JP2014238384A - ラマン定量用バイオチップ - Google Patents

ラマン定量用バイオチップ Download PDF

Info

Publication number
JP2014238384A
JP2014238384A JP2013199380A JP2013199380A JP2014238384A JP 2014238384 A JP2014238384 A JP 2014238384A JP 2013199380 A JP2013199380 A JP 2013199380A JP 2013199380 A JP2013199380 A JP 2013199380A JP 2014238384 A JP2014238384 A JP 2014238384A
Authority
JP
Japan
Prior art keywords
cancer
silver
biochip
dna
free dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199380A
Other languages
English (en)
Other versions
JP6294621B2 (ja
Inventor
裕起 長谷川
Yuki Hasegawa
裕起 長谷川
長谷川 克之
Katsuyuki Hasegawa
克之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAITEKKU KK
Original Assignee
MAITEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51867292&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014238384(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MAITEKKU KK filed Critical MAITEKKU KK
Priority to JP2013199380A priority Critical patent/JP6294621B2/ja
Publication of JP2014238384A publication Critical patent/JP2014238384A/ja
Application granted granted Critical
Publication of JP6294621B2 publication Critical patent/JP6294621B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57496Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving intracellular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】癌細胞由来の遊離DNAを測定するためのラマン定量用バイオチップを提供する。【解決手段】銀ハロゲン化物又はハロゲンを含む銀酸化物の複合針状ナノ結晶群を含み、水中で負電荷を示し、正電荷の癌関連物質を吸着して電荷移動錯体と形成可能であるとともに光照射により銀粒子を析出可能で、レーザー照射により表面プラズモン増強効果が得られる領域を有するバイオチップを提供する。このバイオチップは水中でガン由来遊離DNAを選択的に吸着可能であるとともに、レーザー光照射により吸着した遊離DNAの表面増強ラマンスペクトル(SERS)を検出可能である。【選択図】図9

Description

本発明は、血中の癌関連物質であるタンパクをSERS法で定量するラマン定量用バイオチップに関する。
従来より、癌の診断方法の一つとして、癌の進行に伴って血液中に現れ、増加する癌関連物質を検出する方法が用いられる。ここで、癌関連物質とは、ガン患者の体液から抽出される癌特有物質であり、一般に癌化した細胞が破壊されたりした場合に血液中に遊離してくる、その破壊された癌細胞由来のタンパク質をさす。そして、従来の癌の診断方法では、血液中の癌関連物質の定量値がある一定値以上の場合に、被験者が癌に罹患している可能性があると判定される。
このように癌化した細胞の破壊等によって血液中に遊離してくる癌関連物質としては、タンパク質だけではなく、DNAも同様に遊離してくることが知られている。そして、健常人と癌患者とで比較すると、血液中の癌細胞由来の遊離DNA(循環腫瘍DNA:ctDNA)の量は、癌患者の方が健常人よりも有意に多いことが報告されている。したがって、血液などの体液中の癌細胞由来の遊離DNAを定量することで、被験者が癌に罹患しているか否か診断することが可能になると考えられ、このような癌の診断方法として、例えば、ポリメラーゼ連鎖反応(PCR)法等で増幅される200bp以上のDNAが、体液や体外に排出された糞便中などに検出された場合、被験者が癌に罹患している可能性があると診断し、さらにそのDNAの変異を解析する方法(特許文献1)、体液などに含まれる細胞残渣由来のゲノムDNAを定量し、その値がある一定値以上の場合に、さらにDNA検査を行う方法(特許文献2)が提案されている。
ところで、診断によって癌に罹患していることが判明しても、体液中のDNAを定量するだけでは、癌が発生している臓器を特定するまでには至らない。そして、癌が発生している場合には、その発生している臓器により、特異的なDNAの変異が生じていることが知られている。したがって、DNAの変異の種類を明らかにすることで、癌が発生している臓器を特定できる可能性がある。ここでDNAの変異としては、DNAの点突然変異、染色体の欠失や増幅などの構造異常が挙げられる。例えば、膵臓癌の約7割には、K−ras遺伝子に点突然変異が生じていることが知られている。また、ヘテロ接合の欠失(Loss of heterozygous、以下、LOHと略記する)の解析でも、各癌種に特異的な染色体腕の欠損が報告されており、例えば、肺癌では3番染色体の短腕にLOHが集中していることが知られている。また、乳癌では8番染色体の長腕の増幅や、RB2の増幅が知られている。そこで、癌細胞由来のDNAを定量して癌の診断を高精度に行う方法を提供すべく、被験者から採取した血漿より遊離DNAを抽出する工程と、抽出した遊離DNAを定量して血漿単位体積あたりの遊離DNAを算出する工程と、算出した遊離DNAの算出値を第1しきい値以上の第2しきい値と比較する工程と、算出値が第1しきい値未満の場合は被験者の癌羅患可能性が高いと判定し、他方第2しきい値以上の場合は正常細胞由来のDNAが血漿中に混入しているという癌の診断方法が提案されている(特許文献3)。
米国特許第6143529号明細書 米国特許2004/0259101A1号明細書 国際公開2008/090930号 特開2011-81001号公報
しかしながら、例えば、全血中の癌細胞由来の遊離DNAを定量しようとしても、その量は微量であるのに対して、全血中には正常細胞であるリンパ球由来のDNAが大量に含まれている。したがって、全血からそのままDNAを抽出しても、癌細胞由来の遊離DNAを定量することは困難である。そこで、例えば、全血から分離した血漿を用い、血漿中の癌細胞由来の遊離DNAを抽出して定量する方法が考えられるが、DNAの抽出方法によっては、リンパ球等の正常細胞由来のDNAが混入することがあり、癌細胞由来の遊離DNAではなく、正常細胞由来のDNAを定量してしまう場合があり、癌の診断を誤る可能性がある。そこで、癌の正確な診断には、癌細胞由来の遊離DNAを正確に定量することが重要ではあり、微量の遊離DNAを如何にして簡易迅速に抽出するか、正常細胞由来のDNAを如何にして除去して遊離DNAの検出精度を向上させるか、如何にして微量のDNAを精度よく検出するかが癌の適切な診断には必要である。
ところで、血中の微量DNAを分析する手法としてラマン分光分析技法を使用して、定性的および定量的に検出するハイスループット手段の提供が必要とされるが、SERS現象は、1)メカニズムが完璧に理解されていないばかりか、2)正確に構造的に定義されているナノ物質合成及び制御の困難性と、3)スペクトルを測定する時使用される光の波長、偏光方向による増強効率の変化などにより、再現性及び信頼性側面で解決すべき問題が多く、ナノ−バイオセンサーの開発及び商用化を始めとしたSERS現象の応用に大きい課題として残っており、ナノワイヤとナノパーティクルのハイブリッド構造を利用して、生体抽出物及び蛋白質、DNAのようなバイオ分子のSERS信号の増強と測定の再現性、敏感度及び信頼度向上を図る技術が提案されている(特許文献4)が、ナノワイヤとナノパーティクルのハイブリッド構造が受容体を介して被測定対象を吸着させるもので、微量な癌細胞由来のDNAを検出する方法としては適切なものでない。
そこで、本発明者らは、検出対象とすべきは、癌が発症しやすい又は発症しているときに血液中で増加する癌関連物質であるタンパク、例えば癌細胞由来の遊離DNAを、受容体を介することなく、直接検出するのが最善であると考え、鋭意研究を行った。
ここで、検出すべき対象の遊離DNAは糸巻きに相当するヒストンというタンパク質に巻き付いており、ひと巻きされた単位構造(1セット)はヌクレオソームと呼び、ヌクレオソームが集まりひも状になった構造をクロマチン(線維)と呼ぶ。そして、細胞ががん化して分裂を繰り返すとき、がんが増えるのに都合の悪い遺伝子(がん抑制遺伝子)が出てこないようしっかりヒストンに巻きついて蓋をし、ヒストンへの巻き方をさらにきつくして、DNAが簡単にはほどけないようにして、メチル化という修飾が起こっているが、通常ヒストンは(+)、DNAは(−)にチャージされていて、2つは磁石のようにくっつきあい、しかもメチル化して解けないようになっており、ヒストンに巻き付いたDNAは(+)に帯電している(図11(a)参照)。他方、アセチル化は(−)にチャージするため、通常は(+)のヒストンがアセチル化されれば、(−)同士となってDNAと反発する。すると、DNAという‘糸’がヒストンからほどけて遺伝子が発現するメカニズムとなっている(図11(b)参照)。したがって、癌細胞由来の遊離DNAを選択的に吸着させるには、ヒストンに巻き付いたDNAは(+)に帯電しているので、吸着させる基板は(−)に帯電しているのが好ましいと考えられる。
ところで、本発明者らはチオ硫酸銀水溶液を銅合金上で凝集させることにより銀錯体の量子結晶を化学還元法を採用して形成しているが、かかる銀錯体をハロゲンイオンの存在下にアルカリ処理(次亜塩素酸で処理)すると、以下の反応によりハロゲンイオンを核として銀ハロゲン化物またはハロゲンを含む銀酸化物の複合物の針状ナノ結晶群が形成され(図9)、しかも水中で(−)荷電を帯びる一方、ヒストンに巻き付いてDNAが(+)荷電を帯びるため(図11(a))、この遊離DNAに代表される正電荷を帯びた癌関連物質を選択的に吸着することを見出した。しかも銀ハロゲン化物またはハロゲンを含む銀酸化物の複合物の針状ナノ結晶群はレーザー光の照射により還元され、金属銀を析出するため、レーザー光照射により表面プラズモン増強効果を示し、吸着された遊離DNAに代表される癌関連物質を検出する表面増強ラマン散乱(SERS)が得られることを見出した。
Na2S2O3+4NaClO+HO →Na2SO4+H2SO+4NaCl
Ag+ + NaCl → AgCl + Na+
Ag+ + 3NaOCl → 2AgCl + NaClO3 + 2Na+
Ag+ + OH- → AgOH
2Ag++ 2OH → Ag2O +H2O (米国特許第4478943号参照)
本発明は上記知見に基づいて、なされたもので、銀ハロゲン化物又はハロゲンを含む銀酸化物の複合針状ナノ結晶群を含み、水中で負電荷を示し、正電荷の癌関連物質を吸着して電荷移動錯体を形成可能であるとともに光照射により銀粒子を析出可能で、レーザー照射により表面プラズモン増強効果が得られる領域を有することを特徴とする癌関連物質測定用バイオチップを要旨とするものである。
本発明の銀ハロゲン化物又はハロゲンを含む銀酸化物の複合針状ナノ結晶群は銀イオン水溶液をAg/AgCl電極を用いて定電位電析を行って形成することができるが、銀錯体量子結晶をハロゲンイオンの存在下でアルカリ処理することによって容易に形成することができる。
また、本発明のバイオチップを用いることにより、ラマン分析により、血中含む生体試料中の、癌関連物質、例えば癌細胞由来の遊離DNAを以下の方法で定量することができる。すなわち、銀ハロゲン化物又はハロゲンを含む銀酸化物の複合針状ナノ結晶群を含む領域を有するバイオチップを用意し、該バイオチップの針状ナノ結晶群領域に血清又は生体試料液を滴下し、試料中の正電荷を有する癌関連物質を選択的に吸着し、吸着した癌関連物質に対しレーザー照射してそこからのラマン散乱光を検知する工程により、表面増強ラマン散乱(SERS)の強度により癌疾病を判断することができる。
血清中の癌関連物質としては、癌細胞由来のヒストンにDNAが巻きついてなる遊離DNA(循環腫瘍DNA)、そのひと巻きされた単位構造(1セット)のヌクレオソームが集まりひも状になった構造のクロマチン(線維)を含む。また、正電荷を帯びるグロブリンを含むが、その増加は他の癌関連物質に比べて最大2倍以下であるので、本発明で検知される物質のがん進行に伴う増加が100倍以上に達するのでグロブリン以外の増加(がん細胞由来遊離DNA)が検知されていることを物語っている。また、正常細胞から出るDNA、アセチル化してヒストンが解離したDNA、そしてアルブミンは血清中の約60%を占めるが、負荷電を帯びるため、本発明では吸着されない。したがって、癌関連物質の定量検査には好都合である。
また、本発明の針状ナノ結晶は、ハロゲン化物および酸化物は水溶液中で負電荷を帯びやすく、試料(ターゲット分子)と接触して電荷移動錯体を形成すると思われる。さらに、銀ハロゲン化物および酸化物は光エネルギーを受けて還元され、金属銀を析出するので、規則的に配列する金属ナノ粒子の持つ局在表面プラズモン共鳴増強効果を有することになる。したがって、本発明の複合針状ナノ結晶は非金属であるが金属性質とイオン化性質を兼ね備えるため、表面増強ラマン散乱(SERS)測定用に好適なバイオチップを提供できる。
量子結晶を形成する金属錯体は担持金属の電極電位Eと相関する式(I)で示される錯体安定度定数(logβ)以上を有するように選択される。
式(I):E゜= (RT/|Z|F)ln(βi
(ここでE゜は、標準電極電位、Rは、気体定数、Tは、絶対温度、Zは、イオン価、Fは、ファラデー定数を表す。)
金属錯体が、Au、Ag、PtまたはPdから選ばれるプラズモン金属の錯体である場合は、ラマン光に対して局在表面プラズモン共鳴増強効果を有する。
金属錯体が銀錯体であるときは、安定度定数(生成定数)(log βi)が8以上の銀錯化剤とハロゲン化銀との反応により形成されるのがよい。、
ハロゲン化銀としては塩化銀が好ましく、錯化剤としてはチオ硫酸塩、チオシアン酸塩、亜硫酸塩、チオ尿素、ヨウ化カリ、チオサリチル酸塩、チオシアヌル酸塩から選ばれる1種であるのが好ましい。
銀錯体は平均直径が5〜20nmであるナノクラスタからなる量子ドットを有し、量子結晶のサイズが100〜200nmとなる。
金属錯体の水溶液中の濃度は主として形成する量子結晶のサイズを考慮して決定すべきであり、分散剤を使用するときはその濃度をも考慮するのがよい。通常、100ppmから5000ppmの範囲で使用できるが、配位子の機能にも依存してナノクラスタというべきナノサイズを調製するには500から2000ppmの濃度が好ましい。
金属基板又は金属粒子上に形成された量子結晶は金属錯体結晶として水溶液中では正極性を持ちやすいものと思われ、生体試料中のタンパク質を吸着固定するためには、ハロゲンイオンの存在下でアルカリ処理、例えばpH11以上の次亜塩素酸ソーダ水溶液を滴下して極性を調整するのが好ましい。量子結晶が負極性となるだけでなく、ハロゲン化物および酸化物の複合針状ナノ結晶を形成するので、試料中癌関連物質が正電荷を持つ癌細胞由来の遊離DNAの固定化を促進することができる。
生体試料中の総タンパク濃度の定量は、特定波長のレーザー光を照射してラマンスペクトルを得ることにより知ることができる。図3は大腸ガン患者の血清試料であり、それを10倍、100倍、500倍、1000倍および一万倍に純水で希釈して633nmのレーザー(30mW)で測定したラマンスペクトルであり、濃度とともにピーク上昇値(PSV)およびピーク積分値が変化する。よって、血清中の総タンパク質の定量分析を行うことができることがわかる。
得られたラマンスペクトルのピーク高さ、ピーク積分値、ピーク発現時間などの情報から癌の同定および進行状態を解析することができる。図1はラマン波形のピーク算出法を示し、ヒト血清サンプルの633nmレーザーによるラマン散乱のスペクトルは1350cm−1近辺と1550cm−1近辺に散乱強度のピークを形成することが確認される。よって、800cm−1(a)と2000cm−1(b)の散乱強度の平均値(m)を基準とした最大上昇値(p−m)をピーク上昇値(Shifting Peak Value:PSV)として定義した。また、ピーク全体の面積をピーク積分値として定義した。これらのピーク上昇値およびピーク積分値はヒト血清中の癌関連物質を見る上で重要であり、ピーク発現時間とともに、ガンの同定および進行度を示す指標とすることができる。
ラマン波形のピーク算出法を示し、ヒト血清サンプルの633nmレーザーによるラマン散乱のスペクトルは1350cm−1近辺と1550cm−1近辺に散乱強度のピークを形成することを示す。 胃癌患者12例から得られた血清を調整した試料のラマンスペクトル図を示す。 大腸がん患者12例から得られた血清を調整した試料のラマンスペクトル図を示す。 良性疾患患者12例から得られた血清を調整した試料のラマンスペクトル図を示す。 胃癌、大腸がん、良性疾患試料のラマン散乱ピーク上昇値の比較を示すグラフである。 大腸がん患者12例から得られた血清を調整した希釈試料とラマン散乱強度との関係を示すラマンスペクトルで、試料濃度と散乱強度ピーク上昇値が相関関係にあることを示す。 実施例1で示す新規SERS基板作成法の手順を示す説明図で、左上の有限会社マイテック製基板は右横のSEM像を示す写真である。 実施例1で製造したナノ粒子凝集体(量子結晶)の各種SEM像を示す写真である。 ナノ粒子の拡大SEM像を示す。 りん青銅坂上に滴下後の放置時間と量子結晶形状の関係を示す写真である。 量子結晶のEDSスペクトル(元素分析)の結果を示すグラフである。 量子結晶をハロゲンイオンの存在下にアルカリ処理(次亜塩素酸処理)した場合のSEM像である。 アルカリ処理した量子結晶中の針状結晶を示す図である。 ラクビーボール状の塊を示す図である。 大きい塊のEDSスペクトル(元素分析)の結果を示すグラフである。 メチル化した遊離DNA(a)とアセチル化したDNA(b)の機能説明図である。
図面を参照して、本発明の実施形態を詳細に説明する。
(実施例1)
図4に示すように、チオ硫酸銀1000ppm水溶液を調製し、その1滴をりん青銅板上滴下し、約3分間放置し、溶液を吹き飛ばすと、右横のSEM像を示す量子結晶が作成されていた。
図5は実施例1で製造したナノ粒子凝集体(量子結晶)の各種SEM像を示す写真であり、図6はナノ粒子の拡大SEM像を示す。100nm前後の薄い六角柱状結晶であって、表面に数nmオーダの凹凸が発現している。金属ナノ結晶に特有のファセットは確認できなかった。
図7はりん青銅坂上に滴下後の放置時間と量子結晶形状の関係を示す写真である。まず、六角形の量子結晶が生成し、形状を維持しつつ成長するのが認められる。
図8は量子結晶のEDSスペクトル(元素分析)の結果を示すグラフである。りん青銅板上に形成された結晶は銀及び錯体配位子由来の元素を検出したが、銅板上にチオ硫酸銀1000ppm水溶液を調製し、その1滴を滴下し、約3分間放置し、溶液を吹き飛ばした場合は、銀のみを検出したに過ぎなかった。
(量子結晶の作成の考察)
量子結晶は1000ppmチオ硫酸銀錯体水溶液の場合、りん青銅板上に滴下して3分間放置すると、100nm前後の六角柱状に形成され、各六角柱状の量子結晶は数nmオーダの凹凸を持つことがSEM像から確認された(図4、図5及び図6)が、金属ナノ結晶に特有のファセットは確認できず、EDS元素分析で銀及び錯体配位子由来の元素を検出されたため、全体は銀錯体のナノ結晶であって、その表面に現れる凹凸は錯体中の銀がクラスタとして量子ドットを形成して広がっていると推測される。本発明の銀錯体量子結晶がりん青銅板上に形成される一方、銅基板上には銀のみのナノ粒子が析出する現象を見ると、チオ硫酸銀錯体の平衡電位が0.33で銅の電極電位(0.34)と同等であるため、銅基板上には銀(0.80)のみが析出し、りん青銅の場合は0.22と電極電位がわずかに卑であるため、銀錯体の結晶が析出したものと思われる。したがって、量子結晶を作成するためには1)錯体水溶液が500〜2000ppmという希薄な領域であること、2)金属錯体水溶液の平衡電位に対し担持金属の電極電位がわずかに卑であること、3)電極電位差で金属錯体が凝集させることが重要であると思われる。また、1000ppmチオ尿素銀錯体水溶液を使用した場合も同様であった。
(実施例2)
実施例1で調整したりん青銅板上のチオ硫酸銀量子結晶基板にpH11の次亜塩素酸ナトリウム水溶液を滴下し、3分後水溶液を吹き飛ばし、その直後、胃癌患者12例から得られた血清を純粋で10倍希釈して調整した試料、大腸がん患者12例から得られた血清を純粋で10倍希釈して調整した試料および良性疾患患者12例から得られた血清を純粋で10倍調整した試料のそれぞれを633nmのレーザー光を照射してラマンスペクトルを測定した。胃がんおよび大腸がんの進行度とピーク上昇値およびピーク積分値との間には相関関係が認められるということができる。また、胃がんの場合、ラマンスペクトルはレーザー照射後1分後に、大腸がんの場合はレーザー照射後2〜3分後にラマンスペクトルにピークが発現した。また、Dは胃癌、大腸がん、良性疾患試料のラマン散乱ピーク上昇値の比較を示すグラフである。良性疾患患者に対し、胃癌試料および大腸がん試料のピークは有意に高いことが認められる。胃癌試料と大腸がん試料とはピーク上昇値では差を見つけるのが困難であるということができるが、ピーク発現時間およびピーク積分値を考慮すると、両者のがん同定は可能であるということができる。
(複合針状ナノ結晶についての考察)
上記量子結晶基板に5%次亜塩素酸ソーダ水溶液を滴下して2分間処理して除去すると図9に示す結晶構造が見られ、針状の結晶とラクビーボール状の塊と大きい塊が見られたので、それぞれの組成をEDSスペクトル(元素分析)で分析すると、以下の反応式から図10の結果を示すグラフ(a),(b),(c)に示すように針状の結晶はともに塩化銀と酸化銀の複合結晶からなるものと考えられるが、(a)針状の結晶は塩素リッチな銀酸化物, (b)ラクビーボール状の塊は銀リッチな銀酸化物,(c) 大きい塊は次亜塩素酸の残渣と判断でき、針状の結晶が集まってラクビーボール状の塊を形成すると考えられる。
Na2S2O3+4NaClO+HO →Na2SO4+H2SO+4NaCl (1)
Ag+ + NaCl → AgCl + Na+ (2)
Ag+ + 3NaOCl → 2AgCl + NaClO3 + 2Na+ (3)
Ag+ + OH- → AgOH (4)
2Ag++ 2OH → Ag2O +H2O (5)
チオ硫酸銀の量子結晶を次亜塩素酸水溶液、0.01規定苛性ソーダ水溶液、0.01規定塩酸水溶液、0.1モル炭酸ナトリウム水溶液で処理しても同様の結果は得られなかったので、この針状結晶の形成には銀イオンとチオ硫酸イオンの存在下に上記酸化反応により生ずるものと思われる。
塩化銀及び酸化銀は水溶液中で負電荷を帯び、光により還元されて金属銀を析出させるので、正電荷の癌関連物質を吸着し、しかも吸着した癌関連物質と銀粒子との間の表面プラズモン増強効果が得られるものと思われる。
したがって、本発明を利用することにより、血および生体試料中の癌関連物質を選択的に検出することができるので、ラマンスペクトルより癌の早期発見、癌の進行度に関する判定を行うことができる。

Claims (2)

  1. 銀ハロゲン化物又はハロゲンを含む銀酸化物の複合針状ナノ結晶群を含み、水中で負電荷を示し、正電荷の癌関連物質を吸着して電荷移動錯体と形成可能であるとともに光照射により銀粒子を析出可能で、レーザー照射により表面プラズモン増強効果が得られる領域を有することを特徴とする癌関連物質ラマン定量用バイオチップ。
  2. 複合針状ナノ結晶群が銀錯体量子結晶をハロゲンイオンの存在下でアルカリ処理して得られる請求項1記載のバイオチップ。
JP2013199380A 2013-05-08 2013-09-26 ラマン定量用バイオチップ Active JP6294621B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013199380A JP6294621B2 (ja) 2013-05-08 2013-09-26 ラマン定量用バイオチップ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013098608 2013-05-08
JP2013098608 2013-05-08
JP2013199380A JP6294621B2 (ja) 2013-05-08 2013-09-26 ラマン定量用バイオチップ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013191224A Division JP6294614B2 (ja) 2013-05-08 2013-09-14 癌関連物質の定量方法

Publications (2)

Publication Number Publication Date
JP2014238384A true JP2014238384A (ja) 2014-12-18
JP6294621B2 JP6294621B2 (ja) 2018-03-14

Family

ID=51867292

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2013191224A Active JP6294614B2 (ja) 2013-05-08 2013-09-14 癌関連物質の定量方法
JP2013199380A Active JP6294621B2 (ja) 2013-05-08 2013-09-26 ラマン定量用バイオチップ
JP2015515888A Pending JPWO2014181814A1 (ja) 2013-05-08 2014-05-08 生体試料のラマン定量分析用バイオチップ
JP2015515889A Active JP6457935B2 (ja) 2013-05-08 2014-05-08 癌関連物質のラマン定量方法
JP2017126148A Active JP6529015B2 (ja) 2013-05-08 2017-06-28 バイオチップ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013191224A Active JP6294614B2 (ja) 2013-05-08 2013-09-14 癌関連物質の定量方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2015515888A Pending JPWO2014181814A1 (ja) 2013-05-08 2014-05-08 生体試料のラマン定量分析用バイオチップ
JP2015515889A Active JP6457935B2 (ja) 2013-05-08 2014-05-08 癌関連物質のラマン定量方法
JP2017126148A Active JP6529015B2 (ja) 2013-05-08 2017-06-28 バイオチップ

Country Status (16)

Country Link
US (2) US10365222B2 (ja)
EP (2) EP2995935B1 (ja)
JP (5) JP6294614B2 (ja)
KR (1) KR102162706B1 (ja)
CN (2) CN107202786B (ja)
AU (1) AU2014263556A1 (ja)
BR (1) BR112015028026A2 (ja)
CA (1) CA2911744C (ja)
CL (1) CL2015003261A1 (ja)
EA (1) EA037886B1 (ja)
IL (1) IL242470B (ja)
MX (1) MX2015015476A (ja)
MY (1) MY174717A (ja)
PH (2) PH12015502537A1 (ja)
SG (1) SG11201509034XA (ja)
WO (2) WO2014181816A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294614B2 (ja) * 2013-05-08 2018-03-14 有限会社マイテック 癌関連物質の定量方法
JP6312393B2 (ja) * 2013-09-25 2018-04-18 有限会社マイテック 多能性幹細胞の判別方法
JP2015182923A (ja) * 2014-03-25 2015-10-22 有限会社マイテック 過酸化銀を含む銀酸化物メソ結晶及びその製造方法
KR102232197B1 (ko) * 2014-05-08 2021-03-25 유겐가이샤 마이테크 플라즈모닉 칩 및 이를 이용한 형광 화상 및 라만 분광에 의한 암 질환의 진단 방법
WO2017049000A1 (en) * 2015-09-15 2017-03-23 Massachusetts Institute Of Technology Systems and methods for diagnosis of middle ear conditions and detection of analytes in the tympanic membrane
US20170354950A1 (en) * 2016-06-14 2017-12-14 Mytech Co., Ltd. Silver oxide meso crystal containing silver peroxide and manufacturing method therefor
GB201704128D0 (en) * 2017-03-15 2017-04-26 Univ Swansea Method and apparatus for use in diagnosis and monitoring of colorectal cancer
KR102086583B1 (ko) * 2018-03-20 2020-03-09 (주)광림정공 바이오센서 칩 및 암 진단 시스템
JP2021156576A (ja) * 2018-06-21 2021-10-07 有限会社マイテック 疾病関連タンパク結合体を標的とする自家蛍光によるリキッド・バイオプシィ法
RU2723160C1 (ru) * 2019-08-15 2020-06-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ обнаружения и определения днк с заданной последовательностью методом спектроскопии гигантского комбинационного рассеяния
KR20210131078A (ko) 2020-04-23 2021-11-02 동아대학교 산학협력단 생체 조직 내 탄소 나노물질의 정량 방법
CN112461810A (zh) * 2020-11-19 2021-03-09 河南科技大学第一附属医院 一种基于sers技术的格列齐特药片的检测方法
KR20220134419A (ko) 2021-03-26 2022-10-05 삼성전자주식회사 카이롭티컬 분광 플랫폼, 및 이를 이용한 라만 데이터 획득 방법
CN115078331B (zh) * 2021-09-07 2024-03-29 武汉大学 一种光谱学和人工智能交互的血清分析方法及其应用
JP2023074685A (ja) * 2021-11-18 2023-05-30 浜松ホトニクス株式会社 被検体分析方法
CN117916817A (zh) * 2022-08-18 2024-04-19 艾索波特株式会社 基于人工智能且使用外泌体sers信号的多肿瘤同时诊断系统及其方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277397A (ja) * 2001-03-14 2002-09-25 National Institute Of Advanced Industrial & Technology 分子センサおよびラマン分光分析法
JP2008520570A (ja) * 2004-11-15 2008-06-19 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 銀ナノ粒子およびナノワイヤのグリセリンに基づく合成
JP2008529487A (ja) * 2005-02-07 2008-08-07 トポターゲット ユーケー リミテッド Hdac耐性細胞株に選択的細胞傷害性を有する薬剤のアッセイ
WO2010001933A1 (ja) * 2008-07-01 2010-01-07 学校法人日本大学 標的遺伝子特異的ヒストン修飾制御剤
WO2010101209A1 (ja) * 2009-03-04 2010-09-10 有限会社マイテック 表面増強ラマン散乱活性測定基板
JP2010532472A (ja) * 2007-06-29 2010-10-07 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー 表面増強ラマン分光用光センサー
US20110024718A1 (en) * 2009-07-29 2011-02-03 Silvija Gradecak Nanowire Synthesis
US20110294691A1 (en) * 2008-10-15 2011-12-01 Cornell University Enhanced on-chip sers based biomolecular detection using electrokinetically active microwells
WO2011158829A1 (ja) * 2010-06-15 2011-12-22 日産化学工業株式会社 表面増強ラマン散乱用金属粒子及び分子センシング
WO2012033097A1 (ja) * 2010-09-06 2012-03-15 有限会社マイテック 金属錯体量子結晶の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128845A (en) * 1981-02-04 1982-08-10 Fuji Photo Film Co Ltd Measuring method for concentration of silver in solution
US5255067A (en) * 1990-11-30 1993-10-19 Eic Laboratories, Inc. Substrate and apparatus for surface enhanced Raman spectroscopy
US6143529A (en) 1996-08-14 2000-11-07 Exact Laboratories, Inc. Methods for improving sensitivity and specificity of screening assays
JP4588324B2 (ja) * 2002-04-05 2010-12-01 マサチユセツツ・インスチチユート・オブ・テクノロジイ 組織測定用プローブ
US20040259101A1 (en) 2003-06-20 2004-12-23 Shuber Anthony P. Methods for disease screening
US20050148098A1 (en) 2003-12-30 2005-07-07 Xing Su Methods for using raman spectroscopy to obtain a protein profile of a biological sample
JP2006349463A (ja) * 2005-06-15 2006-12-28 Canon Inc 表面増強ラマン分光分析用治具及びその製造方法
WO2008090930A1 (ja) 2007-01-23 2008-07-31 Olympus Corporation 癌の診断方法
KR20080090930A (ko) 2007-04-06 2008-10-09 삼성테크윈 주식회사 반도체 패키지용 기판 및 그 제조방법
JP2009014491A (ja) * 2007-07-04 2009-01-22 Canon Inc 標的物質検出用素子および標的物質検出装置
US8968608B2 (en) * 2008-01-17 2015-03-03 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
KR101059896B1 (ko) 2009-10-12 2011-08-29 한국과학기술원 표면증강 라만산란을 이용한 생화학 물질의 검출 방법
US9006458B2 (en) * 2010-10-12 2015-04-14 Agency For Science, Technology And Research Surface Enhanced Raman Spectroscopy (SERS) compounds and methods of their preparation
JP6196159B2 (ja) * 2011-10-31 2017-09-13 有限会社マイテック 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法
JP6054030B2 (ja) * 2011-12-23 2016-12-27 有限会社マイテック 金属錯体量子結晶の作成方法
CN102608102A (zh) * 2012-03-24 2012-07-25 南京师范大学 一种基于表面增强拉曼光谱的人乳腺癌细胞mcf-7的特异性检测方法
CN102721680B (zh) * 2012-06-18 2014-12-03 复旦大学 一种高灵敏检测t-DNA的SERS液相芯片方法
JP6294614B2 (ja) * 2013-05-08 2018-03-14 有限会社マイテック 癌関連物質の定量方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277397A (ja) * 2001-03-14 2002-09-25 National Institute Of Advanced Industrial & Technology 分子センサおよびラマン分光分析法
US20020145735A1 (en) * 2001-03-14 2002-10-10 Junji Tominaga Molecular sensor and raman spectroscopy process
JP2008520570A (ja) * 2004-11-15 2008-06-19 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 銀ナノ粒子およびナノワイヤのグリセリンに基づく合成
JP2008529487A (ja) * 2005-02-07 2008-08-07 トポターゲット ユーケー リミテッド Hdac耐性細胞株に選択的細胞傷害性を有する薬剤のアッセイ
JP2010532472A (ja) * 2007-06-29 2010-10-07 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー 表面増強ラマン分光用光センサー
WO2010001933A1 (ja) * 2008-07-01 2010-01-07 学校法人日本大学 標的遺伝子特異的ヒストン修飾制御剤
US20110294691A1 (en) * 2008-10-15 2011-12-01 Cornell University Enhanced on-chip sers based biomolecular detection using electrokinetically active microwells
WO2010101209A1 (ja) * 2009-03-04 2010-09-10 有限会社マイテック 表面増強ラマン散乱活性測定基板
US20110024718A1 (en) * 2009-07-29 2011-02-03 Silvija Gradecak Nanowire Synthesis
WO2011158829A1 (ja) * 2010-06-15 2011-12-22 日産化学工業株式会社 表面増強ラマン散乱用金属粒子及び分子センシング
WO2012033097A1 (ja) * 2010-09-06 2012-03-15 有限会社マイテック 金属錯体量子結晶の製造方法

Also Published As

Publication number Publication date
IL242470B (en) 2020-09-30
SG11201509034XA (en) 2016-01-28
KR102162706B1 (ko) 2020-10-07
JPWO2014181816A1 (ja) 2017-02-23
CA2911744A1 (en) 2014-11-13
PH12019502307A1 (en) 2021-02-15
EA037886B1 (ru) 2021-06-01
KR20160019419A (ko) 2016-02-19
US20160187344A1 (en) 2016-06-30
BR112015028026A2 (pt) 2017-07-25
WO2014181816A1 (ja) 2014-11-13
EP3054285A4 (en) 2017-09-06
MX2015015476A (es) 2016-07-07
JP2014238382A (ja) 2014-12-18
AU2014263556A1 (en) 2015-11-26
EP2995935A1 (en) 2016-03-16
EP2995935A4 (en) 2017-03-15
CN107202786B (zh) 2019-10-25
PH12015502537B1 (en) 2016-02-22
JP6457935B2 (ja) 2019-01-23
US10365222B2 (en) 2019-07-30
CA2911744C (en) 2021-04-27
JP2017223678A (ja) 2017-12-21
WO2014181814A1 (ja) 2014-11-13
EA201592123A1 (ru) 2016-06-30
JP6294614B2 (ja) 2018-03-14
PH12015502537A1 (en) 2016-02-22
MY174717A (en) 2020-05-10
JP6294621B2 (ja) 2018-03-14
JPWO2014181814A1 (ja) 2017-02-23
JP6529015B2 (ja) 2019-06-12
US20170248523A1 (en) 2017-08-31
US9535069B2 (en) 2017-01-03
EP2995935B1 (en) 2020-09-23
CN107202786A (zh) 2017-09-26
CL2015003261A1 (es) 2016-05-27
EP3054285A1 (en) 2016-08-10
CN105452850A (zh) 2016-03-30
CN105452850B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
JP6294621B2 (ja) ラマン定量用バイオチップ
US10215700B2 (en) Plasmonic chip for observing cancer related substances by localized surface plasmon resonace
WO2019245020A1 (ja) 疾病関連タンパク結合体を標的とする自家蛍光によるリキッド・バイオプシィ法
US20230050766A1 (en) Liquid Biopsy Method with Measuring Autofluorescence of Nucleosomes Fragmented and Released into blood from Cell Apoptosis
TWI818278B (zh) 透過自體螢光的液態生檢法
JP2016044993A (ja) ヒストン化学修飾判定による癌診断方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180216

R150 Certificate of patent or registration of utility model

Ref document number: 6294621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250