、且つ硬い酸化物絶縁膜、代表的には、25℃において0.5重量%のフッ酸を用いた場合のエッチング速度が10nm/分以下、好ましくは8nm/分以下である酸化シリコン膜または酸化窒化シリコン膜を形成することができる。
また、加熱をしながら酸化物絶縁膜22を形成するため、当該工程において酸化物半導体膜19aに含まれる水素、水等を脱離させることができる。酸化物半導体膜19aに含まれる水素は、プラズマ中で発生した酸素ラジカルと結合し、水となる。酸化物絶縁膜22の成膜工程において基板が加熱されているため、酸素及び水素の結合により生成された水は、酸化物半導体膜から脱離する。即ち、プラズマCVD法によって酸化物絶縁膜22を形成することで、酸化物半導体膜19aに含まれる水及び水素の含有量を低減することができる。
また、酸化物絶縁膜22を形成する工程において加熱するため、酸化物半導体膜19aが露出された状態での加熱時間が少なく、加熱処理による酸化物半導体膜からの酸素の脱離量を低減することができる。即ち、酸化物半導体膜中に含まれる酸素欠損量を低減することができる。
なお、シリコンを含む堆積性気体に対する酸化性気体量を100倍以上とすることで、酸化物絶縁膜22に含まれる水素含有量を低減することが可能である。この結果、酸化物半導体膜19aに混入する水素量を低減できるため、トランジスタのしきい値電圧のマイナスシフトを抑制することができる。
ここでは、酸化物絶縁膜22として、流量30sccmのシラン及び流量4000sccmの一酸化二窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃とし、27.12MHzの高周波電源を用いて150Wの高周波電力を平行平板電極に供給したプラズマCVD法により、厚さ50nmの酸化窒化シリコン膜を形成する。当該条件により、酸素が透過する酸化窒化シリコン膜を形成することができる。
酸化物絶縁膜24としては、プラズマCVD装置の真空排気された処理室内に載置された基板を180℃以上280℃以下、さらに好ましくは200℃以上240℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下、さらに好ましくは100Pa以上200Pa以下とし、処理室内に設けられる電極に0.17W/cm以上0.5W/cm以下、さらに好ましくは0.25W/cm以上0.35W/cm以下の高周波電力を供給する条件により、酸化シリコン膜または酸化窒化シリコン膜を形成する。
酸化物絶縁膜24の原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
酸化物絶縁膜24の成膜条件として、上記圧力の処理室において上記パワー密度の高周波電力を供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増加し、原料ガスの酸化が進むため、酸化物絶縁膜24中における酸素含有量が化学量論比よりも多くなる。一方、基板温度が、上記温度で形成された膜では、シリコンと酸素の結合力が弱いため、後の工程の加熱処理により膜中の酸素の一部が脱離する。この結果、化学量論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離する酸化物絶縁膜を形成することができる。また、酸化物半導体膜19a上に酸化物絶縁膜22が設けられている。このため、酸化物絶縁膜24の形成工程において、酸化物絶縁膜22が酸化物半導体膜19aの保護膜となる。この結果、酸化物半導体膜19aへのダメージを低減しつつ、パワー密度の高い高周波電力を用いて酸化物絶縁膜24を形成することができる。
ここでは、酸化物絶縁膜24として、流量200sccmのシラン及び流量4000sccmの一酸化二窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃とし、27.12MHzの高周波電源を用いて1500Wの高周波電力を平行平板電極に供給したプラズマCVD法により、厚さ400nmの酸化窒化シリコン膜を形成する。なお、プラズマCVD装置は電極面積が6000cmである平行平板型のプラズマCVD装置であり、供給した電力を単位面積あたりの電力(電力密度)に換算すると0.25W/cmである。
また、ソース電極及びドレイン電極として機能する導電膜21a、21bを形成する際、導電膜のエッチングによって、酸化物半導体膜19aはダメージを受け、酸化物半導体膜19aのバックチャネル(酸化物半導体膜19aにおいて、ゲート電極として機能する導電膜13と対向する面と反対側の面)側に酸素欠損が生じる。しかし、酸化物絶縁膜24に化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を適用することで、加熱処理によって当該バックチャネル側に生じた酸素欠損を修復することができる。これにより、酸化物半導体膜19aに含まれる欠陥を低減することができるため、トランジスタ102の信頼性を向上させることができる。
次に、酸化物絶縁膜24上に、第4のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成する。次に、該マスクを用いて酸化物絶縁膜22及び酸化物絶縁膜24の一部をエッチングして、図7(D)に示すように、開口部40を有する酸化物絶縁膜23及び酸化物絶縁膜25を形成する。この後、マスクを除去する。
当該工程において、ドライエッチング法により、酸化物絶縁膜22及び酸化物絶縁膜24をエッチングすることが好ましい。この結果、酸化物半導体膜19cはエッチング処理においてプラズマに曝されるため、酸化物半導体膜19cの酸素欠損量を増加させることが可能である。
次に、加熱処理を行う。該加熱処理の温度は、代表的には、150℃以上400℃以下、好ましくは300℃以上400℃以下、好ましくは320℃以上370℃以下とする。
該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いることで、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱処理時間を短縮することができる。
加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウム等)の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水素、水等が含まれないことが好ましい。
当該加熱処理により、酸化物絶縁膜25に含まれる酸素の一部を酸化物半導体膜19aに移動させ、酸化物半導体膜19aに含まれる酸素欠損量を低減することができる。
また、酸化物絶縁膜23及び酸化物絶縁膜25に水、水素等が含まれる場合であって、窒化物絶縁膜26が、さらに水、水素等に対するバリア性を有する場合、窒化物絶縁膜26を後に形成し、加熱処理を行うと、酸化物絶縁膜23及び酸化物絶縁膜25に含まれる水、水素等が、酸化物半導体膜19aに移動し、酸化物半導体膜19aに欠陥が生じてしまう。しかしながら、当該加熱により、酸化物絶縁膜23及び酸化物絶縁膜25に含まれる水、水素等を脱離させることが可能であり、トランジスタ102の電気特性のばらつきを低減すると共に、しきい値電圧の変動を抑制することができる。
なお、加熱しながら酸化物絶縁膜24を、酸化物絶縁膜22上に形成することで、酸化物半導体膜19aに酸素を移動させ、酸化物半導体膜19aに含まれる酸素欠損量を低減することが可能であるため、当該加熱処理を行わなくともよい。
また、当該加熱処理は、酸化物絶縁膜22及び酸化物絶縁膜24を形成した後に行ってもよいが、酸化物絶縁膜23及び酸化物絶縁膜25を形成した後の加熱処理の方が、酸化物半導体膜19cへの酸素の移動が生じないと共に、酸化物半導体膜19cが露出されているため酸化物半導体膜19cから酸素が脱離し、酸素欠損が形成されるため、より導電性を有する膜を形成でき、好ましい。
ここでは、窒素及び酸素雰囲気で、350℃、1時間の加熱処理を行う。
次に、図8(A)に示すように、窒化物絶縁膜26を形成する。
窒化物絶縁膜26は、窒化物絶縁膜15及び酸化物絶縁膜16と同様の方法を適宜用いて形成することができる。窒化物絶縁膜26をスパッタリング法、CVD法等により形成することで、酸化物半導体膜19cがプラズマに曝されるため、酸化物半導体膜19cの酸素欠損量を増加させることができる。
また、酸化物半導体膜19cは導電性が向上し、画素電極19bとなる。なお、窒化物絶縁膜26として、プラズマCVD法により窒化シリコン膜を形成すると、窒化シリコン膜に含まれる水素が酸化物半導体膜19cに拡散するため、画素電極19bの導電性を高めることができる。
窒化物絶縁膜26としてプラズマCVD法で窒化シリコン膜を形成する場合、プラズマCVD装置の真空排気された処理室内に載置された基板を300℃以上400℃以下、さらに好ましくは320℃以上370℃以下に保持することで、緻密な窒化シリコン膜を形成できるため好ましい。
窒化シリコン膜を形成する場合、シリコンを含む堆積性気体、窒素、及びアンモニアを原料ガスとして用いることが好ましい。原料ガスとして、窒素と比較して少量のアンモニアを用いることで、プラズマ中でアンモニアが解離し、活性種が発生する。当該活性種が、シリコンを含む堆積性気体に含まれるシリコン及び水素の結合、及び窒素の三重結合を切断する。この結果、シリコン及び窒素の結合が促進され、シリコン及び水素の結合が少なく、欠陥が少なく、緻密な窒化シリコン膜を形成することができる。一方、原料ガスにおいて、窒素に対するアンモニアの量が多いと、シリコンを含む堆積性気体及び窒素それぞれの分解が進まず、シリコン及び水素結合が残存してしまい、欠陥が増大した、且つ粗な窒化シリコン膜が形成されてしまう。これらのため、原料ガスにおいて、アンモニアに対する窒素の流量比を5以上50以下、好ましくは10以上50以下とすることが好ましい。
ここでは、プラズマCVD装置の処理室に、流量50sccmのシラン、流量5000sccmの窒素、及び流量100sccmのアンモニアを原料ガスとし、処理室の圧力を100Pa、基板温度を350℃とし、27.12MHzの高周波電源を用いて1000Wの高周波電力を平行平板電極に供給したプラズマCVD法により、窒化物絶縁膜26として、厚さ50nmの窒化シリコン膜を形成する。なお、プラズマCVD装置は電極面積が6000cmである平行平板型のプラズマCVD装置であり、供給した電力を単位面積あたりの電力(電力密度)に換算すると1.7×10−1W/cmである。
次に、加熱処理を行ってもよい。該加熱処理の温度は、代表的には、150℃以上400℃以下、好ましくは300℃以上400℃以下、好ましくは320℃以上370℃以下とする。この結果、しきい値電圧のマイナスシフトを低減することができる。また、しきい値電圧の変動量を低減することができる。
次に、図示しないが、窒化物絶縁膜26上に第5のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成した後、該マスクを用いて、窒化物絶縁膜26をエッチングして、導電膜21a、21bと同時に形成される導電膜を露出させると共に窒化物絶縁膜27を形成する。該導電膜は、後に形成されるコモン電極29と接続される。
次に、図8(B)に示すように、窒化物絶縁膜27上に、後にコモン電極29となる導電膜28を形成する。
導電膜28は、スパッタリング法、CVD法、蒸着法等により導電膜を形成する。
次に、導電膜28上に、第6のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成する。次に、該マスクを用いて導電膜28の一部をエッチングして、図8(C)に示すように、コモン電極29を形成する。なお、図示しないが、コモン電極29は、導電膜13と同時に形成された接続端子、または導電膜21a、21bと同時に形成された接続端子と接続する。この後、マスクを除去する。
以上の工程により、トランジスタ102を作製すると共に、容量素子105を作製することができる。
本実施の形態に示す表示装置の素子基板は、信号線と交差する方向に縞状に延伸した領域を有するコモン電極が形成される。このため、コントラストの優れた表示装置を作製することができる。
また、本実施の形態に示す表示装置の素子基板は、トランジスタの酸化物半導体膜と同時に、画素電極が形成されるため、6枚のフォトマスクを用いてトランジスタ102及び容量素子105を作製することが可能である。画素電極は容量素子の一方の電極として機能する。また、コモン電極は、容量素子の他方の電極として機能する。これらのため、容量素子を形成するために、新たに導電膜を形成する工程が不要であり、作製工程を削減できる。また、容量素子は透光性を有する。この結果、容量素子の占有面積を大きくしつつ、画素の開口率を高めることができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
<変形例1>
実施の形態1に示す表示装置において、コモン電極に接続するコモン線を有する構造について、図9を用いて説明する。
図9(A)は、表示装置に含まれる画素103a、103b、103cの上面図であり、図9(A)の一点鎖線A−B、C−Dの断面図を図9(B)に示す。
図9(A)に示すように、信号線として機能する導電膜21aと平行または略平行な方向に延伸するコモン線21cが形成される。ここで、コモン電極29の構成を分かりやすくするため、ハッチングを用いてコモン電極29の形状を説明する。コモン電極29は、左下がりハッチングで示した複数の第1の領域と、右下がりハッチングで示した第2の領域とを有する。なお、複数の第1の領域は、縞状の領域である。第2の領域は、信号線として機能する導電膜21aと平行または略平行な方向に延伸する。また、第2の領域は、複数の第1の領域(縞状の領域)と接続するため、接続領域ともいえる。コモン線21cは、コモン電極29の接続領域(第2の領域)と重なる。
コモン線21cは、1画素ごとに設けてもよい。または、コモン線21cは、複数の画素ごとに設けてもよい。たとえば、図9(A)に示すように、3つの画素に対して1本のコモン線21cを設けることで、表示装置においてコモン線の専有面積を低減することが可能である。この結果、画素の面積及び画素の開口率を高めることが可能である。
また、画素電極19b及びコモン電極29が重なる領域において、画素電極19bと、コモン電極29の接続領域(第2の領域)との間で発生する電界では、液晶分子が駆動されにくい。このため、コモン電極29の接続領域において、画素電極19bと重なる領域を低減することで、液晶分子が駆動される領域を増加させることが可能となり、開口率を向上することができる。例えば、図9(A)に示すように、コモン電極29の接続領域を、画素電極19bと重ならない位置に設けることで、画素電極19bとコモン電極29の接続領域との重なる面積を低減することが可能であり、画素の開口率を高めることが可能である。
なお、図9(A)において、3つの画素103a、103b、103cに対して1本のコモン線21cを設けているが、2つの画素に対して1本のコモン線を設けてもよい。または、4以上の画素に対して1本のコモン線を設けてもよい。
図9(B)に示すように、コモン線21cは、信号線として機能する導電膜21aと同時に形成することができる。また、コモン電極29は、酸化物絶縁膜23、酸化物絶縁膜25、及び窒化物絶縁膜27に形成される開口部42において、コモン線21cと接続する。
コモン電極29を形成する材料と比較して、導電膜21aを形成する材料の抵抗率が低いため、コモン電極29及びコモン線21cの抵抗を低減することが可能である。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、実施の形態2と異なる表示装置及びその作製方法について図面を参照して説明する。本実施の形態では、高精細な表示装置に含まれるトランジスタにおいて、光漏れを低減することが可能なソース電極及びドレイン電極を有する点が、実施の形態2と異なる。なお、実施の形態2と重複する構成は説明を省略する。
図10は、本実施の形態に示す表示装置の上面図である。ソース電極及びドレイン電極の一方として機能する導電膜21bの上面形状がL字であることを特徴とする。すなわち、導電膜21bは、走査線として機能する導電膜13と垂直な方向に延伸する領域21b_1と、該導電膜13と平行または略平行な方向に延伸する領域21b_2とが接続した平面形状を有し、且つ該領域21b_2が、上面図において、導電膜13、画素電極19b、及びコモン電極29の一以上と重なることを特徴とする。または、導電膜21bは、該導電膜13と平行または略平行な方向に延伸する領域21b_2を有し、該領域21b_2が、上面図において、導電膜13と、画素電極19bまたはコモン電極29との間に位置することを特徴とする。
高精細な表示装置において、画素の面積が縮小されるため、走査線として機能する導電膜13及びコモン電極29の間隔が狭まる。黒表示の画素において、トランジスタがオン状態となる電圧が、走査線として機能する導電膜13に印加されると、画素電極19b及び走査線として機能する導電膜13との間に、電界が発生してしまう。この結果、液晶分子が意図しない方向に回転してしまい、光漏れの原因となる。
しかしながら、本実施の形態に示す表示装置に含まれるトランジスタにおいて、ソース電極及びドレイン電極の一方として機能する導電膜21bにおいて、導電膜13、画素電極19b、及びコモン電極29の一以上と重なる領域21b_2を有する、または、上面図において、導電膜13と、画素電極19bまたはコモン電極29との間に位置する領域21b_2を有する。この結果、領域21b_2が、走査線として機能する導電膜13の電界を遮蔽するため、該導電膜13及び画素電極19bの間に発生する電界を抑制することが可能であり、光漏れを低減することが可能である。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、実施の形態2及び実施の形態3と異なる表示装置及びその作製方法について図面を参照して説明する。本実施の形態では、高精細な表示装置において、光漏れを低減することが可能なコモン電極を有する点が実施の形態2と異なる。なお、実施の形態2と重複する構成は説明を省略する。
図11は、本実施の形態に示す表示装置の上面図である。コモン電極29aは、信号線として機能する導電膜21aと交差する方向に延伸する縞状の領域29a_1と、該縞状の領域と接続し、且つ走査線として機能する導電膜13と重なる領域29a_2を有することを特徴とする。
高精細な表示装置において、画素の面積が縮小されるため、走査線として機能する導電膜13及び画素電極19bの間隔が狭まる。走査線として機能する導電膜13に電圧が印加されると、該導電膜13及び画素電極19bの間に電界が発生してしまう。この結果、液晶分子が意図しない方向に動作してしまい、光漏れの原因となる。
しかしながら、本実施の形態に示す表示装置は、走査線として機能する導電膜13と交差する領域29a_2を有するコモン電極29aを有する。この結果、走査線として機能する導電膜13とコモン電極29aの間に発生する電界を抑制することが可能であり、光漏れを低減することが可能である。
なお、本発明の実施形態の一態様の上面図は、これに限定されない。様々な構成をとることができる。例えば、コモン電極29aは、図24や図25のように、走査線として機能する導電膜13の一部と重なる領域を有してもよい。トランジスタの酸化物半導体膜19aに形成されるチャネル領域は、コモン電極29aと重ならない。この結果、チャネル領域へコモン電極29aの電界が加わらないため、トランジスタのリーク電流を低減することができる。また、図25に示すコモン電極29aは、走査線として機能する導電膜13及び信号線として機能する導電膜21aと重なる領域を有するため、導電膜13及び導電膜21aの電界をコモン電極29aで遮蔽することができるため、液晶分子の配向乱れを低減することができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、実施の形態2と異なる表示装置及びその作製方法について図面を参照して説明する。本実施の形態では、トランジスタにおいて異なるゲート電極の間に酸化物半導体膜が設けられている構造、即ちデュアルゲート構造のトランジスタである点が実施の形態2と異なる。なお、実施の形態2と重複する構成は説明を省略する。
表示装置に含まれる素子基板の具体的な構成について説明する。本実施の形態に示す素子基板は、図12に示すように、ゲート電極として機能する導電膜13、酸化物半導体膜19a、導電膜21a、21b、及び酸化物絶縁膜25それぞれの一部または全部に重なるゲート電極として機能する導電膜29bを有する点が実施の形態2と異なる。ゲート電極として機能する導電膜29bは、開口部41a及び41bにおいて、ゲート電極として機能する導電膜13と接続する。
次いで、図12に示すトランジスタ102aは、チャネルエッチ型のトランジスタである。なお、A−Bは、トランジスタ102aのチャネル長方向、及び容量素子105aの断面図であり、C−Dにおける断面図は、トランジスタ102aのチャネル幅方向、及びゲート電極として機能する導電膜13及びゲート電極として機能する導電膜29bの接続部における断面図である。
図12に示すトランジスタ102aは、デュアルゲート構造のトランジスタであり、基板11上に設けられるゲート電極として機能する導電膜13を有する。また、基板11及びゲート電極として機能する導電膜13上に形成される窒化物絶縁膜15と、窒化物絶縁膜15上に形成される酸化物絶縁膜17と、窒化物絶縁膜15及び酸化物絶縁膜17を介して、ゲート電極として機能する導電膜13と重なる酸化物半導体膜19aと、酸化物半導体膜19aに接する、ソース電極及びドレイン電極として機能する導電膜21a、21bとを有する。また、酸化物絶縁膜17、酸化物半導体膜19a、及びソース電極及びドレイン電極として機能する導電膜21a、21b上には、酸化物絶縁膜23が形成され、酸化物絶縁膜23上には酸化物絶縁膜25が形成される。窒化物絶縁膜15、酸化物絶縁膜23、酸化物絶縁膜25、導電膜21b上には窒化物絶縁膜27が形成される。また、画素電極19bが、酸化物絶縁膜17上に形成される。画素電極19bは、ソース電極及びドレイン電極として機能する導電膜21a、21bの一方、ここでは導電膜21bに接続する。また、コモン電極29、及びゲート電極として機能する導電膜29bが窒化物絶縁膜27上に形成される。
C−Dにおける断面図に示すように、窒化物絶縁膜15及び窒化物絶縁膜27に設けられる開口部41a及び41bにおいて、ゲート電極として機能する導電膜29bは、ゲート電極として機能する導電膜13と接続する。即ち、ゲート電極として機能する導電膜13及びゲート電極として機能する導電膜29bは同電位である。
このため、トランジスタ102aの各ゲート電極に同電位の電圧を印加することで、初期特性バラつきの低減、−GBTストレス試験の劣化の抑制及び異なるドレイン電圧におけるオン電流の立ち上がり電圧の変動の抑制が可能である。また、酸化物半導体膜19aにおいてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタ102aのオン電流が大きくなると共に、電界効果移動度が高くなり、代表的には電界効果移動度が20cm/V・s以上となる。
本実施の形態に示すトランジスタ102a上には分離された酸化物絶縁膜23、25が形成される。分離された酸化物絶縁膜23、25が酸化物半導体膜19aと重畳する。また、チャネル幅方向の断面図において、酸化物半導体膜19aの外側に酸化物絶縁膜23及び酸化物絶縁膜25の端部が位置する。また、図12に示すチャネル幅方向において、ゲート電極として機能する導電膜29bは、酸化物絶縁膜23及び酸化物絶縁膜25を介して、酸化物半導体膜19aの側面と対向する。
エッチング等で加工された酸化物半導体膜の端部においては、加工におけるダメージにより欠陥が形成されると共に、不純物付着などにより汚染される。このため、電界などのストレスが与えられることによって活性化しやすく、それによりn型(低抵抗)となりやすい。そのため、ゲート電極として機能する導電膜13と重なる酸化物半導体膜19aの端部において、n型化しやすくなる。当該n型化された端部が、ソース電極及びドレイン電極として機能する導電膜21a、21bの間に設けられると、n型化された領域がキャリアのパスとなってしまい、寄生チャネルが形成される。しかしながら、C−Dの断面図に示すように、チャネル幅方向において、ゲート電極として機能する導電膜29bが、酸化物絶縁膜23、25を介して、酸化物半導体膜19aの側面と対向すると、ゲート電極として機能する導電膜29bの電界の影響により、酸化物半導体膜19aの側面、または側面及びその近傍を含む領域における寄生チャネルの発生が抑制される。この結果、しきい値電圧におけるドレイン電流の上昇が急峻である、電気特性の優れたトランジスタとなる。
コモン電極は、信号線と交差する方向に縞状に延伸した領域を有する。このため、画素電極19b及び導電膜21a近傍において、液晶分子の意図しない配向を防ぐことが可能であり、光漏れを抑制することができる。この結果、コントラストの優れた表示装置を作製することができる。
また、容量素子105aにおいて、画素電極19bは、酸化物半導体膜19aと同時に形成された膜であり、且つ不純物を含むことにより導電性が高められた膜である。または、画素電極19bは、酸化物半導体膜19aと同時に形成された膜であり、プラズマダメージ等により酸素欠損が形成され、導電性が高められた膜である。または、画素電極19bは、酸化物半導体膜19aと同時に形成された膜であり、且つ不純物を含むと共に、プラズマダメージ等により酸素欠損が形成され、導電性が高められた膜である。
本実施の形態に示す表示装置の素子基板は、トランジスタの酸化物半導体膜と同時に、画素電極が形成される。画素電極は容量素子の一方の電極として機能する。また、コモン電極は容量素子の他方の電極として機能する。これらのため、容量素子を形成するために、新たに導電膜を形成する工程が不要であり、作製工程を削減できる。また、容量素子は透光性を有する。この結果、容量素子の占有面積を大きくしつつ、画素の開口率を高めることができる。
以下に、トランジスタ102aの構成の詳細について説明する。なお、実施の形態2と同じ符号の構成については、説明を省略する。
ゲート電極として機能する導電膜29bは、実施の形態2に示すコモン電極29と同様の材料を適宜用いることができる。
次に、図12に示すトランジスタ102a及び容量素子105aの作製方法について、図6乃至図8、及び図13を用いて説明する。
実施の形態2と同様に、図6乃至図8(A)の工程を経て、基板11上にゲート電極として機能する導電膜13、窒化物絶縁膜15、酸化物絶縁膜16、酸化物半導体膜19a、画素電極19b、ソース電極及びドレイン電極として機能する導電膜21a、21b、酸化物絶縁膜22、酸化物絶縁膜24、及び窒化物絶縁膜26をそれぞれ形成する。当該工程においては、第1のフォトマスク乃至第4のフォトマスクを用いたフォトリソグラフィ工程を行う。
次に、窒化物絶縁膜26上に第5のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成した後、該マスクを用いて窒化物絶縁膜26の一部をエッチングして、図13(A)に示すように、開口部41a及び41bを有する窒化物絶縁膜27を形成する。
次に、図13(B)に示すように、ゲート電極として機能する導電膜13、導電膜21b、及び窒化物絶縁膜27上に、後にコモン電極29、ゲート電極として機能する導電膜29bとなる導電膜28を形成する。
次に、導電膜28上に、第6のフォトマスクを用いたフォトリソグラフィ工程によりマスクを形成する。次に、該マスクを用いて導電膜28の一部をエッチングして、図13(C)に示すように、コモン電極29及びゲート電極として機能する導電膜29bを形成する。この後、マスクを除去する。
以上の工程により、トランジスタ102aを作製すると共に、容量素子105aを作製することができる。
本実施の形態に示すトランジスタでは、チャネル幅方向において、ゲート電極として機能するコモン電極29が、酸化物絶縁膜23、25を介して、酸化物半導体膜19aの側面と対向するため、ゲート電極として機能する導電膜29bの電界の影響により、酸化物半導体膜19aの側面、または側面及びその近傍を含む領域における寄生チャネルの発生が抑制される。この結果、しきい値電圧におけるドレイン電流の上昇が急峻である、電気特性の優れたトランジスタとなる。
本実施の形態に示す表示装置の素子基板は、信号線と交差する方向に縞状に延伸した領域を有するコモン電極が形成される。このため、コントラストの優れた表示装置を作製することができる。
また、本実施の形態に示す表示装置の素子基板は、トランジスタの酸化物半導体膜と同時に、画素電極が形成される。画素電極は容量素子の一方の電極として機能する。また、コモン電極は、容量素子の他方の電極として機能する。これらのため、容量素子を形成するために、新たに導電膜を形成する工程が不要であり、作製工程を削減できる。また、容量素子は透光性を有する。この結果、容量素子の占有面積を大きくしつつ、画素の開口率を高めることができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態6)
実施の形態2乃至実施の形態5に示すトランジスタに設けられるソース電極及びドレイン電極として機能する導電膜21a、21bとして、タングステン、チタン、アルミニウム、銅、モリブデン、クロム、またはタンタル単体若しくはこれらの合金等の酸素と結合しやすい導電材料を用いることができる。この結果、酸化物半導体膜19aに含まれる酸素とソース電極及びドレイン電極として機能する導電膜21a、21bに含まれる導電材料とが結合し、酸化物半導体膜19aにおいて、酸素欠損領域が形成される。また、酸化物半導体膜19aにソース電極及びドレイン電極として機能する導電膜21a、21bを形成する導電材料の構成元素の一部が混入する場合もある。これらの結果、酸化物半導体膜19aにおいて、ソース電極及びドレイン電極として機能する導電膜21a、21bと接する領域近傍に、低抵抗領域が形成される。低抵抗領域は、ソース電極及びドレイン電極として機能する導電膜21a、21bに接し、且つ酸化物絶縁膜17と、ソース電極及びドレイン電極として機能する導電膜21a、21bの間に形成される。低抵抗領域は、導電性が高いため、酸化物半導体膜19aとソース電極及びドレイン電極として機能する導電膜21a、21bとの接触抵抗を低減することが可能であり、トランジスタのオン電流を増大させることが可能である。
また、ソース電極及びドレイン電極として機能する導電膜21a、21bを、上記酸素と結合しやすい導電材料と、窒化チタン、窒化タンタル、ルテニウム等の酸素と結合しにくい導電材料との積層構造としてもよい。このような積層構造とすることで、ソース電極及びドレイン電極として機能する導電膜21a、21bと酸化物絶縁膜23との界面において、ソース電極及びドレイン電極として機能する導電膜21a、21bの酸化を防ぐことが可能であり、ソース電極及びドレイン電極として機能する導電膜21a、21bの高抵抗化を抑制することが可能である。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、実施の形態2乃至実施の形態5と比較して、酸化物半導体膜の欠陥量をさらに低減することが可能なトランジスタを有する表示装置について図面を参照して説明する。本実施の形態で説明するトランジスタは、実施の形態2乃至実施の形態5と比較して、複数の酸化物半導体膜を有する多層膜を有する点が異なる。ここでは、実施の形態2を用いて、トランジスタの詳細を説明する。
図14に、表示装置が有する素子基板の断面図を示す。図14は、図4の一点鎖線A−B、C−D間の断面図に相当する。
図14(A)に示すトランジスタ102bは、窒化物絶縁膜15及び酸化物絶縁膜17を介して、ゲート電極として機能する導電膜13と重なる多層膜37aと、多層膜37aに接するソース電極及びドレイン電極として機能する導電膜21a、21bとを有する。また、窒化物絶縁膜15及び酸化物絶縁膜17、多層膜37a、及びソース電極及びドレイン電極として機能する導電膜21a、21b上には、酸化物絶縁膜23、酸化物絶縁膜25、及び窒化物絶縁膜27が形成される。
図14(A)に示す容量素子105bは、酸化物絶縁膜17上に形成される多層膜37bと、多層膜37bに接する窒化物絶縁膜27と、窒化物絶縁膜27に接するコモン電極29とを有する。多層膜37bは、酸化物半導体膜19f及び酸化物半導体膜39bを有する。即ち、多層膜37bは2層構造である。また、多層膜37bは画素電極として機能する。
本実施の形態に示すトランジスタ102bにおいて、多層膜37aは、酸化物半導体膜19a及び酸化物半導体膜39aを有する。即ち、多層膜37aは2層構造である。また、酸化物半導体膜19aの一部がチャネル領域として機能する。また、酸化物半導体膜39aに接するように、酸化物絶縁膜23が形成されており、酸化物絶縁膜23に接するように酸化物絶縁膜25が形成されている。即ち、酸化物半導体膜19aと酸化物絶縁膜23との間に、酸化物半導体膜39aが設けられている。
酸化物半導体膜39aは、酸化物半導体膜19aを構成する元素の一種以上から構成される酸化物膜である。このため、酸化物半導体膜19aと酸化物半導体膜39aとの界面において、界面散乱が起こりにくい。従って、該界面においてはキャリアの動きが阻害されないため、トランジスタの電界効果移動度が高くなる。
酸化物半導体膜39aは、代表的には、In−Ga酸化物膜、In−Zn酸化物膜、In−M−Zn酸化物膜(Mは、Al、Ga、Y、Zr、La、Ce、またはNd)であり、且つ酸化物半導体膜19aよりも伝導帯の下端のエネルギーが真空準位に近く、代表的には、酸化物半導体膜39aの伝導帯の下端のエネルギーと、酸化物半導体膜19aの伝導帯の下端のエネルギーとの差が、0.05eV以上、0.07eV以上、0.1eV以上、または0.15eV以上、且つ2eV以下、1eV以下、0.5eV以下、または0.4eV以下である。即ち、酸化物半導体膜39aの電子親和力と、酸化物半導体膜19aの電子親和力との差が、0.05eV以上、0.07eV以上、0.1eV以上、または0.15eV以上、且つ2eV以下、1eV以下、0.5eV以下、または0.4eV以下である。
酸化物半導体膜39aは、Inを含むことで、キャリア移動度(電子移動度)が高くなるため好ましい。
酸化物半導体膜39aとして、Al、Ga、Y、Zr、La、Ce、またはNdをInより高い原子数比で有することで、以下の効果を有する場合がある。(1)酸化物半導体膜39aのエネルギーギャップを大きくする。(2)酸化物半導体膜39aの電子親和力を小さくする。(3)外部からの不純物の拡散を低減する。(4)酸化物半導体膜19aと比較して、絶縁性が高くなる。(5)Al、Ga、Y、Zr、La、Ce、またはNdは、酸素との結合力が強い金属元素であるため、酸素欠損が生じにくくなる。
酸化物半導体膜39aがIn−M−Zn酸化物膜であるとき、InおよびMの和を100atomic%としたとき、InとMの原子数比率は、好ましくは、Inが50atomic%未満、Mが50atomic%以上、さらに好ましくは、Inが25atomic%未満、Mが75atomic%以上とする。
また、酸化物半導体膜19a及び酸化物半導体膜39aが、In−M−Zn酸化物膜(Mは、Al、Ga、Y、Zr、La、Ce、またはNd)の場合、酸化物半導体膜19aと比較して、酸化物半導体膜39aに含まれるM(Al、Ga、Y、Zr、La、Ce、またはNd)の原子数比が大きく、代表的には、酸化物半導体膜19aに含まれる上記原子と比較して、1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上高い原子数比である。
また、酸化物半導体膜19a及び酸化物半導体膜39aが、In−M−Zn酸化物膜(MはAl、Ga、Y、Zr、La、Ce、またはNd)の場合、酸化物半導体膜39aをIn:M:Zn=x:y:z[原子数比]、酸化物半導体膜19aをIn:M:Zn=x:y:z[原子数比]とすると、y/xがy/xよりも大きく、好ましくは、y/xがy/xよりも1.5倍以上である。さらに好ましくは、y/xがy/xよりも2倍以上大きく、より好ましくは、y/xがy/xよりも3倍以上大きい。
酸化物半導体膜19aがIn−M−Zn酸化物膜(Mは、Al、Ga、Y、Zr、La、Ce、またはNd)の場合、酸化物半導体膜19aを成膜するために用いるターゲットにおいて、金属元素の原子数比をIn:M:Zn=x:y:zとすると/yは、1/3以上6以下、さらには1以上6以下であって、z/yは、1/3以上6以下、さらには1以上6以下であることが好ましい。なお、z/yを1以上6以下とすることで、酸化物半導体膜19aとしてCAAC−OS膜が形成されやすくなる。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2等がある。
酸化物半導体膜39aがIn−M−Zn酸化物膜(Mは、Al、Ga、Y、Zr、La、Ce、またはNd)の場合、酸化物半導体膜39aを成膜するために用いるターゲットにおいて、金属元素の原子数比をIn:M:Zn=x:y:zとすると/y<x/yであって、z/yは、1/3以上6以下、さらには1以上6以下であることが好ましい。なお、z/yを1以上6以下とすることで、酸化物半導体膜39aとしてCAAC−OS膜が形成されやすくなる。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn=1:3:2、In:M:Zn=1:3:4、In:M:Zn=1:3:6、In:M:Zn=1:3:8、In:M:Zn=1:4:4、In:M:Zn=1:4:5、In:M:Zn=1:6:8等がある。
なお、酸化物半導体膜19a及び酸化物半導体膜39aの原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス40%の変動を含む。
酸化物半導体膜39aは、後に形成する酸化物絶縁膜25を形成する際の、酸化物半導体膜19aへのダメージ緩和膜としても機能する。
酸化物半導体膜39aの厚さは、3nm以上100nm以下、好ましくは3nm以上50nm以下とする。
また、酸化物半導体膜39aは、酸化物半導体膜19aと同様に、例えば非単結晶構造でもよい。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned−Crystalline Oxide Semiconductor)、多結晶構造、後述する微結晶構造、または非晶質構造を含む。
酸化物半導体膜39aは、例えば非晶質構造でもよい。非晶質構造の酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。
なお、酸化物半導体膜19a及び酸化物半導体膜39aそれぞれにおいて、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、及び単結晶構造の領域の二種以上の領域を有する混合膜を構成してもよい。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域を有する単層構造の場合がある。また、混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域が積層した積層構造を有する場合がある。
ここでは、酸化物半導体膜19a及び酸化物絶縁膜23の間に、酸化物半導体膜39aが設けられている。このため、酸化物半導体膜39aと酸化物絶縁膜23の間において、不純物及び欠陥によりキャリアトラップが形成されても、当該キャリアトラップと酸化物半導体膜19aとの間には隔たりがある。この結果、酸化物半導体膜19aを流れる電子がキャリアトラップに捕獲されにくく、トランジスタのオン電流を増大させることが可能であると共に、電界効果移動度を高めることができる。また、キャリアトラップに電子が捕獲されると、該電子がマイナスの固定電荷となってしまう。この結果、トランジスタのしきい値電圧が変動してしまう。しかしながら、酸化物半導体膜19aとキャリアトラップとの間に隔たりがあるため、キャリアトラップにおける電子の捕獲を削減することが可能であり、しきい値電圧の変動量を低減することができる。
また、酸化物半導体膜39aは、外部からの不純物を遮蔽することが可能であるため、外部から酸化物半導体膜19aへ移動する不純物量を低減することが可能である。また、酸化物半導体膜39aは、酸素欠損を形成しにくい。これらのため、酸化物半導体膜19aにおける不純物濃度及び酸素欠損量を低減することが可能である。
なお、酸化物半導体膜19a及び酸化物半導体膜39aは、各膜を単に積層するのではなく連続接合(ここでは特に伝導帯の下端のエネルギーが各膜の間で連続的に変化する構造)が形成されるように作製する。すなわち、各膜の界面にトラップ中心や再結合中心のような欠陥準位を形成する不純物が存在しないような積層構造とする。仮に、積層された酸化物半導体膜19a及び酸化物半導体膜39aの間に不純物が混在していると、エネルギーバンドの連続性が失われ、界面でキャリアがトラップされ、あるいは再結合して、消滅してしまう。
連続接合を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装置(スパッタリング装置)を用いて各膜を大気に触れさせることなく連続して積層することが必要となる。スパッタリング装置における各チャンバーは、酸化物半導体膜にとって不純物となる水等を可能な限り除去すべくクライオポンプのような吸着式の真空排気ポンプを用いて高真空排気(5×10−7Pa乃至1×10−4Pa程度まで)することが好ましい。または、ターボ分子ポンプとコールドトラップを組み合わせて排気系からチャンバー内に気体、特に炭素または水素を含む気体が逆流しないようにしておくことが好ましい。
なお、多層膜37aの代わりに、図14(B)に示すトランジスタ102cのように、多層膜38aを有してもよい。
また、多層膜37bの代わりに、図14(B)に示す容量素子105cのように、多層膜38bを有してもよい。
多層膜38aは、酸化物半導体膜49a、酸化物半導体膜19a、及び酸化物半導体膜39aを有する。即ち、多層膜38aは3層構造である。また、酸化物半導体膜19aがチャネル領域として機能する。
酸化物半導体膜49aは、酸化物半導体膜39aと同様の材料及び形成方法を適宜用いることができる。
多層膜38bは、酸化物半導体膜49b、酸化物半導体膜19f、及び酸化物半導体膜39bを有する。即ち、多層膜38bは3層構造である。また、多層膜38bは画素電極として機能する。
酸化物半導体膜19fは、画素電極19bと同様の材料及び形成方法を適宜用いることができる。酸化物半導体膜49bは、酸化物半導体膜39bと同様の材料及び形成方法を適宜用いることができる。
また、酸化物絶縁膜17及び酸化物半導体膜49aが接する。即ち、酸化物絶縁膜17と酸化物半導体膜19aとの間に、酸化物半導体膜49aが設けられている。
また、多層膜38a及び酸化物絶縁膜23が接する。また、酸化物半導体膜39a及び酸化物絶縁膜23が接する。即ち、酸化物半導体膜19aと酸化物絶縁膜23との間に、酸化物半導体膜39aが設けられている。
酸化物半導体膜49aは、酸化物半導体膜19aより膜厚が小さいと好ましい。酸化物半導体膜49aの厚さを1nm以上5nm以下、好ましくは1nm以上3nm以下とすることで、トランジスタのしきい値電圧の変動量を低減することが可能である。
本実施の形態に示すトランジスタは、酸化物半導体膜19a及び酸化物絶縁膜23の間に、酸化物半導体膜39aが設けられている。このため、酸化物半導体膜39aと酸化物絶縁膜23の間において、不純物及び欠陥によりキャリアトラップが形成されても、当該キャリアトラップと酸化物半導体膜19aとの間には隔たりがある。この結果、酸化物半導体膜19aを流れる電子がキャリアトラップに捕獲されにくく、トランジスタのオン電流を増大させることが可能であると共に、電界効果移動度を高めることができる。また、キャリアトラップに電子が捕獲されると、該電子がマイナスの固定電荷となってしまう。この結果、トランジスタのしきい値電圧が変動してしまう。しかしながら、酸化物半導体膜19aとキャリアトラップとの間に隔たりがあるため、キャリアトラップにおける電子の捕獲を削減することが可能であり、しきい値電圧の変動量を低減することができる。
また、酸化物半導体膜39aは、外部からの不純物を遮蔽することが可能であるため、外部から酸化物半導体膜19aへ移動する不純物量を低減することが可能である。また、酸化物半導体膜39aは、酸素欠損を形成しにくい。これらのため、酸化物半導体膜19aにおける不純物濃度及び酸素欠損量を低減することが可能である。
また、酸化物絶縁膜17と酸化物半導体膜19aとの間に、酸化物半導体膜49aが設けられており、酸化物半導体膜19aと酸化物絶縁膜23との間に、酸化物半導体膜39aが設けられているため、酸化物半導体膜49aと酸化物半導体膜19aとの界面近傍におけるシリコンや炭素の濃度、酸化物半導体膜19aにおけるシリコンや炭素の濃度、または酸化物半導体膜39aと酸化物半導体膜19aとの界面近傍におけるシリコンや炭素の濃度を低減することができる。これらの結果、多層膜38aにおいて、一定光電流測定法で導出される吸収係数は、1×10−3/cm未満、好ましくは1×10−4/cm未満となり、局在準位が極めて少ない。
このような構造を有するトランジスタ102cは、多層膜38aにおいて欠陥が極めて少ないため、トランジスタの電気特性を向上させることが可能であり、代表的には、オン電流の増大及び電界効果移動度の向上が可能である。また、ストレス試験の一例であるBTストレス試験及び光BTストレス試験におけるしきい値電圧の変動量が少なく、信頼性が高い。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、上記実施の形態で説明した表示装置に含まれているトランジスタにおいて、酸化物半導体膜に適用可能な一態様について説明する。
酸化物半導体膜は、単結晶構造の酸化物半導体(以下、単結晶酸化物半導体という。)、多結晶構造の酸化物半導体(以下、多結晶酸化物半導体という。)、微結晶構造の酸化物半導体(以下、微結晶酸化物半導体という。)、及び非晶質構造の酸化物半導体(以下、非晶質酸化物半導体という。)の一以上で構成されてもよい。また、酸化物半導体膜は、CAAC−OS膜で構成されていてもよい。また、酸化物半導体膜は、非晶質酸化物半導体及び結晶粒を有する酸化物半導体で構成されていてもよい。以下に、代表例として、CAAC−OS及び微結晶酸化物半導体について説明する。
<CAAC−OS>
CAAC−OS膜は、複数の結晶部を有する酸化物半導体膜の一つである。また、CAAC−OS膜に含まれる結晶部は、c軸配向性を有する。平面TEM像において、CAAC−OS膜に含まれる結晶部の面積が2500nm以上、さらに好ましくは5μm以上、さらに好ましくは1000μm以上である。また、断面TEM像において、該結晶部を50%以上、好ましくは80%以上、さらに好ましくは95%以上有することで、単結晶に近い物性の薄膜となる。
CAAC−OS膜を透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって観察すると、結晶部同士の明確な境界、即ち結晶粒界(グレインバウンダリーともいう。)を確認することが困難である。そのため、CAAC−OS膜は、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
CAAC−OS膜を、試料面と概略平行な方向からTEMによって観察(断面TEM観察)すると、結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は、CAAC−OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映した形状であり、CAAC−OS膜の被形成面または上面と平行に配列する。なお、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。
一方、CAAC−OS膜を、試料面と概略垂直な方向からTEMによって観察(平面TEM観察)すると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
なお、CAAC−OS膜に対し、電子線回折を行うと、配向性を示すスポット(輝点)が観測される。
断面TEM観察及び平面TEM観察より、CAAC−OS膜の結晶部は配向性を有していることがわかる。
CAAC−OS膜に対し、X線回折(XRD:X−Ray Diffraction)装置を用いて構造解析を行うと、CAAC−OS膜のout−of−plane法による解析では、回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、In−Ga−Zn酸化物の結晶の(00x)面(xは整数)に帰属されることから、CAAC−OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概略垂直な方向を向いていることが確認できる。
一方、CAAC−OS膜に対し、c軸に概略垂直な方向からX線を入射させるin−plane法による解析では、2θが56°近傍にピークが現れる場合がある。このピークは、In−Ga−Zn酸化物の結晶の(110)面に帰属される。In−Ga−Zn酸化物の単結晶酸化物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面に帰属されるピークが6本観察される。これに対し、CAAC−OS膜の場合は、2θを56°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
以上のことから、CAAC−OS膜では、異なる結晶部間ではa軸及びb軸の配向は不規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平行な方向を向いていることがわかる。従って、前述の断面TEM観察で確認された層状に配列した金属原子の各層は、結晶のa−b面に平行な面である。
なお、結晶は、CAAC−OS膜を成膜した際、または加熱処理などの結晶化処理を行った際に形成される。上述したように、結晶のc軸は、CAAC−OS膜の被形成面または上面の法線ベクトルに平行な方向に配向する。従って、例えば、CAAC−OS膜の形状をエッチングなどによって変化させた場合、結晶のc軸がCAAC−OS膜の被形成面または上面の法線ベクトルと平行にならないこともある。
また、CAAC−OS膜中の結晶化度が均一でなくてもよい。例えば、CAAC−OS膜の結晶部が、CAAC−OS膜の上面近傍からの結晶成長によって形成される場合、上面近傍の領域は、被形成面近傍の領域よりも結晶化度が高くなることがある。また、CAAC−OS膜に不純物を添加する場合、不純物が添加された領域の結晶化度が変化し、部分的に結晶化度の異なる領域が形成されることもある。
なお、CAAC−OS膜のout−of−plane法による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS膜中の一部に、c軸配向性を有さない結晶部が含まれることを示している。CAAC−OS膜は、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC−OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純物は、キャリアトラップやキャリア発生源となる場合がある。
また、CAAC−OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによってキャリア発生源となることがある。
不純物濃度が低く、欠陥準位密度が低い(酸素欠損量の少ない)ことを、高純度真性または実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。従って、当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定となる場合がある。
また、CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。
<微結晶酸化物半導体>
微結晶酸化物半導体膜は、TEMによる観察像では、明確に結晶部を確認することが困難な場合がある。微結晶酸化物半導体膜に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大きさであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微結晶であるナノ結晶(nc:nanocrystal)を有する酸化物半導体膜を、nc−OS(nanocrystalline Oxide Semiconductor)膜と呼ぶ。また、nc−OS膜は、例えば、TEMによる観察像では、結晶粒界を明確に確認することが困難な場合がある。
nc−OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かない場合がある。例えば、nc−OS膜に対し、結晶部よりも大きい径のX線を用いるXRD装置を用いて構造解析を行うと、out−of−plane法による解析では、結晶面を示すピークが検出されない。また、nc−OS膜に対し、結晶部よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、結晶部の大きさと近いか結晶部より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、スポットが観測される。また、nc−OS膜に対しナノビーム電子線回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。また、nc−OS膜に対しナノビーム電子線回折を行うと、リング状の領域内に複数のスポットが観測される場合がある。
nc−OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。そのため、nc−OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし、nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc−OS膜は、CAAC−OS膜と比べて欠陥準位密度が高くなる。
<酸化物半導体膜及び酸化物導電体膜について>
次に、酸化物半導体で形成される膜(以下、酸化物半導体膜(OS)という。)、及び画素電極19bとして用いることが可能な酸化物導電体で形成される膜(以下、酸化物導電体膜(OC)という。)それぞれにおける、導電率の温度依存性について、図26を用いて説明する。図26において、横軸に測定温度(下横軸は1/T、上横軸はT)を示し、縦軸に導電率(1/ρ)を示す。また、酸化物半導体膜(OS)の測定結果を三角印で示し、酸化物導電体膜(OC)の測定結果を丸印で示す。
なお、酸化物半導体膜(OS)を含む試料は、ガラス基板上に、原子数比がIn:Ga:Zn=1:1:1.2のスパッタリングターゲットを用いたスパッタリング法により厚さ35nmのIn−Ga−Zn酸化物膜を形成し、原子数比がIn:Ga:Zn=1:4:5のスパッタリングターゲットを用いたスパッタリング法により厚さ20nmのIn−Ga−Zn酸化物膜を形成し、450℃の窒素雰囲気で加熱処理した後、450℃の窒素及び酸素の混合ガス雰囲気で加熱処理し、さらにプラズマCVD法で酸化窒化シリコン膜を形成して、作製された。
また、酸化物導電体膜(OC)を含む試料は、ガラス基板上に、原子数比がIn:Ga:Zn=1:1:1のスパッタリングターゲットを用いたスパッタリング法により厚さ100nmのIn−Ga−Zn酸化物膜を形成し、450℃の窒素雰囲気で加熱処理した後、450℃の窒素及び酸素の混合ガス雰囲気で加熱処理し、プラズマCVD法で窒化シリコン膜を形成して、作製された。
図26からわかるように、酸化物導電体膜(OC)における導電率の温度依存性は、酸化物半導体膜(OS)における導電率の温度依存性より小さい。代表的には、80K以上290K以下における酸化物導電体膜(OC)の導電率の変化率は、±20%未満である。または、150K以上250K以下における導電率の変化率は、±10%未満である。即ち、酸化物導電体は、縮退半導体であり、伝導帯下端とフェルミ準位とが一致または略一致していると推定される。このため、酸化物導電体膜(OC)を、抵抗素子、配線、電極、画素電極、コモン電極等に用いることが可能である。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態9)
上記実施の形態に示すトランジスタの作製方法において、ソース電極及びドレイン電極として機能する導電膜21a、21bを形成した後、酸化物半導体膜19aを酸化雰囲気で発生させたプラズマに曝し、酸化物半導体膜19aに酸素を供給することができる。酸化雰囲気としては、酸素、オゾン、一酸化二窒素、二酸化窒素等の雰囲気がある。さらに、当該プラズマ処理において、基板11側にバイアスを印加しない状態で発生したプラズマに酸化物半導体膜19aを曝すことが好ましい。この結果、酸化物半導体膜19aにダメージを与えず、且つ酸素を供給することが可能であり、酸化物半導体膜19aに含まれる酸素欠損量を低減することができる。また、エッチング処理により酸化物半導体膜19aの表面に残存する不純物、例えば、フッ素、塩素等のハロゲン等を除去することができる。また、当該プラズマ処理を300℃以上で加熱しながら行うことが好ましい。プラズマ中の酸素と酸化物半導体膜19aに含まれる水素が結合し、水となる。基板が加熱されているため、当該水は酸化物半導体膜19aから脱離する。この結果、酸化物半導体膜19aに含まれる水素及び水の含有量を低減することができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態10)
本実施の形態では、本発明の一態様の表示装置が適用された電子機器の構成例について説明する。また、本実施の形態では、本発明の一態様の表示装置を適用した表示モジュールについて、図15を用いて説明を行う。
図15に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された表示パネル8006、バックライトユニット8007、フレーム8009、プリント基板8010、バッテリー8011を有する。なお、バックライトユニット8007、バッテリー8011、タッチパネル8004などは、設けられない場合もある。
本発明の一態様の表示装置は、例えば、表示パネル8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル8006に重畳して用いることができる。また、表示パネル8006の対向基板(封止基板)に、タッチパネル機能を持たせるようにすることも可能である。または、表示パネル8006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。または、表示パネル8006の各画素内にタッチセンサ用電極を設け、静電容量方式のタッチパネルとすることも可能である。
バックライトユニット8007は、光源8008を有する。光源8008をバックライトユニット8007の端部に設け、光拡散板を用いる構成としてもよい。
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリー8011による電源であってもよい。バッテリー8011は、商用電源を用いる場合には、省略可能である。
また、表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
図16は、本発明の一態様の表示装置を含む電子機器の外観図である。
電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図16(A)は、携帯型の情報端末であり、本体1001、筐体1002、表示部1003a、1003bなどによって構成されている。表示部1003bはタッチパネルとなっており、表示部1003bに表示されるキーボードボタン1004を触れることで画面操作や、文字入力を行うことができる。勿論、表示部1003aをタッチパネルとして構成してもよい。上記実施の形態で示したトランジスタをスイッチング素子として液晶パネルや有機発光パネルを作製して表示部1003a、1003bに適用することにより、信頼性の高い携帯型の情報端末とすることができる。
図16(A)に示す携帯型の情報端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報を操作又は編集する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子など)、記録媒体挿入部などを備える構成としてもよい。
また、図16(A)に示す携帯型の情報端末は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
図16(B)は、携帯音楽プレイヤーであり、本体1021には表示部1023と、耳に装着するための固定部1022と、スピーカー、操作ボタン1024、外部メモリスロット1025等が設けられている。上記実施の形態で示したトランジスタをスイッチング素子として液晶パネルや有機発光パネルを作製して表示部1023に適用することにより、より信頼性の高い携帯音楽プレイヤーとすることができる。
さらに、図16(B)に示す携帯音楽プレイヤーにアンテナやマイク機能や無線機能を持たせ、携帯電話と連携させれば、乗用車などを運転しながらワイヤレスによるハンズフリーでの会話も可能である。
図16(C)は、携帯電話であり、筐体1030及び筐体1031の二つの筐体で構成されている。筐体1031には、表示パネル1032、スピーカー1033、マイクロフォン1034、ポインティングデバイス1036、カメラ1037、外部接続端子1038などを備えている。また、筐体1030には、携帯電話の充電を行う太陽電池1040、外部メモリスロット1041などを備えている。また、アンテナは筐体1031内部に内蔵されている。上記実施の形態で説明するトランジスタを表示パネル1032に適用することにより、信頼性の高い携帯電話とすることができる。
また、表示パネル1032はタッチパネルを備えており、図16(C)には映像表示されている複数の操作キー1035を点線で示している。なお、太陽電池1040で出力される電圧を各回路に必要な電圧に昇圧するための昇圧回路も実装している。
表示パネル1032は、使用形態に応じて表示の方向が適宜変化する。また、表示パネル1032と同一面上にカメラ1037を備えているため、テレビ電話が可能である。スピーカー1033及びマイクロフォン1034は音声通話に限らず、テレビ電話、録音、再生などが可能である。さらに、筐体1030と筐体1031は、スライドし、図16(C)のように展開している状態から重なり合った状態とすることができ、携帯に適した小型化が可能である。
外部接続端子1038はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部メモリスロット1041に記録媒体を挿入し、より大量のデータ保存及び移動に対応できる。
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであってもよい。
図16(D)は、テレビジョン装置の一例を示している。テレビジョン装置1050は、筐体1051に表示部1053が組み込まれている。表示部1053により、映像を表示することが可能である。また、筐体1051を支持するスタンド1055にCPUが内蔵されている。上記実施の形態で説明するトランジスタを表示部1053及びCPUに適用することにより、信頼性の高いテレビジョン装置1050とすることができる。
テレビジョン装置1050の操作は、筐体1051が備える操作スイッチや、別体のリモートコントローラにより行うことができる。また、リモートコントローラに、当該リモートコントローラから出力する情報を表示する表示部を設ける構成としてもよい。
なお、テレビジョン装置1050は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
また、テレビジョン装置1050は、外部接続端子1054や、記憶媒体再生録画部1052、外部メモリスロットを備えている。外部接続端子1054は、USBケーブルなどの各種ケーブルと接続可能であり、パーソナルコンピュータなどとのデータ通信が可能である。記憶媒体再生録画部1052では、ディスク状の記録媒体を挿入し、記録媒体に記憶されているデータの読み出し、記録媒体への書き込みが可能である。また、外部メモリスロットに差し込まれた外部メモリ1056にデータ保存されている画像や映像などを表示部1053に映し出すことも可能である。
また、上記実施の形態で説明するトランジスタのオフリーク電流が極めて小さい場合は、当該トランジスタを外部メモリ1056やCPUに適用することにより、消費電力が十分に低減された信頼性の高いテレビジョン装置1050とすることができる。
本実施の形態は、本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
本実施例では、本発明の一態様に係る液晶表示装置の画素における透過率の分布について、計算により評価した。
まずは、本実施例で用いた試料について説明する。
図17(A)に、比較例である試料1の上面図を示す。試料1に示す画素は、横方向に延伸した走査線201及びコモン線203と、縦方向(走査線及びコモン線と直交する方向)に延伸した信号線205と、その内側の領域である。画素1つの大きさは、縦84μm、横28μmである。
試料1は、上述した配線、及び横方向に隣接する画素の信号線に囲まれた領域の内側に配置され、且つコモン線203と電気的に接続されたコモン電極207と、コモン電極207上に配置されたくし歯状の画素電極209と、を有する。なお、画素電極209において信号線205と交差する方向に歯が延伸している。また、試料1において、走査線201と電気的に接続されたゲート電極と、ゲート絶縁膜を介して該ゲート電極と重なり、コモン電極207と同一工程を経て形成された半導体膜211と、該半導体膜211と電気的に接続し、信号線205と電気的に接続するソース電極及び画素電極209と電気的に接続するドレイン電極213と、を有するトランジスタが、画素に設けられる。
次に、図17(B)に、本発明の一形態である試料2の上面図を示す。試料2に示す画素は、横方向に延伸した走査線221と、縦方向に延伸した信号線225と、その内側の領域である。画素1つの大きさは、縦84μm、横28μmである。
試料2は、上述した配線、横方向に隣接する画素の信号線、及び縦方向に隣接する画素の走査線に囲まれた領域の内側に配置された画素電極229と、画素電極229上に配置された、コモン電極227と、を有する。コモン電極227は、信号線225と交差する方向に縞状に延伸する。また、試料2において、走査線221と電気的に接続されたゲート電極と、ゲート絶縁膜を介して該ゲート電極と重なり、画素電極229と同一工程を経て形成された半導体膜231と、該半導体膜231と電気的に接続し、信号線225と電気的に接続するソース電極及び画素電極229と電気的に接続するドレイン電極233と、を有するトランジスタが、画素に設けられる。なお、トランジスタの断面形状は、実施の形態2及び図5に示すトランジスタ102を参照することができる。
以上のようにして、試料1及び試料2を準備した。試料1及び試料2に示す画素は、画素電極とコモン電極との間に印加される横電界によって、液晶の透過率を制御することができる。
次に、試料1及び試料2の透過率を計算した。計算には、Shintech社製LCDMaster 3−Dを用い、FEM−Staticモードにて行った。なお、計算では、サイズを縦84μm、横28μm、奥行(高さ)4μmとし、境界条件をperiodicとしている。また、ゲート電極の厚さを200nm、ゲート絶縁膜の厚さを400nm、信号線の厚さを300nm、層間絶縁膜の厚さを500nmとした。また、試料1は、コモン電極の厚さを0nm、コモン電極と画素電極との間の窒化物絶縁膜の厚さを100nm、画素電極の厚さを100nmとした。また、試料2は、画素電極の厚さを0nm、画素電極とコモン電極との間の窒化物絶縁膜の厚さを100nm、コモン電極の厚さを100nmとした。また、液晶のラビング方向を85°、ツイスト角を0°、プレチルト角を3°とした。なお、計算の負荷を軽くするために、試料1のコモン電極、試料2の画素電極の厚さを0nmとした。該条件において、走査線に−9V、コモン線に0V、信号線及び画素電極に6Vを印加した際の透過率の分布を評価した。
透過率の分布は、グレースケールで表し、白ほど透過率が高いことを示す。試料1の透過率の分布を図17(C)に、試料2の透過率の分布を図17(D)に、それぞれ示す。
試料1及び試料2において、透過率の高い領域が形成されることがわかった。また、特に試料2において、画素内の広い範囲で透過率の高い領域が形成されることがわかった。これは、試料2に形成されるコモン電極において、信号線と平行な方向に延伸する領域を有さず、試料2が試料1と比べて、画素電極及びコモン電極の間において電界が発生する領域が広いためである。
したがって、試料2は、消費電力の小さい液晶表示装置を作製するために効果的な構造であることがわかる。
本実施例では、本発明の一態様に係る液晶表示装置の隣接する画素において、白及び黒を表示した際の黒表示領域における光漏れについて計算により評価した。
まずは、本実施例で用いた試料について説明する。
図18(A)に試料3の上面図を示す。試料3に示す画素は、横方向に延伸した走査線241と、縦方向に延伸した信号線243と、その内側の領域である。横方向に隣接する画素2つを併せた大きさは、縦49.5μm、横30μmである。
試料3は、上述した配線、横方向に隣接する画素の信号線、及び縦方向に隣接する画素の走査線に囲まれた領域の内側に配置された画素電極249と、画素電極249上に配置された、コモン電極247と、を有する。なお、コモン電極247は信号線243と交差する方向に縞状に延伸している。また、試料3において、走査線241と電気的に接続されたゲート電極と、ゲート絶縁膜を介して該ゲート電極と重なり、画素電極249と同一工程を経て形成された半導体膜251と、該半導体膜251と電気的に接続し、信号線243と電気的に接続するソース電極、及び画素電極と電気的に接続するドレイン電極253と、を有するトランジスタが、画素に設けられる。なお、トランジスタの断面形状は、実施の形態2及び図5に示すトランジスタ102を参照することができる。
図18(B)に試料4の上面図を示す。試料4は、試料3に類似した構造を有するが、ドレイン電極及びコモン電極の形状が異なる。具体的には、試料4では、ドレイン電極263はL字型であり、画素電極249の端部と重なる領域を有することで、走査線241及び画素電極249間における電界の影響を抑制している。同様に、コモン電極267を、走査線241上をまたいで、縦方向に隣接する画素と繋がる形状とすることで、走査線241及び画素電極249間における電界の影響を抑制している。
以上のようにして、試料3及び試料4を準備した。試料3及び試料4に示す画素は、画素電極とコモン電極との間に印加される横電界によって、液晶素子の透過率を制御することができる。
次に、試料3及び試料4の透過率を計算した。計算には、Shintech社製LCDMaster 3−Dを用い、FEM−Staticモードにて行った。なお、計算では、サイズを縦49.5μm、横30μm、奥行(高さ)4μmとし、境界条件をperiodicとしている。また、ゲート電極の厚さを200nm、ゲート絶縁膜の厚さを400nm、画素電極の厚さを0nm、信号線の厚さを300nm、層間絶縁膜の厚さを500nm、コモン電極の厚さを100nmとした。また、画素電極とコモン電極との間の窒化物絶縁膜の厚さを100nmとした。また、液晶のラビング方向を90°、ツイスト角を0°、プレチルト角を3°とした。なお、計算の負荷を軽くするために、画素電極の厚さを0nmとした。該条件において、走査線に−9V、コモン線に0Vを印加した状態で、左側の画素の信号線及び画素電極には6Vを、右側の画素の信号線及び画素電極には0Vを印加した際の透過率の分布を評価した。
透過率の分布は、グレースケールで表し、白ほど透過率が高いことを示す。試料3の透過率の分布を図18(C)に、試料4の透過率の分布を図18(D)に、それぞれ示す。
試料3及び試料4において、左側の画素に白表示、右側の画素に黒表示が確認できた。また、試料3の黒表示では、一部に透過率の高い領域(光漏れ)が確認された。一方、試料4の黒表示では、画素全体に渡って透過率の高い領域は確認されなかった。試料4において、ドレイン電極263がL字型であり、画素電極249の端部と重なる領域を有することで、試料3と比べて、走査線及び画素電極間における電界が発生しにくく、黒表示における光漏れが低減していることがわかる。
したがって、試料4は、コントラストの高い液晶表示装置を作製するために効果的な構造であることがわかる。

Claims (11)

  1. 絶縁表面上のトランジスタと、
    前記トランジスタと電気的に接続される画素電極と、
    前記トランジスタと電気的に接続される信号線と、
    前記トランジスタと電気的に接続され、且つ前記信号線と交差する走査線と、
    前記画素電極及び前記信号線上に絶縁膜を介して設けられるコモン電極とを有し、
    前記コモン電極は、前記信号線と交差する方向に延伸した縞状の領域を有することを特徴とする表示装置。
  2. 請求項1において、
    前記トランジスタは、
    前記走査線と電気的に接続されるゲート電極と、
    前記ゲート電極と重なる半導体膜と、
    前記ゲート電極及び前記半導体膜の間のゲート絶縁膜と、
    前記信号線及び前記半導体膜に電気的に接続される第1の導電膜と、
    前記画素電極及び前記半導体膜に電気的に接続される第2の導電膜と、を有し、
    前記第2の導電膜は、前記走査線及び前記コモン電極と平行な領域を有することを特徴とする表示装置。
  3. 絶縁表面に、信号線、走査線、トランジスタ、画素電極、コモン電極、及び容量素子を有し、
    前記トランジスタは、
    前記走査線と電気的に接続されるゲート電極と、
    前記ゲート電極と重なる半導体膜と、
    前記ゲート電極及び前記半導体膜の間のゲート絶縁膜と、
    前記信号線及び前記半導体膜に電気的に接続される第1の導電膜と、
    前記画素電極及び前記半導体膜に電気的に接続される第2の導電膜と、を有し、
    前記容量素子は、
    前記画素電極と、
    前記コモン電極と、
    前記画素電極及び前記コモン電極の間に設けられる窒化物絶縁膜と、を有し、
    前記コモン電極は、前記信号線と交差する方向に延伸した縞状の領域を有することを特徴とする表示装置。
  4. 請求項3において、前記第2の導電膜は、前記走査線及び前記コモン電極と平行な領域を有することを特徴とする表示装置。
  5. 請求項1乃至請求項4のいずれか一項において、前記コモン電極は、前記縞状の領域のそれぞれが、前記走査線と平行に配置された複数の前記画素電極に、またがって延伸していることを特徴とする表示装置。
  6. 請求項1乃至請求項5のいずれか一項において、
    前記コモン電極と前記信号線とが交差する角度は、70°以上110°以下であることを特徴とする表示装置。
  7. 請求項1乃至請求項6のいずれか一項において、
    前記画素電極は、マトリクス状に設けられていることを特徴とすることを特徴とする表示装置。
  8. 請求項1乃至請求項7のいずれか一項において、
    前記コモン電極は、前記走査線と交差し、且つ前記縞状の領域と接続される領域を有することを特徴とすることを特徴とする表示装置。
  9. 請求項1乃至請求項8のいずれか一項において、
    前記半導体膜及び前記画素電極は、前記ゲート絶縁膜と接することを特徴とする表示装置。
  10. 請求項1乃至請求項9のいずれか一項において、前記半導体膜及び前記画素電極は、In−Ga酸化物、In−Zn酸化物、またはIn−M−Zn酸化物(MはAl、Ga、Y、Zr、La、Ce、またはNd)を有することを特徴とする表示装置。
  11. 請求項1乃至請求項10のいずれか一項において、
    前記半導体膜及び前記画素電極は、第1の膜及び第2の膜を含む多層構造であり、
    第1の膜は、第2の膜と金属元素の原子数比が異なることを特徴とする表示装置。
JP2014168107A 2013-08-28 2014-08-21 表示装置 Active JP6483375B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168107A JP6483375B2 (ja) 2013-08-28 2014-08-21 表示装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013177345 2013-08-28
JP2013177345 2013-08-28
JP2014047301 2014-03-11
JP2014047301 2014-03-11
JP2014168107A JP6483375B2 (ja) 2013-08-28 2014-08-21 表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019024423A Division JP6851407B2 (ja) 2013-08-28 2019-02-14 液晶表示装置

Publications (3)

Publication Number Publication Date
JP2015187695A true JP2015187695A (ja) 2015-10-29
JP2015187695A5 JP2015187695A5 (ja) 2017-09-28
JP6483375B2 JP6483375B2 (ja) 2019-03-13

Family

ID=52580167

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2014168107A Active JP6483375B2 (ja) 2013-08-28 2014-08-21 表示装置
JP2019024423A Active JP6851407B2 (ja) 2013-08-28 2019-02-14 液晶表示装置
JP2021037145A Active JP7217305B2 (ja) 2013-08-28 2021-03-09 液晶表示装置
JP2022182483A Pending JP2023009188A (ja) 2013-08-28 2022-11-15 液晶表示装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2019024423A Active JP6851407B2 (ja) 2013-08-28 2019-02-14 液晶表示装置
JP2021037145A Active JP7217305B2 (ja) 2013-08-28 2021-03-09 液晶表示装置
JP2022182483A Pending JP2023009188A (ja) 2013-08-28 2022-11-15 液晶表示装置

Country Status (5)

Country Link
US (7) US9989796B2 (ja)
JP (4) JP6483375B2 (ja)
KR (5) KR102377098B1 (ja)
DE (2) DE102014216938A1 (ja)
TW (5) TW202334724A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181261A1 (ja) * 2015-05-14 2016-11-17 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器
JPWO2017134495A1 (ja) * 2016-02-05 2018-12-13 株式会社半導体エネルギー研究所 金属酸化物膜、半導体装置、及び半導体装置の作製方法
WO2021206084A1 (ja) * 2020-04-06 2021-10-14 凸版印刷株式会社 液晶表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643577B1 (ko) 2013-09-13 2024-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP2015179247A (ja) 2013-10-22 2015-10-08 株式会社半導体エネルギー研究所 表示装置
US10122010B2 (en) 2014-07-11 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device including the same
US9964799B2 (en) 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
JP6501879B2 (ja) * 2015-06-05 2019-04-17 シャープ株式会社 アクティブマトリクス基板、液晶パネル、および、アクティブマトリクス基板の製造方法
KR102619052B1 (ko) 2015-06-15 2023-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP2017003976A (ja) * 2015-06-15 2017-01-05 株式会社半導体エネルギー研究所 表示装置
US9852926B2 (en) 2015-10-20 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
CN114725172A (zh) 2019-11-28 2022-07-08 京东方科技集团股份有限公司 显示基板、显示面板和装置
TWM611365U (zh) * 2020-01-22 2021-05-01 台灣愛司帝科技股份有限公司 顯示模組及其影像顯示器
CN114582256A (zh) * 2020-12-02 2022-06-03 台湾爱司帝科技股份有限公司 显示模块及其图像显示器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124360A (ja) * 2009-12-10 2011-06-23 Fujifilm Corp 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
KR20120130582A (ko) * 2011-05-23 2012-12-03 엘지디스플레이 주식회사 프린지 필드 스위칭 모드 액정표시장치용 어레이 기판
JP2013051328A (ja) * 2011-08-31 2013-03-14 Japan Display Central Co Ltd アクティブマトリックス型表示素子およびその製造方法
KR20130064262A (ko) * 2011-12-08 2013-06-18 엘지디스플레이 주식회사 박막트랜지스터 기판 및 그 제조 방법

Family Cites Families (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
KR100299381B1 (ko) 1998-08-24 2002-06-20 박종섭 고개구율 및 고투과율을 갖는 액정표시장치 및 그 제조방법
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
TW575775B (en) * 2001-01-29 2004-02-11 Hitachi Ltd Liquid crystal display device
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
CN102867855B (zh) 2004-03-12 2015-07-15 独立行政法人科学技术振兴机构 薄膜晶体管及其制造方法
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CN102945857B (zh) 2004-11-10 2015-06-03 佳能株式会社 无定形氧化物和场效应晶体管
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI390735B (zh) 2005-01-28 2013-03-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US7600135B2 (en) 2005-04-14 2009-10-06 Mips Technologies, Inc. Apparatus and method for software specified power management performance using low power virtual threads
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP4813842B2 (ja) * 2005-07-29 2011-11-09 株式会社 日立ディスプレイズ 液晶表示装置
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4623464B2 (ja) * 2005-09-26 2011-02-02 株式会社 日立ディスプレイズ 液晶表示装置
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
WO2007058329A1 (en) 2005-11-15 2007-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
US8332760B2 (en) 2006-01-18 2012-12-11 International Business Machines Corporation Dynamically mapping chat session invitation history
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
KR101246756B1 (ko) * 2006-02-03 2013-03-26 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
EP2924498A1 (en) 2006-04-06 2015-09-30 Semiconductor Energy Laboratory Co, Ltd. Liquid crystal desplay device, semiconductor device, and electronic appliance
JP5148912B2 (ja) 2006-04-06 2013-02-20 株式会社半導体エネルギー研究所 液晶表示装置及び半導体装置、並びに電子機器
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4439581B2 (ja) * 2006-07-21 2010-03-24 シャープ株式会社 表示装置
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5235363B2 (ja) * 2007-09-04 2013-07-10 株式会社ジャパンディスプレイイースト 液晶表示装置
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
US7876387B2 (en) * 2008-01-18 2011-01-25 Nec Lcd Technologies, Ltd. Lateral electric field type liquid crystal display device
JP5578393B2 (ja) * 2008-01-18 2014-08-27 Nltテクノロジー株式会社 横電界方式の液晶表示装置
JP5456980B2 (ja) 2008-02-15 2014-04-02 三菱電機株式会社 液晶表示装置、及びその製造方法
JP4952630B2 (ja) 2008-03-27 2012-06-13 ソニー株式会社 液晶装置
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR101257573B1 (ko) 2008-11-12 2013-04-23 가부시키가이샤 브리지스톤 태양 전지용 밀봉막 및 이를 사용한 태양 전지
JP5247477B2 (ja) 2009-01-09 2013-07-24 株式会社ジャパンディスプレイウェスト 液晶表示装置
JP5646162B2 (ja) 2009-01-23 2014-12-24 三菱電機株式会社 薄膜トランジスタアレイ基板、その製造方法、及び液晶表示装置
KR101275069B1 (ko) * 2009-03-02 2013-06-14 엘지디스플레이 주식회사 프린지 필드 스위칭 모드 액정표시장치용 어레이 기판
US8115883B2 (en) 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
WO2011027467A1 (ja) 2009-09-04 2011-03-10 株式会社 東芝 薄膜トランジスタ及びその製造方法
KR101182471B1 (ko) 2009-11-12 2012-09-12 하이디스 테크놀로지 주식회사 에프에프에스 모드 액정표시장치 및 그 제조방법
KR101709530B1 (ko) * 2009-12-22 2017-02-24 엘지디스플레이 주식회사 횡전계모드 액정표시소자 및 그 제조방법
JP5103494B2 (ja) 2010-03-05 2012-12-19 株式会社ジャパンディスプレイイースト 液晶表示装置
JP5585127B2 (ja) 2010-03-08 2014-09-10 三菱電機株式会社 アレイ基板、および液晶表示装置
JP5002668B2 (ja) * 2010-03-11 2012-08-15 株式会社ジャパンディスプレイイースト 液晶表示装置
KR101730552B1 (ko) * 2010-04-13 2017-05-12 엘지디스플레이 주식회사 횡전계 방식 액정표시장치 및 그 구동방법
CN102859704B (zh) 2010-04-23 2016-08-03 株式会社半导体能源研究所 半导体装置的制造方法
KR101242033B1 (ko) * 2010-05-05 2013-03-11 엘지디스플레이 주식회사 액정표시장치 및 이의 제조방법
KR101642346B1 (ko) * 2010-08-06 2016-07-26 삼성디스플레이 주식회사 표시 기판 및 이를 포함하는 표시 장치
JP5351118B2 (ja) * 2010-10-05 2013-11-27 株式会社ジャパンディスプレイ 液晶表示装置
TWI439777B (zh) * 2011-01-26 2014-06-01 Chunghwa Picture Tubes Ltd 液晶顯示面板之薄膜電晶體基板
CN102253553A (zh) 2011-08-01 2011-11-23 昆山龙腾光电有限公司 液晶显示装置
JP2013177345A (ja) 2012-02-28 2013-09-09 Mitsubishi Gas Chemical Co Inc キシリレンジアミンの製造方法
CN102790012A (zh) 2012-07-20 2012-11-21 京东方科技集团股份有限公司 阵列基板的制造方法及阵列基板、显示装置
KR20150040873A (ko) 2012-08-03 2015-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8937307B2 (en) 2012-08-10 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5924683B2 (ja) 2012-08-31 2016-05-25 前山 勝也 高分子ゲルとその製造方法並びにフッ化物イオン捕集剤
CN104620390A (zh) 2012-09-13 2015-05-13 株式会社半导体能源研究所 半导体装置
KR20220145922A (ko) 2012-12-25 2022-10-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124360A (ja) * 2009-12-10 2011-06-23 Fujifilm Corp 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
KR20120130582A (ko) * 2011-05-23 2012-12-03 엘지디스플레이 주식회사 프린지 필드 스위칭 모드 액정표시장치용 어레이 기판
JP2013051328A (ja) * 2011-08-31 2013-03-14 Japan Display Central Co Ltd アクティブマトリックス型表示素子およびその製造方法
KR20130064262A (ko) * 2011-12-08 2013-06-18 엘지디스플레이 주식회사 박막트랜지스터 기판 및 그 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181261A1 (ja) * 2015-05-14 2016-11-17 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器
JPWO2017134495A1 (ja) * 2016-02-05 2018-12-13 株式会社半導体エネルギー研究所 金属酸化物膜、半導体装置、及び半導体装置の作製方法
US10892367B2 (en) 2016-02-05 2021-01-12 Semiconductor Energy Laboratory Co., Ltd. Metal oxide film, semiconductor device, and manufacturing method of semiconductor device
TWI739743B (zh) * 2016-02-05 2021-09-21 日商半導體能源研究所股份有限公司 金屬氧化物膜、半導體裝置、及半導體裝置的製造方法
WO2021206084A1 (ja) * 2020-04-06 2021-10-14 凸版印刷株式会社 液晶表示装置

Also Published As

Publication number Publication date
TW202334724A (zh) 2023-09-01
US11226517B2 (en) 2022-01-18
JP2019079077A (ja) 2019-05-23
DE102014216938A1 (de) 2015-03-19
US20150062477A1 (en) 2015-03-05
US20230019691A1 (en) 2023-01-19
JP7217305B2 (ja) 2023-02-02
TW201935105A (zh) 2019-09-01
KR20220038324A (ko) 2022-03-28
KR20230044989A (ko) 2023-04-04
JP6851407B2 (ja) 2021-03-31
US11460737B2 (en) 2022-10-04
JP2021089443A (ja) 2021-06-10
US10585319B2 (en) 2020-03-10
KR20150026850A (ko) 2015-03-11
TW202107185A (zh) 2021-02-16
KR102515204B1 (ko) 2023-03-29
US20200174303A1 (en) 2020-06-04
US10782565B2 (en) 2020-09-22
KR102377098B1 (ko) 2022-03-25
KR20220088402A (ko) 2022-06-27
US20230288758A1 (en) 2023-09-14
US11675236B2 (en) 2023-06-13
TW201510628A (zh) 2015-03-16
US20220107535A1 (en) 2022-04-07
TWI708981B (zh) 2020-11-01
US20180275448A1 (en) 2018-09-27
JP2023009188A (ja) 2023-01-19
TW202212942A (zh) 2022-04-01
TWI803081B (zh) 2023-05-21
TWI667520B (zh) 2019-08-01
TWI749810B (zh) 2021-12-11
US9989796B2 (en) 2018-06-05
KR20240031997A (ko) 2024-03-08
KR102643760B1 (ko) 2024-03-07
DE102014019999B3 (de) 2022-09-29
US20210003877A1 (en) 2021-01-07
KR102412707B1 (ko) 2022-06-24
JP6483375B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
JP7217305B2 (ja) 液晶表示装置
JP6307658B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190214

R150 Certificate of patent or registration of utility model

Ref document number: 6483375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250