JP2013539823A - シリコンの製造に適した機械式流動化反応器システム及び方法 - Google Patents

シリコンの製造に適した機械式流動化反応器システム及び方法 Download PDF

Info

Publication number
JP2013539823A
JP2013539823A JP2013532836A JP2013532836A JP2013539823A JP 2013539823 A JP2013539823 A JP 2013539823A JP 2013532836 A JP2013532836 A JP 2013532836A JP 2013532836 A JP2013532836 A JP 2013532836A JP 2013539823 A JP2013539823 A JP 2013539823A
Authority
JP
Japan
Prior art keywords
gas
controlled
containment vessel
species
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013532836A
Other languages
English (en)
Other versions
JP2013539823A5 (ja
Inventor
マーク ダブリュー ダッセル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2013539823A publication Critical patent/JP2013539823A/ja
Publication of JP2013539823A5 publication Critical patent/JP2013539823A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/002Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00407Controlling the temperature using electric heating or cooling elements outside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

機械式流動化システム及びプロセスは、効率的で費用対効果が高いシリコンの製造を可能にする。粒子は、加熱されたトレー又はパンに与えることができ、このトレー又はパンを揺動又は振動させて反応表面が提供される。粒子はトレー又はパン内で下方に移動し、反応生成物は、該反応生成物が所望の状態に達するにつれてトレー又はパン内で上方に移動する。排気ガスは再利用することができる。
【選択図】図1

Description

本発明は、一般に機械式流動化反応器に関し、これは、例えば化学蒸着法によるシリコン、例えばポリシリコンの製造に適したものであり得る。
(関連出願の交互参照)
本出願は、その全体を引用によりここに組み入れる2010年10月7日付で出願された米国仮特許出願番号第61/390,977号の、米国特許法第119条(e)の下での利益を主張する。
シリコン、特にポリシリコンは、多様な半導体製品がそこから製造される基本材料である。シリコンは、多くの集積回路技術、並びに、光電池用トランスデューサの土台を形成する。特に工業的に関心がもたれているのは高純度シリコンである。
ポリシリコンを製造するためのプロセスは、化学蒸着反応器及び流動床反応器を含む種々異なるタイプの反応器装置内で実行することができる。化学蒸着(chemical vapor deposition:CVD)プロセスの種々の態様、特にシーメンス(Siemens)又は「ホット・ワイヤ」プロセスは、例えば、種々の米国特許又は出願公開に記載されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、及び特許文献7を参照のこと)。
シラン及びトリクロロシランは両方とも、ポリシリコンの製造のための供給物質として用いられる。シランはトリクロロシランよりも精製しやすいので、高純度供給原料としてより容易に入手可能である。トリクロロシランの製造は、ホウ素及びリン不純物を導入し、これらはトリクロロシラン自体の沸点に近い沸点を有する傾向があるので除去が困難である。シーメンス型化学蒸着反応器における供給原料としてはシラン及びトリクロロシランの両方が用いられているが、そのような反応器ではトリクロロシランの方がより一般的に用いられる。他方、シランは、流動床反応器におけるポリシリコン製造用に、より一般的に用いられる供給原料である。
シランは、化学蒸着反応器又は流動床反応器のための供給原料として用いられるときに不利な点を有する。シーメンス型化学蒸着反応器においてシランからポリシリコンを製造するには、このような反応器においてトリクロロシランからポリシリコンを製造するのに比べて最大で2倍の電気エネルギーが必要とされ得る。さらに、シーメンス型化学蒸着反応器では、シランから得られるポリシリコンの収率はトリクロロシランからの収率のわずか約半分なので資本経費が高い。したがって、シランの方が高純度であることから得られるいかなる利益も、シーメンス型化学蒸着反応器においてシランからポリシリコンを製造する際のより高い資本経費及び事業経費コストによって相殺される。このことが、このような反応器におけるポリシリコンの製造用の供給物質として一般にトリクロロシランが使用されることにつながっている。
流動床反応器におけるポリシリコン製造用の供給原料としてのシランは、シーメンス型化学蒸着反応器における製造と比べて電気エネルギー使用量に関して有利である。しかしながら、この運転経費の利益を相殺する不利益が存在する。流動床反応器を使用する際に、このプロセス自体が、供給原料の純度が高いにも関わらずより低品質のポリシリコン生成物をもたらし得る。例えば、ポリシリコンの微粉が形成されることがあり、この微粉は、反応器内に粒子状物質を形成することにより運転を妨害することがあり、そしてまた全収率を低下させることがある。さらに、流動床反応器で製造されたポリシリコンは、その後の処理によって除去しなければならない残留水素ガスを含んでいることがある。そのうえ、流動床反応器で製造されたポリシリコンは、流動床内の研磨状態に起因する金属不純物を含むことがある。したがって、高純度シランは容易に入手可能ではあり得るが、これをポリシリコン製造用の供給原料として用いることは、どちらの型式の反応器の場合であれ上記の不利益により限定され得る。
化学蒸着反応器を用いて、蒸気又は気体の形態で存在する第1の化学種を固体物質に変換することができる。堆積は、第1の化学種から1つ又はそれ以上の第2の化学種への化学的変換を伴うものであり得、そして通常は実際に伴うものであり、この第2の化学種のうちの1つは実質的に不揮発性種である。
化学堆積は、特定の高温まで基体を加熱することによって誘導され、その温度において第1の化学種が接触により前述の1つ又はそれ以上の第2の化学種に分解し、この第2の化学種のうちの1つは実質的に不揮発性種である。このように形成されて堆積した固体は、固定されたロッドなどのバルク形態上に堆積された、又はビーズ若しくは他の粒子などの可動の基体上に堆積された、連続的な環状層の形態をとることができる。
ビーズは現在のところ、分解反応の所望の生成物からなる微粉の蓄積が更なる成長のためのシードとして働き、同じく分解反応の所望の生成物からなる予め形成されたビーズが第1の化学種と一般に第3の非反応性気体状化学種とからなるガス流によって浮遊し又は流動化され、これらの微粉及びビーズが第2の化学種のうちの1つが堆積される基体として働くような流動床反応器において生成され又は成長する。
このシステムにおいては、第3の非反応性化学種は2つの重要な機能を満たす。第1に、第3の非反応性種は、分解反応器内に潜在的な収率損失となる過剰の微粉が形成されないように分解速度を制御するための希釈剤として働く。この役割において、第3の非反応性種は通常、実質的に優勢種である。第2に、第3の非反応性種は、微粉又はビーズを流動化するための手段である。この第2の役割を果たすには、大きな体積流量の第3の非反応性ガス種が必要とされる。大きな体積流量は、結果として高いエネルギー費用を生じさせ、流動床の内部での研磨力に起因する過剰の微粉生成の問題、及び、床から微粉が吹き飛ばされることに起因する収率損失の問題を生じさせる。
米国特許第3,011,877号明細書 米国特許第3,099,534号明細書 米国特許第3,147,141号明細書 米国特許第4,150,168号明細書 米国特許第4,179,530号明細書 米国特許第4,311,545号明細書 米国特許第5,118,485号明細書
本明細書において教示されるように、微粉、ビーズ又は他の粒子は、機械的に浮遊又は流動化され、これにより第1の化学種に対して露出されるので、流動化させるためのガス流を不要にする。機械的な浮遊、又は流動化は、揺動する垂直及び/又は水平方向の反復的な運動量輸送により、及び/又は機械式持ち上げ装置により、粒子を第1の化学種に対して露出させるように働く。運動量輸送は、機械的な振動により生成され、それによって微粉、ビーズ及び/又はその他の粒子が加熱され、第1の化学種と接触するようにされる。第1の化学種の分解により生成された第2の化学種は、このように浮遊又は流動化された微粉、ビーズ又は他の粒子上に堆積する。微粉は、このようにしてより大きな粒子又はビーズへと変換される。シード物質として使用するための微粉は、制御された研磨によってビーズから作り出すことができ、及び/又は、微粉、ビーズ又は他の粒子の独立した源からシステムに加えることができる。
化学蒸着の反応器システムは、複数の微粉、ビーズ又は他の粒子の表面を、第1の気体状化学種を含むガスに対して実質的に露出させるための機械的手段と、微粉、ビーズ若しくは他の粒子、又は微粉、ビーズ若しくは他の粒子の表面を十分に高い温度まで加熱して、該表面と接触した第1の気体状化学種が化学的に分解して該表面上に第2の化学種を実質的に堆積させるようにするための加熱手段と、加熱により、そのうちの1つが実質的に不揮発性の種であって近接した熱い表面上に堆積する傾向にあるような1つ又はそれ以上の第2の化学種に分解するような化学種から選択された第1のガスの源とを含むものとして、要約することができる。第1の化学種は、シランガス(SiH4)とすることができる。第1の化学種は、トリクロロシランガス(SiHCl3)とすることができる。第1の化学種は、ジクロロシランガス(SiH2C12)とすることができる。機械的手段は、振動床とすることができる。振動床は、偏心フライホイール、圧電トランスデューサ又は音波トランスデューサのうちの少なくとも1つを含むことができる。振動の周波数は、毎分1サイクルと4,000サイクルとの間の範囲とすることができる。振動の周波数は、毎分500サイクルと3,500サイクルとの間の範囲とすることができる。振動の周波数は、毎分1,000サイクルと3,000サイクルとの間の範囲とすることができる。振動の周波数は、毎秒2,500サイクルとすることができる。振動の振幅は、1/100インチと4インチとの間の範囲とすることができる。振動の振幅は、1/100インチと1/2インチとの間とすることができる。振動の振幅は、1/64インチと1/4インチとの間の範囲とすることができる。振動の振幅は、1/32インチと1/8インチとの間の範囲とすることができる。振動の振幅は、1/64インチとすることができる。
反応器システムは、内部及び外部を有する格納容器をさらに含むことができ、ここで機械的手段の少なくとも一部は、格納容器の内部に配置された振動床を含む。加熱手段は、格納容器の内部に少なくとも部分的に配置することができる。格納容器の内部は、第1の反応物及び第3の非反応性種を含有するガスで満たすことができる。格納容器は、少なくとも1つの壁を含むことができ、該少なくとも1つの壁は、格納容器の外側に配置された冷却ジャケット又は空冷フィンにより低温に保持することができる。冷却ジャケットを通って冷媒が流れることができ、冷媒は、格納容器の内部におけるガスの温度が所望の低温に制御され得るように制御された、温度及び流量を有することができる。格納容器の内部におけるガスの混合平均温度(bulk temperature)は、30℃と500℃との間に制御することができる。格納容器の内部におけるガスの混合平均温度は、50℃と300℃との間に制御することができる。格納容器の内部におけるガスの混合平均温度は、100℃に制御することができる。格納容器の内部におけるガスの混合平均温度は、50℃に制御することができる。
振動床は、少なくとも1つの外周壁がそこから延びる平坦なパンを含むことができる。振動床は底面を含むことができ、この底面は平面とすることができ、加熱することができる。底面及び少なくとも1つの外周壁は、コンテナを形成することができ、第2の種の微粉、ビーズ又は他の粒子をこのコンテナ内に置くことができる。床の加熱された部分の表面温度は、100℃と1300℃の間になるように制御することができる。床の加熱された部分の表面温度は、100℃と900℃の間になるように制御することができる。床の加熱された部分の表面温度は、200℃と700℃の間になるように制御することができる。床の加熱された部分の表面温度は、300℃と600℃の間になるように制御することができる。床の加熱された部分の表面温度は、約450℃になるように制御することができる。第1の種の分解速度は、この表面温度を制御することによって制御することができる。
生成されるビーズのサイズは、コンテナの外周壁の高さにより制御することができる。外周壁の高さを高くすることにより、より大きいビーズを形成することができ、外周壁の高さを低くすることにより、より小さいビーズを形成することができる。床は電気的に加熱することができる。
格納容器の内部におけるガスの圧力は、7psigと200psigとの間になるように制御することができる。
格納容器の内部におけるガスは第1の反応物を含むことができ、第3の非反応性種を格納容器に補給することができ、第1の反応物と第3の非反応性希釈剤と分解反応により形成された第2の種のうちの1つとで構成することができるガスを、格納容器から引き出すことができる。第1の反応物と第3の非反応性種とを含むガスを格納容器に連続的に補給することができ、第1の反応物と第3の非反応性希釈剤と分解反応により形成された第2の種のうちの1つとで構成されるガスを、格納容器から連続的に引き出すことができる。第1の反応物の反応率の程度は、格納容器の内側の蒸気空間をサンプリングすることにより、及び/又は、格納容器内で上昇若しくは低下する圧力を監視することにより連続的に監視することができる。格納容器に補給されるガスは、シランガス(SiH4)及び水素希釈剤で構成されるものとすることができ、格納容器から引き出されるガスは、未反応シランガス、水素希釈剤、及び分解反応により形成された水素ガスで構成することができ、床に補給される微粉及びビーズは、シリコンで構成されるものとすることができる。シランガスの分解は、ポリシリコンを生成することができ、このポリシリコンは微粉上に堆積してビーズを形成し、ビーズ上に堆積してより大きなビーズを形成する。
ビーズは、床から連続的に採取することができ、採取されるビーズの平均サイズは、コンテナの外周壁の高さを調整することにより制御することができる。コンテナの外周壁の高さを高くすることにより、より大きいビーズを形成することができ、コンテナの外周壁の高さを低くすることにより、より小さいビーズを形成することができる。ビーズの平均サイズは、直径1/100インチと直径1/4インチとの間に制御することができる。ビーズの平均サイズは、直径1/64インチと直径3/16インチとの間に制御することができる。ビーズの平均サイズは、直径1/32インチと直径1/8インチとの間に制御することができる。ビーズの平均サイズは、直径1/8インチに制御することができる。
格納容器内のガスの圧力は、5psiaと300psiaとの間に制御することができる。格納容器内のガスの圧力は、14.7psiaと200psiaとの間に制御することができる。格納容器内のガスの圧力は、30psiaと100psiaとの間に制御することができる。格納容器内のガスの圧力は、70psiaに制御することができる。格納容器内のガスの圧力は、バッチ反応の開始時には14.7psiaに制御し、バッチ反応の終了時には28psia乃至32psiaに制御することができる。
第1の化学種の反応率は、床の温度、振動の周波数、振動振幅、反応容器又は格納容器における第1の種の濃度、反応容器又は格納容器内のガス(例えば、第1の種及び希釈剤)の圧力、及び格納容器内のガスの滞留時間を調整することにより制御することができる。シランの反応率は、床の温度、振動の周波数、振動振幅、及び格納容器内のガスの滞留時間を調整することにより制御することができる。シランガスの反応率は、20%と100%との間に制御することができる。シランガスの反応率は、40%と100%との間に制御することができる。シランガスの反応率は、80%と100%との間に制御することができる。シランガスの反応率は、98%に制御することができる。
外周壁の高さは、1/4インチと15インチとの間とすることができる。外周壁の高さは、1/2インチと15インチとの間とすることができる。外周壁の高さは、1/2インチと5インチとの間とすることができる。外周壁の高さは、1/2インチと3インチとの間とすることができる。外周壁の高さは、約2インチとすることができる。
電気的加熱は、パンの表面の下に配置された抵抗加熱コイルにより行うことができる。抵抗加熱コイルは、シール容器内に配置することができる。シール容器は、パンの下側に直接接触する側を除く全ての側で絶縁されるものとすることができる。パンの下側は、加熱コイルを保持するシール容器の上側を形成することができる。
複数のビーズの表面を第1の気体状化学種と希釈ガスとを含むガスに対して実質的に露出させるための機械的手段、及び、ビーズ又はビーズの表面を加熱するための加熱手段は、金属若しくはグラファイト又は金属及びグラファイトの組合せから作ることができる。金属は、316SS又はニッケルとすることができる。
ビーズの形成速度は、微粉の形成速度と一致するものとすることができる。微粉の形成速度は、振動の周波数、振動振幅、及び側部の高さを調整することにより制御することができる。
格納容器から引き出された水素は、関連付けられたシラン製造プロセスにおける使用のため又は販売用に回収することができる。ビーズに同伴する、又はビーズを構成する第2の化学種の中に取り込まれる水素ガスの残留濃度は、格納容器に補給されるガスの中の水素希釈剤の濃度を制御することにより制御することができる。水素希釈剤の濃度は、0モルパーセントと90モルパーセントとの間に制御することができる。水素希釈剤の濃度は、0モルパーセントと80モルパーセントとの間に制御することができる。水素希釈剤の濃度は、0モルパーセントと90モルパーセントとの間に制御することができる。水素希釈剤の濃度は、0モルパーセントと50モルパーセントとの間に制御することができる。水素希釈剤の濃度は、0モルパーセントと20モルパーセントとの間に制御することができる。
パンから溢れた粒子は、2つ又はそれ以上の分離バルブ及び中間の第2の格納容器で構成されるロック・ホッパ機構を通って格納容器の底から取り出すことができる。
図中、同一の参照符号は、同様の要素又は動作を識別する。図中の要素の寸法及び相対位置は、必ずしも縮尺通りに描かれてはいない。例えば、種々の要素の形状及び角度は縮尺通りに描かれておらず、これらの要素の幾つかは図面を読み取りやすくするために恣意的に拡大され、位置決めされている。さらに、描かれた要素の特定の形状は、その特定の要素の実際の形状に関するなんらかの情報を伝達することを意図するものではなく、単に図中で認識し易くするために選択されたものである。
1つの例証的な実施形態による、シリコンの調製のために有用な、加圧格納容器、格納容器の中に配置された機械式流動床、並びに種々の供給ライン及び吐出ラインを含むシステムの部分切取略図である。 1つの例証的な実施形態による、回転楕円軸受又はカムにより機械的に揺動又は振動する機械式流動床の等角図である。 別の例証的な実施形態による、多数の圧電トランスデューサにより機械的に揺動又は振動する機械式流動床の断面図である。 別の例証的な実施形態による、多数の超音波トランスデューサにより機械的に揺動又は振動する機械式流動床の断面図である。
以下の説明には、開示された種々の実施形態の完全な理解をもたらすために、ある特定の詳細が含まれる。しかしながら、当業者であれば、1つ又はそれ以上のこれらの特定の詳細がなくても、又は他の方法、構成要素、材料などを用いて実施形態を実施することができることを認識するであろう。その他の例では、混合機、分離器、気化器、弁、コントローラ、及び/又は再結合反応器の内部構造を含むがこれらに限定されない、シリコンを製造するためのシステムに関連付けられる周知の構造は、実施形態の説明を不必要に不明瞭にすることを避けるために、詳細に図示又は説明しなかった。
文脈に反しない限り、本明細書及び特許請求の範囲の全体を通じて、「含む(comprise)」という語、並びに「含む(comprises)」及び「含んでいる(comprising)」のようなその語尾変化は、開かれた、包括的な意味で、即ち「含むがそれらに限定されない」と解釈される。
本明細書の全体を通して、「1つの実施形態」、又は「ある実施形態」、又は「別の実施形態」、又は「幾つかの実施形態」、又は「特定の実施形態」への言及は、その実施形態に関連して説明された特定の指示対象である特徴、構造、又は特性が、少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書を通じて様々な箇所に現れる「1つの実施形態において」、又は「ある実施形態において」、又は「別の実施形態において」、又は「幾つかの実施形態において」、又「特定の実施形態において」という語句の出現は、必ずしも全てが同じ実施形態に言及しているわけではない。さらに、特定の特徴、構造、又は特性は、1つ又はそれ以上の実施形態においていずれかの適切な方法で組み合わせることもできる。
本明細書、及び添付の特許請求の範囲において用いられる単数形の冠詞「a」、「an」及び「the」は、内容から明らかにそうではないことが規定されない限り、複数の指示対象を含むことに留意されたい。したがって、例えば、クロロシランに対する言及は、単一種のクロロシランを含むが、また、複数種のクロロシランをも含むことができる。「又は」という用語は、内容から明らかにそうではないことが規定されない限り、一般的に「及び/又は」を含むものとして使用されることにもまた留意されたい。
本明細書において用いられる「シラン」という用語は、SiH4を指す。本明細書において用いられる「シラン類」という用語は、シラン及び/又はその任意の誘導体を指すために総称的に用いられる。本明細書において用いられる「クロロシラン」という用語は、1つ又はそれ以上の水素が塩素によって置換されたシラン誘導体を指す。「クロロシラン類」という用語は、クロロシランの1つ又はそれ以上の種を指す。クロロシラン類は、モノクロロシラン(SiH3Cl又はMCS)、ジクロロシラン(SiH2Cl2又はDCS)、トリクロロシラン(SiHCl3又はTCS)、又は四塩化ケイ素とも呼ばれるテトラクロロシラン(SiCl4又はSTC)によって例示される。シラン類の融点及び沸点は、分子内の塩素の数が増えるにつれて高くなる。したがって、例えば、標準温度及び圧力において、シランは気体であるが、四塩化ケイ素は液体である。
特に指定のない限り、本明細書において用いられる「塩素」という用語は、原子状塩素、即ち化学式Clを有する塩素を指し、分子状塩素、即ち化学式Cl2を有する塩素は指さない。本明細書において用いられる「シリコン」という用語は、原子状ケイ素、即ち化学式Siを有するケイ素を指す。
本明細書において用いられる「化学蒸着反応器」又は「CVD反応器」という用語は、シーメンス型、即ち「ホット・ワイヤ」型反応器を指す。
特に指定のない限り、本明細書において、「シリコン」及び「ポリシリコン」という用語は、本明細書において開示された方法及びシステムのシリコン製品を指すときには互換的に用いられる。
特に指定のない限り、本明細書においてパーセントとして表される濃度は、その濃度がモルパーセントで表されていることを意味すると理解されたい。
本明細書において提供されている見出しは、単なる便宜上のものであり、その実施形態の範囲又は意味を解釈するものではない。
図1は、1つの例証的な実施形態による、機械式流動床反応器システム100を示す。
機械式流動床反応器システム100は、機械式流動床装置102を含み、これが粒子(例えば、微粉、ビーズ)を機械的に流動化し、熱を与え、この上で所望の反応が生成される。機械式流動床反応器システム100はさらに、1つ又はそれ以上の容器壁110によってその外部108から隔てられた内部106を有する、反応容器104を含むことができる。機械式流動床装置102は、反応容器104の内部106の中に配置することができる。機械式流動床反応器システム100は、反応ガス供給サブシステム112と、粒子供給サブシステム114と、排気ガス回収サブシステム116と、所望の反応生成物を収集するための反応生成物収集サブシステム118とを含む。機械式流動床反応器システム100は、機械式流動床反応器システム100の種々の他の構造体又は要素を制御するために結合された自動制御サブシステム120をさらに含むことができる。これらの構造体又はサブシステムの各々は、以下で順に論じられる。
機械式流動床装置102は、底面122aを有する少なくとも1つのトレー又はパン122と、トレー又はパン122の少なくとも底面122aを加熱するように熱的に結合された加熱要素124(図1においては1つだけが引出し線で示されている)と、トレー122の少なくとも底面122aを揺動又は振動させるように結合された揺動器126とを含む。トレー122はまた、トレー122の底面122aから概ね垂直に延びる外周壁122bを含むことができる。外周壁122b及び底面122aは、所望の反応に供されている材料130を一時的に保持することができる凹部128を形成する。底面122aは、そしておそらくは外周壁122bも、反応生成物の堆積によって急速に損なわれることのない材料で形成すべきである。底面122a、及び/又はトレー122は、金属若しくはグラファイト又は金属とグラファイトとの組合せで形成することができる。金属は、例えば、316SS又はニッケルの形態をとることができる。機械的に誘導される振動又は揺動による床の流動化は、それにより第1の反応性種が床の中へと取り込まれ、熱い微粉、ビーズ又はその他の粒子の近くまで接近するか又は直に接触するようにされる機構である。本明細書及び特許請求の範囲において用いられる機械式流動床という用語は、揺動又は振動による粒子(例えば、微粉、ビーズ又は他の粒子)の浮遊又は流動化を意味するものであり、その揺動又は振動が、機械的機構、磁気的機構、音響的機構又はその他の機構のいずれにより床又はトレーに結合されているかを問わない。このような流動化は、粒子を通るガス流によって生じる流動化とは区別される。振動及び揺動という用語、並びにその語尾変化(例えば、振動する、揺動する)は、本明細書及び特許請求の範囲において互換的に用いられる。さらに、トレー又はパンという用語は、本明細書及び特許請求の範囲においては、機械的に流動化された床を一時的に保持することが可能な凹部を形成する、底面とそこから延びる少なくとも1つの壁とを有する構造を指すために互換的に用いられる。
加熱要素124は、例えば、1つ又はそれ以上の放射要素又は抵抗要素など、種々の形態を取ることができ、これらは、例えば制御信号に応答して電流源132からの電流がその中を流れるのに応答して熱を生成する。放射又は抵抗要素は、例えば、電気調理用レンジ台上面又は投げ込み式ヒータで一般に見られる電気コイルと同様のものとすることができる。
加熱要素124は、シール容器の中に封入することができる。例えば、放射又は抵抗要素は全ての側で封入することができる。例えば、トレー又はパン122の底面122aを形成する部分又は底面122aに近接した部分を除いた、放射又は抵抗要素の全ての側を断熱材料134で囲むことができる。断熱材料は、例えば、ガラスセラミック製の調理面の下に電気放射又は抵抗加熱要素が配置された「ガラストップ」レンジで用いられているものと同様のガラスセラミック材料(例えば、Li2O×Al23×nSiO2系、すなわちLAS系)の形態をとることができる。断熱又は絶縁性材料は、ガラスセラミック以外の形態をとることができる。上記のように、断熱材は、トレー又はパン122の底面122aに近接した部分又は底面122aを形成する部分以外の、シール容器の全ての側で用いることができる。熱伝達機構は、伝導、放射又はそれらの組合せとすることができる。
後述のように、生成物が反応するにつれて、個々の部片130の質量及び/又は体積は大きくなることができる。予期せぬことに、より大きな部片はトレー又はパン122内で上方に移動し、一方、より小さな部片は下方に移動する。いったん粒子130が所望のサイズに達すると、その粒子130は振動しながら外周壁122bを乗り越えることができ、反応容器104内で一般に下方に落下する。
反応容器104の内部106は、その外部108と比べて高い圧力まで圧を高められるか又はその高い圧力で維持される。したがって、容器壁110は、容器壁110が受けることが予想される作業圧力に耐えるのに適した材料及び厚さにすべきである。それに加えて、反応容器104の全体的な形状は、そのような予想される作業圧力に耐えるように選択又は設計することができる。さらに、反応容器104は、繰り返される加圧サイクルに適切な安全限界で耐えるように設計すべきである。
反応容器104は、冷却ジャケット133を含むことができ、その中に適切な冷却流体135がポンプで送り込まれる。付加的に、又は代替的に、反応容器は、外部108への放熱のための広い表面積を提供する冷却フィン137(図1においては1つだけが引出し線で示されている)又は他の冷却構造を含むことができる。
反応ガス供給システム112は、反応容器104の内部106に反応ガスを供給するように結合することができる。反応ガス供給システム112は、例えば、シランのリザーバ136を含むことができる。反応ガス供給システム112は、水素のリザーバ138もまた含むことができる。別々のリザーバとして図示されているが、幾つかの実施形態は、シラン及び水素のための複合リザーバを用いることができる。反応ガス供給システム112はまた、1つ又はそれ以上の導管140、混合弁142、流量調節弁144、並びにシラン及び水素を反応容器104の内部106に提供するように動作可能な他の部品(例えば、送風機、圧縮機)を含むことができる。反応ガス供給システム112の種々の要素は、制御矢印(即ち、末尾に丸で囲んだcを有する片矢印)で示されるように、手動又は自動制御することができる。特に、希釈剤(例えば水素)の、反応物又は第1の種(例えばシラン)に対する比が制御される。
粒子供給サブシステム114は、反応容器104の内部106に、必要に応じて粒子を供給することができる。粒子供給サブシステム114は、粒子148のリザーバ146を含むことができる。粒子供給サブシステム114は、粒子のリザーバ146から反応容器104の内部106におけるトレー又はパン122の凹部128への粒子148の送給又は供給を制御するように動作可能な、投入ロック・ホッパ149を含むことができる。投入ロック・ホッパ149は、例えば、中間格納容器151と、中間格納容器151の入口を選択的に封止するように動作可能な入口弁153と、中間の格納容器151の出口を選択的に封止するように動作可能な出口弁155とを含むことができる。粒子供給サブシステム114は、付加的に又は代替的に、粒子148を粒子リザーバ146から、反応容器104の内部106のトレー又はパン122の凹部128まで、又は投入ロック・ホッパ149まで給送するための運搬サブシステム150を含むことができる。幾つかの実施形態において、投入ロック・ホッパの中間格納容器151は、粒子のリザーバとして働くことができる。いずれの場合でも、反応器又は格納容器104の内部106に供給される粒子の量は、自動又は手動制御することができる。運搬サブシステム150は、種々の形態をとることができる。例えば、運搬サブシステム150は、1つ又はそれ以上の導管及び送風機を含むことができる。送風機は、所望の量の粒子148を反応容器104の内部に送り込むように選択的に作動させることができる。代替的に、運搬サブシステム150は、電気モータのような適切な駆動機構と、ギア、クラッチ、プーリ、及び又は駆動ベルトのような変速機とを備えたコンベヤベルトを含むことができる。代替的に、運搬サブシステム150は、オーガー又は他の輸送機構を含むことができる。粒子は種々の形態をとることができる。例えば、粒子は、所望の反応のためのシードとしての役割を果たす微粉又はビーズとして提供することができる。ひとたびシード添加されると、トレー又はパン122の機械的な揺動又は振動は、更なる微粉を作り出すことができ、そして少なくともある程度までは、自己シード添加するようになることができる。
排気ガス回収サブシステム116は、反応容器104の内部106と流体連通した入口160を含む。排気ガス回収サブシステム116は、1つ又はそれ以上の導管160、流量調節弁164、及び反応容器104の内部106から排気ガスを回収するための他の構成要素(例えば、送風機、圧縮機)を含むことができる。排気ガス回収サブシステム116の1つ又はそれ以上の部品は、制御信号(末尾の丸で囲んだcを有する片矢印)で示されるように、手動又は自動制御することができる。排気ガス回収サブシステム116は、回収した排気ガスを反応ガス供給システム112のリザーバに戻すことができる。排気ガス回収サブシステム116は、回収した排気ガスをいかなる処理もせずに直接リザーバに戻すことも、又は回収した排気ガスを適切な処理の後で戻すこともできる。例えば、排気ガス回収サブシステム116は、パージ・サブシステム165を含むことができる。パージ・サブシステム165は、排気ガス流から第2の種(例えば水素)の一部又は全部をパージすることができる。これは、反応中に第2の種が正味で製造され得るので、有用であり得る。例えば、シランがシリコンに分解する際に、水素が正味で製造され得る。
反応生成物収集サブシステム118は、機械式流動床装置102のトレー又はパン122から落下した所望の反応生成物170を収集する。反応生成物収集サブシステム118は、反応生成物170の大部分を受け止めることを保証するのに十分な距離までトレー又はパン122の外周を超えて延びた、トレー又はパン122の相対的に下方に位置決めされる漏斗又はシュート172を含むことができる。適切な導管174が、漏斗又はシュート172と吐出ロック・ホッパ176とを流体連通させることができる。入口流量調整弁178は、吐出ロック・ホッパ176の入口180と反応容器104の内部106とを選択的に結合するように、制御信号(末尾の丸で囲んだcを有する片矢印により示される)により手動又は自動で動作可能である。出口流量調整弁182は、吐出ロック・ホッパ176からその出口184を経由して反応生成物を選択的に提供するように(末尾の丸で囲んだcを有する片矢印で示される)制御信号で手動又は自動で動作可能である。トレー又はパン122から溢れたビーズ又は粒子を収集するために、中間の第2の格納容器を用いることができる。
制御サブシステム120を通信可能に結合して、100の1つ又はそれ以上の他の要素を制御することができる。制御サブシステム120は、機械式流動床反応器システム100の1つ又はそれ以上の部品の動作パラメータを示すセンサ信号(末尾に丸で囲んだTを有する片矢印により示される)を生成する1つ又はそれ以上のセンサを含むことができる。例を挙げれば、制御サブシステム120は、温度を示す信号、例えばトレー又はパン122の底面122aの温度、又はその内容物130の温度を示す信号を生成する温度センサ(例えば熱電対)186を含むことができる。同じく例を挙げれば、制御サブシステム120は、圧力を示すセンサ信号(末尾に丸で囲んだPを有する片矢印により示される)を生成する圧力センサ188を含むことができる。このような圧力信号は、例えば、反応容器104の内部106における圧力を示すものとすることができる。制御サブシステム120はまた、種々の弁、送風機、圧縮機、及び他の機器に関連付けられたセンサからの信号を受信することができる。このような信号は、機器の特定の部品の位置又は状態を示すもの、及び/又は、機器の特定の部品内での流量、温度、圧力、振動周波数、密度、重量、及び/又はサイズといった動作特性を示すものとすることができる。
制御サブシステム120は、命令又は論理の定義された組に従って機械式流動床反応器システム100の1つ又はそれ以上の要素を自動制御する際に、種々のセンサ信号を用いることができる。例えば、制御サブシステム120は、弁、加熱器、モータ、アクチュエータ又はトランスデューサ、送風機、圧縮機などといった種々の要素を制御するための制御信号を生成することができる。したがって、例を挙げれば、制御サブシステム120は、1つ又はそれ以上の弁、コンベヤ又は他の輸送機構を制御して反応又は格納容器の内部に粒子を選択的に供給するように、通信可能に結合及び構成することができる。同じく例を挙げれば、制御サブシステム120は、トレー又はパン122の振動又は揺動の周波数を制御して所望の流動化を生じさせるように通信可能に結合及び構成することができる。制御サブシステム120は、トレー若しくはパン又はその内容物の温度を制御するように通信可能に結合及び構成することができる。このような制御は、放射又は抵抗加熱器要素を流れる電流の流れを制御することによって行うことができる。同じく例を挙げれば、制御サブシステム120は、反応又は格納容器の内部に流入する反応ガスの流れを制御するように通信可能に結合及び構成することができる。このような制御は、例えば、1つ又はそれ以上の弁をソレノイド、リレー又は他のアクチュエータを介して制御すること、及び/又は、1つ又はそれ以上の送風機又は圧縮機を例えば関連付けられた電気モータの速度を制御することによって制御することにより行うことができる。同じく例を挙げれば、制御サブシステム120は、反応又は格納容器からの排気ガスの引き出しを制御するように通信可能に結合及び構成することができる。このような制御は、1つ又はそれ以上の弁、ダンパ、送風機、排気ファンを1つ又はそれ以上のソレノイド、リレー、電気モータ又は他のアクチュエータを介して制御するように適切な制御信号を与えることにより行うことができる。
制御サブシステム120は、種々の形態をとることができる。例えば、制御サブシステム120は、1つ又はそれ以上のマイクロプロセッサ及びメモリ(例えば、RAM、ROM、フラッシュ、回転メディア)を有するプログラムされた汎用コンピュータを含むことができる。代替的に、又は付加的に、制御サブシステム120は、プログラム可能ゲート・アレイ、特定用途向け集積回路、及び/又はプログラム可能論理コントローラを含むことができる。
図2は、1つの例証的な実施形態による、回転する楕円軸受又は1つ又はそれ以上のカム204により機械的に揺動又は振動するトレー又はパン202を含む機械式流動床200を示しており、これらのカムは同期させることができる。
トレー又はパン202は、底面202aと、そこに対して垂直に延びて、反応に供されている材料を一時的に保持するための凹部を形成する外周壁202bとを含む。多数の加熱要素206(破線で示される)がトレー又はパン202の全体にわたって通っており、少なくとも底面202a、及び底面202aに接触した内容物を加熱するように動作可能である。
トレー又はパン202は、1つ又はそれ以上の弾性部材210(図2においては1つだけが引出し線で示されている)により基部208に懸架することができる。弾性部材210は、トレー又はパン202が基部208に対して少なくとも1つの方向又は向きに揺動又は振動することを可能にする。弾性部材210は、例えば、1つ又はそれ以上のばねの形態をとることができる。弾性部材210は、ゲル、ゴム又は気泡ゴムの形態をとることができる。代替的に、トレー又はパン202は、1つ又はそれ以上の磁石(例えば、永久磁石、電磁石、鉄元素)を介して基部208に結合することができる。さらに別の実施形態において、トレー又はパン202は、1つ又はそれ以上のワイヤ、ケーブル、紐、又はばねを介して基部208に懸架することができる。
楕円軸受又はカム204は、アクチュエータ、例えば電気モータ212により駆動することができる。電気モータ212は、変速機214を介して楕円軸受又はカム204に駆動的に結合することができる。変速機214は、電気モータ212を楕円軸受又はカム204に物理的及び/又は磁気的に結合するための、例えば、1つ又はそれ以上のギア、プーリ、ベルト、駆動シャフト、又は磁石などの種々の形態をとることができる。楕円軸受又はカム204が回転するにつれて、楕円軸受又はカム204が、床又はトレー20を連続的に揺動させる。
図3は、別の例証的な実施形態による、多数の圧電トランスデューサ又はアクチュエータ304(図3においては2つが引出し線で示される)により機械的に揺動又は振動するトレー又はパン302を含む機械式流動床300を示す。
トレー又はパン302は、底面302aと、その外周から垂直に延びて、材料をその中に保持するための凹部を形成する外周壁302bとを含む。多数の加熱要素306(図3においては1つだけが引出し線で示される)が底面302aに熱的に結合されており、少なくとも底面302a及び底面302aに接触した内容物を加熱するように動作可能である。上で説明したように、加熱要素306は、放射要素又は電気抵抗要素の形態をとることができる。代替的に、例えばレーザ又は加熱流体を用いた、他の要素を使用することができる。
トレー又はパン302は、基部308に結合する。幾つかの実施形態において、トレー又はパン302は、圧電トランスデューサ304のみを介して基部308に物理的に結合する。他の実施形態において、トレー又はパン302は、1つ又はそれ以上の弾性部材(例えば、ばね、ゲル、ゴム、又は気泡ゴム)を介して基部308に物理的に結合する。更なる実施形態において、トレー又はパン302は、1つ又はそれ以上の磁石(例えば、永久磁石、電磁石、鉄元素)を介して基部308に結合することができる。さらに別の実施形態において、トレー又はパン302は、1つ又はそれ以上のワイヤ、ケーブル、紐、又はばねを介して基部308に懸架することができる。
多数の圧電トランスデューサ304は、トレー又はパン302に物理的に結合する。圧電トランスデューサ304は、電流源310に電気的に結合し、この電流源310は、変化する電流を印加して、圧電トランスデューサ304がトレー又はパン302を基部に対して揺動又は振動させるようにする。電流は、所望の揺動又は振動周波数を達成するように制御することができる。
図4は、別の例証的な実施形態による、多数の超音波トランスデューサ又はアクチュエータ404(図4においては2つが引出し線で示される)により機械的に揺動又は振動するトレー又はパン402を含む機械式流動床400を示す。
トレー又はパン402は、底面402aと、その外周から垂直に延びて、材料をその中に保持するための凹部を形成する外周壁402bとを含む。多数の加熱要素406(図4においては1つだけが引出し線で示される)が底面402aに熱的に結合されており、少なくとも底面402a及び底面402aに接触した内容物を加熱するように動作可能である。上で説明したように、加熱要素406は、放射要素又は電気抵抗要素の形態を取ることができ、絶縁層(例えば、ガラスセラミック)によって被覆することができる。代替的に、例えばレーザ又は加熱流体を用いた、他の加熱要素を使用することができる。
トレー又はパン402は、基部408に結合する。トレー又はパン402は、1つ又はそれ以上の弾性要素410(例えば、ばね、ゲル)のみを介して基部408に物理的に結合することができる。代替的に、トレー又はパン402は、1つ又はそれ以上の磁石(例えば、永久磁石、電磁石、鉄元素)を介して基部408に結合することができる。さらに別の実施形態において、トレー又はパン402は、1つ又はそれ以上のワイヤ、ケーブル、紐、又はばねを介して基部408に懸架することができる。
多数の超音波トランスデューサ404は、超音波を発生させるように、及び、そのような超音波圧力波をトレー若しくはパン402又はその内容物に伝播するように動作可能である。圧電トランスデューサ404は、電流源412に電気的に結合し、この電流源412は、変化する電流を印加して、超音波トランスデューサ404がトレー若しくはパン402又はその内容物を基部408に対して揺動又は振動させるようにする。電流は、所望の揺動又は振動周波数を達成するように制御することが可能である。
第1の化学種は、シランガス(SiH4)、トリクロロシランガス(SiHCl3)、又はジクロロシランガス(SiH2Cl2)を含む種々の形態をとることができる。これらを気体状態で反応又は格納容器104の中へと供給することができる。
第2の化学種は、微粉、ビーズ又は他の粒子の形態を取ることができ、トレー又はパンにより形成される凹部に配置することができる。外周壁の高さが、生成されるビーズ又は他の粒子のサイズを効果的に制御することができる。特に、トレー又はパンの底面に対して外周壁が高いほど、より大きいビーズ又は他の粒子の形成が引き起こされることになる。外周壁の高さは、1/2インチと15インチとの間とすることができる。1/2インチと10インチとの間、1/2インチと5インチとの間、1/2インチと3インチとの間、又は約2インチの高さが特に有利であり得る。
第3の非反応性種を、反応又は格納容器104に加えることができる。第3の非反応種は、希釈剤として機能する。
トレー又はパンの少なくとも底面を加熱することができる。100℃と900℃との間の範囲、200℃と700℃との間の範囲、300℃と600℃との間の範囲、又は約450℃の温度が特に好適であり得る。第1の種の分解速度は、トレー又はパンの底面の温度を制御することによって効果的に制御することができる。
揺動又は振動は、いずれか1つ又はそれ以上の軸線に沿った揺動又は振動、又はいずれか1つ又はそれ以上の軸線の周りの揺動又は振動とすることができる。揺動又は振動は、多数の周波数のうちの任意の周波数とすることができる。特に有利な周波数は、毎分1サイクルと4,000サイクルとの間、毎分500サイクルと3,500サイクルとの間、毎分1,000サイクルと3,000サイクルとの間、又は毎秒2,500サイクルを含むことができる。様々な大きさ又は振幅の揺動又は振動を使用することができる。1/100インチと1/2インチとの間、1/64インチと1/4インチとの間、1/32インチと1/8インチとの間、又は約1/64インチの振幅が特に有利であり得る。
反応又は格納容器104の内部106におけるガスの混合平均温度は、制御することができる。30℃と500℃との間の範囲、50℃と300℃との間の範囲、約100℃又は約50℃の温度が特に有利であり得る。
反応又は格納容器104内のガスの圧力は、制御することができる。7psigと200psigとの間の圧力が特に有利であり得る。5psiaと300psiaとの間、14.7psiaと200psiaとの間、30psiaと100psiaとの間、約70psiaの圧力が有利であり得る。バッチ反応の開始時の反応又は格納容器104内のガスの圧力は約14.7psiaに制御することができ、バッチ反応の終了時には、約28psia乃至32psiaに制御することができる。
分解反応により形成される第2の種は、反応又は格納容器104から引き出すことができる。このような種は、バッチ式に又は連続的に引き出すことができる。とりわけ、第1の種の分解で形成される第2の種(例えば水素)の気体密度が、より高密度の第1の種(例えばシラン)に対して相対的に低いことが、流動床又は粒子からの第2の種の離脱を容易にする。このことは、第1の種が熱い微粉、ビーズ又は他の粒子の近くまで接近するか又は直に接触するようになることを可能にする。例えば、水素は、粒子の機械式流動床の中で上に昇る傾向を有することになり、一方、シランはその中で下に沈む傾向を有することになる。
シランガスの反応率は、20%と100%との間、40%と100%との間、80%と100%との間、又は約98%とすることができる。
制御サブシステム又は操作者は、第1の反応物の反応率の程度を監視することができる。例えば、反応率の程度は、反応又は格納容器104の内側の蒸気空間をサンプリングすることにより連続的に監視することができる。
第1の反応物及び第3の非反応性種を含むガスは、反応又は格納容器104にバッチ式に補給することができる。第1の反応物と第3の非反応性希釈剤と分解反応により形成された第2の種のうちの1つとで構成されたガスを、反応又は格納容器104からバッチ式に引き出すことができる。反応又は格納容器104に補給されるガスは、例えば、シランガス(SiH4)及び水素希釈剤を含むことができ、反応又は格納容器104から引き出されるガスは、未反応シランガス、水素希釈剤、及び分解反応により形成された水素ガスを含むことができる。トレー又はパン122に補給される微粉、ビーズ又は他の粒子は、シリコンを含むことができる。
シランガスの分解はポリシリコンを生成することができ、このポリシリコンは微粉上に堆積してビーズ又は他の粒子を形成し、ビーズ上に堆積してより大きなビーズ又は粒子を形成する。ビーズ又は他の粒子は、トレー又はパン122から連続的に採取することができる。生成されるビーズの平均サイズは、直径1/100インチと直径1/4インチとの間、直径1/64インチと直径3/16インチとの間、直径1/32インチと直径1/8インチとの間、又は直径1/8インチとすることができる。
ビーズの形成速度は、微粉の形成速度と一致し得る。微粉の形成速度は、振動の周波数、振動振幅、及び/又は外周壁の高さを調整することにより制御することができる。
反応又は格納容器104から引き出された水素は、関連付けられたシラン製造プロセスにおける使用のため又は販売用に回収することができる。
ビーズに同伴する又はビーズを構成する第2の化学種の中に取り込まれる水素ガスの残留濃度は、格納容器に補給されるガス中の水素希釈剤の濃度を制御することにより制御することができる。水素希釈剤の濃度は、0モルパーセントと90モルパーセントとの間、0モルパーセントと80モルパーセントとの間、0モルパーセントと90モルパーセントとの間、0モルパーセントと50モルパーセントとの間、又は0モルパーセントと20モルパーセントとの間とすることができる。
本明細書において開示及び議論されたシリコン製造のためのシステム及びプロセスは、現在使用されているシステム及びプロセスに勝る著しい利点を有し得る。
本システム及びプロセスは、半導体グレード又は太陽電池グレードのシリコンの製造に適している。製造プロセスの出発原料としてシランを使用することにより、高純度のシリコンをより容易に製造することが可能になる。シランは精製がはるかに容易である。沸点が低いので、シランは容易に精製することができ、精製中に、出発原料としてトリクロロシランを調製及び精製する際に起こり得るように汚染物質が混入する傾向を有しない。さらに、トリクロロシランの製造のための特定のプロセスは炭素又はグラファイトを利用するものであり、これは生成物に混入するか又はクロロシランと反応して炭素含有化合物を形成し得る。
要約において説明されるものを含む上記の例証的な実施形態の説明は、網羅的であることを意図するものではなく、実施形態を開示されたその通りの形態に限定することを意図するものでもない。例証の目的で特定の実施形態及び実施例を上で説明したが、当業者には認識されるように、本開示の意図及び範囲から逸脱することなく種々の均等な改変を行うことができる。上記で提示した種々の実施形態の教示は、上記で一般的に説明された例示的なシステム、方法及び装置のみならず、シリコンを製造するための他のシステム、方法及び/又はプロセスにも適用することができる。
例えば、上記の詳細な説明は、ブロック図、概略図、フローチャート及び実施例の使用により、システム、プロセス、方法及び/又は装置の種々の実施形態を示した。このようなブロック図、概略図、フローチャート及び実施例が1つ又はそれ以上の機能及び/又は操作を含む限りにおいて、このようなブロック図、概略図、フローチャート又は実施例内の各々の機能及び/又は操作は、個々に及び/又はまとめて、広範なシステム構成要素、ハードウェア、ソフトウェア、ファームウェア、又はそれらの事実上あらゆる組み合わせにより実装することができることを当業者は理解するであろう。
ある実施形態においては、用いられるシステム又は製造される装置は、上記の特定の実施形態より少ない構造又は構成要素を含むことができる。他の実施形態において、用いられるシステム又は製造される装置は、本明細書において説明されたものに追加して、構造又は構成要素を含むことができる。更なる実施形態において、用いられるシステム又は製造される装置は、上記で説明されたものとは異なるように配置された構造又は構成要素を含むことができる。例えば、幾つかの実施形態において、温度、圧力又は流量の効果的な制御を提供するために、システム内に追加の加熱器及び/又は混合機及び/又は分離器が存在してもよい。さらに、本明細書で説明した手順又は方法の実装においては、より少ない操作、追加の操作が存在してもよく、又は操作を本明細書で説明した順序とは異なる順序で実行してもよい。システム若しくはデバイスの構成要素、又はプロセス若しくは方法の操作の態様を削除、追加又は再配置することは、本開示に照らして十分に関連分野の当業者の技術範囲内である。
本明細書において説明されたポリシリコンを製造するための方法及びシステムの操作は、自動制御サブシステムの制御下におくことができる。このような自動制御サブシステムは、1つ又はそれ以上の適切なセンサ(例えば、フロー・センサ、圧力センサ、温度センサ)、アクチュエータ(例えば、モータ、弁、ソレノイド、ダンパ)、化学分析器、並びに、プロセッサ可読ストレージ媒体内に格納された命令を実行して種々の構成要素及び/又は材料のフロー、圧力及び/又は温度をセンサ、分析器及び/又はユーザ入力からのデータ又は情報に少なくとも部分的に基づいて自動的に制御するプロセッサに基づくシステムを含むことができる。
ポリシリコンを製造するための、システム及びプロセスの制御及び操作、又はシステム及び装置の設計に関して、ある実施形態において、本主題は、特定用途向け集積回路(ASIC)により実装することができる。しかしながら、当業者であれば、本明細書で開示された実施形態は、その全体として又は部分として、標準的な集積回路内で、1つ又はそれ以上のコンピュータ上で実行される1つ又はそれ以上のコンピュータ・プログラムとして(例えば、1つ又はそれ以上のコンピュータ・システム上で実行される1つ又はそれ以上のプログラムとして)、1つ又はそれ以上のコントローラ(例えば、マイクロコントローラ)上で実行される1つ又はそれ以上のプログラムとして、1つ又はそれ以上のプロセッサ(例えば、マイクロプロセッサ)上で実行される1つ又はそれ以上のプログラムとして、ファームウェアとして、又はそれらの事実上あらゆる組み合わせとして、等価に実装することができることを認識するであろう。したがって、回路を設計すること、及び/又は、ソフトウェア及び又はファームウェアのためのコードを書くことは、本開示に照らして十分に当業者の技術範囲内である。
上記で説明した種々の実施形態を組み合わせて、更なる実施形態を提供することができる。実施形態の態様を必要であれば改変して、種々の特許、出願及び公開の概念を使用して更なる実施形態を提供することができる。
上記の詳細な説明に照らして、これら及び他の変更を本実施形態に対して行うことができる。一般に、以下の特許請求の範囲において、用いられる用語は、特許請求の範囲を明細書及び特許請求の範囲において開示された特定の実施形態に限定するものとして解釈すべきではなく、このような特許請求の範囲が権利を与える完全な均等の範囲と共に全ての可能な実施形態を含むものとして解釈すべきである。したがって、特許請求の範囲は、本開示によって限定されるものではない。
100:機械式流動床反応器システム
102、200、300、400:機械式流動床装置
104:格納容器又は反応容器
106:格納容器の内部
108:格納容器の外部
110:容器壁
112:反応ガス供給サブシステム
114:粒子供給サブシステム
116:排気ガス回収サブシステム
118:反応生成物収集サブシステム
120:自動制御サブシステム
122、202、302、402:トレー又はパン
122a、202a、302a、402a:底面
122b、202b、302b、402b:外周壁
124、206、306、406:加熱要素
126:揺動器
128:凹部
133:冷却ジャケット
137:冷却フィン
144、164、178、182:流量調節弁
148:粒子
149:投入ロック・ホッパ
150:運搬サブシステム
170:反応生成物
172:漏斗又はシュート
176:吐出ロック・ホッパ
204:楕円軸受又はカム
208、308、408:基部
210、410:弾性部材
304:圧電トランスデューサ又はアクチュエータ
404:超音波トランスデューサ又はアクチュエータ

Claims (82)

  1. 複数の微粉、ビーズ又は他の粒子の表面を、第1の気体状化学種を含むガスに対して実質的に露出させるための機械的手段と、
    前記微粉、ビーズ若しくは他の粒子、又は前記微粉、ビーズ若しくは他の粒子の前記表面を十分に高い温度まで加熱して、前記表面と接触した第1の気体状化学種が化学的に分解して前記表面上に第2の化学種を実質的に堆積させるようにするための加熱手段と、
    加熱により、そのうちの1つが実質的に不揮発性種であって近接した熱い表面上に堆積する傾向にある1つ以上の第2の化学種に分解する化学種から選択された第1のガスの源と、
    を含むことを特徴とする、化学蒸着反応器システム。
  2. 前記第1の化学種はシランガス(SiH4)であることを特徴とする、請求項1に記載の反応器システム。
  3. 前記第1の化学種はトリクロロシランガス(SiHCl3)であることを特徴とする、請求項1に記載の反応器システム。
  4. 前記第1の化学種はジクロロシランガス(SiH2C12)であることを特徴とする、請求項1に記載の反応器システム。
  5. 前記機械的手段は振動床であることを特徴とする、請求項1に記載の反応器システム。
  6. 前記振動床は、偏心フライホイール、圧電トランスデューサ又は音波トランスデューサのうちの少なくとも1つを含むことを特徴とする、請求項5に記載の振動床。
  7. 前記機械的手段は、毎分約1〜4000サイクルの周波数範囲で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  8. 前記機械的手段は、毎分約500〜と3500サイクルの周波数で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  9. 前記機械的手段は、毎分約1000〜3000サイクルの周波数で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  10. 前記機械的手段は、毎秒約2500サイクルの周波数で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  11. 前記機械的手段は、約1/100〜4インチの振幅で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  12. 前記機械的手段は、約1/64〜1/4インチの振幅で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  13. 前記機械的手段は、約1/32〜1/8インチの振幅で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  14. 前記機械的手段は、約1/64インチの振幅で振動又は揺動を発生させる少なくとも1つの振動又は揺動源を含むことを特徴とする、請求項1に記載の振動床。
  15. 内部及び外部を有する格納容器を更に含み、
    前記機械的手段の少なくとも一部は、前記格納容器の前記内部に配置された振動床を含むことを特徴とする、請求項1に記載の反応器システム。
  16. 加熱手段は、前記格納容器の前記内部に少なくとも部分的に配置されることを特徴とする、請求項1に記載の反応器システム。
  17. 前記格納容器の前記内部は、第1の反応物及び第3の非反応性種を含有するガスで満たされることを特徴とする、請求項15に記載の格納容器。
  18. 前記格納容器は、少なくとも1つの壁を含み、前記少なくとも1つの壁は、前記格納容器の外側に配置された冷却ジャケット又は空冷フィンにより低温に保持されることを特徴とする、請求項15に記載の格納容器。
  19. 前記冷却ジャケットを通って冷媒が流れ、前記冷媒は、前記格納容器の前記内部における前記ガスの温度が所望の低温に制御されるように制御された、温度及び流量を有することを特徴とする、請求項18に記載の冷却システム。
  20. 前記格納容器の前記内部における前記ガスの混合平均温度は、30〜500℃に制御されることを特徴とする、請求項19に記載のシステム。
  21. 前記格納容器の前記内部における前記ガスの混合平均温度は、50〜300℃に制御されることを特徴とする、請求項19に記載のシステム。
  22. 前記格納容器の前記内部における前記ガスの混合平均温度は、100℃に制御されることを特徴とする、請求項19に記載のシステム。
  23. 前記格納容器の前記内部における前記ガスの混合平均温度は、50℃に制御されることを特徴とする、請求項19に記載のシステム。
  24. 前記振動床は、平坦なパンとそこから延びた少なくとも1つの外周壁を含むことを特徴とする、請求項5に記載の振動床。
  25. 前記振動床は底面を含み、前記底面は、平面であり、加熱されることを特徴とする、請求項24に記載の振動床。
  26. 前記底面及び前記少なくとも1つの外周壁はコンテナを形成し、第2の種の前記微粉、ビーズ又は他の粒子は、前記コンテナ内に置かれることを特徴とする、請求項25に記載のシステム。
  27. 前記床の前記加熱された部分の表面温度は、100〜1300℃になるように制御されることを特徴とする、請求項26に記載のシステム。
  28. 前記床の前記加熱された部分の表面温度は、100〜900℃になるように制御されることを特徴とする、請求項26に記載のシステム。
  29. 前記床の前記加熱された部分の表面温度は、200〜700℃になるように制御されることを特徴とする、請求項26に記載のシステム。
  30. 前記床の前記加熱された部分の表面温度は、300〜600℃になるように制御されることを特徴とする、請求項26に記載のシステム。
  31. 前記床の前記加熱された部分の表面温度は、約450℃になるように制御されることを特徴とする、請求項26に記載のシステム。
  32. 前記第1の種の分解速度は、前記表面温度を制御することによって制御されることを特徴とする、請求項27に記載のシステム。
  33. 生成される前記ビーズのサイズは、前記コンテナの前記外周壁の高さにより制御されることを特徴とする、請求項32に記載のシステム。
  34. 前記外周壁の前記高さを高くすることにより、より大きいビーズが形成され、前記外周壁の前記高さを低くすることにより、より小さいビーズが形成されることを特徴とする、請求項33に記載のシステム。
  35. 前記床は電気的に加熱されることを特徴とする、請求項27に記載のシステム。
  36. 前記格納容器の前記内部における前記ガスの圧力は、7〜200psigになるように制御されることを特徴とする、請求項17に記載のシステム。
  37. 前記格納容器の前記内部における前記ガスは前記第1の反応物を含み、第3の非反応性種が前記格納容器に加えられ、第1の反応物と第3の非反応性希釈剤と前記分解反応により形成された前記第2の種のうちの1つとを含むガスが前記格納容器から引き出されることを特徴とする、請求項17に記載のシステム。
  38. 前記第1の反応物と第3の非反応性種とを含むガスが前記格納容器に連続的に加えられ、第1の反応物と第3の非反応性希釈剤と前記分解反応により形成された前記第2の種のうちの1つとを含むガスが、前記格納容器から連続的に引き出されることを特徴とする、請求項37に記載のシステム。
  39. 前記第1の反応物の反応率の程度が、前記格納容器の内側の蒸気空間をサンプリングすることにより連続的に監視されることを特徴とする、請求項38に記載のシステム。
  40. 前記第1の反応物と第3の非反応性種とを含むガスが前記格納容器にバッチ式に加えられ、第1の反応物と第3の非反応性希釈剤と前記分解反応により形成された前記第2の種のうちの1つとを含むガスが、前記格納容器からバッチ式に引き出されることを特徴とする、請求項37に記載のシステム。
  41. 前記第1の反応物の反応率の程度は、前記格納容器の内側の前記蒸気空間をサンプリングすることにより、及び/又は、前記格納容器内で上昇若しくは低下する圧力を監視することにより、連続的に監視されることを特徴とする、請求項40に記載のシステム。
  42. 前記格納容器に加えられる前記ガスは、シランガス(SiH4)と水素希釈剤とを含み、前記格納容器から引き出される前記ガスは、未反応シランガスと水素希釈剤と前記分解反応により形成された水素ガスとを含み、前記床に加えられる前記微粉及び前記ビーズは、シリコンを含むことを特徴とする、請求項37に記載のシステム。
  43. シランガスの分解はポリシリコンを生成し、前記ポリシリコンは前記微粉上に堆積してビーズを形成し、前記ビーズ上に堆積してより大きなビーズを形成することを特徴とする、請求項42に記載のシステム。
  44. 前記床からビーズが連続的に採取され、前記採取されるビーズの平均サイズは、前記コンテナの前記外周壁の高さを調整することにより制御されることを特徴とする、請求項43に記載のシステム。
  45. 前記コンテナの前記外周壁の高さを高くすることにより、より大きいビーズが形成され、前記コンテナの前記外周壁の前記高さを低くすることにより、より小さいビーズが形成されることを特徴とする、請求項44に記載のシステム。
  46. ビーズの平均サイズは、直径1/100〜1/4インチに制御されることを特徴とする、請求項45に記載のシステム。
  47. ビーズの平均サイズは、直径1/64〜3/16インチに制御されることを特徴とする、請求項45に記載のシステム。
  48. ビーズの平均サイズは、直径1/32〜1/8インチに制御されることを特徴とする、請求項45に記載のシステム。
  49. ビーズの平均サイズは、直径1/8インチに制御されることを特徴とする、請求項45に記載のシステム。
  50. 前記格納容器内の前記ガスの圧力は、5〜300psiaに制御されることを特徴とする、請求項37に記載のシステム。
  51. 前記格納容器内の前記ガスの圧力は、14.7〜200psiaに制御されることを特徴とする、請求項38に記載のシステム。
  52. 前記格納容器内の前記ガスの圧力は、30〜100psiaに制御されることを特徴とする、請求項38に記載のシステム。
  53. 前記格納容器内の前記ガスの圧力は、70psiaに制御されることを特徴とする、請求項38に記載のシステム。
  54. 前記格納容器内の前記ガスの圧力は、前記バッチ反応の開始時には14.7psiaに制御され、前記バッチ反応の終了時には28〜32psiaに制御されることを特徴とする、請求項40に記載のシステム。
  55. 前記第1の化学種の反応率は、前記床の温度、前記振動の周波数、前記振動の振幅、前記格納容器内の第1の種の濃度、前記格納容器内のガスの圧力、及び前記格納容器内の前記ガスの滞留時間を調整することにより制御されることを特徴とする、請求項37に記載のシステム。
  56. シランの反応率は、前記床の温度、前記振動の周波数、前記振動の振幅、前記格納容器内の第1の種の濃度、前記格納容器内のガスの圧力、及び前記格納容器内の前記ガスの滞留時間を調整することにより制御されることを特徴とする、請求項42に記載のシステム。
  57. 前記シランガスの反応率は、20〜100%に制御されることを特徴とする、請求項56に記載のシステム。
  58. 前記シランガスの反応率は、40〜100%に制御されることを特徴とする、請求項56に記載のシステム。
  59. 前記シランガスの反応率は、80〜100%に制御されることを特徴とする、請求項56に記載のシステム。
  60. 前記シランガスの反応率は、98%に制御されることを特徴とする、請求項56に記載のシステム。
  61. 前記外周壁の高さは、1/4〜15インチであることを特徴とする、請求項24に記載のシステム。
  62. 前記外周壁の高さは、1/2〜15インチであることを特徴とする、請求項24に記載のシステム。
  63. 前記外周壁の高さは、1/2〜5インチであることを特徴とする、請求項24に記載のシステム。
  64. 前記外周壁の高さは、1/2〜3インチであることを特徴とする、請求項24に記載のシステム。
  65. 前記外周壁の高さは、約2インチであることを特徴とする、請求項24に記載のシステム。
  66. 前記電気的加熱は、前記パンの前記表面の下に配置された抵抗加熱コイルにより行われることを特徴とする、請求項35に記載のシステム。
  67. 前記抵抗加熱コイルは、シール容器内に配置されることを特徴とする、請求項66に記載のシステム。
  68. 前記シール容器は、前記パンの下側に直接接触する側を除く全ての側で絶縁されたことを特徴とする、請求項67に記載のシステム。
  69. 前記パンの下側は、前記加熱コイルを保持する前記シール容器の上側を形成することを特徴とする、請求項68に記載のシステム。
  70. 前記複数のビーズの前記表面を第1の気体状化学種を含むガスに対して実質的に露出させるための前記機械的手段、及び、前記ビーズ又は前記ビーズの前記表面を加熱するための前記加熱手段は、金属若しくはグラファイト又は金属及びグラファイトの組合せから作られたことを特徴とする、請求項1に記載のシステム。
  71. 前記金属は316SS又はニッケルであることを特徴とする、請求項70に記載のシステム。
  72. 前記ビーズの形成速度が微粉の形成速度と一致することを特徴とする、請求項44に記載のシステム。
  73. 前記微粉の形成速度は、前記振動の周波数、前記振動の振幅、及び前記側部の前記高さを調整することにより制御されることを特徴とする、請求項72に記載のシステム。
  74. 前記格納容器から引き出された前記水素は、関連付けられたシラン製造プロセスにおける使用のため又は販売用に回収されることを特徴とする、請求項42に記載のシステム。
  75. 前記ビーズに同伴する水素ガス、又は前記ビーズを構成する前記第2の化学種の中に取り込まれる水素ガスの残留濃度は、前記格納容器に加えられる前記ガス中の前記水素希釈剤の濃度を制御することにより制御されることを特徴とする、請求項42に記載のシステム。
  76. 前記水素希釈剤の前記濃度は、0〜90モルパーセントに制御されることを特徴とする、請求項75に記載のシステム。
  77. 前記水素希釈剤の前記濃度は、0〜80モルパーセントに制御されることを特徴とする、請求項75に記載のシステム。
  78. 前記水素希釈剤の前記濃度は、0〜90モルパーセントに制御されることを特徴とする、請求項75に記載のシステム。
  79. 前記水素希釈剤の前記濃度は、0〜50モルパーセントに制御されることを特徴とする、請求項75に記載のシステム。
  80. 前記水素希釈剤の前記濃度は、0〜20モルパーセントに制御されることを特徴とする、請求項75に記載のシステム。
  81. 2つ以上の分離バルブと中間の第2の格納容器とを含む吐出ロック・ホッパを更に含み、前記平坦なパンから溢れた粒子は、前記吐出ロック・ホッパを通って前記格納容器から取り出されることを特徴とする、請求項44に記載のシステム。
  82. 2つ以上の分離バルブと中間の第2の格納容器とを含む投入ロック・ホッパを更に含み、前記投入ロック・ホッパは、前記格納容器の前記内部に結合し、粒子を前記格納容器の前記内部に選択的に供給するように動作可能であることを特徴とする、請求項15に記載のシステム。
JP2013532836A 2010-10-07 2011-09-28 シリコンの製造に適した機械式流動化反応器システム及び方法 Pending JP2013539823A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39097710P 2010-10-07 2010-10-07
US61/390,977 2010-10-07
PCT/US2011/053675 WO2012047695A2 (en) 2010-10-07 2011-09-28 Mechanically fluidized reactor systems and methods, suitable for production of silicon

Publications (2)

Publication Number Publication Date
JP2013539823A true JP2013539823A (ja) 2013-10-28
JP2013539823A5 JP2013539823A5 (ja) 2014-11-13

Family

ID=45924114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013532836A Pending JP2013539823A (ja) 2010-10-07 2011-09-28 シリコンの製造に適した機械式流動化反応器システム及び方法

Country Status (11)

Country Link
US (1) US20120085284A1 (ja)
EP (1) EP2625308A4 (ja)
JP (1) JP2013539823A (ja)
KR (1) KR20130138232A (ja)
CN (1) CN103154314B (ja)
BR (1) BR112013008352A2 (ja)
CA (1) CA2813884A1 (ja)
EA (1) EA025524B1 (ja)
TW (1) TW201224194A (ja)
UA (1) UA112063C2 (ja)
WO (1) WO2012047695A2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012043316A1 (ja) * 2010-09-30 2014-02-06 Jnc株式会社 多結晶シリコン製造装置および多結晶シリコン製造方法
FR2977259B1 (fr) * 2011-06-28 2013-08-02 Commissariat Energie Atomique Dispositif a profil specifique de reacteur de type lit a jet pour depot par cvd
US8871153B2 (en) * 2012-05-25 2014-10-28 Rokstar Technologies Llc Mechanically fluidized silicon deposition systems and methods
KR101441370B1 (ko) * 2013-01-31 2014-11-03 한국에너지기술연구원 나노입자 포집장치
EP2767337B1 (en) * 2013-02-14 2016-11-02 Directa Plus S.p.A. Method and apparatus for fabricating solid support metal catalyst composites
EP2985079B1 (en) 2014-08-13 2018-10-03 Directa Plus S.p.A. Production process of a core/shell structured solid support metal catalyst
US20180051373A1 (en) * 2014-12-23 2018-02-22 Sitec Gmbh Mechanically vibrated based reactor systems and methods
CA2972658A1 (en) * 2014-12-30 2016-07-07 Sitec Gmbh Crystal production systems and methods
US11773487B2 (en) 2015-06-15 2023-10-03 Ald Nanosolutions, Inc. Continuous spatial atomic layer deposition process and apparatus for applying films on particles
WO2017172745A1 (en) * 2016-03-30 2017-10-05 Sitec Gmbh Mechanically vibrated packed bed reactor and related methods
WO2018050954A1 (en) * 2016-09-16 2018-03-22 Picosun Oy Particle coating by atomic layer depostion (ald)
US20190161859A1 (en) * 2017-11-30 2019-05-30 Ying-Bing JIANG Apparatus for making large-scale atomic layer deposition on powdered materials with plowing action
CN112601837A (zh) * 2018-07-19 2021-04-02 应用材料公司 颗粒涂覆的方法和设备
TWI729944B (zh) * 2020-10-06 2021-06-01 天虹科技股份有限公司 粉末的原子層沉積裝置
TWI772913B (zh) * 2020-10-06 2022-08-01 天虹科技股份有限公司 微粒的原子層沉積裝置
TWI729945B (zh) * 2020-10-06 2021-06-01 天虹科技股份有限公司 在粉末上形成薄膜的原子層沉積裝置
TWI750836B (zh) * 2020-10-06 2021-12-21 天虹科技股份有限公司 可拆式粉末原子層沉積裝置
US11952662B2 (en) * 2021-10-18 2024-04-09 Sky Tech Inc. Powder atomic layer deposition equipment with quick release function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136831A (en) * 1976-05-11 1977-11-15 Wacker Chemitronic Producing method of high purity silicon
JPS6414194A (en) * 1987-07-09 1989-01-18 Showa Denko Kk Method and device for synthesizing diamond by fluidized system
JPH01283817A (ja) * 1988-03-25 1989-11-15 Hemlock Semiconductor Corp Cvd法による半導体シリコンの蒸着法
JPH05246786A (ja) * 1991-07-02 1993-09-24 L'air Liquide コア粉体の存在下で化学蒸着法により珪素ベース超微粒子をコア粉に均一に塗布する方法
JP2001524603A (ja) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー ダイヤモンド状カーボンを粒子にコーティングする方法と装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091517A (en) * 1959-11-25 1963-05-28 Texas Instruments Inc Method for recovery and recycling hydrogen and silicon halides from silicon deposition reactor exhaust
US3161483A (en) * 1960-02-15 1964-12-15 Rex Chainbelt Inc Vibrating fluidized systems
US3585268A (en) * 1968-01-04 1971-06-15 Owens Illinois Inc Metal-lined glass melter
US3640767A (en) * 1969-05-16 1972-02-08 Rca Corp Encapsulated magnetic memory element
US3963838A (en) * 1974-05-24 1976-06-15 Texas Instruments Incorporated Method of operating a quartz fluidized bed reactor for the production of silicon
JPS546892A (en) * 1977-06-20 1979-01-19 Minoru Tanmachi Method and apparatus for regenerating active carbon
US4628838A (en) * 1980-11-19 1986-12-16 Peabody Engineering Corp. Fluidized bed combustion method
US4354987A (en) * 1981-03-31 1982-10-19 Union Carbide Corporation Consolidation of high purity silicon powder
DE3141906A1 (de) * 1981-10-08 1983-04-21 Degussa Ag, 6000 Frankfurt Verfahren und vorrichtung zur durchfuehrung von gas/feststoff-reaktionen, insbesondere zum aktivieren und reaktivieren von aktivkohle
US4440108A (en) * 1982-09-24 1984-04-03 Spire Corporation Ion beam coating apparatus
JPS59115736A (ja) * 1982-12-23 1984-07-04 Toshiba Corp シリコン顆粒供給装置
US4606941A (en) * 1983-07-21 1986-08-19 Jenkin William C Deposition metalizing bulk material by chemical vapor
JPH0622689B2 (ja) * 1986-02-24 1994-03-30 中央化工機株式会社 恒温装置
JPS63270394A (ja) * 1987-04-28 1988-11-08 Showa Denko Kk 流動式ダイヤモンド合成方法及び合成装置
JP2637134B2 (ja) * 1988-01-21 1997-08-06 昭和電工株式会社 気相法ダイヤモンドの合成法
JPH063866A (ja) * 1992-06-19 1994-01-14 Mitsubishi Kasei Corp 静電荷像現像用コートキャリアの製造法
JPH06127924A (ja) * 1992-10-16 1994-05-10 Tonen Chem Corp 多結晶シリコンの製造方法
JP3103227B2 (ja) * 1992-12-09 2000-10-30 株式会社日立製作所 半導体装置の製造方法
US6190625B1 (en) * 1997-08-07 2001-02-20 Qualchem, Inc. Fluidized-bed roasting of molybdenite concentrates
US20010041117A1 (en) * 1997-12-12 2001-11-15 Comardo Mathis P. Catalytic reactor charging system and method for operation thereof
JP4545433B2 (ja) * 2003-12-26 2010-09-15 東京エレクトロン株式会社 成膜方法
FR2872061B1 (fr) * 2004-06-23 2007-04-27 Toulouse Inst Nat Polytech Composition solide divisee formee de grains a depot metallique atomique continu et son procede d'obtention
WO2008119514A1 (de) * 2007-03-29 2008-10-09 Hauzer Techno Coating Bv Verfahren und vorrichtung zur beschichtung von insbesondere gerundeten gegenständen mittels eines pvd-und/oder cvd- oder pacvd-verfahrens in einer vakuumanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136831A (en) * 1976-05-11 1977-11-15 Wacker Chemitronic Producing method of high purity silicon
JPS6414194A (en) * 1987-07-09 1989-01-18 Showa Denko Kk Method and device for synthesizing diamond by fluidized system
JPH01283817A (ja) * 1988-03-25 1989-11-15 Hemlock Semiconductor Corp Cvd法による半導体シリコンの蒸着法
JPH05246786A (ja) * 1991-07-02 1993-09-24 L'air Liquide コア粉体の存在下で化学蒸着法により珪素ベース超微粒子をコア粉に均一に塗布する方法
JP2001524603A (ja) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー ダイヤモンド状カーボンを粒子にコーティングする方法と装置

Also Published As

Publication number Publication date
CA2813884A1 (en) 2012-04-12
US20120085284A1 (en) 2012-04-12
KR20130138232A (ko) 2013-12-18
CN103154314B (zh) 2016-02-17
WO2012047695A3 (en) 2012-08-02
BR112013008352A2 (pt) 2017-03-01
EP2625308A2 (en) 2013-08-14
WO2012047695A2 (en) 2012-04-12
UA112063C2 (uk) 2016-07-25
TW201224194A (en) 2012-06-16
CN103154314A (zh) 2013-06-12
EA025524B1 (ru) 2017-01-30
EA201370086A1 (ru) 2013-07-30
EP2625308A4 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP2013539823A (ja) シリコンの製造に適した機械式流動化反応器システム及び方法
US9365929B2 (en) Mechanically fluidized silicon deposition systems and methods
JP2013539823A5 (ja)
JP2015523199A5 (ja)
US20170372902A1 (en) Crystal production systems and methods
KR101959592B1 (ko) 클로로폴리실란 제조방법 및 유동층 반응 장치
JP2016520034A (ja) 顆粒状ポリシリコンの製造方法
CN103827030A (zh) 通过化学气相沉积生产硅的反应器和方法
US20180051373A1 (en) Mechanically vibrated based reactor systems and methods
CN103449442B (zh) 一种流化床多晶硅颗粒的制备系统及利用该系统制备多晶硅的工艺
WO2011009390A1 (zh) 硅气转化的反应器和方法
WO2017172748A1 (en) Systems and methods for dust suppressed silicon charging in a vacuum
CN109879287B (zh) 一种用于颗粒多晶硅的制备装置及方法
WO2017172745A1 (en) Mechanically vibrated packed bed reactor and related methods
JP4801601B2 (ja) シリコンの製造方法
KR101955287B1 (ko) 폴리실리콘 제조용 수평형 반응 장치
KR101938772B1 (ko) 폴리실리콘 제조용 반응 장치 및 그에 의한 폴리실리콘 제조 방법
JP2001081093A (ja) アルコキシシランの製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170308