TWI772913B - 微粒的原子層沉積裝置 - Google Patents

微粒的原子層沉積裝置 Download PDF

Info

Publication number
TWI772913B
TWI772913B TW109134656A TW109134656A TWI772913B TW I772913 B TWI772913 B TW I772913B TW 109134656 A TW109134656 A TW 109134656A TW 109134656 A TW109134656 A TW 109134656A TW I772913 B TWI772913 B TW I772913B
Authority
TW
Taiwan
Prior art keywords
vacuum chamber
reaction space
particles
space
atomic layer
Prior art date
Application number
TW109134656A
Other languages
English (en)
Other versions
TW202214902A (zh
Inventor
林俊成
張容華
郭大豪
古家誠
Original Assignee
天虹科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天虹科技股份有限公司 filed Critical 天虹科技股份有限公司
Priority to TW109134656A priority Critical patent/TWI772913B/zh
Priority to US17/199,306 priority patent/US11739423B2/en
Publication of TW202214902A publication Critical patent/TW202214902A/zh
Application granted granted Critical
Publication of TWI772913B publication Critical patent/TWI772913B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本發明提供一種微粒的原子層沉積裝置,主要包括一真空腔體、一軸封裝置及一驅動單元,其中驅動單元經由軸封裝置連接並驅動真空腔體轉動。真空腔體包括一反應空間,用以容納複數個微粒,其中反應空間為多邊形柱狀體或圓形波浪狀柱狀體。一抽氣管線及一進氣管線流體連接真空腔體,其中進氣管線用以將前驅物氣體及非反應氣體輸送至反應空間,配合反應空間的特殊形狀,可透過非反應氣體有效翻攪反應空間內的微粒,以利於透過原子層沉積製程在微粒的表面形成厚度均勻的薄膜。

Description

微粒的原子層沉積裝置
本發明有關於一種微粒的原子層沉積裝置,其中真空腔體的反應空間為多邊形柱狀體或圓形波浪狀柱狀體,使得輸送至真空腔體的非反應氣體可有效翻攪微粒,並有利於在微粒的表面形成厚度均勻的薄膜。
奈米顆粒(nanoparticle)一般被定義為在至少一個維度上小於100奈米的顆粒,奈米顆粒與宏觀物質在物理及化學上的特性截然不同。一般而言,宏觀物質的物理特性與本身的尺寸無關,但奈米顆粒則非如此,奈米顆粒在生物醫學、光學和電子等領域都具有潛在的應用。
量子點(Quantum Dot)是半導體的奈米顆粒,目前研究的半導體材料為II-VI材料,如ZnS、CdS、CdSe等,其中又以CdSe最受到矚目。量子點的尺寸通常在2至50奈米之間,量子點被紫外線照射後,量子點中的電子會吸收能量,並從價帶躍遷到傳導帶。被激發的電子從傳導帶回到價帶時,會通過發光釋放出能量。
量子點的能隙與尺寸大小相關,量子點的尺寸越大能隙越小,經照射後會發出波長較長的光,量子點的尺寸越小則能隙越大,經照射後會發出波長較短的光。例如5到6奈米的量子點會發出橘光或紅光,而2到3奈米的量子點則會發出藍光或綠光,當然光色取決於量子點的材料組成。
應用量子點的發光二極體(LED)產生的光可接近連續光譜,同時具有高演色性,並有利於提高發光二極體的發光品質。此外亦可透過改變量子點的尺寸調整發射光的波長,使得量子點成為新一代發光裝置及顯示器的發展重點。
量子點雖然具有上述的優點及特性,但在製造的過程中容易產生團聚現象。此外量子點具有較高的表面活性,並容易與空氣及水氣發生反應,進而縮短量子點的壽命。
具體來說,將量子點製作成為發光二極體的密封膠的過程中,可能會產生團聚效應,而降低了量子點的光學性能。此外,量子點在製作成發光二極體的密封膠後,外界的氧或水氣仍可能會穿過密封膠而接觸量子點的表面,導致量子點氧化,並縮短量子點及發光二極體的效能或使用壽命。此外量子點的表面缺陷及懸空鍵(dangling bonds)亦可能造成非輻射復合(nonradiative recombination)。
目前業界會透過原子層沉積(atomic layer deposition,ALD)在量子點的表面形成一層奈米厚度的薄膜,或者是在量子點的表面形成多層薄膜,以形成量子井結構。
原子層沉積可以在基板上形成均勻厚度的薄膜,並可有效控制薄膜的厚度,理論上亦適用於三維的量子點。量子點靜置在承載盤時,相鄰的量子點之間會存在接觸點,使得原子層沉積的前驅物氣體無法接觸這些接觸點,並導致無法在所有的奈米顆粒的表面皆形成厚度均勻的薄膜。
為了解決上述先前技術的問題,本發明提出一種微粒的原子層沉積裝置,主要透過反應空間的特殊形狀設計,使得輸入反應空間的非反應氣體可充份攪拌微粒,以利於透過原子層沉積製程在各個微粒的表面上形成厚度均勻的薄膜。
本發明的一目的,在於提供一種微粒的原子層沉積裝置,主要包括一驅動單元、一軸封裝置及一真空腔體,其中驅動單元透過軸封裝置連接並驅動真空腔體轉動。真空腔體包括一反應空間,用以容納複數個微粒,其中反應空間為多邊形柱狀體或圓形波浪狀柱狀體。當真空腔體轉動及輸送非反應氣體至反應空間時,反應空間內的微粒可以被充份及均勻的翻攪,以避免微粒發生團聚現象,並有利於在各個微粒的表面形成厚度均勻的薄膜。
本發明的一目的,在於提供一種微粒的原子層沉積裝置,主要將至少一抽氣管線、至少一進氣管線、至少一非反應氣體輸送管線、至少一加熱器及/或至少一溫度感測單元設置在軸封裝置內。抽氣管線用以抽出反應空間內的氣體,進氣管線用以將前驅物氣體及/或非反應氣體輸送至反應空間,以在微粒的表面形成薄膜。在進行原子層沉積時,透過驅動單元帶動真空腔體轉動,並可透過進氣管線或非反應氣體輸送管線將非反應氣體輸送至真空腔體,配合反應空間的特殊形狀,使得微粒被翻攪並擴散到反應空間內的各個區域,而有利在各個微粒的表面形成厚度均勻的薄膜。
本發明的一目的,在於提供一種微粒的原子層沉積裝置,主要包括一驅動單元、一軸封裝置及一真空腔體,其中驅動單元透過軸封裝置連接真空腔體,並驅動真空腔體轉動。真空腔體包括一蓋板及一腔體,當蓋 板覆蓋腔體時會在兩者之間形成多邊形柱狀體或圓形波浪狀柱狀體的反應空間,以利於反應空間內的微粒擴散的各個區域。
為了達到上述的目的,本發明提出一種微粒的原子層沉積裝置,包括:一真空腔體,包括一反應空間,並用以容置複數個微粒,其中反應空間為一多邊形柱狀體;一軸封裝置;一驅動單元,透過軸封裝置連接真空腔體,並經由軸封裝置帶動真空腔體轉動,以攪拌反應空間內的微粒;至少一抽氣管線,流體連接真空腔體的反應空間,並用以抽出反應空間內的一氣體;及至少一進氣管線,流體連接真空腔體的反應空間,並用以將一前驅物或一非反應氣體輸送至反應空間,其中非反應氣體用以吹動反應空間內的微粒。
本發明提出一種微粒的原子層沉積裝置,包括:一真空腔體,包括一反應空間,並用以容置複數個微粒,其中反應空間為一圓形波浪狀柱狀體;一軸封裝置;一驅動單元,透過軸封裝置連接真空腔體,並經由軸封裝置帶動真空腔體轉動;至少一抽氣管線,流體連接真空腔體的反應空間,並用以抽出反應空間內的一氣體;及至少一進氣管線,流體連接真空腔體的反應空間,並用以將一前驅物或一非反應氣體輸送至反應空間,其中非反應氣體用以吹動反應空間內的微粒。
所述的微粒的原子層沉積裝置,其中真空腔體包括一蓋板及一腔體,蓋板的內表面設置一多邊形的凹槽,而腔體則具有一多邊形空間,蓋板的多邊形的凹槽及腔體的多邊形空間形成多邊形柱狀體。
所述的微粒的原子層沉積裝置,其中進氣管線包括至少一非反應氣體輸送管線,流體連接真空腔體的反應空間,並用以將非反應氣體輸送至真空腔體的反應空間內,以吹動反應空間內的微粒。
所述的微粒的原子層沉積裝置,其中軸封裝置包括一外管體及一內管體,外管體具有一容置空間,用以容置內管體,而內管體則具有一連接空間,用以容置抽氣管線、進氣管線及非反應氣體輸送管線。
所述的微粒的原子層沉積裝置,其中部分內管體由外管體的容置空間延伸至真空腔體的反應空間,並形成一凸出管部。
所述的微粒的原子層沉積裝置,其中真空腔體包括一蓋板及一腔體,蓋板的內表面設置一圓形波浪狀的凹槽,而腔體則具有一圓形波浪狀空間,蓋板的圓形波浪狀的凹槽及腔體的圓形波浪狀空間形成圓形波浪狀柱狀體。
10:微粒的原子層沉積裝置
11:真空腔體
111:蓋板
112:內側表面
113:腔體
114:內底表面
115:凹槽
116:內表面
117:凹槽
119:穿孔
12:反應空間
121:微粒
13:軸封裝置
130:凸出管部
131:外管體
132:容置空間
133:內管體
134:連接空間
14:齒輪
15:驅動單元
171:抽氣管線
173:進氣管線
175:非反應氣體輸送管線
177:加熱器
179:溫度感測單元
191:承載板
193:固定架
195:連接軸
[圖1]為本發明微粒的原子層沉積裝置一實施例的立體示意體。
[圖2]為本發明微粒的原子層沉積裝置一實施例的剖面示意圖。
[圖3]為本發明微粒的原子層沉積裝置的部分構造一實施例的剖面示意圖。
[圖4]為本發明微粒的原子層沉積裝置的真空腔體一實施例的立體示意體。
[圖5]為本發明微粒的原子層沉積裝置的真空腔體又一實施例的立體示意體。
[圖6]為本發明微粒的原子層沉積裝置又一實施例的剖面示意圖。
請參閱圖1、圖2、圖3及圖4,分別為本發明微粒的原子層沉積裝置一實施例的立體示意圖、剖面示意圖、部分構造的剖面示意圖及微粒的原子層沉積裝置的真空腔體一實施例的立體示意圖。如圖所示,微粒的原子層沉積裝置10主要包括一真空腔體11、一軸封裝置13及一驅動單元15,其中驅動單元15透過軸封裝置13連接真空腔體11,並帶動真空腔體11轉動。
真空腔體11具有一反應空間12,用以容置複數個微粒121,其中粉末121可以是量子點(Quantum Dot),例如ZnS、CdS、CdSe等II-VI半導體材料,而形成在量子點上的薄膜可以是三氧化二鋁(Al2O3)。在本發明實施例中,如圖4所示,真空腔體11包括一蓋板111及一腔體113,其中真空腔體11內的反應空間12的外觀為一圓形波浪狀柱狀體。
至少一抽氣管線171、至少一進氣管線173及/或至少一非反應氣體輸送管線175流體連接真空腔體11的反應空間12,例如抽氣管線171、進氣管線173、非反應氣體輸送管線175、一加熱器177及/或一溫度感測單元179可設置在軸封裝置13內,如圖3所示。抽氣管線171流體連接真空腔體11的反應空間12,並用以抽出反應空間12內的氣體,使得反應空間12為真空狀態,以進行後續的原子層沉積製程。具體而言抽氣管線171可連接一幫浦,並透過幫浦抽出反應空間12內的氣體。
進氣管線173流體連接真空腔體11的反應空間12,並用以將一前驅物或一非反應氣體輸送至反應空間12。例如進氣管線173可透過閥件組連 接一前驅物儲存槽及一非反應氣體儲存槽,並透過閥件組將前驅物氣體輸送至反應空間12內,使得前驅物氣體沉積在微粒121表面。在實際應用時,進氣管線173可能會將一載送氣體(carrier gas)及前驅物氣體一起輸送到反應空間12內。而後透過閥件組將非反應氣體輸送至反應空間12內,並透過抽氣管線171抽氣,以去除反應空間12內未反應的前驅物氣體。在本發明一實施例中,進氣管線173可連接複數個分枝管線,並分別透過各個分枝管線將不同的前驅物氣體依序輸送至反應空間12內。
此外可增大進氣管線173輸送至反應空間12的非反應氣體的流量,並透過非反應氣體吹動反應空間12內的微粒121,使得微粒121受到非反應氣體的帶動,而擴散到反應空間12的各個區域。
在本發明一實施例中,進氣管線173可包括至少一非反應氣體輸送管線175流體連接真空腔體11的反應空間12,並用以將非反應氣體輸送至反應空間12,例如非反應氣體輸送管線175可透過閥件組連接一氮氣儲存槽,並透過閥件組將氮氣輸送至反應空間12。非反應氣體用以吹動反應空間12內的微粒121,配合驅動單元15驅動真空腔體11轉動,將可有效且均勻的翻攪反應空間12內的微粒121,並在各個微粒121的表面沉積厚度均勻的薄膜。
微粒的原子層沉積裝置10的進氣管線173及非反應氣體輸送管線175都是用以將非反應氣體輸送至反應空間12,其中進氣管線173輸送的非反應氣體的流量較小,並用以去除反應空間12內的前驅物氣體,而非反應氣體輸送管線175輸送的非反應氣體的流量較大,並用以吹動反應空間12內 的微粒121。此外進氣管線173及非反應氣體輸送管線175所傳輸的非反應氣體可以是不同的氣體。
進氣管線173及非反應氣體輸送管線175將非反應氣體輸送至反應空間12的時間點不同,因此在實際應用時可不設置非反應氣體輸送管線175,並調整進氣管線173在不同時間點輸送的非反應氣體的流量。具體而言,在去除反應空間12內的前驅物氣體時,可降低進氣管線173輸送至反應空間12的非反應氣體的流量,而要吹動反應空間12內的微粒121時,則增加進氣管線173輸送至反應空間12的非反應氣體的流量。
在本發明一實施例中,軸封裝置13包括一外管體131及一內管體133,其中外管體131具有一容置空間132,而內管體133則具有一連接空間134,例如外管體131及內管體133可為空心柱狀體。外管體131的容置空間132用以容置內管體133,其中外管體131及內管體133同軸設置。
本發明所述的軸封裝置13可以是一般常見的軸封或磁流體軸封,主要用以隔離真空腔體11的反應空間12與外部的空間,以維持反應空間12的真空。
在本發明一實施例中,內管體133連接反應空間12的一端可設置一過濾單元139,其中抽氣管線171經由過濾單元139流體連接反應空間12,並經由過濾單元139抽出反應空間12內的氣體。過濾單元139主要用以過濾反應空間12內的微粒121,以避免微粒121在抽氣的過程中進入抽氣管線171內,而造成微粒121的損耗。
驅動單元15透過外管體131動力連接真空腔體11,並透過外管體131帶動真空腔體11轉動。此外驅動單元15並未連接內管體133,因此驅動 單元15帶動外管體131及真空腔體11轉動時,內管體133不會隨著轉動,有利於維持內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175抽氣或供氣的穩定。
驅動單元15可帶動外管體131及真空腔體11以同一方向持續轉動,例如順時針或逆時針方向持續轉動。在不同實施例中驅動單元15可帶動外管體131及真空腔體11以順時針的方向旋轉一特定角度後,再以逆時針的方向旋轉特定角度,例如特定角度可為360度。真空腔體11轉動時,會攪拌反應空間12內的微粒121,以利於微粒121與前驅物氣體接觸。
在本發明一實施例中,驅動單元15可為馬達,透過至少一齒輪14連接外管體131,並經由齒輪14帶動外管體131及真空腔體11相對於內管體133轉動。抽氣管線171、進氣管線173、非反應氣體輸送管線175、加熱器177及/或溫度感測單元179可設置在內管體133的連接空間134,如圖2及圖3所示。
加熱器177用以加熱連接空間134及內管體133,並透過加熱器177加熱內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175,以提高抽氣管線171、進氣管線173及/或非反應氣體輸送管線175內的氣體的溫度。例如可提高進氣管線173輸送至反應空間12的非反應氣體及/或前驅物氣體的溫度,並可提高非反應氣體輸送管線175輸送至反應空間12的非反應氣體的溫度。使得非反應氣體及/或前驅物氣體進入反應空間12時,不會造成反應空間12的溫度大幅下降或改變。此外可透過溫度感測單元179量測加熱器177或連接空間134的溫度,以得知加熱器177的工作狀態。當然在真空腔體11的內部、外部或周圍通常會設置另一個加熱裝置, 其中加熱裝置鄰近或接觸真空腔體11,並用以加熱真空腔體11及反應空間12。
本發明的反應空間12是圓形波浪狀柱狀體,由進氣管線173或非反應氣體輸送管線175輸送至反應空間12的非反應氣體,會經由圓形波浪狀柱狀體的反應空間12傳送到各個區域,並揚起反應空間12內的微粒121,使得微粒121均勻的擴散到反應空間12的各個區域。反應空間12內的微粒121可以被均勻加熱,並於微粒121的表面形成厚度均勻的薄膜。
具體而言,可於真空腔體11的內側表面112上形成複數個半圓柱狀構造或弧形柱狀構造,如圖4所示,其中半圓柱狀構造或弧形柱狀構造沿著內側表面112連續設置,使得反應空間12的截面為圓形波浪狀。
真空腔體11的內底表面114及內頂表面可設置對應的凹槽115/117,例如真空腔體11的蓋板111的內表面116可設置圓形波浪狀的凹槽117,而腔體113的內底表面114則設置對應的圓形波浪狀的凹槽115,其中圓形波浪狀的凹槽115/117對應真空腔體11的內側表面112上的圓形波浪狀空間,使得蓋板111的圓形波浪狀的凹槽117及腔體113的圓形波浪狀空間形成圓形波浪柱狀體。凹槽115/117的邊緣可為弧形,以利於引導進入反應空間12的非反應氣體及被非反應氣體帶動的微粒121。
位於內側表面112的半圓柱狀構造或弧形柱狀構造內的微粒121會隨著真空腔體11轉動,直到半圓柱狀構造或弧形柱狀構造內的微粒121轉動到一特定角度後,才會因為重力的作用而逐漸落下。如此可進一步均勻且充分地翻攪反應空間12內的微粒121,使得各個微粒121均勻受熱,並在微粒121的表面形成厚度均勻的薄膜。
在本發明另一實施例中,如圖5所示,真空腔體11內的反應空間12可為多邊形柱狀體,例如六邊形柱狀體。具體而言,真空腔體11的蓋板111的內表面116可設置多邊形的凹槽117,對應真空腔體11的內側表面112上的多邊形空間,其中蓋板111的多邊形的凹槽117及腔體113的多邊形空間形成多邊形柱狀體。在不同實施例中,蓋板111的內表面116上可不設置凹槽。
腔體113的內底表面114上設置一穿孔119,如圖4及圖5所示,並將部分的軸封裝置13設置在穿孔119內,例如可將軸封裝置13的內管體133的一端貼附在穿孔119上,如圖2所示。在不同實施例中,部分的軸封裝置13可穿過穿孔119並位於反應空間12內,例如軸封裝置13的部分內管體133穿過穿孔119,並延伸反應空間12內,以在反應空間內形成一凸出管部130,如圖6所示。
在本發明一實施例中,微粒的原子層沉積裝置10亦可包括一承載板191及至少一固定架193,其中承載板191可為一板體,用以承載驅動單元15、真空腔體11及軸封裝置13。例如承載板191連接驅動單元15,並透過驅動單元15連接軸封裝置13及真空腔體11。此外軸封裝置13及/或真空腔體11亦可透過至少一支撐架連接承載板191,以提高連接的穩定度。
承載板191可透過至少一連接軸195連接固定架193,其中固定架193的數量可為兩個,並分別設置在承載板191的兩側。承載板191可以連接軸195為軸心相對於固定架193轉動,以改變驅動單元15、軸封裝置13及真空腔體11的仰角,以利於在各個微粒121的表面形成厚度均勻的薄膜。
以上所述者,僅為本發明之一較佳實施例而已,並非用來限定本發明實施之範圍,即凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
10:微粒的原子層沉積裝置
11:真空腔體
111:蓋板
112:內側表面
113:腔體
114:內底表面
116:內表面
12:反應空間
121:微粒
13:軸封裝置
131:外管體
132:容置空間
133:內管體
134:連接空間
15:驅動單元
171:抽氣管線
175:非反應氣體輸送管線
177:加熱器
191:承載板
193:固定架
195:連接軸

Claims (10)

  1. 一種微粒的原子層沉積裝置,包括:一真空腔體,包括一反應空間,並用以容置複數個微粒,其中該反應空間為一多邊形柱狀體;一軸封裝置,包括一外管體及一內管體,該外管體具有一容置空間,用以容置該內管體;一驅動單元,透過該軸封裝置的該外管體連接該真空腔體,並經由該軸封裝置帶動該真空腔體轉動,其中該驅動單元帶動該外管體及該真空腔體轉動時,該內管體不會隨著轉動;至少一抽氣管線,位於該內管體內,流體連接該真空腔體的該反應空間,並用以抽出該反應空間內的一氣體;及至少一進氣管線,位於該內管體內,流體連接該真空腔體的該反應空間,並用以將一前驅物或一非反應氣體輸送至該反應空間,其中該非反應氣體用以吹動該反應空間內的該微粒。
  2. 如請求項1所述的微粒的原子層沉積裝置,其中該真空腔體包括一蓋板及一腔體,該蓋板的該內表面設置一多邊形的凹槽,而該腔體則具有一多邊形空間,該蓋板的該多邊形的凹槽及該腔體的該多邊形空間形成該多邊形柱狀體。
  3. 如請求項1所述的微粒的原子層沉積裝置,其中該進氣管線包括至少一非反應氣體輸送管線,流體連接該真空腔體的該反應空間,並用以將該非反應氣體輸送至該真空腔體的該反應空間內,以吹動該反應空間內的該微粒。
  4. 如請求項3所述的微粒的原子層沉積裝置,其中該內管體具有一連接空間,用以容置該抽氣管線、該進氣管線及該非反應氣體輸送管線。
  5. 如請求項4所述的微粒的原子層沉積裝置,其中部分該內管體由該外管體的該容置空間延伸至該真空腔體的該反應空間,並形成一凸出管部。
  6. 一種微粒的原子層沉積裝置,包括:一真空腔體,包括一反應空間,並用以容置複數個微粒,其中該反應空間為一圓形波浪狀柱狀體;一軸封裝置,包括一外管體及一內管體,該外管體具有一容置空間,用以容置該內管體;一驅動單元,透過該軸封裝置的該外管體連接該真空腔體,並經由該軸封裝置帶動該真空腔體轉動,其中該驅動單元帶動該外管體及該真空腔體轉動時,該內管體不會隨著轉動;至少一抽氣管線,位於該內管體內,流體連接該真空腔體的該反應空間,並用以抽出該反應空間內的一氣體;及至少一進氣管線,位於該內管體內,流體連接該真空腔體的該反應空間,並用以將一前驅物或一非反應氣體輸送至該反應空間,其中該非反應氣體用以吹動該反應空間內的該微粒。
  7. 如請求項6所述的微粒的原子層沉積裝置,其中該真空腔體包括一蓋板及一腔體,該蓋板的該內表面設置一圓形波浪狀的凹槽,而該腔體則具有一圓形波浪狀空間,該蓋板的該圓形波浪狀的凹槽及該腔體的該圓形波浪狀空間形成該圓形波浪狀柱狀體。
  8. 如請求項6所述的微粒的原子層沉積裝置,其中該進氣管線包括至少一非反應氣體輸送管線,流體連接該真空腔體的該反應空間,並用以將該非反應氣體輸送至該真空腔體的該反應空間內,以吹動該反應空間內的該微粒。
  9. 如請求項8所述的微粒的原子層沉積裝置,其中該內管體具有一連接空間,用以容置該抽氣管線、該進氣管線及該非反應氣體輸送管線。
  10. 如請求項9所述的微粒的原子層沉積裝置,其中部分該內管體由該外管體的該容置空間延伸至該真空腔體的該反應空間,並形成一凸出管部。
TW109134656A 2020-10-06 2020-10-06 微粒的原子層沉積裝置 TWI772913B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109134656A TWI772913B (zh) 2020-10-06 2020-10-06 微粒的原子層沉積裝置
US17/199,306 US11739423B2 (en) 2020-10-06 2021-03-11 Atomic layer deposition apparatus for coating on fine powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109134656A TWI772913B (zh) 2020-10-06 2020-10-06 微粒的原子層沉積裝置

Publications (2)

Publication Number Publication Date
TW202214902A TW202214902A (zh) 2022-04-16
TWI772913B true TWI772913B (zh) 2022-08-01

Family

ID=80931310

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109134656A TWI772913B (zh) 2020-10-06 2020-10-06 微粒的原子層沉積裝置

Country Status (2)

Country Link
US (1) US11739423B2 (zh)
TW (1) TWI772913B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750836B (zh) * 2020-10-06 2021-12-21 天虹科技股份有限公司 可拆式粉末原子層沉積裝置
TWI729945B (zh) * 2020-10-06 2021-06-01 天虹科技股份有限公司 在粉末上形成薄膜的原子層沉積裝置
TWI759935B (zh) * 2020-11-02 2022-04-01 天虹科技股份有限公司 可吹動粉末的原子層沉積裝置
US20220341036A1 (en) * 2021-04-26 2022-10-27 Sky Tech Inc. Powder-atomic-layer-deposition device with knocker
US11952662B2 (en) * 2021-10-18 2024-04-09 Sky Tech Inc. Powder atomic layer deposition equipment with quick release function
US11891695B2 (en) * 2022-03-16 2024-02-06 Sky Tech Inc. Vibrating deposition device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059073A1 (en) * 2011-09-03 2013-03-07 Ying-Bing JIANG Apparatus and Method for making atomic layer deposition on fine powders
TW202033811A (zh) * 2018-07-26 2020-09-16 日商東京威力科創股份有限公司 具有 (200) 晶體紋理的鈦氮化物膜之形成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199801A (ja) * 1987-02-12 1988-08-18 Chisso Corp 強磁性金属粉末の安定化処理装置
WO2009098784A1 (ja) * 2008-02-06 2009-08-13 Youtec Co., Ltd. プラズマcvd装置、プラズマcvd方法及び攪拌装置
EP2625308A4 (en) * 2010-10-07 2016-10-19 Rokstar Technologies Llc MECHANICALLY FLUIDIZED FUEL REACTOR SYSTEMS AND PROCESSES SUITABLE FOR SILICON PRODUCTION
WO2013171360A1 (en) * 2012-05-14 2013-11-21 Picosun Oy Powder particle coating using atomic layer deposition cartridge
WO2015132443A1 (en) * 2014-03-03 2015-09-11 Picosun Oy Protecting an interior of a gas container with an ald coating
SG11201606030UA (en) * 2014-03-03 2016-08-30 Picosun Oy Protecting an interior of a hollow body with an ald coating
US9896763B2 (en) * 2016-05-13 2018-02-20 GM Global Technology Operations LLC Particle reactor for atomic layer deposition (ALD) and chemical vapor deposition (CVD) processes
TWI729945B (zh) * 2020-10-06 2021-06-01 天虹科技股份有限公司 在粉末上形成薄膜的原子層沉積裝置
TWI750836B (zh) * 2020-10-06 2021-12-21 天虹科技股份有限公司 可拆式粉末原子層沉積裝置
TWI759935B (zh) * 2020-11-02 2022-04-01 天虹科技股份有限公司 可吹動粉末的原子層沉積裝置
TWI740732B (zh) * 2020-11-24 2021-09-21 天虹科技股份有限公司 具有特殊蓋板設計的粉末原子層沉積裝置
US20220341036A1 (en) * 2021-04-26 2022-10-27 Sky Tech Inc. Powder-atomic-layer-deposition device with knocker
US11952662B2 (en) * 2021-10-18 2024-04-09 Sky Tech Inc. Powder atomic layer deposition equipment with quick release function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059073A1 (en) * 2011-09-03 2013-03-07 Ying-Bing JIANG Apparatus and Method for making atomic layer deposition on fine powders
TW202033811A (zh) * 2018-07-26 2020-09-16 日商東京威力科創股份有限公司 具有 (200) 晶體紋理的鈦氮化物膜之形成方法

Also Published As

Publication number Publication date
US11739423B2 (en) 2023-08-29
US20220106685A1 (en) 2022-04-07
TW202214902A (zh) 2022-04-16

Similar Documents

Publication Publication Date Title
TWI772913B (zh) 微粒的原子層沉積裝置
TWI740732B (zh) 具有特殊蓋板設計的粉末原子層沉積裝置
TWI759935B (zh) 可吹動粉末的原子層沉積裝置
TWI729945B (zh) 在粉末上形成薄膜的原子層沉積裝置
TWI750836B (zh) 可拆式粉末原子層沉積裝置
CN112626495B (zh) 可吹动粉末的原子层沉积装置
TWM610395U (zh) 防止粉末沾黏的粉末原子層沉積裝置
CN214736075U (zh) 防止粉末沾粘的粉末原子层沉积装置
TWM610491U (zh) 可吹動粉末的原子層沉積裝置
CN112695296B (zh) 微粒的原子层沉积装置
TWM614453U (zh) 可拆式粉末原子層沉積裝置
CN214088659U (zh) 微粒的原子层沉积装置
TWI729944B (zh) 粉末的原子層沉積裝置
TWM609508U (zh) 微粒的原子層沉積裝置
CN214088661U (zh) 可吹动粉末的原子层沉积装置
CN215887223U (zh) 用以吹动粉末的原子层沉积装置
TWI773543B (zh) 可減少粉末沾黏的粉末原子層沉積機台
CN112663025B (zh) 粉末的原子层沉积装置
CN214193446U (zh) 粉末的原子层沉积装置
TWI750962B (zh) 防止粉末沾黏的粉末原子層沉積裝置
TWI771124B (zh) 具有下吹管的原子層沉積設備
CN214383794U (zh) 具有特殊盖板设计的粉末原子层沉积装置
TWM611314U (zh) 粉末的原子層沉積裝置
CN114752919B (zh) 防止粉末沾粘的粉末原子层沉积装置
TWM619359U (zh) 具有特殊蓋板設計的粉末原子層沉積裝置