JP2015102630A - 光通信デバイス、受信装置、送信装置及び送受信システム - Google Patents

光通信デバイス、受信装置、送信装置及び送受信システム Download PDF

Info

Publication number
JP2015102630A
JP2015102630A JP2013242133A JP2013242133A JP2015102630A JP 2015102630 A JP2015102630 A JP 2015102630A JP 2013242133 A JP2013242133 A JP 2013242133A JP 2013242133 A JP2013242133 A JP 2013242133A JP 2015102630 A JP2015102630 A JP 2015102630A
Authority
JP
Japan
Prior art keywords
substrate
drive circuit
optical communication
communication device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013242133A
Other languages
English (en)
Other versions
JP6287105B2 (ja
JP2015102630A5 (ja
Inventor
眞仁 六波羅
Masahito Rokuhara
眞仁 六波羅
周作 柳川
Shusaku Yanagawa
周作 柳川
栄二 大谷
Eiji Otani
栄二 大谷
修一 岡
Shuichi Oka
修一 岡
鬼木 一直
Kazunao Oniki
一直 鬼木
大鳥居 英
Suguru Otorii
英 大鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2013242133A priority Critical patent/JP6287105B2/ja
Priority to US14/539,260 priority patent/US9614347B2/en
Priority to DE102014223342.9A priority patent/DE102014223342A1/de
Priority to CN201410646273.3A priority patent/CN104656207B/zh
Priority to EP14193357.2A priority patent/EP2916152A1/en
Publication of JP2015102630A publication Critical patent/JP2015102630A/ja
Publication of JP2015102630A5 publication Critical patent/JP2015102630A5/ja
Priority to US15/477,527 priority patent/US10168498B2/en
Application granted granted Critical
Publication of JP6287105B2 publication Critical patent/JP6287105B2/ja
Priority to US16/199,908 priority patent/US10634862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0041Optical control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】プロセッサと駆動回路との間や、駆動回路と光デバイスとの間で伝送される電気信号の品質まで考慮した、信頼性の高い光通信デバイスを提供する。
【解決手段】光通信デバイス10は、第1の基板である駆動回路基板130には、第1の面側に受光素子110及び発光素子のいずれかを含む光デバイスが配設され、駆動回路基板130の第1の面とは逆側の第2の面側に光デバイスの配設位置に対応する領域に光デバイスを駆動する駆動回路120が設けられ、駆動回路120と光デバイスとは駆動回路基板130を貫通して設けられる貫通ビア131を介して電気的に接続され、駆動回路基板130の第2の面側には、光デバイスの配設位置に対応する領域を覆うように、駆動回路120との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される。
【選択図】図2

Description

本開示は、光通信デバイス、受信装置、送信装置及び送受信システムに関する。
近年の情報化社会の発展に伴い、PC(Personal Computer)やサーバ等の情報処理装置において扱われる情報量(データ量、信号量)は、爆発的に増加している。このようなデータ量の増加に伴い、装置間、デバイス間又はチップ間でのデータの送受信に関して、より多くのデータをより高速に伝送する必要性が増している。
例えば、コンピュータに用いられるCPU(Central Processing Unit)等のプロセッサにおいては、その高速化、高機能化が進んでいる。従来、プロセッサ間でのデータの送受信は、例えば基板上の銅配線を介した電気信号によって行われることが主流である。しかしながら、このような電気信号によるデータ伝送技術(電気通信技術又は電気インターコネクト技術)を用いてより高速のデータ伝送を行う場合には、例えばRC信号遅延、インピーダンスミスマッチ、EMC/EMI、クロストーク等の問題が生じてしまい、データ伝送の更なる高速は困難となる恐れがある。
そこで、電気通信技術に代わるデータ伝送技術として、電気信号を光変調し、光によってデータの伝送を行う光通信技術(又は光インターコネクト技術)が提案されている。例えば、特許文献1には、光導波路を設置するための設置部と、当該光導波路に対して光入射を行うための発光素子と、当該光導波路からの出射光を受けるための受光素子と、を備え、当該発光素子及び当該受光素子の少なくとも一方が当該光導波路に対応して配置される、光通信用のソケットが開示されている。また、特許文献2には、ソケットに凹部を設け、当該凹部にインターポーザ基板を嵌め込むことにより、光通信用のソケットをより薄型化する技術が開示されている。
特開2005−181610号公報 特開2007−25310号公報
このようなデータ伝送を光によって行う場合であっても、発光素子又は受光素子等の光デバイスと、例えばプロセッサや駆動回路との間のデータの伝送は、電気信号で行う必要がある。そのため、プロセッサと駆動回路との間や、駆動回路と光デバイスとの間で伝送される電気信号の品質まで考慮した、より信頼性の高い光通信技術が求められていた。そこで、本開示では、光通信においてより高い信頼性を実現することが可能な、新規かつ改良された光通信デバイス、受信装置、送信装置及び送受信システムを提案する。
本開示によれば、第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を備え、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板の前記第2の面側には、少なくとも前記光デバイスの配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される、光通信デバイスが提供される。
また、本開示によれば、第1の面側に発光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記発光素子の配設位置に対応する領域に設けられ、前記発光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記発光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板の前記第2の面側には、少なくとも前記発光素子の配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層され、前記光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置が提供される。
また、本開示によれば、第1の面側に受光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記受光素子の配設位置に対応する領域に設けられ、前記受光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記受光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板の前記第2の面側には、少なくとも前記受光素子の配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層され、前記光通信デバイスを介して、任意の装置から送信される所定の情報が重畳された光を受信する、受信装置が提供される。
また、本開示によれば、第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を有する、光通信デバイス、を備え、当該光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置と、前記光通信デバイスを備え、当該光通信デバイスを介して、前記送信装置から送信される前記光を受信する、受信装置と、を備え、前記光通信デバイスにおいて、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記送信装置及び前記受信装置において、前記第1の基板の前記第2の面側には、少なくとも前記光デバイスの配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される、送受信システムが提供される。
また、本開示によれば、第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を備え、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記光デバイスの電源線とグランド線との間に電気的に接続される、光通信デバイスが提供される。
また、本開示によれば、第1の面側に発光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記発光素子の配設位置に対応する領域に設けられ、前記発光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記発光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記発光素子の電源線とグランド線との間に電気的に接続され、前記光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置が提供される。
また、本開示によれば、第1の面側に受光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記受光素子の配設位置に対応する領域に設けられ、前記受光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記受光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記受光素子の電源線とグランド線との間に電気的に接続され、前記光通信デバイスを介して、任意の装置から送信される所定の情報が重畳された光を受信する、受信装置が提供される。
また、本開示によれば、第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を有する、光通信デバイス、を備え、当該光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置と、前記光通信デバイスを備え、当該光通信デバイスを介して、前記送信装置から送信される前記光を受信する、受信装置と、を備え、前記光通信デバイスにおいて、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記送信装置及び前記受信装置において、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記光デバイスの電源線とグランド線との間に電気的に接続される、送受信システムが提供される。
本開示によれば、第1の基板の一面側に光デバイスが設けられ、他面側に光デバイスを駆動する駆動回路が設けられ、当該光デバイスと当該駆動回路とが、第1の基板に設けられる貫通ビアによって電気的に接続される。また、第1の基板の駆動回路が設けられる側には、信号処理回路が形成された信号処理基板が更に積層される。更に、駆動回路及び信号処理基板は、光デバイスが配設される位置に対応する領域に設けられる。従って、光デバイスと駆動回路との間の配線長が、第1の基板の厚さ(貫通ビアの長さ)とほぼ同等にまで短縮される。また、信号処理基板と駆動回路とが、第1の基板に対して同一の面側に、光デバイスが配設される位置に対応する領域に設けられるため、信号処理基板上に形成される信号処理回路と駆動回路との間の配線長をより短縮することが可能となる。このように、データ伝送時に電気信号が送受信される配線長をより短くすることができるため、電気信号の劣化を抑制することができる。
以上説明したように本開示によれば、光通信においてより高い信頼性を実現することが可能となる。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の第1の実施形態に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。 図1に示す第1の実施形態に係る光通信デバイスを拡大した様子を示す断面図である。 第1の実施形態において、より多いチャンネル数を有する場合の受光素子及びレンズ基板の一構成例を示す概略図である。 一般的な光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。 送信機能及び受信機能をともに有する変形例に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。 プロセッサと駆動回路とが同一基板上に形成される変形例に係る光通信デバイスと、当該プロセッサとが接続された概略構成を示す断面図である。 本開示の第2の実施形態に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。 一般的な受信側の光通信デバイスにおける受光素子の駆動回路の一回路構成例を示す回路図である。 一般的な送信側の光通信デバイスにおける発光素子の駆動回路の一回路構成例を示す回路図である。 第2の実施形態に係る受信側の光通信デバイスにおける受光素子の駆動回路の一回路構成例を示す回路図である。 第2の実施形態に係る送信側の光通信デバイスにおける発光素子の駆動回路の一回路構成例を示す回路図である。 信号線に抵抗を付与することによるインピーダンスの変動の抑制効果について説明するための説明図である。 信号線に抵抗を付与することによるインピーダンスの変動の抑制効果について説明するための説明図である。 第1の実施形態に対して薄膜キャパシタが追加される変形例に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。 第2の実施形態におけるプロセッサに対するキャパシタの配置位置について説明するための説明図である。 第2の実施形態におけるプロセッサに対するキャパシタの配置位置について説明するための説明図である。 第2の実施形態におけるプロセッサに対するキャパシタの配置位置について説明するための説明図である。 第2の実施形態におけるプロセッサに対するキャパシタの配置位置について説明するための説明図である。 第2の実施形態におけるプロセッサに対するキャパシタの配置位置について説明するための説明図である。 第1及び第2の実施形態に係る光通信デバイスが、プリント基板上に実装されたプロセッサ間の光インターコネクトに適用された場合の一構成例を示す概略図である。 第1及び第2の実施形態に係る光通信デバイスが、情報処理装置間の光通信に適用された場合の一構成例を示す概略図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は以下の順序で行うものとする。
1.第1の実施の形態
1−1.光通信デバイスの構成
1−2.一般的な光通信デバイスとの比較
1−3.変形例
1−3−1.送信機能及び受信機能をともに有する変形例
1−3−2.プロセッサと駆動回路とが同一基板上に形成される変形例
2.第2の実施の形態
2−1.光通信デバイスの構成
2−2.一般的な光通信デバイスとの比較
2−3.変形例
2−3−1.第1の実施形態に対して薄膜キャパシタを追加した変形例
2−4.基板表面へのバイパスコンデンサの実装について
3.適用例
3−1.プリント基板上のプロセッサ間の光インターコネクト通信
3−2.装置間の光通信
4.補足
<1.第1の実施の形態>
まず、本開示の第1の実施形態について説明する。
上述したように、近年、コンピュータに用いられるCPU等のプロセッサにおいては、その高機能化、高速化が進んでいる。例えば、いわゆるスーパーコンピュータの演算処理速度は1年半の間に約2倍のペースで高速化しており、近い将来にはエクサフロップス級のスーパーコンピュータを実現する計画も進められている。このようなプロセッサの高機能化、高速化に伴い、トランジスタの同時スイッチングの電源電圧の変動により発生するノイズが問題となり、その抑制が大きな課題となっている。また、高速での演算を実現するためには、プロセッサへのデータの入出力も高速化する必要があり、例えば毎秒数テラビットの大容量のデータ伝送技術の実現が期待されている。
しかしながら、現在多く用いられている銅配線によるプロセッサ間の電気インターコネクト技術では、RC信号遅延、インピーダンスミスマッチ、EMC/EMI、クロストーク等の問題が生じてしまい、データ伝送速度の更なる高速化は困難である。そこで、電気通信技術に代わるデータ伝送技術として、電気信号を光変調し、光によってデータの送受信を行う光通信技術が提案されている。
ここで、プロセッサ間における光を用いたデータ伝送についてより詳細に考える。送信側では、送信側のプロセッサによって各種の処理が施された情報が、電気信号として発光素子を駆動する駆動回路に送信され、当該駆動回路が当該電気信号に従って発光素子を駆動することにより、所定の情報が重畳された光が発光素子から出射される。受信側では、所定の情報が重畳された光を受光した受光素子からの出力が、電気信号として当該受光素子を駆動する駆動回路に送信され、当該駆動回路から受信側のプロセッサに当該電気信号が送信される。
このように、プロセッサ間におけるデータ伝送を光によって行う場合であっても、プロセッサと駆動回路との間、並びに、駆動回路と発光素子又は受光素子(以下、発光素子及び受光素子の少なくともいずれかの素子のことを光デバイスとも呼称する。)との間のデータ伝送は、電気信号によって行われる。従って、上述したように、光通信においてより高い信頼性を確保するためには、プロセッサと駆動回路との間や、駆動回路と光デバイスとの間で伝送される電気信号の品質がより向上されることが求められる。ここで、電気信号の品質を向上するためには、プロセッサと駆動回路との間及び駆動回路と光デバイスとの間の配線長はできるだけ短いことが好ましい。当該配線長が長いと、RC信号遅延、インピーダンスミスマッチ、EMC/EMI、クロストーク等の問題が顕在化し、信号品質の劣化を引き起こす可能性がある。
ここで、一般的に、プロセッサと 駆動回路とは、それぞれ別個のチップとして構成される。そして、プロセッサと駆動回路とが例えばプリント基板上にそれぞれ実装され、プロセッサと駆動回路とが当該プリント基板上に形成される配線パターンを介して電気信号をやり取りする(詳しくは、下記[1−2.一般的な光通信デバイスとの比較]で後述する。)。このように、一般的な構成では、プロセッサと駆動回路との間の配線長が比較的長くなる傾向があり、改善の余地があった。
上記事情に鑑みれば、プロセッサと駆動回路との間及び駆動回路と光デバイスとの間の配線長を考慮することにより、当該駆動回路及び当該プロセッサにおける電気信号の品質を向上させる技術が求められていた。本開示の第1の実施形態では、光デバイスの駆動回路及びプロセッサにおける電気信号の品質を向上させることにより、光通信においてより高い信頼性を実現することを可能とする技術を提供する。以下、第1の実施形態について詳しく説明する。
[1−1.光通信デバイスの構成]
まず、図1及び図2を参照して、本開示の第1の実施形態に係る光通信デバイスの構成について説明する。図1は、本開示の第1の実施形態に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された一構成例を示す断面図である。図2は、図1に示す第1の実施形態に係る光通信デバイスを拡大した様子を示す断面図である。
ここで、第1の実施形態に係る光通信デバイスは、電気信号と光との光電変換を行うことにより、光によってプロセッサ間でのデータの伝送を行う通信インターフェースである。具体的には、送信側の光通信デバイスは、プロセッサによって所定の処理が施され、所定の情報が重畳された電気信号を光に変換し、受信側の光通信デバイスに送信する。受信側の光通信デバイスは、所定の情報が重畳された光を電気信号に変換し、プロセッサに提供する。図1では、プロセッサに対して受信側及び送信側の光通信デバイスが接続された様子が図示されている。
図1を参照すると、プリント基板330、インターポーザ基板140及びプロセッサ310が形成される信号処理基板311が、この順に積層される。プリント基板330とインターポーザ基板140とは、例えばハンダバンプ340によって、プリント基板330上のパッド及びインターポーザ基板140上のパッドを介して電気的に接続されている。また、インターポーザ基板140と信号処理基板311とは、例えばハンダバンプ173によってインターポーザ基板140上のパッド及び信号処理基板311上のパッドを介して電気的に接続されている。
ここで、以下の説明では、図面において、プリント基板330、インターポーザ基板140及びプロセッサ310が積層される方向をz軸方向と定義する。また、z軸方向において、プリント基板330、インターポーザ基板140及びプロセッサ310が積層される方向をz軸の正方向と定義するとともに、z軸の正方向及び負方向のことを便宜的に上方向及び下方向とも呼称する。更に、z軸方向と垂直な平面内において、互いに直交する2方向を、それぞれx軸方向及びy軸方向と定義する。
プリント基板330の一部領域には開口部が設けられており、インターポーザ基板140の当該開口部に対応する位置に、光デバイスである受光素子110及び発光素子が設けられることにより、光通信デバイス10、20が構成される。図1に示す光通信デバイス10、20のうち、例えば一方が受信側の光通信デバイス10であり、他方が送信側の光通信デバイス20である。光通信デバイス10、20と、図示しない他のプロセッサ310に接続される光通信デバイス10、20とが、例えば導光部材320により、プリント基板330の裏面において接続される。
プロセッサ310は、電気信号に対して所定の処理を施す信号処理回路の一例である。プロセッサ310は、入出力インターフェース(I/O部)を有し、当該I/O部に設けられるパッドを介して、インターポーザ基板140とハンダバンプ173で電気的に接続されている。プロセッサ310は、例えば、CPU、DSP(Digital Signal Pocessor)等の各種の演算装置であり得る。ただし、第1の実施形態はかかる例に限定されず、いわゆるプロセッサとしての機能を有していない信号処理回路が光通信デバイス10、20に接続されてもよい。第1の実施形態では、例えばLSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)等、所定の信号処理を行う集積回路が光通信デバイス10、20に接続され、光通信デバイス10、20を介して他の信号処理回路と光によるデータの伝送を行ってよい。
導光部材320は、光を所定の方向に伝搬する光学部材の一例である。導光部材320は、例えば、光ファイバや導光板等であり得る。第1の実施形態では、導光部材320の種類は限定されず、光通信において光の伝搬に一般的に用いられる各種の光学部材が用いられてよい。
図2を参照して、光通信デバイス10、20の構成についてより詳細に説明する。なお、図2では、受信側及び送信側の光通信デバイス10、20のうち、受信側の光通信デバイス10を図示している。第1の実施形態では、受信側の光通信デバイス10と送信側の光通信デバイス20とは、光デバイスの種類(すなわち、受光素子又は発光素子)及び当該光デバイスを駆動する駆動回路の構成が異なるだけであり、その他の構成は同様である。従って、ここでは、図2に示す受信側の光通信デバイス10の構成に基づいて、第1の実施形態に係る光通信デバイス10、20の構成について説明することとする。
図2を参照すると、第1の実施形態に係る光通信デバイス10は、第1の面側に光デバイスである受光素子110が設けられる駆動回路基板130と、駆動回路基板130の当該第1の面とは逆側の第2の面側において、受光素子110の配設位置に対応する領域に設けられ、受光素子110を駆動する駆動回路120と、を備える。また、駆動回路120と受光素子110とは、駆動回路基板130を貫通して設けられる貫通ビア131を介して電気的に接続される。
受光素子110は、受光した光に応じた信号値を発生させる光学素子である。受光素子110は、例えばフォトダイオード(PD)であり得る。なお、送信側の光通信デバイス20においては、受光素子110の代わりに発光素子が設けられる。発光素子は、印加された電流値に応じた強度の光を発する光学素子である。発光素子は、例えば半導体レーザであってよく、より具体的には垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)であり得る。ただし、第1の実施形態で用いられる受光素子110及び発光素子はこれらの例に限定されず、一般的に光通信において用いられる各種の受光素子及び発光素子が適用されてよい。
駆動回路120は、受光素子110を駆動する回路である。具体的には、駆動回路120は、受光素子110によって生じた信号値を増幅するTIA(Trans―Impedance Amplifier)を含んでよい。なお、送信側の光通信デバイス20においては、駆動回路120の代わりに発光素子を駆動する他の駆動回路が設けられる。発光素子を駆動する他の駆動回路は、例えば発光素子であるレーザダイオードを駆動するためのレーザダイオードドライバ(LDD:Laser Diode Driver)を含んでよい。なお、第1の実施形態に係る光通信デバイス10、20においては、受光素子110及び発光素子を駆動する駆動回路の構成は任意であってよく、受光素子110及び発光素子の構成に応じて適宜設計されてよい。受光素子110及び発光素子を駆動する駆動回路の構成としては、例えば、一般的に光通信において用いられる各種の駆動回路の構成が適用可能であるため、詳細な説明は省略する。なお、以下では、受光素子110及び発光素子の駆動回路のことを、フロントエンドIC(FEIC:Front−End IC)とも呼称する。
図1及び図2に示すように、駆動回路基板130の上に、駆動回路120と対向するようにインターポーザ基板140が積層される。そして、駆動回路基板130上の駆動回路120とインターポーザ基板140とは、ハンダバンプ172によって電気的に接続される。
また、図1に示すように、信号処理基板311は、プロセッサ310をインターポーザ基板140に対向させた状態でインターポーザ基板140の上に積層される。そして、信号処理基板311上のプロセッサ310とインターポーザ基板140とは、ハンダバンプ173によって電気的に接続される。
ここで、プロセッサ310が形成される信号処理基板311は、少なくとも受光素子110の配設位置に対応する領域を覆うように、インターポーザ基板140上に積層される。そして、プロセッサ310と駆動回路120とは、インターポーザ基板140を貫通して設けられる貫通ビア141を介して電気的に接続される。ここで、信号処理基板311は、例えば、プロセッサ310のI/O部が受光素子110の配設位置の直上に位置するように積層される。このように、図1に示す例では、プロセッサ310のI/O部と駆動回路120とが貫通ビア141を介して電気的に接続されることにより、プロセッサ310と駆動回路120との間で各種の情報が電気信号としてやり取りされ得る。
このように、第1の実施形態では、駆動回路120が形成される駆動回路基板130、インターポーザ基板140及びプロセッサ310が形成される信号処理基板311がこの順に積層される。また、駆動回路120及び信号処理基板311は、受光素子110が配設される位置に対応する領域に設けられる。そして、駆動回路基板130の第1の面側に設けられる受光素子110と、駆動回路基板130の第2の面側に設けられる駆動回路120とが、駆動回路基板130に設けられる貫通ビア131によって電気的に接続され、駆動回路基板130の第2の面側に設けられる駆動回路120と、信号処理基板311上に形成されるプロセッサ310とが、インターポーザ基板140に設けられる貫通ビア141によって電気的に接続される。
駆動回路基板130の第1の面には、受光素子110を覆うように、複数のレンズ151(以下、第1のレンズとも呼称する。)が2次元状に形成されたレンズ基板150(以下、第1のレンズ基板とも呼称する。)が設けられる。複数のレンズ151は、受光素子110の配設位置に対応する位置にそれぞれ設けられており、レンズ151によって集光された光が受光素子110に入射することとなる。第1の実施形態では、図2に示すように、受光素子110は、レンズ基板150上に、例えばハンダバンプによって、当該レンズ基板150と電気的に接続されるように配設される。また、レンズ基板150が、ハンダバンプ171によって貫通ビア131を介して駆動回路120と電気的に接続される。このように、第1の実施形態では、受光素子110は、レンズ基板150、ハンダバンプ171及び貫通ビア131を介して駆動回路120と電気的に接続される。ただし、本実施形態はかかる例に限定されず、受光素子110は駆動回路基板130上に搭載されてもよく、貫通ビア131を介してより直接的に駆動回路120と電気的に接続されてもよい。
レンズ基板150と対向して、光入出力部160が設けられる。光入出力部160は、導光部材320を伝搬してきた光をレンズ基板150上のレンズ151を介して受光素子110に入射する。また、送信側の光通信デバイス20においては、光入出力部160は、発光素子から出力された光をレンズ基板150上のレンズ151を介して導光部材320に対して出射する。
具体的には、光入出力部160は、レンズ基板161(以下、第2のレンズ基板とも呼称する。)と、レンズ基板161上に設けられる複数のレンズ162(以下、第2のレンズとも呼称する。)を有する。複数のレンズ162は、レンズ基板150上のレンズ151とそれぞれ対向する位置に設けられる。導光部材320を伝搬してきた光は、レンズ162によって拡散された後、レンズ151によって集光されて受光素子110に入射することとなる。送信側の光通信デバイス20においては、発光素子から出力された光はレンズ151によって拡散された後、レンズ151によって集光されて導光部材320に出射されることとなる。このように、レンズ151、162を介して光の入出力が行われることにより、導光部材320からの光の入射時及び導光部材320への光の出射時における光の損失(ロス)が低減される。
レンズ基板161は、位置決めピン164によってインターポーザ基板140と接続される。具体的には、位置決めピン164の一端はインターポーザ基板140の下面と例えばハンダ等により接続され、位置決めピン164の他端はレンズ基板161に設けられる嵌合部163に嵌合されることにより、レンズ基板161とインターポーザ基板140とが位置決めピン164を介して接続される。
ここで、位置決めピン164のレンズ基板161及びインターポーザ基板140との接続位置は、レンズ162のレンズ151に対する位置を決めていると言える。上述したように、第1の実施形態では、レンズ151及びレンズ162を介して受光素子110と導光部材320との間での光のやり取りが行われるため、対向して設けられるレンズ151とレンズ162とは、その光軸同士の位置ずれ量ができるだけ小さいことが好ましい。レンズ151とレンズ162との光軸の位置ずれ量が大きいと、それだけレンズ151とレンズ162との間での光のロスが生じることとなり、結果的に光通信における信頼性の低下につながる恐れがある。
ここで、第1の実施形態では、位置決めピン164の一端をインターポーザ基板140に接続する際に、インターポーザ基板140の下面表面に形成されるパッド等を位置合わせのパターン(以下、第1の位置合わせパターンと呼称する。)として、その接続位置が決定されている。インターポーザ基板140と位置決めピン164との接続には例えばハンダ接続が用いられており、インターポーザ基板140に対する位置決めピン164の接続位置の位置合わせは、上記第1の位置合わせパターンに対して自己整合的に行われる。また、位置決めピン164の他端は、光入出力部160のレンズ基板161に形成される嵌合部163に嵌合されるため、当該嵌合部163は、第1の位置合わせパターンに対して位置合わせされて形成され得る。更に、駆動回路基板130に設けられる駆動回路120は、上記第1の位置合わせパターンとともに形成されるパッドに対してハンダバンプ172によって自己整合的に位置合わせされて、インターポーザ基板140と接続される。
また、レンズ基板150は、駆動回路120上に設けられる位置合わせのパターン(以下、第2の位置合わせパターンと呼称する。)とともに駆動回路基板130に形成される貫通ビア131に対して、ハンダバンプ171によって自己整合的に位置合わせされて、駆動回路基板130と接続されている。また、受光素子110は、レンズ基板150に対してハンダバンプにより自己整合的に位置合わせされてレンズ基板150と接続されている。
このように、第1の実施形態では、駆動回路基板130及びレンズ基板161の平面内での位置合わせは、インターポーザ基板140表面に設けられる第1の位置合わせパターンに基づいて行われてもよく、レンズ基板150の平面内での位置合わせは、駆動回路基板130上の駆動回路120内に設けられる第2の位置合わせパターンに基づいて行われてもよい。従って、レンズ基板150に形成されるレンズ151の光軸と、レンズ基板161に形成されるレンズ162の光軸との位置合わせを高精度に行うことができ、これらの光軸同士の位置ずれ量を低減することができる。更に、第1の実施形態では、位置決めピンとインターポーザ基板140との接続、インターポーザ基板140と駆動回路基板130との接続、駆動回路基板130とレンズ基板150との接続、及び、レンズ基板150と受光素子110との接続における位置合わせが、ハンダ接続により自己整合的に行われ得るため、これらの位置合わせを高精度かつ容易に行うことが可能となる。従って、レンズ151の光軸とレンズ162の光軸との位置合わせを更に高精度に行うことができるとともに、受光素子110のレンズ151、162に対する位置合わせも高精度に制御することが可能となる。
以上、図1及び図2を参照して、第1の実施形態に係る光通信デバイス10、20の構成について説明した。ここで、図1及び図2では、簡単のため、2つの受光素子110しか図示していないが、第1の実施形態に係る光通信デバイス10、20には、実際には、光通信に用いるチャンネルの数だけ受光素子及び発光素子が設けられてよい。
図3を参照して、このような、より多いチャンネル数を有する場合の受光素子110及びレンズ基板150の構成について説明する。図3は、第1の実施形態において、より多いチャンネル数を有する場合の受光素子110及びレンズ基板150の一構成例を示す概略図である。図3では、駆動回路基板130の第1の面、すなわち、受光素子110及びレンズ基板150が配設される面を正面から見た正面図と、駆動回路基板130、受光素子110及びレンズ基板150の断面図と、を併せて図示している。
図3は、例えば60個のチャンネルを有する受信側の光通信デバイス10における、受光素子110及びレンズ基板150の構成を示している。図3を参照すると、チャンネル数に対応して、駆動回路基板130上に60個の受光素子110が2次元状に配列されている。また、受光素子110に対応して、レンズ基板150には60個のレンズ151が形成されている。図3に示す例では、1列に12個の受光素子110が並べられた受光素子列が5列並べられている。図3に示すように、レンズ基板150は、受光素子列ごとに分割されて設けられてもよい。
このように、第1の実施形態においては、光通信デバイス10、20におけるチャンネル数に対応する数の受光素子110が、駆動回路基板130の一面側に2次元状に配設されてもよい。受光素子110の数及び配設位置は図3に示す例に限定されず、光通信に用いられるチャンネル数や導光部材320との接続等を考慮して、適宜設定されてよい。
また、第1の実施形態では、複数の受光素子110をそれぞれ個別の部品として用意し、各レンズ基板150の対応する位置に接続することにより、例えば図3に示すようなアレイ状の受光素子110を構成してもよい。個別の受光素子110を並べることによりアレイを構成する方が、受光素子110のアレイを一括して製作する場合と比べて、歩留まりを向上させることができ、光通信デバイス10を製作する際のコストを低減することが可能となる。
[1−2.一般的な光通信デバイスとの比較]
ここで、本開示の第1の実施形態をより明確なものとするために、第1の実施形態に係る光通信デバイス10、20と、一般的な光通信デバイスとの比較を行う。まず、図4を参照して、一般的な光通信デバイスの構成について説明する。図4は、図1に対応する図であり、一般的な光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。なお、図4では、一般的な光通信デバイスの一例として、受信側の光通信デバイスの構成を図示している。一般的な送信側の光通信デバイスの構成は、一般的な受信側の光通信デバイスの構成に対して、光デバイスの種類(すなわち、受光素子又は発光素子)及び当該光デバイスを駆動する駆動回路の構成が異なるだけであり、その他の構成は同様である。従って、ここでは、図4に示す受信側の光通信デバイスの構成に基づいて、一般的な光通信デバイスの構成について説明することとする。
図4を参照すると、プリント基板330、インターポーザ基板840a及び受光素子810を駆動する駆動回路820が形成された駆動回路基板830が、この順に積層される。プリント基板330とインターポーザ基板840aとは、例えばハンダバンプ340によって、プリント基板330上のパッド及びインターポーザ基板840a上のパッドを介して電気的に接続されている。また、インターポーザ基板840aと駆動回路基板830とは、例えばハンダバンプ872によってインターポーザ基板140上のパッド及び駆動回路基板830上のパッドを介して電気的に接続されている。
プリント基板330の一部領域には開口部が設けられており、インターポーザ基板840aの当該開口部に対応する位置に、光デバイスである受光素子810が設けられることにより、光通信デバイス80が構成される。光通信デバイス80と、図示しない他のプロセッサ310に接続される光通信デバイス80とが、例えば導光部材320により、プリント基板330の裏面において接続される。
図4に示すように、一般的な光通信デバイス80は、第1の面側に光デバイスである受光素子810が設けられるインターポーザ基板840aと、インターポーザ基板840aの当該第1の面とは逆側の第2の面側において、受光素子810の配設位置に対応する領域に設けられ、受光素子810を駆動する駆動回路820と、を備える。具体的には、インターポーザ基板840aの上面に、駆動回路基板830が、駆動回路820をインターポーザ基板840aに対向させた状態で積層され、駆動回路820とインターポーザ基板840aとがハンダバンプ872によって電気的に接続される。また、受光素子810と駆動回路820とが、インターポーザ基板840aを貫通して設けられる貫通ビア841を介して電気的に接続される。
受光素子810は、図1及び図2に示す受光素子110に対応する。また、駆動回路820は、図1及び図2に示す駆動回路120に対応する。受光素子810及び駆動回路820の構成は、上述した受光素子110及び駆動回路120の構成と同様であってよいため、詳細な説明は省略する。なお、一般的な送信側の光通信デバイスにおいては、受光素子810の代わりに発光素子が設けられる。また、駆動回路120の代わりに当該発光素子を駆動する他の駆動回路が設けられる。当該発光素子及び発光素子の駆動回路の構成についても、上述した第1の実施形態に係る送信側の光通信デバイス20に用いられる発光素子及び駆動回路の構成と同様であってよいため、詳細な説明は省略する。
インターポーザ基板840aの第1の面には、複数の受光素子810を覆うように、複数のレンズ851が2次元状に形成されたレンズ基板850が設けられる。複数のレンズ851は、複数の受光素子810の配設位置に対応する位置にそれぞれ設けられており、レンズ851によって集光された光が受光素子810に入射することとなる。図4に示すように、受光素子810は、レンズ基板850上に、例えばハンダバンプによって、当該レンズ基板850と電気的に接続されるように配設される。また、レンズ基板850が、ハンダバンプ871によって貫通ビア841を介して駆動回路820と電気的に接続される。このように、受光素子810は、レンズ基板850、ハンダバンプ871及び貫通ビア841を介して駆動回路120と電気的に接続される。
レンズ基板850と対向して、光入出力部860が設けられる。光入出力部860は、導光部材320を伝搬してきた光をレンズ基板850上のレンズ851を介して受光素子810に入射する。また、一般的な送信側の光通信デバイスにおいては、光入出力部860は、発光素子から出力された光をレンズ基板850上のレンズ851を介して導光部材320に対して出射する。なお、光入出力部860の構成は、図1及び図2に示す光入出力部160の構成と同様であってよいため、詳細な説明は省略する。
また、図4に示すように、一般的な構成では、プリント基板330、インターポーザ基板840aとは異なるインターポーザ基板840b及びプロセッサ310が形成される信号処理基板311が、この順に積層される。プリント基板330とインターポーザ基板840bとは、例えばハンダバンプ340によって、プリント基板330上のパッド及びインターポーザ基板840a上のパッドを介して電気的に接続されている。また、インターポーザ基板840bと信号処理基板311とは、例えばハンダバンプ873によってインターポーザ基板140上のパッド及び信号処理基板311上のパッドを介して電気的に接続されている。
具体的には、信号処理基板311は、プロセッサ310をインターポーザ基板840bに対向させた状態でインターポーザ基板840aの上に積層される。そして、プロセッサ310の例えばI/O部とインターポーザ基板840bとが、ハンダバンプ873によって電気的に接続される。
ここで、上述したように、駆動回路基板830が積層されるインターポーザ基板840aと、信号処理基板311が積層されるインターポーザ基板840bとは、ハンダバンプ340によってプリント基板330とそれぞれ電気的に接続されている。このように、一般的な構成においては、プロセッサ310と駆動回路120とは別個の部材として、それぞれが別々のインターポーザ基板840a、840bに積層され、プリント基板330を介して電気的に接続される。従って、一般的な構成においては、プロセッサ310と駆動回路820との間でやり取りされる電気信号は、インターポーザ基板840b、プリント基板330及びインターポーザ基板840aを通過して送受信されるため、その配線長は比較的長いものとなる。プロセッサ310間のデータ伝送を光によって行う場合であって、データ伝送速度が更に高速化した場合においては、このようにプロセッサ310と駆動回路820との間の配線長が比較的長いと、RC信号遅延、インピーダンスミスマッチ、EMC/EMI、クロストーク等の問題が顕在化し、電気信号の品質が劣化してしまう可能性がある。電気信号の品質の劣化は、結果的に光通信の信頼性の低下につながる恐れがある。
一方、図1及び図2を参照して説明したように、第1の実施形態においては、駆動回路基板130の一面側に受光素子110が設けられ、他面側に受光素子110を駆動する駆動回路120が設けられる。また、駆動回路基板130の上に、駆動回路120と対向するようにインターポーザ基板140が積層され、インターポーザ基板140の上には、プロセッサ310がインターポーザ基板140と対向するように信号処理基板311が更に積層される。ここで、駆動回路120及び信号処理基板311は、受光素子110が配設される位置に対応する領域に設けられる。そして、受光素子110と駆動回路120とが、駆動回路基板130に設けられる貫通ビア131によって電気的に接続され、駆動回路基板130上に形成される駆動回路120と信号処理基板311上に形成されるプロセッサ310とが、インターポーザ基板140に設けられる貫通ビア141によって電気的に接続される。このように、第1の実施形態では、プロセッサ310と駆動回路120との間の接続に要する配線長は、インターポーザ基板140の厚さ(貫通ビア141の長さ)とほぼ同等となり得るし、駆動回路120と受光素子110との間の接続に要する配線長は、駆動回路基板130の厚さ(貫通ビア131の長さ)とほぼ同等となり得る。従って、図4に例示する一般的な構成と比べて、データ伝送時に電気信号が送受信される配線長をより短くすることができ、例えば電圧降下や高周波クロストーク等の電気信号の劣化を抑制することができる。よって、光通信における高い信頼性が実現される。
[1−3.変形例]
次に、第1の実施形態におけるいくつかの変形例について説明する。第1の実施形態は、以下のような構成であってもよい。
(1−3−1.送信機能及び受信機能をともに有する変形例)
上述した第1の実施形態では、光通信デバイス10、20は、光デバイスとして受光素子及び発光素子のいずれかを有し、データの送信機能及び受信機能のいずれかを有する構成を有していた。しかし、第1の実施形態はかかる例に限定されず、光通信デバイスがデータの送信機能及び受信機能をともに有してもよい。
図5を参照して、第1の実施形態において、送信機能及び受信機能をともに有する変形例について説明する。図5は、送信機能及び受信機能をともに有する変形例に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。
図5を参照すると、本変形例に係る光通信デバイス40は、第1の面側に光デバイスである受光素子110a、110b及び発光素子111a、111bが設けられる駆動回路基板130と、駆動回路基板130における当該第1の面とは逆側の第2の面上に形成され、受光素子110a、110b及び発光素子111a、111bを駆動する駆動回路121と、を備える。また、駆動回路基板130には、当該駆動回路基板130を貫通して設けられる貫通ビア131が形成されており、駆動回路121と受光素子110a、110b及び発光素子111a、111bとは、当該貫通ビア131を介して電気的に接続される。
なお、本変形例に係る光通信デバイス40は、上述した第1の実施に係る光通信デバイス10に対して、発光素子111a、111bが更に備えられ、駆動回路121が受光素子110a、110bとともに発光素子111a、111bも駆動するように構成されたものに対応する。光通信デバイス40におけるそれ以外の構成は光通信デバイス10と同様であってよいため、光通信デバイス10と同様な構成についてはその詳細な説明は省略する。
光通信デバイス40は、駆動回路121が発光素子111a、111bを適宜駆動することにより、プロセッサ310によって所定の処理が施された電気信号を光に変換して他のプロセッサ310に対して送信することができる。また、光通信デバイス40は、受光素子110a、110bによって所定の情報が重畳された光を受光し、駆動回路121を介して電気信号としてプロセッサ310に提供することにより、他のプロセッサ310から送信されたデータを受信することができる。このように、本変形例に係る光通信デバイス40は、光を用いたデータの送信及び受信をともに行うことができる。駆動回路121は、データの送信及び受信をともに行うことができるように、受光素子110a、110b及び発光素子111a、111bをともに駆動可能なように構成される。
なお、図5では、簡単のため、2つの受光素子110a、110b及び2つの発光素子111a、111bしか図示していないが、本変形例に係る光通信デバイス40には、実際には、光通信に用いるチャンネルの数だけ受光素子及び発光素子が設けられてよい。例えば、複数のチャンネルのうちデータ送信用のチャンネルには発光素子が配設され、データ受信用のチャンネルには受光素子が配設される。
以上、図5を参照して、送信機能及び受信機能をともに有する変形例について説明した。以上説明したように、本変形例に係る光通信デバイス40は、上述した第1の実施形態に係る光通信デバイス10に対して、発光素子111a、111bが更に備えられ、駆動回路121が受光素子110a、110bとともに発光素子111a、111bも駆動するように構成されたものに対応する。従って、光通信デバイス10と同様、データ伝送時にプロセッサ310と駆動回路120との間及び駆動回路120と受光素子110との間で電気信号が送受信される配線長をより短くすることができ、電気信号の劣化を抑制することができる。よって、光通信における高い信頼性が実現される。更に、本変形例に係る光通信デバイス40は、受光素子110a、110b及び発光素子111a、111bを有し、データの受信機能及び送信機能を併せ持つ。従って、データ送信用及び受信用の光通信デバイスをそれぞれプロセッサ310に接続する場合に比べて、光通信デバイスを接続するための工程及びスペースを低減することができ、コストを削減することが可能となる。
(1−3−2.プロセッサと駆動回路とが同一基板上に形成される変形例)
上述した第1の実施形態では、プロセッサ310と光デバイスの駆動回路120とが、それぞれ別の基板上に形成されていた。しかし、第1の実施形態はかかる例に限定されず、プロセッサ310と光デバイスの駆動回路120とが同一基板上に形成されていてもよい。
図6を参照して、第1の実施形態において、プロセッサと駆動回路とが同一基板上に形成される変形例について説明する。図6は、プロセッサと駆動回路とが同一基板上に形成される変形例に係る光通信デバイスと、当該プロセッサとが接続された概略構成を示す断面図である。
図6を参照すると、本変形例に係る構成では、プリント基板330、インターポーザ基板140及びプロセッサ310が形成される信号処理基板311が、この順に積層される。プリント基板330とインターポーザ基板140とは、例えばハンダバンプ340によって、プリント基板330上のパッド及びインターポーザ基板140上のパッドを介して電気的に接続されている。また、インターポーザ基板140と信号処理基板311とは、例えばハンダバンプ173によってインターポーザ基板140上のパッド及び信号処理基板311上のパッドを介して電気的に接続されている。
プリント基板330の一部領域には開口部が設けられており、インターポーザ基板140の当該開口部に対応する位置に、光デバイスである受光素子110a、110b及び発光素子111a、111bが設けられることにより、光通信デバイス50、60が構成される。図6に示す光通信デバイス50、60のうち、例えば一方が受信側の光通信デバイス50であり、他方が送信側の光通信デバイス60である。光通信デバイス50、60と、図示しない他のプロセッサ310に接続される光通信デバイス50、60とが、例えば導光部材320により、プリント基板330の裏面において接続される。
なお、本変形例では、受信側の光通信デバイス50と送信側の光通信デバイス60とは、光デバイスの種類(すなわち、受光素子又は発光素子)及び当該光デバイスを駆動する駆動回路の構成が異なるだけであり、その他の構成は同様である。従って、ここでは、図6に示す受信側の光通信デバイス50の構成に基づいて、本変形例に係る光通信デバイス50、60の構成について説明することとする。
図6を参照すると、本変形例に係る光通信デバイス50は、第1の面側に光デバイスである受光素子110が設けられるインターポーザ基板140と、インターポーザ基板140の当該第1の面とは逆側の第2の面側において、受光素子110の配設位置に対応する領域に設けられ、受光素子110を駆動する駆動回路520と、を備える。駆動回路520は、受光素子110を駆動する駆動回路であり、図1及び図2に示す駆動回路120に対応する。
ここで、本変形例では、駆動回路520とプロセッサ310とが、ともに信号処理基板311上に形成される。例えば、駆動回路520は、信号処理基板311上において、インターポーザ基板140上での受光素子110の配設位置に対応する領域に形成される。そして、信号処理基板311が、プロセッサ310及び駆動回路520が形成される面をインターポーザ基板140に対向させた状態でインターポーザ基板140上に積層され、駆動回路520とインターポーザ基板140とがハンダバンプ173によって電気的に接続される。更に、受光素子110と駆動回路520とが、インターポーザ基板140を貫通して設けられる貫通ビア141を介して電気的に接続される。
インターポーザ基板140の第1の面には、複数の受光素子110を覆うように、複数のレンズ151が2次元状に形成されたレンズ基板150が設けられる。複数のレンズ151は、複数の受光素子110の配設位置に対応する位置にそれぞれ設けられており、レンズ151によって集光された光が受光素子110に入射することとなる。図6に示すように、受光素子110は、レンズ基板150上に、例えばハンダバンプによって、当該レンズ基板150と電気的に接続されるように配設される。また、レンズ基板150が、ハンダバンプ171によって貫通ビア141を介して駆動回路520と電気的に接続される。このように、受光素子110は、レンズ基板150、ハンダバンプ171及び貫通ビア141を介して駆動回路520と電気的に接続される。
光通信デバイス60についても同様に、発光素子111を駆動する駆動回路620が、信号処理基板311上において、インターポーザ基板140上での発光素子111a、111bの配設位置に対応する領域に形成される。そして、駆動回路620とインターポーザ基板140とがハンダバンプ173によって電気的に接続されるとともに、発光素子111と駆動回路620とが、インターポーザ基板140を貫通して設けられる貫通ビア141を介して電気的に接続される。また、光通信デバイス50と同様に、インターポーザ基板140の第1の面に、複数の発光素子111を覆うように、複数のレンズ151が2次元状に形成されたレンズ基板150が設けられ、発光素子111は、レンズ基板150、ハンダバンプ171及び貫通ビア141を介して駆動回路620と電気的に接続される。
レンズ基板150と対向して、光入出力部160が設けられる。受信側の光通信デバイス50においては、光入出力部160は、導光部材320を伝搬してきた光をレンズ基板150上のレンズ151を介して受光素子110に入射する。また、送信側の光通信デバイス60においては、光入出力部160は、発光素子111から出力された光をレンズ基板150上のレンズ151を介して導光部材320に対して出射する。なお、光入出力部160の構成は、図1及び図2に示す光入出力部160の構成と同様であってよいため、詳細な説明は省略する。
ここで、本変形例では、図1及び図2を参照して説明した光通信デバイス10と同様、位置決めピン164の一端をインターポーザ基板140に接続する際に、インターポーザ基板140の下面表面に形成されるパッド等を位置合わせのパターン(以下、第1の位置合わせパターンと呼称する。)として、その接続位置が決定されている。インターポーザ基板140と位置決めピン164との接続には例えばハンダ接続が用いられており、インターポーザ基板140に対する位置決めピン164の接続位置の位置合わせは、上記第1の位置合わせパターンに対して自己整合的に行われる。また、位置決めピン164の他端は、光入出力部160のレンズ基板161に形成される嵌合部163に嵌合されるため、当該嵌合部163は、第1の位置合わせパターンに対して位置合わせされて形成され得る。
ただし、本変形例では、光通信デバイス10とは異なり、レンズ基板150は、上記第1の位置合わせパターンとともにインターポーザ基板140に形成される貫通ビア141に対して、ハンダバンプ171によって自己整合的に位置合わせされて、インターポーザ基板140と接続されている。また、受光素子110は、レンズ基板150に対してハンダバンプにより自己整合的に位置合わせされてレンズ基板150と接続されている。
このように、本変形例では、レンズ基板150及びレンズ基板161の平面内での位置合わせは、ともに、インターポーザ基板140表面に設けられる第1の位置合わせパターンに基づいて行われてもよい。従って、レンズ基板150に形成されるレンズ151の光軸と、レンズ基板161に形成されるレンズ162の光軸との位置合わせを高精度に行うことができ、これらの光軸同士の位置ずれ量を低減することができる。更に、本変形例では、位置決めピンとインターポーザ基板140との接続、インターポーザ基板140とレンズ基板150との接続、及び、レンズ基板150と受光素子110との接続における位置合わせが、ハンダ接続により自己整合的に行われ得るため、これらの位置合わせを高精度かつ容易に行うことが可能となる。従って、レンズ151の光軸とレンズ162の光軸との位置合わせを更に高精度に行うことができるとともに、受光素子110のレンズ151、162に対する位置合わせも高精度に制御することが可能となる。
以上、図6を参照して、プロセッサと駆動回路とが同一基板上に形成される変形例について説明した。以上説明したように、本変形例に係る光通信デバイス50、60では、インターポーザ基板140の一面側に受光素子110が設けられ、他面側に受光素子110を駆動する駆動回路520が設けられる。ここで、駆動回路520は、受光素子110が配設される位置に対応する領域に設けられる。そして、受光素子110と駆動回路520とが、インターポーザ基板140に設けられる貫通ビア141によって電気的に接続される。従って、本変形例では、駆動回路520と受光素子110との間の接続に要する配線長が、インターポーザ基板140の厚さ(貫通ビア141の長さ)とほぼ同等となり得るため、その配線長をより短くすることができる。また、本変形例では、駆動回路520とプロセッサ310とが信号処理基板311上にともに形成され、同一基板上で電気的に接続され得るため、その配線長をより短くすることが可能となる。従って、本変形例に係る光通信デバイス50、60においても、光通信デバイス10と同様に、図4に例示する一般的な構成と比べて、データ伝送時にプロセッサ310と駆動回路120との間及び駆動回路120と受光素子110との間で電気信号が送受信される配線長をより短くすることができ、電気信号の劣化を抑制することができる。よって、光通信における高い信頼性が実現される。
また、本変形例は、上述した第1の実施形態に対して、駆動回路基板130が設けられず、受光素子110及び発光素子111を駆動する駆動回路520、620が、信号処理基板311上にプロセッサ310とともに形成される構成を有する。従って、光通信デバイス50、60の大きさをより小型化することができ、より簡易な構成での光通信が実現され得る。なお、プロセッサ310及び駆動回路520、620は、いわゆるSoC(System−on−a−Chip)の設計手法により、信号処理基板311上に1つのチップとして形成されてもよい。
以上説明したように、第1の実施形態に係る光通信デバイスは、第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、当該第1の基板の第1の面とは逆側の第2の面側において、光デバイスの配設位置に対応する領域に設けられ、光デバイスを駆動する駆動回路と、を備える。また、駆動回路と光デバイスとが、第1の基板を貫通して設けられる貫通ビアを介して電気的に接続される構成を有する。更に、第1の基板の当該第2の面側には、少なくとも光デバイスの配設位置に対応する領域を覆うように、駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される。第1の実施形態に係る光通信デバイスは、上記の構成を有すればよく、積層される基板の数や、駆動回路や光デバイスが設けられる基板の種類は任意である。
例えば、第1の実施形態に係る光通信デバイスは、図1及び図2に示す光通信デバイス10、20の構成を有してよい。図1及び図2に示す例では、上記第1の基板は、駆動回路基板130である。当該構成では、駆動回路基板130の第1の面側(図中の下面側)に受光素子110が設けられ、第1の面とは逆側の第2の面側(図中の上面側)に駆動回路120が設けられ、駆動回路120と受光素子110とが、駆動回路基板130を貫通して設けられる貫通ビア131を介して電気的に接続されている。また、駆動回路基板130の上にインターポーザ基板140を介してプロセッサ310が形成された信号処理基板311が積層され、駆動回路120とプロセッサ310とが、インターポーザ基板140を貫通して設けられる貫通ビア141を介して電気的に接続されている。
また、例えば、第1の実施形態に係る光通信デバイスは、図6に示す光通信デバイス50、60の構成を有してよい。図6に示す例では、上記第1の基板は、インターポーザ基板140である。当該構成では、インターポーザ基板140の第1の面側(図中の下面側)に受光素子110が設けられ、第1の面とは逆側の第2の面側(図中の上面側)に駆動回路520が設けられ、駆動回路520と受光素子110とが、インターポーザ基板140を貫通して設けられる貫通ビア141を介して電気的に接続されている。また、インターポーザ基板140の上にプロセッサ310及び駆動回路520が形成された信号処理基板311が積層され、駆動回路520とプロセッサ310とは同一基板上で電気的に接続されている。
このように、第1の実施形態に係る光通信デバイスは、上述した構成を有する限りにおいて、積層される基板の数や種類等、その具体的な構成は適宜変更され設定されてよい。
<2.第2の実施の形態>
次に、本開示の第2の実施形態について説明する。
上述したように、光通信においてより高い信頼性を確保するためには、プロセッサと駆動回路との間や、駆動回路と光デバイスとの間で伝送される電気信号の品質がより向上されることが求められる。ここで、電気回路において電気信号の品質を向上するための技術として、例えば電源線(VDD)とグランド電位の信号線(GND)との間にデカップリング用のキャパシタ(いわゆる、バイパスコンデンサ)を設ける技術が知られている。バイパスコンデンサを設けることにより、ノイズ成分の低減や、電源線の電圧降下の抑制等の効果が得られ、電気信号の品質を向上することができる。
例えば、図4に例示する一般的な構成において、プロセッサ310に対してバイパスコンデンサを付加する場合、プロセッサ310の回路の一部として当該バイパスコンデンサを設けると、チップ面積が増大してしまう。そこで、既存の技術としては、インターポーザ基板840bの下面(すなわち、プリント基板330と対向する面)にディスクリートパーツのキャパシタを実装し、インターポーザ基板840bを介してプロセッサ310とキャパシタとを接続することが行われている。
ここで、一般的に、バイパスコンデンサは、能動素子から物理的に近い場所に接続されることが望ましい。能動素子とバイパスコンデンサとの間の配線長が長いと、当該配線におけるインピーダンスが無視できないものとなり、結果的にかえって電気信号の品質を劣化させる恐れがあるためである。従って、上記キャパシタは、例えば、インターポーザ基板840bの下面においてプロセッサ310の直下に位置する領域に設けられる。しかしながら、インターポーザ基板840bの下面にキャパシタを実装し、インターポーザ基板840bを介してプロセッサ310と当該キャパシタとを接続する場合には、プロセッサ310内の能動素子とキャパシタとの間の配線長は、少なくともインターポーザ基板840bの厚さの分だけの長さを有することとなる。そこで、更なる電気信号の品質向上のためには、プロセッサ310内の能動素子とキャパシタとの間の配線長をより短くすることが求められていた。プロセッサ310の回路の一部としてキャパシタを設けることにより、配線長を短くできる可能性はあるが、上述したようにプロセッサ310のチップ面積が増大してしまう恐れがある。
また、図4に例示する一般的な構成において、バイパスコンデンサを、プロセッサ310だけでなく駆動回路820にも接続することを考える。しかしながら、インターポーザ基板840bの下面の駆動回路820の直下に位置する領域には、受光素子810及び/又は発光素子やレンズ基板850等の構成が設けられている。従って、プロセッサ310と同様に、インターポーザ基板840bの下面にキャパシタを実装し、インターポーザ基板840bを介して駆動回路820とキャパシタとを接続することは困難である。よって、既存の技術では、駆動回路820にバイパスコンデンサを接続するためには、駆動回路820の一部としてキャパシタを設ける必要があり、駆動回路820のチップ面積を増大させる原因となっていた。
上記事情に鑑みれば、光デバイスの駆動回路及びプロセッサのチップ面積を増加させることなく、当該駆動回路及び当該プロセッサにおける電気信号の品質を向上させる技術が求められていた。本開示の第2の実施形態では、全体的な構成を大型化することなく電気信号の品質を向上させることにより、光通信においてより高い信頼性を実現することを可能とする技術を提供する。以下、第2の実施形態について詳しく説明する。
[2−1.光通信デバイスの構成]
図7を参照して、本開示の第2の実施形態に係る光通信デバイスの構成について説明する。図7は、本開示の第2の実施形態に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。なお、図7では、第2の実施形態に係る光通信デバイスの一例として、受信側の光通信デバイスの構成を図示している。第2の実施形態に係る送信側の光通信デバイスの構成は、第2の実施形態に係る受信側の光通信デバイスの構成に対して、光デバイスの種類(すなわち、受光素子又は発光素子)及び当該光デバイスを駆動する駆動回路の構成が異なるだけであり、その他の構成は同様である。従って、ここでは、図7に示す受信側の光通信デバイスの構成に基づいて、第2の実施形態に係る光通信デバイスの構成について説明することとする。
図7を参照すると、第2の実施形態に係る構成では、プリント基板330、インターポーザ基板140及びプロセッサ310が形成される信号処理基板311が、この順に積層される。また、インターポーザ基板140の上面には、信号処理基板311とともに、受光素子110を駆動する駆動回路120が形成される駆動回路基板130が実装される。プリント基板330とインターポーザ基板140とは、例えばハンダバンプ340によって、プリント基板330上のパッド及びインターポーザ基板140上のパッドを介して電気的に接続されている。また、インターポーザ基板140と信号処理基板311及び駆動回路基板130とは、例えばハンダバンプ172、173によってインターポーザ基板140上のパッドと信号処理基板311上のパッド及び駆動回路基板130上のパッドを介して電気的に接続されている。
プリント基板330の一部領域には開口部が設けられており、インターポーザ基板140の当該開口部に対応する位置に、光デバイスである受光素子110が設けられることにより、第2の実施形態に係る光通信デバイス70が構成される。光通信デバイス70と、図示しない他のプロセッサ310に接続される光通信デバイスとが、例えば導光部材320により、プリント基板330の裏面において接続される。
光通信デバイス70の構成について詳しく説明する。図7を参照すると、第2の実施形態に係る光通信デバイス70は、第1の面側に光デバイスである受光素子110が設けられるインターポーザ基板140と、インターポーザ基板140の当該第1の面とは逆側の第2の面側において、受光素子110の配設位置に対応する領域に設けられ、受光素子110を駆動する駆動回路120と、を備える。具体的には、駆動回路120が形成された面をインターポーザ基板140の上面に対向させた状態で駆動回路基板130がインターポーザ基板140の上面に積層され、駆動回路120とインターポーザ基板140とが、ハンダバンプ172によって電気的に接続される。また、受光素子110と駆動回路120とは、インターポーザ基板140を貫通して設けられる貫通ビア(図示せず。)を介して電気的に接続される。
なお、光通信デバイス70の各構成部材、すなわち、受光素子110、駆動回路120、受光素子110を覆うように設けられるレンズ基板150、レンズ基板150上に形成される複数のレンズ151、レンズ基板150と対向して設けられる光入出力部160の構成は、第1の実施形態と同様であるため、詳細な説明は省略する。
プロセッサ310が形成された信号処理基板311は、インターポーザ基板140の上面において、駆動回路基板130が配設されない領域に配設される。信号処理基板311は、プロセッサ310が形成された面をインターポーザ基板140に対向させた状態でインターポーザ基板140の上面に積層され、プロセッサ310とインターポーザ基板140とがハンダバンプ173によって電気的に接続される。従って、第2の実施形態では、プロセッサ310と駆動回路120とは、インターポーザ基板140を介して電気的に接続されている。
また、インターポーザ基板140の下面であって、プロセッサ310の直下に対応する領域には、バイパスコンデンサとして機能するキャパシタ143が実装される。プロセッサ310とキャパシタ143とは、インターポーザ基板140を貫通して設けられる貫通ビア(図示せず。)を介して電気的に接続され得る。キャパシタ143は、例えばプロセッサ310内のVDDとGNDとの間に接続される。キャパシタ143がプロセッサ310に対してバイパスコンデンサとして接続されることにより、プロセッサ310における電気信号の品質の劣化が抑制される効果が得られる。
ここで、第2の実施形態においては、インターポーザ基板140の内部に薄膜キャパシタ142が形成される。薄膜キャパシタ142は、インターポーザ基板140を複数の層を積層して作成する際に、金属薄膜を所定の間隔を有して積層することにより、形成され得る。なお、図7では、薄膜キャパシタ142の構成を分かりやすく図示するために、インターポーザ基板140を貫通して設けられる貫通ビアの図示を省略している。実際には、プロセッサ310とキャパシタ143及びプリント基板330との間や、駆動回路120と受光素子110及びプリント基板330との間を電気的に接続するように、インターポーザ基板140には貫通ビアが適宜設けられる。
図7では、説明のため、薄膜キャパシタ142を構成する金属薄膜(電極)のうち、GND電位に対応する方を白色で、VDD電位に対応する方を黒色で図示している。また、薄膜キャパシタ142に接続されるハンダバンプ172、173、340にも、接続される薄膜キャパシタ142の電極の電位に応じて、便宜的に白色又は黒色を付している。なお、以下の説明におけるハンダバンプ171a、171b、174a、174b、174c、174d、175a、175b、175c、175d、341、342a、342b、342cは、ハンダバンプ171、172、173、340に対して、便宜的にその電位に応じて異なる符号を付したものであり、基板間の接続に関する機能としては、ハンダバンプ171、172、173、340と同様の機能を有する。
例えば、第2の実施形態では、駆動回路120のVDD及びGNDが、薄膜キャパシタ142の対応する電極にそれぞれ接続され、更に薄膜キャパシタ142を介してインターポーザ基板140のVDD及びGNDにそれぞれ接続される。当該接続は、図7においては、インターポーザ基板140のGND電位であることを表すハンダバンプ341、インターポーザ基板140のVDD電位であることを表すハンダバンプ175a、342a、駆動回路120のGND電位であることを表すハンダバンプ174a及び駆動回路120のVDD電位であることを表すハンダバンプ175a、342aと、薄膜キャパシタ142との間の接続として、模式的に図示されている。
なお、駆動回路120のVDD及びGNDが薄膜キャパシタ142に接続される際には、所定の値の抵抗を介して接続されてもよい。当該抵抗は、駆動回路120内に形成されてもよいし、インターポーザ基板140内に形成されてもよい。駆動回路120のVDD及びGNDが、所定の値の抵抗を介して薄膜キャパシタ142に接続されることにより、駆動回路120におけるインピーダンスの共振及び反共振による不安定さが解消され得る。抵抗を設けることによるインピーダンス特性の向上については、図12A及び図12Bを参照して後述する。
また、例えば、第2の実施形態では、受光素子110のアノード及びカソードが、薄膜キャパシタ142の対応する電極にそれぞれ接続される。更に、カソードは、薄膜キャパシタ142を介してインターポーザ基板140のGNDに接続される。当該接続は、図7においては、受光素子110のカソードと接続されていることを表すハンダバンプ171a、受光素子110のアノードと接続されていることを表すハンダバンプ171b及びインターポーザ基板140のGND電位であることを表すハンダバンプ341と、薄膜キャパシタ142との間の接続として、模式的に図示されている。なお、第2の実施形態送信側の光通信デバイスにおいては、発光素子のアノード及びカソードが、同様に、薄膜キャパシタ142の対応する電極にそれぞれ接続され得る。
また、例えば、第2の実施形態では、駆動回路120の所定の端子が、薄膜キャパシタ142の対応する電極にそれぞれ接続される。駆動回路120の所定の端子のうち、一方は、薄膜キャパシタ142を介してインターポーザ基板140のGNDに接続される。当該接続は、図7においては、駆動回路120の所定の端子と接続されていることを表すハンダバンプ174d、175d及びインターポーザ基板140のGND電位であることを表すハンダバンプ341と、薄膜キャパシタ142との間の接続として、模式的に図示されている。
また、例えば、第2の実施形態では、プロセッサ310のコア回路のVDD及びGNDが、薄膜キャパシタ142の対応する電極にそれぞれ接続され、更に薄膜キャパシタ142を介してインターポーザ基板140のVDD及びGNDにそれぞれ接続され得る。当該接続は、図7においては、インターポーザ基板140のGND電位であることを表すハンダバンプ341、インターポーザ基板140のVDD電位であることを表すハンダバンプ175c、342a、プロセッサ310のコア回路のGND電位であることを表すハンダバンプ174c及びプロセッサ310のコア回路のVDD電位であることを表すハンダバンプ175c、342cと、薄膜キャパシタ142との間の接続として、模式的に図示されている。
また、例えば、第2の実施形態では、プロセッサ310のI/O部のVDD及びGNDが、薄膜キャパシタ142の対応する電極にそれぞれ接続され、更に薄膜キャパシタ142を介してインターポーザ基板140のVDD及びGNDにそれぞれ接続され得る。当該接続は、図7においては、インターポーザ基板140のGND電位であることを表すハンダバンプ341、インターポーザ基板140のVDD電位であることを表すハンダバンプ175b、342b、プロセッサ310のI/O部のGND電位であることを表すハンダバンプ174b及びプロセッサ310のI/O部のVDD電位であることを表すハンダバンプ175b、342bと、薄膜キャパシタ142との間の接続として、模式的に図示されている。
このように、第2の実施形態では、インターポーザ基板140の内部に薄膜キャパシタ142が設けられ、当該薄膜キャパシタ142とプロセッサ310及び駆動回路120とが適宜接続されることにより、薄膜キャパシタ142がプロセッサ310及び駆動回路120におけるバイパスコンデンサとして機能する。従って、プロセッサ310間のデータ伝送を光によって行う場合であって、データ伝送速度が更に高速化した場合であっても、プロセッサ310や駆動回路120における電気信号の品質を向上させることができ、光通信の信頼性をより向上させることが可能となる。また、第2の実施形態では、薄膜キャパシタ142がインターポーザ基板140の内部に設けられるため、プロセッサ310及び駆動回路120の回路内にキャパシタを形成する場合と比べて、チップ面積が削減され、プロセッサ310と光通信デバイス70とが接続された全体的な構成の大型化が抑制される。更に、薄膜キャパシタ142がインターポーザ基板140の内部に設けられるため、インターポーザ基板140の下面にキャパシタを実装する場合と比べて、プロセッサ310及び駆動回路120と薄膜キャパシタ142までの距離(すなわち、配線長)が短縮される。従って、第2の実施形態においては、全体的な構成を大型化することなく電気信号の品質を向上させることができ、光通信においてより高い信頼性を実現することが可能となる。
なお、薄膜キャパシタ142の具体的な接続位置や容量等は、駆動回路120の回路構成等に応じて、バイパスコンデンサとしての所望の機能が発揮されるように適宜設計されてよい。
[2−2.一般的な光通信デバイスとの比較]
ここで、本開示の第2の実施形態をより明確なものとするために、第2の実施形態に係る光通信デバイス70と、一般的な光通信デバイス80との比較を行う。一般的な光通信デバイス80は、例えば、上記[1−2.一般的な光通信デバイスとの比較]で説明した、図4に示す構成を有する。
ここで、上述したように、既存の一般的な技術では、駆動回路820にバイパスコンデンサを接続する際に、駆動回路820の一部としてキャパシタを設ける必要があり、チップ面積を増大させる原因となっていた。一方、第2の実施形態では、インターポーザ基板140の内部に設けられる薄膜キャパシタ142をバイパスコンデンサとして利用することにより、このようなチップ面積の増大を抑えることが可能となる。ここでは、駆動回路120、820の回路図を参照して、一般的な駆動回路820の回路構成と第2の実施形態に係る駆動回路120の回路構成とを比較する。
まず、図8及び図9を参照して、一般的な駆動回路820の回路構成について説明する。図8は、一般的な受信側の光通信デバイスにおける受光素子の駆動回路の一回路構成例を示す回路図である。図9は、一般的な送信側の光通信デバイスにおける発光素子の駆動回路の一回路構成例を示す回路図である。
図8及び図9では、IP基板(図4における駆動回路基板830に対応)上におけるFEIC(図4における駆動回路820に対応)の回路構成が図示されている。また、図8及び図9では、説明のため、バイパスコンデンサに対応するキャパシタを示す回路記号及び当該キャパシタを接続する信号線を太線で図示している。図8及び図9を参照すると、一般的な受光素子の駆動回路及び一般的な発光素子の駆動回路においては、IP基板上だけでなくFEIC内にも複数のバイパスコンデンサ用のキャパシタが接続される。このように、一般的な駆動回路の構成においては、当該駆動回路内に複数のバイパスコンデンサ用のキャパシタが形成されるため、チップ面積の増大につながっていた。
次に、図10及び図11を参照して、第2の実施形態に係る駆動回路120の回路構成について説明する。図10は、第2の実施形態に係る受信側の光通信デバイスにおける受光素子の駆動回路の一回路構成例を示す回路図である。図11は、第2の実施形態に係る送信側の光通信デバイスにおける発光素子の駆動回路の一回路構成例を示す回路図である。
図10及び図11では、図8及び図9と同様に、IP基板(図7における駆動回路基板130に対応)上におけるFEIC(図7における駆動回路120に対応)の回路構成が図示されている。また、図10及び図11では、説明のため、バイパスコンデンサに対応するキャパシタを示す回路記号及び当該キャパシタを接続する信号線を太線で図示している。上述したように、第2の実施形態では、駆動回路120のバイパスコンデンサとして機能するキャパシタが、図10及び図11に示す回路図には明示されないインターポーザ基板140の内部に薄膜キャパシタ142として設けられ得る。従って、図10及び図11に示すように、第2の実施形態に係る受光素子の駆動回路及び第2の実施形態に係る発光素子の駆動回路においては、FEIC内にバイパスコンデンサ用のキャパシタが設けられなくてよい。このように、第2の実施形態においては、駆動回路120内にバイパスコンデンサ用のキャパシタを設ける必要がなくなるため、当該キャパシタを形成するための面積を削減することができ、チップ面積を低減することが可能となる。
ここで、上述したように、第2の実施形態では、駆動回路120が薄膜キャパシタ142に接続される際に、所定の値の抵抗を介して接続されてもよい。また、当該抵抗は駆動回路120内に形成され得る。図10及び図11では、このような駆動回路120内に設けられ得る抵抗の一例を破線で図示している。このように、駆動回路120のVDD及びGNDが、所定の値の抵抗を介して薄膜キャパシタ142に接続されることにより、駆動回路120における共振及び反共振によるインピーダンスの変動を制御することが可能となる。
図12A及び図12Bを参照して、信号線に抵抗を付与することによるインピーダンスの変動の抑制効果について説明する。図12A及び図12Bは、信号線に抵抗を付与することによるインピーダンスの変動の抑制効果について説明するための説明図である。図12A及び図12Bでは、横軸にある信号線に印加される電流の周波数を取り、縦軸に当該信号線のインピーダンスを取り、当該周波数と当該インピーダンスとの関係を概念的にプロットしている。
図12Aは、抵抗が付与されていない場合における、ある信号線での周波数とインピーダンスとの関係の一例を概念的に図示している。図12Aに示すように、抵抗が付与されていない場合、例えば、共振及び反共振により、インピーダンスが大きく変動してしまうことがある。このような変動の大きいインピーダンス特性は、電気信号のノイズを引き起こす可能性があり、高品質な電気信号を得るためには好ましい特性とは言えない。
一方、図12Bは、抵抗が付与されている場合における、ある信号線での周波数とインピーダンスとの関係の一例を概念的に図示している。図12Bに示すように、抵抗が付与されることにより、例えば共振及び反共振によるインピーダンスの変動が抑制され得る。このように、第2の実施形態では、駆動回路120を薄膜キャパシタ142に接続する際に所定の値の抵抗を介して接続することにより、より変動の少ないインピーダンス特性を得ることができ、電気信号の品質を向上させることができる。
なお、付与される抵抗の具体的な接続位置や抵抗値等は、駆動回路120の回路構成やバイパスコンデンサの接続位置等に基づいて、所望のインピーダンス特性が得られるように適宜設計されてよい。
以上、第2の実施形態に係る光通信デバイス70と、一般的な光通信デバイス80との比較を行った結果について説明した。以上説明したように、一般的な駆動回路820の構成においては、当該駆動回路820内に複数のバイパスコンデンサ用のキャパシタが形成され得るため、チップ面積の増大につながる恐れがあった。一方、第2の実施形態では、駆動回路120のバイパスコンデンサとして、インターポーザ基板140の内部に設けられる薄膜キャパシタ142が用いられ得る。従って、第2の実施形態においては、駆動回路120内にバイパスコンデンサ用のキャパシタを設ける必要がなくなるため、当該キャパシタを形成するための面積を削減することができ、チップ面積を低減することが可能となる。
[2−3.変形例]
次に、第2の実施形態における変形例について説明する。第2の実施形態は、以下のような構成であってもよい。
(2−3−1.第1の実施形態に対して薄膜キャパシタが追加される変形例)
上述した第2の実施形態では、プロセッサ310が形成された信号処理基板311及び駆動回路120が形成された駆動回路基板130が、ともにインターポーザ基板140の上に積層される構成を有していた。しかし、第2の実施形態はかかる例に限定されず、駆動回路120が形成された駆動回路基板130がインターポーザ基板140の下面に設けられ、プロセッサ310が形成された信号処理基板311がインターポーザ基板140の上面に設けられ、駆動回路120とプロセッサ310とが、インターポーザ基板140を貫通して設けられる貫通ビア141を介して電気的に接続される構成を有してもよい。これは、図1及び図2に示す第1の実施形態に係る構成に対して、インターポーザ基板140内に設けられる薄膜キャパシタ142が追加されたものに対応する。
図13を参照して、第1の実施形態に対して薄膜キャパシタが追加される変形例について説明する。図13は、第1の実施形態に対して薄膜キャパシタが追加される変形例に係る光通信デバイスと、当該光通信デバイスを介して各種の情報を送受信するプロセッサとが接続された概略構成を示す断面図である。なお、図13では、本変形例に係る光通信デバイスの一例として、受信側の光通信デバイスの構成を図示している。本変形例に係る送信側の光通信デバイスの構成は、本変形例に係る受信側の光通信デバイスの構成に対して、光デバイスの種類(すなわち、受光素子又は発光素子)及び当該光デバイスを駆動する駆動回路の構成が異なるだけであり、その他の構成は同様である。従って、ここでは、図13に示す受信側の光通信デバイスの構成に基づいて、本変形例に係る光通信デバイスの構成について説明することとする。
図13を参照すると、本変形例に係る構成では、プリント基板330、インターポーザ基板140及びプロセッサ310が形成される信号処理基板311が、この順に積層される。プリント基板330とインターポーザ基板140とは、例えばハンダバンプ340によって、プリント基板330上のパッド及びインターポーザ基板140上のパッドを介して電気的に接続されている。また、インターポーザ基板140と信号処理基板311とは、例えばハンダバンプ173によってインターポーザ基板140上のパッド及び信号処理基板311上のパッドを介して電気的に接続されている。
プリント基板330の一部領域には開口部が設けられており、インターポーザ基板140の当該開口部に対応する位置に、光デバイスである受光素子110が設けられることにより、本変形例に係る光通信デバイス75が構成される。光通信デバイス75と、図示しない他のプロセッサ310に接続される光通信デバイスとが、例えば導光部材320により、プリント基板330の裏面において接続される。なお、図13では、本変形例に係る光通信デバイスの一例として、受信側の光通信デバイス75の構成を図示している。本変形例に係る送信側の光通信デバイスの構成は、本変形例に係る受信側の光通信デバイス75の構成に対して、光デバイスの種類(すなわち、受光素子又は発光素子)及び当該光デバイスを駆動する駆動回路の構成が異なるだけであり、その他の構成は同様である。従って、ここでは、図13に示す受信側の光通信デバイス75の構成に基づいて、本変形例に係る光通信デバイスの構成について説明することとする。
図13を参照すると、本変形例に係る光通信デバイス75は、第1の面側に光デバイスである受光素子110が設けられる駆動回路基板130と、駆動回路基板130の当該第1の面とは逆側の第2の面側において、受光素子110の配設位置に対応する領域に設けられ、受光素子110を駆動する駆動回路120と、を備える。また、駆動回路120と受光素子110とは、駆動回路基板130を貫通して設けられる貫通ビア131を介して電気的に接続される。
駆動回路基板130の上に、駆動回路120と対向するようにインターポーザ基板140が積層され、駆動回路基板130上の駆動回路120とインターポーザ基板140とが、ハンダバンプ172によって電気的に接続される。また、プロセッサ310が形成される信号処理基板311は、少なくとも受光素子110の配設位置に対応する領域を覆うように、インターポーザ基板140上に積層される。具体的には、信号処理基板311は、プロセッサ310をインターポーザ基板140に対向させた状態でインターポーザ基板140の上に積層される。そして、プロセッサ310の例えばI/O部とインターポーザ基板140とが、ハンダバンプ173によって電気的に接続される。更に、プロセッサ310と駆動回路120とは、インターポーザ基板140を貫通して設けられる貫通ビア141を介して電気的に接続される。
インターポーザ基板140の第1の面には、複数の受光素子110を覆うように、複数のレンズ151が2次元状に形成されたレンズ基板150が設けられる。複数のレンズ151は、複数の受光素子110の配設位置に対応する位置にそれぞれ設けられており、レンズ151によって集光された光が受光素子110に入射することとなる。図13に示すように、受光素子110は、レンズ基板150上に、例えばハンダバンプによって、当該レンズ基板150と電気的に接続されるように配設される。また、レンズ基板150が、ハンダバンプ171によって貫通ビア141を介して駆動回路120と電気的に接続される。このように、受光素子110は、レンズ基板150、ハンダバンプ171及び貫通ビア131を介して駆動回路120と電気的に接続される。
レンズ基板150と対向して、光入出力部160が設けられる。受信側の光通信デバイス75においては、光入出力部160は、導光部材320を伝搬してきた光をレンズ基板150上のレンズ151を介して受光素子110に入射する。また、送信側の光通信デバイスにおいては、光入出力部160は、発光素子から出力された光をレンズ基板150上のレンズ151を介して導光部材320に対して出射する。
なお、光通信デバイス75の各構成部材、すなわち、受光素子110、駆動回路120、受光素子110を覆うように設けられるレンズ基板150、レンズ基板150上に形成される複数のレンズ151、レンズ基板150と対向して設けられる光入出力部160の構成は、第1の実施形態と同様であるため、詳細な説明は省略する。
本変形例では、プロセッサ310及び駆動回路120に対してバイパスコンデンサが接続される。具体的には、インターポーザ基板140の下面であって、プロセッサ310の直下に対応する領域には、バイパスコンデンサとして機能するキャパシタ143が実装される。プロセッサ310とキャパシタ143とは、インターポーザ基板140を貫通して設けられる貫通ビア(図示せず。)を介して電気的に接続され得る。キャパシタ143は、例えばプロセッサ310内のVDDとGNDとの間に接続される。キャパシタ143がプロセッサ310に対してバイパスコンデンサとして接続されることにより、プロセッサ310における電気信号の品質の劣化が抑制される効果が得られる。
また、インターポーザ基板140の内部に薄膜キャパシタ142が形成され、プロセッサ310及び駆動回路120が当該薄膜キャパシタ142と電気的に接続される。なお、図13では、薄膜キャパシタ142の構成を分かりやすく図示するために、インターポーザ基板140を貫通して設けられる貫通ビアの図示を省略している。実際には、プロセッサ310とキャパシタ143及びプリント基板330との間や、駆動回路120と受光素子110a、110b及びプリント基板330との間を電気的に接続するように、インターポーザ基板140には貫通ビアが適宜設けられる。
本変形例においても、プロセッサ310及び駆動回路120においてバイパスコンデンサが接続される信号線は、上述した第2の実施形態と同様であってよいため、詳細な説明は省略する。なお、図13においても、図7と同様に、説明のため、薄膜キャパシタ142を構成する金属薄膜(電極)のうち、GND電位に対応する方を白色で、VDD電位に対応する方を黒色で図示している。また、薄膜キャパシタ142に接続されるハンダバンプ171、172、173、340にも、接続される薄膜キャパシタ142の電極の電位に応じて、便宜的に白色又は黒色を付している。
以上、第2の実施形態の一変形例として、第1の実施形態に対して薄膜キャパシタが追加される変形例について説明した。本変形例では、第1の実施形態に係る構成に対して、インターポーザ基板140内に薄膜キャパシタ142が形成され、当該薄膜キャパシタ142がプロセッサ310及び駆動回路120のバイパスコンデンサとして用いられる。従って、第1の実施形態で得られる電気信号の品質向上の効果に加えて、全体的な構成を大型化することなく電気信号の品質を更に向上させることが可能となる。
なお、第2の実施形態の変形例は、上述した図13に示す構成に限定されず、他の構成であってもよい。例えば、第2の実施形態の変形例として、図5や図6に例示した構成に対して、インターポーザ基板140内に薄膜キャパシタを形成し、当該薄膜キャパシタ142をプロセッサ310及び駆動回路120のバイパスコンデンサとして用いることも可能である。
[2−4.基板表面へのバイパスコンデンサの実装について]
上述したように、第2の実施形態では、インターポーザ基板140の下面に、プロセッサ310のバイパスコンデンサとしてキャパシタ143が実装される。ここで、図14A−図14Eを参照して、第2の実施形態におけるプロセッサ310に対するキャパシタ143の配置位置について説明する。図14A−図14Eは、第2の実施形態におけるプロセッサ310に対するキャパシタ143の配置位置について説明するための説明図である。
図14A−図14Eでは、一般的な構成及び第2の実施形態に係る構成を上方向から見た様子が模式的に図示されており、インターポーザ基板140、840b、プロセッサ310、駆動回路120及びキャパシタ143の位置関係が示されている。また、図14A−図14Eでは、プロセッサ310においてVDD及びGNDの信号線が主に配置される部位を示すVDD/GND領域315と、プロセッサ310においてI/O部が配置される領域を表すI/O領域317と、光通信デバイス70、75における光の入射及び出射のための光入出力領域165(例えば光入出力部160の面積に対応)と、を併せて図示している。
図14Aは、例えば図4に図示した一般的な光通信デバイス80に対してキャパシタ143を設けた場合における、インターポーザ基板840b、プロセッサ310、VDD/GND領域315及びキャパシタ143の位置関係を図示している。図4を参照して説明したように、一般的な構成においては、プロセッサ310及び駆動回路820が、別個のインターポーザ基板840b、840a上にそれぞれ実装される。従って、図14Aに示すように、プロセッサ310が実装されるインターポーザ基板840bには、駆動回路820や光入出力領域165は存在しない。よって、一般的な構成においては、プロセッサ310に対応する領域の全面に渡ってキャパシタ143を実装することができる。
図14Bは、例えば図7に図示した第2の実施形態に係る光通信デバイス70における、インターポーザ基板140、プロセッサ310、VDD/GND領域315、駆動回路120、光入出力領域165及びキャパシタ143の位置関係を図示している。図7を参照して説明したように、第2の実施形態に係る構成においては、プロセッサ310及び駆動回路120が、同一のインターポーザ基板140上に実装される。インターポーザ基板140の下面における光入出力領域165に対応する領域には光デバイスが設けられるため、図14Bに示すように、光入出力領域165に対応する領域にはキャパシタ143は実装されない。
図14Cは、例えば図13に図示した第2の実施形態の一変形例に係る光通信デバイス75における、インターポーザ基板140、プロセッサ310、VDD/GND領域315、I/O領域317、駆動回路120、光入出力領域165及びキャパシタ143の位置関係を図示している。図13を参照して説明したように、当該変形例に係る構成では、第1の実施形態に係る構成と同様に、例えばプロセッサ310のI/O部の直下に駆動回路120及び光入出力領域165が位置する。従って、図14Cに示すように、インターポーザ基板140の下面における光入出力領域165に対応する領域にはキャパシタ143は実装されない。
図14Dは、例えば図1に図示した第1の実施形態に係る光通信デバイス10、20や、図6に図示した第1の実施形態の一変形例に係る光通信デバイス50、60のように、1つのプロセッサ310に対して受信側の光通信デバイス10、50と送信側の光通信デバイス20、60とがともに設けられる構成における、インターポーザ基板140、プロセッサ310、VDD/GND領域315、I/O領域317、駆動回路120、光入出力領域165及びキャパシタ143の位置関係を図示している。図1及び図6を参照して説明したように、これらの構成では、プロセッサ310のI/O部の直下に駆動回路120及び光入出力領域165が位置する。従って、図14Dに示すように、インターポーザ基板140の下面における光入出力領域165に対応する領域にはキャパシタ143は実装されない。本変形例では、プロセッサ310の直下に対応する領域に、受信側及び送信側双方の光入出力領域165が存在するため、図14B及び図14Cに示す例に比べて、インターポーザ基板140の下面においてキャパシタ143が実装され得ない領域が増加することとなる。
図14Eは、これまで説明してきた構成とは異なり、例えば駆動回路120はプロセッサ310の直下の領域に配設されるものの、光入出力領域165は駆動回路120の直下には設けられない構成における、インターポーザ基板140、プロセッサ310、VDD/GND領域315、I/O領域317、駆動回路120、光入出力領域165及びキャパシタ143の位置関係を図示している。第2の実施形態は、図14Eに示すような構成も、その変形例として取ることができる。当該構成では、プロセッサ310の直下に光入出力領域165が位置しないように、光入出力領域165の形成位置が適宜設定される。従って、図14Eに示すように、インターポーザ基板140の下面においてプロセッサ310に対応する領域の全面に渡ってキャパシタ143を実装することができる。
以上、図14A−図14Eを参照して、第2の実施形態におけるプロセッサ310及び駆動回路120に対するキャパシタ143の配置位置について説明した。
[3.適用例]
次に、以上説明した第1及び第2の実施形態に係る光通信デバイスの適用例について説明する。
(3−1.プリント基板上のプロセッサ間の光インターコネクト)
第1及び第2の実施形態に係る光通信デバイスは、プリント基板上に実装されたプロセッサ間の光インターコネクトに好適に適用可能である。図15を参照して、第1及び第2の実施形態に係る光通信デバイスが、プリント基板上に実装されたプロセッサ間の光インターコネクトに適用された場合の一構成例について説明する。図15は、第1及び第2の実施形態に係る光通信デバイスが、プリント基板上に実装されたプロセッサ間の光インターコネクトに適用された場合の一構成例を示す概略図である。
図15では、本適用例の一例として、図1に例示する第1の実施形態に係る光通信デバイス10、20が、プロセッサ310間の光インターコネクトに適用された場合について図示している。図15を参照すると、プリント基板330に複数のプロセッサ310がインターポーザ基板140を介して実装された構成が、直列に複数設けられている。図15は、図1に示す構成が複数配列された様子を上方向(z軸の正方向)から外観した図に対応している。
各プロセッサ310に対して、プリント基板に受信側の開口部及び送信側の開口部が設けられる。受信側の開口部には受光素子110及び当該受光素子110を駆動する駆動回路120を有する受信側の光通信デバイス10が設けられ、送信側の開口部には発光素子及び当該発光素子を駆動する駆動回路を有する送信側の光通信デバイス20が設けられる。一のプロセッサ310に対して設けられる受信側の光通信デバイス10と、他のプロセッサ310に対して設けられる送信側の光通信デバイス20との間(より詳細には、受信側の光通信デバイス10の光入出力領域165と送信側の光通信デバイス20の光入出力領域165との間)に導光部材320が設けられ、光通信デバイス10と光通信デバイス20との間で当該導光部材320を介して光によるデータの伝送が行われる。
なお、上記では、本適用例の一例として、図1及び図2に示す第1の実施形態に係る光通信デバイス10、20がプロセッサ310間の光インターコネクトに適用された場合について説明したが、本適用例はかかる例に限定されない。上述した他の実施形態及び変形例に係る光通信デバイスであっても、同様に、プロセッサ310間の光インターコネクトに適用可能である。
(3−2.装置間の光通信)
第1及び第2の実施形態に係る光通信デバイスは、例えばPC(Personal Computer)やワークステーション(WS:Work Station)、サーバ等の情報処理装置間の光通信に好適に適用可能である。図16を参照して、第1及び第2の実施形態に係る光通信デバイスが、情報処理装置間の光通信に適用された場合の一構成例について説明する。図16は、第1及び第2の実施形態に係る光通信デバイスが、情報処理装置間の光通信に適用された場合の一構成例を示す概略図である。
図16では、本適用例の一例として、図1に例示する第1の実施形態に係る構成が情報処理装置間の光通信に適用された場合について図示している。図16を参照すると、光通信によって各種のデータが伝送される送受信システム1000は、送信装置1010及び受信装置1020を備える。送信装置1010及び受信装置1020は情報処理装置の一例であり、例えば、PC、WS、サーバ等、各種の情報処理装置であり得る。送信装置1010及び受信装置1020は、例えば図1及び図2に示す構成を有する第1の実施形態に係る光通信デバイス10、20を備えており、当該光通信デバイス10、20を介して光通信によって各種のデータを伝送することができる。なお、図16では、送信装置1010及び受信装置1020の構成のうち、プロセッサ310及び光通信デバイス10、20を含む図1に示す構成以外の構成は図示を省略している。送信装置1010及び受信装置1020は、図示しない構成として、一般的な公知の情報処理装置が有する各種の構成を備えてもよい。図示しない構成は、一般的な情報処理装置に用いられる公知の構成であってよいため、詳細な説明は省略する。
図16に示す例では、送信装置1010の送信側の光通信デバイス10と、受信装置1020の受信側の光通信デバイス20とが、導光部材320によって接続されている。導光部材320は例えば光ファイバであり、図示しない通信網(ネットワーク)を介して送信装置1010及び受信装置1020を接続している。
送信装置1010が備えるプロセッサ310によって各種の処理が施された情報が、光通信デバイス10によって光電変換により電気信号から光に変換され、変換された所定の情報が重畳された光が、導光部材320を介して受信装置1020に対して送信される。受信装置1020では、光通信デバイス20によって導光部材320を伝搬してきた光が受信され、光電変換により光から変換された、所定の情報が重畳された電気信号が、受信装置1020が備えるプロセッサ310に入力される。このようにして、第1の実施形態に係る光通信デバイス10、20を介した送信装置1010及び受信装置1020間の光通信が実現される。
なお、図16に示す例では、送信装置1010の送信側の光通信デバイス10と、受信装置1020の受信側の光通信デバイス20とが、導光部材320によって接続され、送信装置1010から受信装置1020に対してデータが伝送される場合について説明したが、本適用例はかかる例に限定されない。送受信システム1000は、送信装置1010の受信側の光通信デバイス20と、受信装置1020の送信側の光通信デバイス10とが、導光部材320によって更に接続され、送信装置1010と受信装置1020とが、光通信によって互いに各種の情報を送受信できるように構成されてもよい。
また、上記では、送信装置1010及び受信装置1020の2台の情報処理装置間でのデータの伝送について説明したが、本適用例はかかる例に限定されない。送受信システム1000は、2台よりも多い複数の情報処理装置間が光通信デバイス10、20を介して導光部材320によって接続され、光通信によって互いに各種の情報を送受信できるように構成されてもよい。
また、上記では、本適用例の一例として、図1及び図2に示す第1の実施形態に係る光通信デバイス10、20が情報処理装置間の光通信に適用された場合について説明したが、本適用例はかかる例に限定されない。上述した他の実施形態及び変形例に係る光通信デバイスであっても、同様に、情報処理装置間の光通信に適用可能である。
<4.補足>
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を備え、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板の前記第2の面側には、少なくとも前記光デバイスの配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される、光通信デバイス。
(2)前記第1の基板の上に、前記駆動回路と対向するようにインターポーザ基板が積層され、前記インターポーザ基板の上に、前記信号処理回路が当該インターポーザ基板と対向するように前記信号処理基板が積層され、前記信号処理回路と前記駆動回路とが、前記インターポーザ基板を貫通して設けられる貫通ビアによって電気的に接続される、前記(1)に記載の光通信デバイス。
(3)前記第1の基板の前記第1の面には、前記光デバイスを覆うように、前記光デバイスに対向する位置に第1のレンズが形成された第1のレンズ基板が設けられ、前記第1のレンズ基板を挟んで前記光デバイスと対向するように設けられ、前記第1のレンズ基板上の前記第1のレンズと対向する位置に第2のレンズが形成される第2のレンズ基板を有し、前記第1及び第2のレンズを介して前記光デバイスへの光の入射又は前記光デバイスからの光の出射を行う光入出力部、を更に備え、前記第1の基板及び前記第2のレンズ基板の平面内での位置合わせは、前記インターポーザ基板表面に設けられる第1の位置合わせパターンに基づいて行われ、前記第1のレンズ基板の平面内での位置合わせは、前記第1の基板上の前記駆動回路内に設けられる第2の位置合わせパターンに基づいて行われる、前記(2)に記載の光通信デバイス。
(4)前記インターポーザ基板と前記第2のレンズ基板とは、位置決めピンを介して接続され、前記位置決めピンの一端は、前記第1の位置合わせパターンに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記位置決めピンの他端は、前記第1の位置合わせパターンに対して位置合わせされて形成される前記第2のレンズ基板上の嵌合部に嵌合する、前記(3)に記載の光通信デバイス。
(5)前記第1のレンズ基板は、前記駆動回路と、前記貫通ビアを介して電気的に接続され、前記光デバイスは、前記第1のレンズ基板上において、前記第1のレンズが形成される面とは逆側の面に配設され、前記第1のレンズ基板を介して前記駆動回路と電気的に接続され、前記第1の基板は、前記第1の位置合わせパターンとともに前記インターポーザ基板上に形成されたパッドに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記第1のレンズ基板は、前記第2の位置合わせパターンとともに前記第1の基板に形成される前記貫通ビアに対してハンダ接続により自己整合的に位置合わせされて、前記第1の基板と接続され、前記光デバイスは、前記第1のレンズ基板に対してハンダ接続により自己整合的に位置合わせされて、前記第1のレンズ基板と接続される、前記(3)又は(4)に記載の光通信デバイス。
(6)前記第1の基板はインターポーザ基板であり、前記駆動回路は、前記信号処理回路とともに前記信号処理基板上に形成され、前記インターポーザ基板の上に、前記駆動回路及び前記信号処理回路が当該インターポーザ基板と対向するように前記信号処理基板が積層され、前記信号処理回路と前記駆動回路とが、前記インターポーザ基板を貫通して設けられる貫通ビアによって電気的に接続される、前記(1)に記載の光通信デバイス。
(7)前記インターポーザ基板の前記第1の面には、前記光デバイスを覆うように、前記光デバイスに対向する位置に第1のレンズが形成された第1のレンズ基板が設けられ、前記第1のレンズ基板を挟んで前記光デバイスと対向するように設けられ、前記第1のレンズ基板上の前記第1のレンズと対向する位置に第2のレンズが形成される第2のレンズ基板を有し、前記第1及び第2のレンズを介して前記光デバイスへの光の入射又は前記光デバイスからの光の出射を行う光入出力部、を更に備え、前記第1のレンズ基板及び前記第2のレンズ基板の平面内での位置合わせは、前記インターポーザ基板表面に設けられる第1の位置合わせパターンに基づいて行われる、前記(6)に記載の光通信デバイス。
(8)前記インターポーザ基板と前記第2のレンズ基板とは、位置決めピンを介して接続され、前記位置決めピンの一端は、前記第1の位置合わせパターンに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記位置決めピンの他端は、前記第1の位置合わせパターンに対して位置合わせされて形成される前記第2のレンズ基板上の嵌合部に嵌合する、前記(7)に記載の光通信デバイス。
(9)前記第1のレンズ基板は、前記駆動回路と、前記貫通ビアを介して電気的に接続され、前記光デバイスは、前記第1のレンズ基板上において、前記第1のレンズが形成される面とは逆側の面に配設され、前記第1のレンズ基板を介して前記駆動回路と電気的に接続され、前記第1のレンズ基板は、前記第1の位置合わせパターンとともに前記インターポーザ基板上に形成されたパッドに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記光デバイスは、前記第1のレンズ基板に対してハンダ接続により自己整合的に位置合わせされて、前記第1のレンズ基板と接続される、前記(7)又は(8)に記載の光通信デバイス。
(10)前記インターポーザ基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記光デバイスの電源線とグランド線との間に電気的に接続される、前記(2)〜(9)のいずれか1項に記載の光通信デバイス。
(11)前記駆動回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続され、前記光デバイスの電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、前記(10)に記載の光通信デバイス。
(12)前記薄膜キャパシタが、前記信号処理回路の電源線とグランド線との間に電気的に接続され、前記信号処理回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、前記(10)又は(11)に記載の光通信デバイス。
(13)前記光デバイスの電源線及びグランド線と前記薄膜キャパシタとの間には、所定の値を有する抵抗が更に接続される、前記(10)〜(12)のいずれか1項に記載の光通信デバイス。
(14)第1の面側に発光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記発光素子の配設位置に対応する領域に設けられ、前記発光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記発光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板の前記第2の面側には、少なくとも前記発光素子の配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層され、前記光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置。
(15)第1の面側に受光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記受光素子の配設位置に対応する領域に設けられ、前記受光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記受光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板の前記第2の面側には、少なくとも前記受光素子の配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層され、前記光通信デバイスを介して、任意の装置から送信される所定の情報が重畳された光を受信する、受信装置。
(16)第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を有する、光通信デバイス、を備え、当該光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置と、前記光通信デバイスを備え、当該光通信デバイスを介して、前記送信装置から送信される前記光を受信する、受信装置と、を備え、前記光通信デバイスにおいて、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記送信装置及び前記受信装置において、前記第1の基板の前記第2の面側には、少なくとも前記光デバイスの配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される、送受信システム。
(17)第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を備え、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記光デバイスの電源線とグランド線との間に電気的に接続される、光通信デバイス。
(18)前記第1の基板の上に、前記駆動回路と対向するようにインターポーザ基板が積層され、前記インターポーザ基板の上に、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が、当該信号処理回路が当該インターポーザ基板と対向するように積層され、前記信号処理回路と前記駆動回路とが、前記インターポーザ基板を貫通して設けられる貫通ビアによって電気的に接続され、前記駆動回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続され、前記光デバイスの電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、前記(17)に記載の光通信デバイス。
(19)前記第1の基板はインターポーザ基板であり、前記インターポーザ基板の前記第2の面上に、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が、当該信号処理回路が当該インターポーザ基板と対向するように積層され、前記駆動回路は、前記信号処理回路とともに前記信号処理基板上に形成され、前記駆動回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続され、前記光デバイスの電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、前記(17)に記載の光通信デバイス。
(20)前記薄膜キャパシタが、前記信号処理回路の電源線とグランド線との間に電気的に接続され、前記信号処理回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、前記(18)又は(19)に記載の光通信デバイス。
(21)前記光デバイスの電源線及びグランド線と前記薄膜キャパシタとの間には、所定の値を有する抵抗が更に接続される、前記(18)〜(20)のいずれか1項に記載の光通信デバイス。
(22)前記第1の基板の前記第1の面には、前記光デバイスを覆うように、前記光デバイスに対向する位置に第1のレンズが形成された第1のレンズ基板が設けられ、前記第1のレンズ基板を挟んで前記光デバイスと対向するように設けられ、前記第1のレンズ基板上の前記第1のレンズと対向する位置に第2のレンズが形成される第2のレンズ基板を有し、前記第1及び第2のレンズを介して前記光デバイスへの光の入射又は前記光デバイスからの光の出射を行う光入出力部、を更に備え、前記第1の基板及び前記第2のレンズ基板の平面内での位置合わせは、前記インターポーザ基板表面に設けられる第1の位置合わせパターンに基づいて行われ、前記第1のレンズ基板の平面内での位置合わせは、前記第1の基板上の前記駆動回路内に設けられる第2の位置合わせパターンに基づいて行われる、前記(18)に記載の光通信デバイス。
(23)前記インターポーザ基板と前記第2のレンズ基板とは、位置決めピンを介して接続され、前記位置決めピンの一端は、前記第1の位置合わせパターンに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記位置決めピンの他端は、前記第1の位置合わせパターンに対して位置合わせされて形成される前記第2のレンズ基板上の嵌合部に嵌合する、前記(22)に記載の光通信デバイス。
(24)前記第1のレンズ基板は、前記駆動回路と、前記貫通ビアを介して電気的に接続され、前記光デバイスは、前記第1のレンズ基板上において、前記第1のレンズが形成される面とは逆側の面に配設され、前記第1のレンズ基板を介して前記駆動回路と電気的に接続され、前記第1の基板は、前記第1の位置合わせパターンとともに前記インターポーザ基板上に形成されたパッドに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記第1のレンズ基板は、前記第2の位置合わせパターンとともに前記第1の基板に形成される前記貫通ビアに対してハンダ接続により自己整合的に位置合わせされて、前記第1の基板と接続され、前記光デバイスは、前記第1のレンズ基板に対してハンダ接続により自己整合的に位置合わせされて、前記第1のレンズ基板と接続される、前記(22)又は(23)に記載の光通信デバイス。
(25)前記インターポーザ基板の前記第1の面には、前記光デバイスを覆うように、前記光デバイスに対向する位置に第1のレンズが形成された第1のレンズ基板が設けられ、前記第1のレンズ基板を挟んで前記光デバイスと対向するように設けられ、前記第1のレンズ基板上の前記第1のレンズと対向する位置に第2のレンズが形成される第2のレンズ基板を有し、前記第1及び第2のレンズを介して前記光デバイスへの光の入射又は前記光デバイスからの光の出射を行う光入出力部、を更に備え、前記第1のレンズ基板及び前記第2のレンズ基板の平面内での位置合わせは、前記インターポーザ基板表面に設けられる第1の位置合わせパターンに基づいて行われる、前記(19)に記載の光通信デバイス。
(26)前記インターポーザ基板と前記第2のレンズ基板とは、位置決めピンを介して接続され、前記位置決めピンの一端は、前記第1の位置合わせパターンに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記位置決めピンの他端は、前記第1の位置合わせパターンに対して位置合わせされて形成される前記第2のレンズ基板上の嵌合部に嵌合する、前記(25)に記載の光通信デバイス。
(27)前記第1のレンズ基板は、前記駆動回路と、前記貫通ビアを介して電気的に接続され、前記光デバイスは、前記第1のレンズ基板上において、前記第1のレンズが形成される面とは逆側の面に配設され、前記第1のレンズ基板を介して前記駆動回路と電気的に接続され、前記第1のレンズ基板は、前記第1の位置合わせパターンとともに前記インターポーザ基板上に形成されたパッドに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、前記光デバイスは、前記第1のレンズ基板に対してハンダ接続により自己整合的に位置合わせされて、前記第1のレンズ基板と接続される、前記(25)又は(26)に記載の光通信デバイス。
(28)第1の面側に発光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記発光素子の配設位置に対応する領域に設けられ、前記発光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記発光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記発光素子の電源線とグランド線との間に電気的に接続され、前記光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置。
(29)第1の面側に受光素子が配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記受光素子の配設位置に対応する領域に設けられ、前記受光素子を駆動する駆動回路と、を有する、光通信デバイス、を備え、前記光通信デバイスにおいて、前記駆動回路と前記受光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記受光素子の電源線とグランド線との間に電気的に接続され、前記光通信デバイスを介して、任意の装置から送信される所定の情報が重畳された光を受信する、受信装置。
(30)第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、を有する、光通信デバイス、を備え、当該光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置と、前記光通信デバイスを備え、当該光通信デバイスを介して、前記送信装置から送信される前記光を受信する、受信装置と、を備え、前記光通信デバイスにおいて、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、前記送信装置及び前記受信装置において、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記光デバイスの電源線とグランド線との間に電気的に接続される、送受信システム。
10、20、30、40、50、60、70、75 光通信デバイス
110 受光素子
111 発光素子
120、121、520、620 駆動回路
130 駆動回路基板
131、141 貫通ビア
140 インターポーザ基板
142 薄膜キャパシタ
143 キャパシタ
150、161 レンズ基板
151、162 レンズ
160 光入出力部
163 嵌合部
164 位置決めピン
171、172、173、340 ハンダバンプ
310 プロセッサ
311 信号処理基板
320 導電部材
330 プリント基板
1000 送受信システム
1010 送信装置
1020 受信装置


Claims (20)

  1. 第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、
    を備え、
    前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記第1の基板の前記第2の面側には、少なくとも前記光デバイスの配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される、
    光通信デバイス。
  2. 前記第1の基板の上に、前記駆動回路と対向するようにインターポーザ基板が積層され、
    前記インターポーザ基板の上に、前記信号処理回路が当該インターポーザ基板と対向するように前記信号処理基板が積層され、
    前記信号処理回路と前記駆動回路とが、前記インターポーザ基板を貫通して設けられる貫通ビアによって電気的に接続される、
    請求項1に記載の光通信デバイス。
  3. 前記第1の基板の前記第1の面には、前記光デバイスを覆うように、前記光デバイスに対向する位置に第1のレンズが形成された第1のレンズ基板が設けられ、
    前記第1のレンズ基板を挟んで前記光デバイスと対向するように設けられ、前記第1のレンズ基板上の前記第1のレンズと対向する位置に第2のレンズが形成される第2のレンズ基板を有し、前記第1及び第2のレンズを介して前記光デバイスへの光の入射又は前記光デバイスからの光の出射を行う光入出力部、を更に備え、
    前記第1の基板及び前記第2のレンズ基板の平面内での位置合わせは、前記インターポーザ基板表面に設けられる第1の位置合わせパターンに基づいて行われ、
    前記第1のレンズ基板の平面内での位置合わせは、前記第1の基板上の前記駆動回路内に設けられる第2の位置合わせパターンに基づいて行われる、
    請求項2に記載の光通信デバイス。
  4. 前記インターポーザ基板と前記第2のレンズ基板とは、位置決めピンを介して接続され、
    前記位置決めピンの一端は、前記第1の位置合わせパターンに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、
    前記位置決めピンの他端は、前記第1の位置合わせパターンに対して位置合わせされて形成される前記第2のレンズ基板上の嵌合部に嵌合する、
    請求項3に記載の光通信デバイス。
  5. 前記第1のレンズ基板は、前記駆動回路と、前記貫通ビアを介して電気的に接続され、
    前記光デバイスは、前記第1のレンズ基板上において、前記第1のレンズが形成される面とは逆側の面に配設され、前記第1のレンズ基板を介して前記駆動回路と電気的に接続され、
    前記第1の基板は、前記第1の位置合わせパターンとともに前記インターポーザ基板上に形成されたパッドに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、
    前記第1のレンズ基板は、前記第2の位置合わせパターンとともに前記第1の基板に形成される前記貫通ビアに対してハンダ接続により自己整合的に位置合わせされて、前記第1の基板と接続され、
    前記光デバイスは、前記第1のレンズ基板に対してハンダ接続により自己整合的に位置合わせされて、前記第1のレンズ基板と接続される、
    請求項3に記載の光通信デバイス。
  6. 前記第1の基板はインターポーザ基板であり、
    前記駆動回路は、前記信号処理回路とともに前記信号処理基板上に形成され、
    前記インターポーザ基板の上に、前記駆動回路及び前記信号処理回路が当該インターポーザ基板と対向するように前記信号処理基板が積層され、
    前記信号処理回路と前記駆動回路とが、前記インターポーザ基板を貫通して設けられる貫通ビアによって電気的に接続される、
    請求項1に記載の光通信デバイス。
  7. 前記インターポーザ基板の前記第1の面には、前記光デバイスを覆うように、前記光デバイスに対向する位置に第1のレンズが形成された第1のレンズ基板が設けられ、
    前記第1のレンズ基板を挟んで前記光デバイスと対向するように設けられ、前記第1のレンズ基板上の前記第1のレンズと対向する位置に第2のレンズが形成される第2のレンズ基板を有し、前記第1及び第2のレンズを介して前記光デバイスへの光の入射又は前記光デバイスからの光の出射を行う光入出力部、を更に備え、
    前記第1のレンズ基板及び前記第2のレンズ基板の平面内での位置合わせは、前記インターポーザ基板表面に設けられる第1の位置合わせパターンに基づいて行われる、
    請求項6に記載の光通信デバイス。
  8. 前記インターポーザ基板と前記第2のレンズ基板とは、位置決めピンを介して接続され、
    前記位置決めピンの一端は、前記第1の位置合わせパターンに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、
    前記位置決めピンの他端は、前記第1の位置合わせパターンに対して位置合わせされて形成される前記第2のレンズ基板上の嵌合部に嵌合する、
    請求項7に記載の光通信デバイス。
  9. 前記第1のレンズ基板は、前記駆動回路と、前記貫通ビアを介して電気的に接続され、
    前記光デバイスは、前記第1のレンズ基板上において、前記第1のレンズが形成される面とは逆側の面に配設され、前記第1のレンズ基板を介して前記駆動回路と電気的に接続され、
    前記第1のレンズ基板は、前記第1の位置合わせパターンとともに前記インターポーザ基板上に形成されたパッドに対してハンダ接続により自己整合的に位置合わせされて、前記インターポーザ基板と接続され、
    前記光デバイスは、前記第1のレンズ基板に対してハンダ接続により自己整合的に位置合わせされて、前記第1のレンズ基板と接続される、
    請求項7に記載の光通信デバイス。
  10. 第1の面側に発光素子が配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記発光素子の配設位置に対応する領域に設けられ、前記発光素子を駆動する駆動回路と、
    を有する、光通信デバイス、を備え、
    前記光通信デバイスにおいて、前記駆動回路と前記発光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記第1の基板の前記第2の面側には、少なくとも前記発光素子の配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層され、
    前記光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置。
  11. 第1の面側に受光素子が配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記受光素子の配設位置に対応する領域に設けられ、前記受光素子を駆動する駆動回路と、
    を有する、光通信デバイス、を備え、
    前記光通信デバイスにおいて、前記駆動回路と前記受光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記第1の基板の前記第2の面側には、少なくとも前記受光素子の配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層され、
    前記光通信デバイスを介して、任意の装置から送信される所定の情報が重畳された光を受信する、受信装置。
  12. 第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、
    を有する、光通信デバイス、を備え、当該光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置と、
    前記光通信デバイスを備え、当該光通信デバイスを介して、前記送信装置から送信される前記光を受信する、受信装置と、
    を備え、
    前記光通信デバイスにおいて、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記送信装置及び前記受信装置において、前記第1の基板の前記第2の面側には、少なくとも前記光デバイスの配設位置に対応する領域を覆うように、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が積層される、
    送受信システム。
  13. 第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、
    を備え、
    前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記光デバイスの電源線とグランド線との間に電気的に接続される、
    光通信デバイス。
  14. 前記第1の基板の上に、前記駆動回路と対向するようにインターポーザ基板が積層され、
    前記インターポーザ基板の上に、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が、当該信号処理回路が当該インターポーザ基板と対向するように積層され、
    前記信号処理回路と前記駆動回路とが、前記インターポーザ基板を貫通して設けられる貫通ビアによって電気的に接続され、
    前記駆動回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続され、
    前記光デバイスの電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、
    請求項13に記載の光通信デバイス。
  15. 前記第1の基板はインターポーザ基板であり、
    前記インターポーザ基板の前記第2の面上に、前記駆動回路との間でやり取りされる電気信号に対して所定の処理を施す信号処理回路が形成された信号処理基板が、当該信号処理回路が当該インターポーザ基板と対向するように積層され、
    前記駆動回路は、前記信号処理回路とともに前記信号処理基板上に形成され、
    前記駆動回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続され、
    前記光デバイスの電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、
    請求項13に記載の光通信デバイス。
  16. 前記薄膜キャパシタが、前記信号処理回路の電源線とグランド線との間に電気的に接続され、
    前記信号処理回路の電源線及びグランド線が、前記インターポーザ基板の電源線及びグランド線とそれぞれ電気的に接続される、
    請求項14に記載の光通信デバイス。
  17. 前記光デバイスの電源線及びグランド線と前記薄膜キャパシタとの間には、所定の値を有する抵抗が更に接続される、
    請求項13に記載の光通信デバイス。
  18. 第1の面側に発光素子が配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記発光素子の配設位置に対応する領域に設けられ、前記発光素子を駆動する駆動回路と、
    を有する、光通信デバイス、を備え、
    前記光通信デバイスにおいて、前記駆動回路と前記発光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記発光素子の電源線とグランド線との間に電気的に接続され、
    前記光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置。
  19. 第1の面側に受光素子が配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記受光素子の配設位置に対応する領域に設けられ、前記受光素子を駆動する駆動回路と、
    を有する、光通信デバイス、を備え、
    前記光通信デバイスにおいて、前記駆動回路と前記受光素子とは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記受光素子の電源線とグランド線との間に電気的に接続され、
    前記光通信デバイスを介して、任意の装置から送信される所定の情報が重畳された光を受信する、受信装置。
  20. 第1の面側に受光素子及び発光素子の少なくともいずれかを含む光デバイスが配設される第1の基板と、
    前記第1の基板の前記第1の面とは逆側の第2の面側において、前記光デバイスの配設位置に対応する領域に設けられ、前記光デバイスを駆動する駆動回路と、
    を有する、光通信デバイス、を備え、当該光通信デバイスを介して、任意の装置に対して所定の情報が重畳された光を送信する、送信装置と、
    前記光通信デバイスを備え、当該光通信デバイスを介して、前記送信装置から送信される前記光を受信する、受信装置と、
    を備え、
    前記光通信デバイスにおいて、前記駆動回路と前記光デバイスとは、前記第1の基板を貫通して設けられる貫通ビアを介して電気的に接続され、
    前記送信装置及び前記受信装置において、前記第1の基板内又は前記第1の基板に積層される他の基板の内部に形成される薄膜キャパシタが、前記駆動回路の電源線とグランド線との間、及び、前記光デバイスの電源線とグランド線との間に電気的に接続される、
    送受信システム。


JP2013242133A 2013-11-22 2013-11-22 光通信デバイス、受信装置、送信装置及び送受信システム Expired - Fee Related JP6287105B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013242133A JP6287105B2 (ja) 2013-11-22 2013-11-22 光通信デバイス、受信装置、送信装置及び送受信システム
US14/539,260 US9614347B2 (en) 2013-11-22 2014-11-12 Optical communication device, reception apparatus, transmission apparatus, and transmission and reception system
CN201410646273.3A CN104656207B (zh) 2013-11-22 2014-11-14 光通信器件、接收装置、发送装置和发送接收系统
EP14193357.2A EP2916152A1 (en) 2013-11-22 2014-11-14 Optical communication device, reception apparatus, transmission apparatus, and transmission and reception system
DE102014223342.9A DE102014223342A1 (de) 2013-11-22 2014-11-14 Optisches übertragungsbauteil, empfangsvorrichtung, übertragungsvorrichtung, und übertragungs- und empfangssystem
US15/477,527 US10168498B2 (en) 2013-11-22 2017-04-03 Optical communication device, reception apparatus, transmission apparatus, and transmission and reception system
US16/199,908 US10634862B2 (en) 2013-11-22 2018-11-26 Optical communication device, reception apparatus, transmission apparatus, and transmission and reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242133A JP6287105B2 (ja) 2013-11-22 2013-11-22 光通信デバイス、受信装置、送信装置及び送受信システム

Publications (3)

Publication Number Publication Date
JP2015102630A true JP2015102630A (ja) 2015-06-04
JP2015102630A5 JP2015102630A5 (ja) 2016-03-10
JP6287105B2 JP6287105B2 (ja) 2018-03-07

Family

ID=51986996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242133A Expired - Fee Related JP6287105B2 (ja) 2013-11-22 2013-11-22 光通信デバイス、受信装置、送信装置及び送受信システム

Country Status (5)

Country Link
US (3) US9614347B2 (ja)
EP (1) EP2916152A1 (ja)
JP (1) JP6287105B2 (ja)
CN (1) CN104656207B (ja)
DE (1) DE102014223342A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031478A1 (ja) * 2018-08-10 2020-02-13 国立研究開発法人情報通信研究機構 小型光トランシーバ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170365563A1 (en) * 2014-09-11 2017-12-21 Taiwan Semiconductor Manufacturing Company Limited Multiband QAM Interface for Slab Waveguide
WO2016052221A1 (ja) * 2014-09-30 2016-04-07 株式会社村田製作所 半導体パッケージおよびその実装構造
US9846286B2 (en) * 2014-11-27 2017-12-19 Electronics And Telecommunications Research Institute Wavelength division multi-channel optical module and manufacturing method thereof
FR3046697B1 (fr) * 2016-01-08 2018-03-02 Stmicroelectronics (Crolles 2) Sas Structure photonique integree tridimensionnelle a proprietes optiques ameliorees
US9791640B2 (en) * 2016-03-14 2017-10-17 Te Connectivity Corporation Interposer with separable interface
US10459157B2 (en) 2016-08-12 2019-10-29 Analog Devices, Inc. Optical emitter packages
CN211826618U (zh) 2017-03-07 2020-10-30 康宁光电通信有限责任公司 用于在光学格式与电气格式之间转换数据的光学子组件
CN108598865A (zh) * 2018-06-06 2018-09-28 复旦大学 基于垂直腔面发射激光器的脉冲驱动电路
US10930628B2 (en) 2018-06-27 2021-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic semiconductor device and method
TWI784382B (zh) * 2020-01-13 2022-11-21 日商新唐科技日本股份有限公司 半導體裝置
US20210326710A1 (en) 2020-04-16 2021-10-21 Tencent America LLC Neural network model compression
CN116936557A (zh) * 2022-03-31 2023-10-24 华为技术有限公司 一种光电共封装结构及通信设备
WO2024058467A1 (ko) * 2022-09-16 2024-03-21 삼성전자 주식회사 인터포저를 포함하는 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019133A (ja) * 2005-07-06 2007-01-25 Sony Corp 光電変換装置及びその製造方法、並びに光情報処理装置
JP2008021779A (ja) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd 積層型半導体パッケージおよび光信号伝送装置
JP2008021778A (ja) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd 積層型半導体パッケージおよび光信号伝送装置
JP2009008721A (ja) * 2007-06-26 2009-01-15 Fuji Xerox Co Ltd 光モジュール、光電気複合基板、光信号伝送装置及び画像形成装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864416A (en) * 1996-10-02 1999-01-26 Harris Corporation Tuning optical communications receiver by controlling drain current input to variable transconductance fet stage of variable bandwidth transimpedance amplifier
US20040190274A1 (en) * 2003-03-27 2004-09-30 Yoshio Saito Compact low cost plastic MCM to PCB
WO2005052666A1 (ja) * 2003-11-27 2005-06-09 Ibiden Co., Ltd. Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法
JP4164757B2 (ja) 2003-12-18 2008-10-15 ソニー株式会社 光電複合装置、この装置に用いられるソケット、並びに光電複合装置の実装構造
JP2006041004A (ja) * 2004-07-23 2006-02-09 Sony Corp 光電変換装置及び光電変換素子アレイ
JP3816508B2 (ja) * 2004-11-04 2006-08-30 三井金属鉱業株式会社 キャパシタ層形成材及びそのキャパシタ層形成材を用いて得られる内蔵キャパシタ層を備えたプリント配線板
JP4646618B2 (ja) * 2004-12-20 2011-03-09 イビデン株式会社 光路変換部材、多層プリント配線板および光通信用デバイス
JP4654807B2 (ja) 2005-07-19 2011-03-23 ソニー株式会社 光情報処理装置
US8265432B2 (en) * 2008-03-10 2012-09-11 International Business Machines Corporation Optical transceiver module with optical windows
JP2010211179A (ja) * 2009-02-13 2010-09-24 Hitachi Ltd 光電気複合配線モジュールおよびその製造方法
JP5439080B2 (ja) * 2009-07-28 2014-03-12 株式会社日立製作所 光i/oアレイモジュール
US8111730B2 (en) * 2009-08-20 2012-02-07 International Business Machines Corporation 3D optoelectronic packaging
US8290008B2 (en) * 2009-08-20 2012-10-16 International Business Machines Corporation Silicon carrier optoelectronic packaging
US8344512B2 (en) * 2009-08-20 2013-01-01 International Business Machines Corporation Three-dimensional silicon interposer for low voltage low power systems
US20110058348A1 (en) * 2009-09-10 2011-03-10 Ibiden Co., Ltd. Semiconductor device
JP5861262B2 (ja) * 2011-03-26 2016-02-16 富士通株式会社 回路基板の製造方法及び電子装置の製造方法
JP5568044B2 (ja) * 2011-03-29 2014-08-06 株式会社日立製作所 光インターコネクトモジュールおよび光電気ハイブリッド混載ボード
US9335500B2 (en) * 2012-01-31 2016-05-10 Hewlett Packard Enterprise Development Lp Hybrid electro-optical package for an opto-electronic engine
CN103376516B (zh) * 2012-04-27 2016-07-06 鸿富锦精密工业(深圳)有限公司 光纤传输模组
US20130305725A1 (en) 2012-05-18 2013-11-21 General Electric Company Fuel nozzle cap
GB2512379A (en) * 2013-03-28 2014-10-01 Ibm Photonic and/or optoelectronic packaging assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019133A (ja) * 2005-07-06 2007-01-25 Sony Corp 光電変換装置及びその製造方法、並びに光情報処理装置
JP2008021779A (ja) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd 積層型半導体パッケージおよび光信号伝送装置
JP2008021778A (ja) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd 積層型半導体パッケージおよび光信号伝送装置
JP2009008721A (ja) * 2007-06-26 2009-01-15 Fuji Xerox Co Ltd 光モジュール、光電気複合基板、光信号伝送装置及び画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031478A1 (ja) * 2018-08-10 2020-02-13 国立研究開発法人情報通信研究機構 小型光トランシーバ
JP2020027147A (ja) * 2018-08-10 2020-02-20 国立研究開発法人情報通信研究機構 小型光トランシーバ
JP7144786B2 (ja) 2018-08-10 2022-09-30 国立研究開発法人情報通信研究機構 小型光トランシーバ

Also Published As

Publication number Publication date
EP2916152A1 (en) 2015-09-09
US20170205596A1 (en) 2017-07-20
US10634862B2 (en) 2020-04-28
US9614347B2 (en) 2017-04-04
CN104656207B (zh) 2019-01-29
US20190094477A1 (en) 2019-03-28
DE102014223342A1 (de) 2015-05-28
JP6287105B2 (ja) 2018-03-07
US20150145086A1 (en) 2015-05-28
US10168498B2 (en) 2019-01-01
CN104656207A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
JP6287105B2 (ja) 光通信デバイス、受信装置、送信装置及び送受信システム
CN110780397B (zh) 一种光模块
US9647762B2 (en) Integrated parallel optical transceiver
JP2015102630A5 (ja)
CN111555811A (zh) 一种光模块
US20220224073A1 (en) Optical module
US11057984B2 (en) High-speed hybrid circuit
CN113179131A (zh) 一种光模块
US10433447B2 (en) Interconnect structure for coupling an electronic unit and an optical unit, and optoelectronic module
US10365446B2 (en) Optical module structure
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN117751311A (zh) 光模块
JP2012145743A (ja) 光モジュール
CN214278494U (zh) 一种光模块
CN214540157U (zh) 一种光模块
JP2011091295A (ja) 光データリンク
CN115085804A (zh) 一种光模块及接收光功率计算方法
CN114545570A (zh) 一种光模块
CN114650647A (zh) 一种光模块
CN219916014U (zh) 一种光模块
CN220473746U (zh) 一种光模块
WO2023284475A1 (zh) 光模块
CN214281384U (zh) 一种光模块
CN114545568B (zh) 一种光模块
JP2004031456A (ja) 光インタコネクション装置及びインタコネクションモジュール

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees