JP2015170615A - 多層基板および多層基板の製造方法 - Google Patents

多層基板および多層基板の製造方法 Download PDF

Info

Publication number
JP2015170615A
JP2015170615A JP2014041970A JP2014041970A JP2015170615A JP 2015170615 A JP2015170615 A JP 2015170615A JP 2014041970 A JP2014041970 A JP 2014041970A JP 2014041970 A JP2014041970 A JP 2014041970A JP 2015170615 A JP2015170615 A JP 2015170615A
Authority
JP
Japan
Prior art keywords
interlayer connection
connection conductor
conductor
multilayer substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014041970A
Other languages
English (en)
Inventor
邦明 用水
Kuniaki Yosui
邦明 用水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2014041970A priority Critical patent/JP2015170615A/ja
Priority to CN201520094954.3U priority patent/CN204634145U/zh
Publication of JP2015170615A publication Critical patent/JP2015170615A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

【課題】加熱時における応力の発生を抑制して層間接続導体の損傷を防止する多層基板および多層基板の製造方法を提供する。【解決手段】多層基板10は、樹脂基材11Cおよび樹脂基材11Dの界面において、層間接続導体131Aおよび層間接続導体131Bの周囲に空隙135が設けられている。樹脂基材11Cおよび樹脂基材11Dの界面のうち層間接続導体131Aおよび層間接続導体131Bの近傍が強固に固定されていると、層間接続導体131Aおよび層間接続導体131Bの体積変化を阻害するため、これら層間接続導体131Aおよび層間接続導体131Bのに高い応力が発生する。しかし、多層基板10は、空隙135が存在することによって層間接続導体131Aおよび層間接続導体131Bの体積変化を大きく阻害することがなく、加熱時における応力の発生が抑制される。したがって、層間接続導体131Aおよび層間接続導体131Bに割れが発生することを防止する。【選択図】 図2

Description

本発明は、絶縁層を複数積層してなる多層基板、および多層基板の製造方法に関する。
従来、導体をパターニングした絶縁層を複数重ねてなる多層基板が知られている(例えば特許文献1を参照)。
特許文献1の多層基板は、セラミック基板に導体をパターニングして、層間接続導体により各層の電気的な層間接続を行っている。
特開平05−335747号公報
層間接続導体は、金属が用いられ、絶縁層は、セラミックや樹脂等が用いられる。したがって、はんだリフロー等の加熱時には、層間接続導体と絶縁層との熱膨張係数の差に起因する応力が発生し、層間接続導体が損傷を受ける場合がある。この場合には、層間接続導体の損傷により接続不良が発生する。特に、絶縁層の界面において層間接続導体同士が接合される部分では、層間接続導体間に元々界面が存在するため接続不良が発生しやすい。
そこで、本発明の目的は、加熱時における応力の発生を抑制して層間接続導体の損傷を防止する多層基板および多層基板の製造方法を提供することにある。
本発明の多層基板は、導体パターンが形成された絶縁層を複数積層してなる多層基板であって、前記絶縁層に形成されたビアホールに導体が充填されてなる層間接続導体を備え、前記層間接続導体により該多層基板の電気的な層間接続がなされ、前記絶縁層の界面において、積層方向から視て前記層間接続導体が重なっている位置の近傍に空隙または非接合部が設けられていることを特徴とする。
ビア導体は、セラミックや樹脂等の絶縁層よりも熱膨張係数が高い場合が多く、はんだリフロー等の加熱時には絶縁層よりも体積変化が大きくなる。このため、ビア導体近傍の絶縁層の界面が強固に固定されていると、ビア導体の体積変化が阻害され、ビア導体に大きい応力が発生する。しかし、本発明の多層基板は、ビア導体が重なっている位置の近傍に空隙または非接合部が設けられていることで、ビア導体の体積変化が阻害されることが抑制されるので、加熱時における応力の発生が抑制される。その結果、層間接続導体の損傷を防止することができ、接続不良の発生を抑制することができる。
なお、非接合部とは、絶縁層の界面において絶縁層同士が接合されていない部分を言う。非接合部は、例えば、複数の絶縁層を一体化させた後(たとえば、絶縁層が熱可塑性樹脂の場合の加熱圧着工程後)でも隣接する絶縁層が一部で互いに接合されないように、界面の一部に他の物質(相対的に軟化開始温度の高い樹脂等)を挟み込むことにより形成したり、絶縁層同士を接着剤で接合する場合において一部に接着剤を塗布しないことにより形成したりできる。
本発明の多層基板は、層間接続導体の積層方向から視た断面積が積層方向に変化し、層間接続導体同士が導体パターンを介さずに直接接触している部分で断面積が大きくなっており、空隙または非接合部が、層間接続導体同士が前記導体パターンを介さずに直接接触している部分の近傍に設けられてる場合に、特に効果的である。層間接続導体同士を接触させる場合、接触面積を確保するために断面積を大きくすることが好ましいが、断面積が大きくなる分だけ加熱時には層間接続導体の体積変化が大きくなる。したがって、本発明のように空隙または非接合部を設けることの効果が高くなる。
また、空隙または非接合部は、積層方向から視て層間接続導体の外形に沿って形成されていることで、応力の発生をより抑制することができる。また、層間接続導体の一部が空隙内に露出していることで、応力の発生をより抑制することができる。
このような空隙を有した多層基板は、例えば以下の様な工程で製造することができる。
(1)絶縁層にビアホールを形成する工程
(2)前記ビアホールに導体を充填して層間接続導体を形成する工程
(3)積層方向から視て前記層間接続導体の近傍を切削する工程
(4)積層方向から視て前記層間接続導体が重なるように前記絶縁層を積層して加熱圧着する工程
なお、上記(3)の切削の工程に代えて、層間接続導体の近傍に塗布剤を塗布する工程を行うことにより、空隙または非接合部を形成することができる。また、上記(3)の切削の工程の後にさらに塗布剤を塗布する工程を行うことも可能である。塗布剤は、加熱圧着時において気化する材料を用いることで、当該塗布剤を塗布した箇所が空隙または非接合部となる。また、塗布剤が加熱圧着後に気化せずに残っている場合も当該塗布剤が非接合部として機能し、後のリフロー時等の加熱時における応力の発生が抑制される。
また、絶縁層として、相対的に流動開始温度の高い第1絶縁層と、流動開始温度の低い第2絶縁層と、を用意し、第1絶縁層の層間接続導体の近傍を切削するようにしてもよい。この場合、切削した空隙に、加熱圧着時において樹脂等の絶縁層が流入する量が少なくなり、加熱圧着後も空隙を保持し易くなる。
この発明によれば、加熱時における応力の発生を抑制して層間接続導体の損傷を防止することができる。
多層基板の斜視図である。 多層基板の断面図および分解平面図である。 多層基板の製造方法を示す図である。 層間接続導体の断面積が積層方向に変化する場合の例を示す図である。 空隙の変形例を示す図である。 多層基板の他の製造方法を示す図である。 多層基板の他の製造方法を示す図である。 多層基板の他の製造方法を示す図である。 界面に他の物質(相対的に軟化開始温度の高い樹脂)を挟む場合の多層基板の製造方法を示す図である。 相対的に流動開始温度の高い第1絶縁層と、流動開始温度の低い第2絶縁層と、を用意する場合の製造方法を示す図である。 層間接続導体と導体パターンが接触する箇所の近傍に空隙または非接合部を設ける例を示す図である。
以下、本発明の実施形態に係る多層基板について説明する。図1は、多層基板10の斜視図である。図2(A)は、図1中にA−Aで示す位置での多層基板10の側面断面図である。図2(B)は、樹脂基材11Cの下面図である。図2(C)は、樹脂基材11Dの下面図である。
図1に示すように、多層基板10は、一方向に長い直方体形状であり、下面に実装用の端子部12Aおよび端子部12Bを備えている。
図2(A)に示すように、多層基板10は、上面側から順に、樹脂基材11A、樹脂基材11B、樹脂基材11Cおよび樹脂基材11Dが積層されてなる。これら樹脂基材11A、樹脂基材11B、樹脂基材11Cおよび樹脂基材11Dは、それぞれ本発明の絶縁層の一例である。
樹脂基材11A、樹脂基材11B、樹脂基材11Cおよび樹脂基材11Dは、同種の熱可塑性樹脂からなる。熱可塑性樹脂は、例えば液晶ポリマ樹脂とする。なお、液晶ポリマ樹脂以外の熱可塑性樹脂の種類としては、例えばPEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、PI(ポリイミド)等があり、液晶ポリマ樹脂に代えてこれらを用いてもよい。また、本発明の絶縁層としては、熱可塑性樹脂に限らず、例えばセラミック等を用いることも可能である。
樹脂基材11Bは、上面に導体パターン13Aが形成されている。樹脂基材11Cは、上面に導体パターン13Bが形成されている。樹脂基材11Dは、下面に導体パターン13Cが形成されている。導体パターン13Cは、平面視して離れた2箇所の位置に形成され、それぞれ端子部12Aおよび端子部12Bを接続するための電極である。樹脂基材11Aは、樹脂基材11Bの上面に搭載され、多層基板10の上面を凹凸のない平板状とし、表面実装をし易くするためのものである。
樹脂基材11Bのうち、導体パターン13Aの下面側には、層間接続導体130が設けられている。導体パターン13Aおよび導体パターン13Bは、層間接続導体130により電気的に接続されている。樹脂基材11Cのうち、導体パターン13Bの下面側には、層間接続導体131Aが設けられている。また、樹脂基材11Dのうち、導体パターン13Cの上面側には、層間接続導体131Bが設けられている。層間接続導体131Aと層間接続導体131Bとは平面視して(積層方向から視て)重なり、導体パターンを介さずに直接接触している。導体パターン13Bおよび導体パターン13Cは、層間接続導体131Aおよび層間接続導体131Bにより電気的に接続されている。このように、多層基板10は、各層間接続導体により電気的な層間接続がなされている。
また、多層基板10は、樹脂基材11Cおよび樹脂基材11Dの界面において、層間接続導体131Aおよび層間接続導体131Bの周囲に空隙135が設けられている。空隙135は、はんだリフロー等の加熱時に層間接続導体131Aおよび層間接続導体131Bに発生する応力を抑制するためのものである。空隙135は、積層方向から視て層間接続導体131Aおよび層間接続導体131Bの外形に沿って形成され、層間接続導体131Aおよび層間接続導体131Bに接している。すなわち、層間接続導体131Aおよび層間接続導体131Bは、空隙135の内部に露出している。金属(例えばスズや銅)を主成分とする層間接続導体131Aおよび層間接続導体131Bは、樹脂基材11Cおよび樹脂基材11Dよりも熱膨張係数が高く、はんだリフロー等の加熱時には樹脂基材11Cおよび樹脂基材11Dよりも体積変化が大きくなる。
ここで、樹脂基材11Cおよび樹脂基材11Dの界面のうち層間接続導体131Aおよび層間接続導体131Bの近傍が強固に固定されていると、層間接続導体131Aおよび層間接続導体131Bの体積変化を阻害するため、これら層間接続導体131Aおよび層間接続導体131Bに高い応力が発生し、層間接続導体131Aまたは層間接続導体131Bが損傷を受ける場合がある。この場合には、層間接続導体131Aまたは層間接続導体131Bの損傷により接続不良が発生する。特に、樹脂基材の界面において層間接続導体同士が接合される部分では、層間接続導体間に元々界面が存在するため接続不良が発生しやすい。しかし、多層基板10は、空隙135が存在することによって、層間接続導体131Aおよび層間接続導体131Bの体積変化は大きく阻害されることがない。したがって、層間接続導体131Aおよび層間接続導体131Bは、加熱時における応力の発生が抑制され、割れが発生することを防止することができる。
図3は、多層基板の製造方法を示す図である。多層基板の製造方法は、まず図3(A)に示すように、絶縁層である樹脂基材を用意して導体パターンを形成する工程からなる。樹脂基材は、一方の主面全体に予め金属(例えば銅箔)が貼り付けられた状態の樹脂シートから、必要とする面積を切り出すことで用意される。図3(A)においては、代表して樹脂基材11Dを用意する例を示すが、他の樹脂基材についても同様である。樹脂基材11Dは、銅箔をパターニングすることで、導体パターン13Cを形成する。パターニングの手法は、例えばフォトリソグラフィやスクリーン印刷を用いる。
次に、図3(B)に示すように、レーザ加工等により、積層方向から視て導体パターン13Cと重なる位置で、積層方向に樹脂基材11Dを貫通するように、ビアホール17を形成する(本発明のビアホールを形成する工程の一例である)。
次に、図3(C)に示すように、層間接続導体131Bを形成するための導電ペーストをビアホール17に充填する。導電ペーストはスズや銅を主成分とした導電性材料からなる(本発明の層間接続導体を形成する工程の一例である)。
そして、図3(D)に示すように、レーザ加工等により、層間接続導体131Bの周囲を層間接続導体131Bの側面(周面)が露出するように切削し、空隙135を形成する(本発明の切削する工程の一例である)。ただし、導電ペーストを充填するよりも前に、ビアホール17の周囲を切削して先に空隙135を形成してもよい。
次に、図3(E)に示すように、各絶縁層(樹脂基材11A、樹脂基材11B、樹脂基材11Cおよび樹脂基材11D)を積層する。樹脂基材11Bおよび樹脂基材11Cは、導体パターンが上面側に形成され、樹脂基材11Dは、導体パターンが下面側に形成された状態で積層される。最後に、図3(F)に示すように、加熱プレス機により加熱および加圧する(本発明の加熱圧着する工程の一例である)。これにより、熱可塑性樹脂が軟化し、各絶縁層(樹脂基材11A、樹脂基材11B、樹脂基材11Cおよび樹脂基材11D)が接合し、一体化する。また、ビアホールに充填された導電ペーストが硬化して層間接続導体130が形成される。
樹脂基材11Dは、下面側に導体パターン13Cが形成されているのに対し、樹脂基材11Cは、上面側に導体パターン13Bが形成されている。したがって、層間接続導体131Aおよび層間接続導体131Bは、導体パターンを介さずに直接接触する。このように層間接続導体同士が直接接触する箇所は、導体パターンとの接触箇所に比べると相対的に接合強度が弱いため、割れが発生することによる接触不良が発生しやすい箇所である。しかし、多層基板10では、層間接続導体131Aおよび層間接続導体131Bの周囲に空隙135を設けることによりリフロー時における応力の発生が抑制されるため、割れが発生することがなく、接触不良も発生し難い。
なお、空隙135は、図4に示すように、層間接続導体の断面積が積層方向に変化する場合に特に効果的である。図4に示す層間接続導体130、層間接続導体131Aおよび層間接続導体131Bは、平面視した(積層方向から視た)断面積が積層方向に変化している。特に、層間接続導体131Aおよび層間接続導体131Bは、これら層間接続導体同士が直接接触している部分で断面積が最も大きくなっている。これにより、層間接続導体同士の接触面積が大きくなるため、接触不良を防止する。ただし、このように層間接続導体の断面積を大きくすると、断面積が大きくなる分だけリフロー時の体積変化が大きくなる。したがって、多層基板10のように空隙135を設けることの効果は高くなる。
次に、図5は、空隙135の変形例を示す図である。空隙135は、層間接続導体と接している(内部に層間接続導体が露出している)必要は無く、例えば図5(A)に示すように層間接続導体から離れた位置において層間接続導体を囲むように形成されていてもよい。また、空隙135は、層間接続導体の周囲を全て囲む必要はなく、図5(B)に示すように一部において空隙135が形成されていない箇所が存在してもよい。いずれにしても、層間接続導体の近傍に空隙が設けられていれば、本発明の技術的範囲に属する。
次に、図6は、多層基板10の他の製造方法を示す図である。図3と共通する構成については同一の符号を付し、説明を省略する。この例では、図6(D)に示すように、層間接続導体131Bの周囲を切削するのではなく、層間接続導体131Bの周囲に塗布剤151Aを塗布する(本発明の塗布剤を塗布する工程の一例である)。ただし、層間接続導体131Bの導電ペーストを充填するよりも前に、ビアホール17の周囲に先に塗布剤151Aを塗布してもよい。
塗布剤151Aは、例えば水やアルコール等からなる。図6(F)の加熱圧着時には、水やアルコール等からなる塗布剤151Aが熱によって膨張し、樹脂基材11Cおよび樹脂基材11Dが密着するのを阻害する。そして、最終的には塗布剤151Aが気化して、空隙135が形成される。
図7は、多層基板10のさらに他の製造方法を示す図である。図3と共通する構成については同一の符号を付し、説明を省略する。この例では、図7(D)に示すように、層間接続導体131Bの周囲を切削して空隙135を設けた後に、図7(E)に示すように空隙135に塗布剤151Aを充填する。
その後、図7(F)に示すように各絶縁層(樹脂基材11A、樹脂基材11B、樹脂基材11Cおよび樹脂基材11D)を積層し、最後に、図7(G)に示すように、加熱圧着する。このようにして、切削した箇所に塗布剤を充填しておくことで、加熱圧着時に切削した箇所に樹脂が流入することを抑制し、空隙を保持し易くなる。
図8は、多層基板10のさらに他の製造方法を示す図である。図3と共通する構成については同一の符号を付し、説明を省略する。この例では、各絶縁層を接着剤で接着することにより接合する。特に、図8(D)に示すように、樹脂基材11Dにおいて、接着剤152Aは、層間接続導体131Bの周囲以外の部分に設けられる。これにより、図8(F)に示すように、層間接続導体131Aおよび層間接続導体131Bの周囲は、樹脂基材11Cおよび樹脂基材11Dが接合されない非接合部155となる。非接合部155は、樹脂基材の界面が接合されていない部分であり、空隙と同様に層間接続導体131Aおよび層間接続導体131Bの体積変化を大きく阻害することがなく、リフロー時における応力の発生を抑制する。
なお、非接合部は、界面に他の物質(樹脂基材11A〜11Dに対して相対的に軟化開始温度の高い樹脂等)を挟むことにより形成することもできる。図9は、界面に他の物質(樹脂基材11A〜11Dに対して相対的に軟化開始温度の高い樹脂)を挟む場合の多層基板10の製造方法を示す図である。図3と共通する構成については同一の符号を付し、説明を省略する。
この例では、図9(D)に示すように、層間接続導体131Bの周囲に樹脂ペースト153Aを塗布する。樹脂ペースト153Aは、各樹脂基材よりも軟化開始温度が高く、図9(F)に示すように、加熱圧着時に樹脂基材と一体化せず、かつ気化することなく、加熱圧着後も層間接続導体131Aおよび層間接続導体131Bの周囲に残った状態となる。したがって、樹脂ペースト153Aにより、層間接続導体131Aおよび層間接続導体131Bの周囲に非接合部が設けられた状態となり、リフロー時における応力の発生を抑制する。
次に、図10は、相対的に流動開始温度の高い第1絶縁層と、第1絶縁層よりも流動開始温度の低い第2絶縁層と、を用意する場合の製造方法を示す図である。図3と共通する構成については同一の符号を付し、説明を省略する。
図10に示す製造方法では、樹脂基材11Cおよび樹脂基材11Dは、相対的に流動開始温度の高い第1絶縁層であり、樹脂基材11Aおよび樹脂基材11Bは、流動開始温度の低い第2絶縁層である。その他の工程は、図3と共通であり、平面視して層間接続導体131Aおよび層間接続導体131Bが重なるように樹脂基材11Cおよび樹脂基材11Dを積層し、かつ樹脂基材11Cのうち樹脂基材11Dと接している主面と反対側の主面に樹脂基材11Bを積層して加熱圧着を行う。この場合、樹脂基材11Cおよび樹脂基材11Dは、相対的に軟化開始温度が高いため、流動開始が遅くなり、図10(D)で切削した空隙135に、加熱圧着時において樹脂が流入する量が少なくなり、加熱圧着後も空隙135を保持し易くなる。なお、空隙135以外の部分では、樹脂基材11Cと樹脂基材11Dとは加熱圧着工程により接合されている。
なお、本実施形態では、層間接続導体同士が直接接触する箇所の近傍に空隙または非接合部を設ける例を示したが、例えば図11に示すように、層間接続導体と導体パターンが接触する箇所の近傍に空隙または非接合部を設けるようにしてもよい。
図11の多層基板110は、樹脂基材11Dの下面にさらに樹脂基材11Eを積層した構造を有する。樹脂基材11Eのうち導体パターン13Cの下面側には、層間接続導体131Cが設けられている。層間接続導体131A、層間接続導体131Bおよび層間接続導体131Cは、積層方向から視て重なっている。層間接続導体131は、樹脂基材11Eの下面に設けられた導体パターン13Dと電気的に接続されている。導体パターン13Dは、離れた位置に2箇所形成され、それぞれ端子部12Aおよび端子部12Bを接続するための電極である。
そして、多層基板110は、樹脂基材11Dおよび樹脂基材11Eの界面において、層間接続導体131Cの近傍に空隙135が設けられている。層間接続導体131Cおよび導体パターン13Cは、層間接続導体131Aおよび層間接続導体131に比べて相対的に強固に接合されている。ただし、樹脂基材11Dと樹脂基材11Eが強固に接合されていると、リフロー時には層間接続導体131と樹脂基材11Eとの熱膨張係数の差により応力が発生する。したがって、層間接続導体と導体パターンが接触する箇所の近傍に空隙を設ける場合も応力の発生を緩和することができる。
10,110…多層基板
11A,11B,11C,11D,11E…樹脂基材
12A,12B…端子部
13A,13B,13C,13D…導体パターン
17…ビアホール
130,131A,131B,131C…層間接続導体
135…空隙
151A…塗布剤
152A…接着剤
153A…樹脂ペースト
155…非接合部

Claims (8)

  1. 導体パターンが形成された絶縁層を複数積層してなる多層基板であって、
    前記絶縁層に形成されたビアホールに導体が充填されてなる層間接続導体を備え、
    前記層間接続導体により該多層基板の電気的な層間接続がなされ、
    前記絶縁層の界面において、積層方向から視て前記層間接続導体が重なっている位置の近傍に空隙または非接合部が設けられていることを特徴とする多層基板。
  2. 前記層間接続導体は、積層方向から視た断面積が積層方向に変化し、
    前記断面積は、前記層間接続導体同士が前記導体パターンを介さずに直接接触している部分で大きくなっており、
    前記空隙または前記非接合部は、前記層間接続導体同士が前記導体パターンを介さずに直接接触している部分の近傍に設けられていることを特徴とする請求項1に記載の多層基板。
  3. 前記空隙または前記非接合部は、積層方向から視て前記層間接続導体の外形に沿って形成されていることを特徴とする請求項1または2に記載の多層基板。
  4. 前記層間接続導体の一部は前記空隙内に露出していることを特徴とする請求項3に記載の多層基板。
  5. 導体パターンが形成された絶縁層を複数積層してなる多層基板の製造方法であって、
    前記絶縁層にビアホールを形成する工程と、
    前記ビアホールに導体を充填して層間接続導体を形成する工程と、
    積層方向から視て前記層間接続導体の近傍を切削する工程と、
    積層方向から視て前記層間接続導体が重なるように前記絶縁層を積層して加熱圧着する工程と、
    を行う多層基板の製造方法。
  6. 前記絶縁層は、相対的に流動開始温度の高い第1絶縁層と、前記第1絶縁層よりも流動開始温度の低い第2絶縁層と、を含み、
    前記ビアホールを形成する工程では、前記第1絶縁層にビアホールを形成し、
    前記層間接続導体の近傍を切削する工程では、前記第1絶縁層における前記層間接続導体の近傍を切削する、
    請求項5に記載の多層基板の製造方法。
  7. 前記層間接続導体の近傍を切削する工程の後に、当該切削した箇所に、前記加熱圧着する工程で気化する塗布剤を塗布する請求項5または請求項6に記載の多層基板の製造方法。
  8. 導体パターンが形成された絶縁層を複数積層してなる多層基板の製造方法であって、
    前記絶縁層にビアホールを形成する工程と、
    前記ビアホールに導体を充填して層間接続導体を形成する工程と、
    積層方向から視て前記層間接続導体が重なるように前記絶縁層を積層して加熱圧着する工程と、
    積層方向から視て前記層間接続導体の近傍に、前記加熱圧着する工程で気化する塗布剤を塗布する工程と、
    を行う多層基板の製造方法。
JP2014041970A 2014-03-04 2014-03-04 多層基板および多層基板の製造方法 Pending JP2015170615A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014041970A JP2015170615A (ja) 2014-03-04 2014-03-04 多層基板および多層基板の製造方法
CN201520094954.3U CN204634145U (zh) 2014-03-04 2015-02-10 多层基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041970A JP2015170615A (ja) 2014-03-04 2014-03-04 多層基板および多層基板の製造方法

Publications (1)

Publication Number Publication Date
JP2015170615A true JP2015170615A (ja) 2015-09-28

Family

ID=54053121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041970A Pending JP2015170615A (ja) 2014-03-04 2014-03-04 多層基板および多層基板の製造方法

Country Status (2)

Country Link
JP (1) JP2015170615A (ja)
CN (1) CN204634145U (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484521B2 (ja) 2020-07-16 2024-05-16 住友ゴム工業株式会社 タイヤ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871325B2 (en) * 2016-01-15 2018-01-16 Te Connectivity Corporation Circuit board having selective vias filled with lossy plugs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484521B2 (ja) 2020-07-16 2024-05-16 住友ゴム工業株式会社 タイヤ

Also Published As

Publication number Publication date
CN204634145U (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
JP2003086948A (ja) 多層基板の製造方法およびその製造方法によって形成される多層基板
JP5757376B1 (ja) 多層基板の製造方法、多層基板および電磁石
JP2014107552A (ja) 多層回路基板及びその製作方法
TW201813463A (zh) 軟硬複合線路板
JP5962184B2 (ja) 樹脂多層基板
JP6519714B2 (ja) 樹脂多層基板、伝送線路、モジュールおよびモジュールの製造方法
JP6263167B2 (ja) 多層基板および多層基板の製造方法
JP2015170615A (ja) 多層基板および多層基板の製造方法
JP5652481B2 (ja) 樹脂多層基板およびその製造方法
JP6350758B2 (ja) 樹脂多層基板およびその製造方法
JP5741975B2 (ja) 樹脂多層基板
JP6594947B2 (ja) コイル内蔵基板およびその製造方法
JP2019021863A (ja) 多層基板
US10709020B2 (en) Component-embedded substrate and method for manufacturing component-embedded substrate
JP6536751B2 (ja) 積層コイルおよびその製造方法
JP2004311628A (ja) 多層基板およびその製造方法
JPWO2017010228A1 (ja) 樹脂基板、部品搭載樹脂基板およびその製造方法
JP2003209356A (ja) 多層基板の製造方法
JP2012089568A (ja) 有機多層基板及びその製造方法
WO2012132524A1 (ja) フレキシブル多層基板
TW201428903A (zh) 電子裝置及其製造方法
JP6232976B2 (ja) 多層基板の製造方法、多層基板および電磁石
WO2018079477A1 (ja) 多層基板およびその製造方法
JP6256629B2 (ja) 部品内蔵基板および部品内蔵基板の製造方法
JP5773105B2 (ja) 樹脂多層基板およびその製造方法