JP2013533101A - マイクロ流体システム及びネットワーク - Google Patents

マイクロ流体システム及びネットワーク Download PDF

Info

Publication number
JP2013533101A
JP2013533101A JP2013511154A JP2013511154A JP2013533101A JP 2013533101 A JP2013533101 A JP 2013533101A JP 2013511154 A JP2013511154 A JP 2013511154A JP 2013511154 A JP2013511154 A JP 2013511154A JP 2013533101 A JP2013533101 A JP 2013533101A
Authority
JP
Japan
Prior art keywords
channel
fluid
microfluidic
network
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013511154A
Other languages
English (en)
Other versions
JP5756852B2 (ja
Inventor
コーニロヴィッチ,パヴェル
コヴヤディノフ,アレキサンダー
マーケル,デイビッド,ピー
トーニエイネン,エリック,ディー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2013533101A publication Critical patent/JP2013533101A/ja
Application granted granted Critical
Publication of JP5756852B2 publication Critical patent/JP5756852B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/022Flow-dividers; Priority valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17526Electrical contacts to the cartridge
    • B41J2/1753Details of contacts on the cartridge, e.g. protection of contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/24Pumping by heat expansion of pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/032Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters
    • F15B11/0325Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters the fluid-pressure converter increasing the working force after an approach stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/082Servomotor systems incorporating electrically operated control means with different modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0026Valves using channel deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/088Channel loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/082Active control of flow resistance, e.g. flow controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14467Multiple feed channels per ink chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/12Embodiments of or processes related to ink-jet heads with ink circulating through the whole print head

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Micromachines (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Reciprocating Pumps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

1実施形態では、マイクロ流体システムは、それぞれの端部で容器に結合された流体チャネルを備える。流体アクチュエーターが、該チャネル内に非対称に配置されて、該チャネルの長い側と短い側を画定し、及び、該チャネルの各端部に向かって伝搬する波を生成して、一方向の正味の流体流れを生成する。コントローラは、流体アクチュエーターを選択的に作動させて、該チャネルを通る該一方向の正味の流体流れを制御する。

Description

マイクロフルイディクス(microfluidics:微小流体工学ともいう)は、ますます重要な技術となってきており、工学、物理学、化学、マイクロテクノロジー、及びバイオテクノロジーを含む種々の分野に適用されている。マイクロフルイディクスには、種々のマイクロ流体システム、並びに、マイクロフルイディクスチップ(以下、マイクロ流体チップという)などのデバイスにおける、少量の流体の研究及びそのような少量の流体の操作、制御、及び使用法の研究が含まれる。たとえば、マイクロフルイディクスバイオチップ(「ラボオンチップ(lab-on-chip)」と呼ばれる)が、酵素及びDNAの分析、生化学的毒素及び病原菌の検出、病気の診断などの目的で分析作業を統合するために、分子生物学の分野で使用されている。
多くのマイクロ流体システムを有効に利用できるかは、流体をマイクロ流体デバイスに適切に導入して、該デバイスを通る流体の流れを制御する能力に部分的に依存する。一般に、マイクロ流体デバイスへの流体の導入及び該流体の流れをマイクロメートルのスケールで制御乃至管理できない場合には、環境的及び医学的な分析の有用性が特に重要である研究所以外でのマイクロ流体デバイスの用途は制限される。マイクロ流体デバイスに流体を導入して制御する従来の方法は、マイクロメートルのスケールではない、外部装置及び種々のタイプのポンプを使用している。これらの従来のソリューションは、たとえば、それらの大きなサイズ、多用性の欠如、複雑さに関連する短所を有しており、それらの短所は全て、そのようなマイクロ流体デバイスを実装するマイクロ流体システムの機能を制限する可能性がある。
以下、添付の図面を参照して本発明の例示的な実施形態を説明する。
1実施形態にしたがう、マイクロ流体デバイス、ネットワーク及び慣性ポンプ(イナーシャルポンプともいう)を組み込むのに適したマイクロ流体システムを示す。 いくつかの実施形態にしたがう、一体化された(すなわち、組み込み式の)慣性ポンプを有する、閉じた、一方向、一次元の流体ネットワークのいくつかの例を示す。 いくつかの実施形態にしたがう、一体化された(すなわち、組み込み式の)慣性ポンプを有する、閉じた、二方向、一次元の流体ネットワークのいくつかの例を示す。 1実施形態にしたがう、一体化された(すなわち、組み込み式の)慣性ポンプを有する、開いた、二方向、一次元の流体ネットワークの1例を示す。 1実施形態にしたがう、単一の流体ポンプアクチュエーターの選択的作動を利用するそれぞれ異なるポンプ作動方式によって生成された流体流れパターンを示す、閉じた二次元の流体ネットワークの1例を示す。 1実施形態にしたがう、2つの流体ポンプアクチュエーターの選択的作動を利用するそれぞれ異なるポンプ作動方式によって生成された流体流れパターンを示す、閉じた二次元の流体ネットワークの1例を示す。 1実施形態にしたがう、3つの流体ポンプアクチュエーターの選択的作動を利用するそれぞれ異なるポンプ作動方式によって生成された流体流れパターンを示す、閉じた二次元の流体ネットワークの1例を示す。 1実施形態にしたがう、開いた、二方向、三次元の流体ネットワークの1例のトップダウンビュー(上から見下ろしたときの図)及び対応する断面図である。 いくつかの実施形態にしたがう、流体ポンプアクチュエーターと能動要素の両方を組み込んでいる流体ネットワークのいくつかの例を示す。 1実施形態にしたがう、一体化された(すなわち、組み込み式の)流体ポンプアクチュエーターを有する流体ネットワークチャネルの1例の側面図であり、該アクチュエーターはいくつかの異なる動作段階にある。 1実施形態にしたがう、図10の動作段階における作動している流体アクチュエーターを示す。 いくつかの実施形態にしたがう、図10の動作段階における作動している流体アクチュエーターを示す図であり、正味の流体流れ方向指示矢印も示されている。 いくつかの実施形態にしたがう、図10の動作段階における作動している流体アクチュエーターを示す図であり、正味の流体流れ方向指示矢印も示されている。 いくつかの実施形態にしたがう、図10の動作段階における作動している流体アクチュエーターを示す図であり、正味の流体流れ方向指示矢印も示されている。 いくつかの実施形態にしたがう、例示的な変位パルス波形を示す。 いくつかの実施形態にしたがう、例示的な変位パルス波形を示す。 いくつかの実施形態にしたがう、例示的な変位パルス波形を示す。 1実施形態にしたがう、一体化された(すなわち、組み込み式の)流体ポンプアクチュエーターを有する流体ネットワークチャネルの1例の側面図であり、該アクチュエーターはいくつかの異なる動作段階にある。
課題とその解決策(ソリューション)の概要
上記したように、マイクロ流体デバイスにおいて流体を制御乃至管理する従来の方法は、マイクロメートルのスケールではない外部装置及びポンプ機構を使用する。これらのソリューションには、マイクロ流体システムの応用範囲を制限しうるいくつかの不都合がある。たとえば、マイクロ流体デバイス内に流体を注入して流体の流れを生成するために、外部の注射器及び空気ポンプが使用されることがある。しかしながら、外部の注射器及び空気ポンプは大きくて、取り扱うのも設定するのも難しく、接続の信頼性も低い。これらのタイプのポンプは、マイクロ流体デバイス/チップが適合することができる外部の流体接続の数によって、その多用性の点でも制限を受ける。
別のタイプのポンプは、一組の細い毛管の流体充填の原理に基づいて動作するキャピラリーポンプ(毛管ポンプ)である。この場合、該ポンプは単一パス機能しか提供しない。該ポンプは完全に受動的であるので、流体の流れは、該構造中に「固定化されており」、再設定することができない。電気泳動ポンプを使用することもできるが、特殊なコーティング、複雑な三次元幾何学構造、及び高い動作電圧が必要である。これらの全ての特性は、このタイプのポンプの適用範囲を制限する。他のタイプのポンプとして蠕動及び回転ポンプがある。しかしながら、それらのポンプは、可動部を有しており、小型化が難しい。
本開示の実施形態は、マイクロ流体システム及びデバイスにおける流体管理(流体制御ともいう)の従来のソリューションを改善するものであり、かかる改善は、一般的にいうと、流体アクチュエーターを有する一体化された(すなわち、組み込み式の)慣性ポンプを有する複雑で多用性のあるマイクロ流体ネットワークを可能にする改良されたマイクロ流体デバイスによって達成される。開示しているマイクロ流体ネットワークは、一次元及び/または二次元及び/または三次元のトポロジーを有することができ、したがって、また、かなり複雑なものとなりうる。ネットワーク内の流体チャネルのエッジの各々は、1つの流体アクチュエーターまたは2つ以上の流体アクチュエーターを含むことができ、または、流体アクチュエーターを含まない場合もある。非対称な位置でマイクロ流体ネットワークチャネルに組み込まれている流体アクチュエーターは、該チャネルを単一方向に通る流体流れ(流体流れとは、流体の流れのこと)と二方向に通る流体流れの両方を生成することができる。ネットワーク内の複数のマイクロ流体チャネルの端部に近い側に非対称に配置されている複数の流体アクチュエーターを選択的に作動させることによって、該ネットワーク内の任意の方向及び/または一定方向に(流れるように)制御された流体流れパターンを生成することが可能になる。さらに、流体アクチュエーターの機械的な動作または動きを時間的に制御することによって、流体ネットワークチャネルを通る流体流れの方向制御が可能になる。したがって、いくつかの実施形態では、単一の流体アクチュエーターの前進ストロークと後退ストローク(すなわち、圧縮性流体変位と伸張性流体変位)を正確に制御することによって、ネットワークチャネル内の二方向の流体流れを提供することができ、及び、該ネットワーク内の任意の方向及び/または一定方向に制御された流体流れパターンを生成することができる。
流体アクチュエーターを、熱気泡抵抗(thermal bubble resistor)アクチュエーター、圧電膜(piezo membrane)アクチュエーター、静電(MEMS)膜アクチュエーター、機械駆動式/インパクト駆動式膜アクチュエーター、ボイスコイルアクチュエーター、磁歪駆動アクチュエーターなどの種々のアクチュエーターメカニズムによって駆動することができる。流体アクチュエーターを、従来の微細加工処理を用いてマイクロ流体システムに組み込むことができる。これによって、任意の圧力及び流れ場を有する複雑なマイクロ流体デバイスが可能になる。マイクロ流体デバイスは、抵抗加熱器(抵抗ヒーター)、ペルチェクーラー(Peltier cooler)、物理センサー、化学センサー、生物学的センサー、光源、及び、それらの組み合わせなどの種々の組み込まれた(すなわち一体化された)能動要素を含むこともできる。マイクロ流体デバイスは、外部の流体容器(たとえば、流体を貯蔵可能なタンク)に接続される場合もあれば接続されない場合もある。開示されているマイクロ流体デバイス及びネットワークの利点には、一般的に、マイクロ流体システムを動作させるのに必要な装置乃至機材が少なくなることが含まれるが、これによって、機動性が向上し、かつ、適用可能な応用範囲が広くなる。
1実施形態では、マイクロ流体システムは、容器の両方の端部に結合された流体チャネル(以下、単にチャネルともいう)を含む。流体アクチュエーターは、該チャネル内に非対称に配置されて、慣性特性が違いに異なる、該チャネルの長い側と短い側を形成する。流体アクチュエーターは、該チャネルの両端部に向かって伝搬する波を生成し、及び、該チャネルを通る一方向の正味の流体流れを生成する。コントローラは、流体アクチュエーターを選択的に作動させて、該チャネルを通る一方向の正味の流体流れを制御することができる。1実施例では、流体アクチュエーターは、チャネルの第1の端部の近く(すなわち、他方の端部である第2の端部よりも第1の端部に近い位置)に配置された第1の流体アクチュエーターであり、第2の流体アクチュエーターは、チャネルの第2の端部の近く(すなわち、第1の端部よりも第2の端部に近い位置)において該チャネル内に非対称に配置されている。コントローラは、第1の流体アクチュエーターを作動させて、第1の端部から第2の端部へと第1の方向に該チャネルを通る正味の流体流れを生じさせることができ、及び、第2の流体アクチュエーターを作動させて、第2の端部から第1の端部へと第2の方向に該チャネルを通る正味の流体流れを生じさせることができる。
別の実施形態では、マイクロ流体システムは、第1及び第2の端部を有するマイクロ流体チャネルのネットワークを含む。該チャネルの端部は、端部−チャネル交差部で互いにさまざまなやり方で結合される。少なくとも1つのチャネルがポンプチャネルであり、該ポンプチャネルは、自身の両側の端部間に非対称に配置されている流体アクチュエーターによって区別された短い側と長い側を有している。流体アクチュエーターは、ポンプチャネルの両端部に向かって伝搬する波を生成し、この波によって、該ポンプチャネルを一方向に通る正味の流体流れが生じる。1実施例では、該チャネル内に組み込まれた(すなわち、該チャネルに一体化されている)第2の流体アクチュエーターが、ポンプチャネルの第2の端部の近く(すなわち、第1の端部よりも第2の端部に近い位置)に非対称に配置されており、コントローラが、第1及び第2の流体アクチュエーターを選択的に作動させて、ネットワークを二方向に通る流体流れを生じさせることができる。別の実施例では、追加の流体アクチュエーターが、複数のマイクロ流体チャネルの第1及び第2の端部の近く(第1の端部の近くとは、第2の端部よりも第1の端部の近くにあることを、第2の端部の近くとは、第1の端部よりも第2の端部の近くにあることを意味する)に非対称に配置されており、コントローラが、該流体アクチュエーターを選択的に作動させて、該ネットワークを通る方向が制御された(たとえば、一定方向に流れるように制御された)流体流れパターンが生じるようにすることができる。
ある別の実施形態では、マイクロ流体ネットワークは、第1の平面(プレーン)内にマイクロ流体チャネルを有し、これによって、該第1の平面内のネットワークを通る二次元の流体流れを容易にしている。該第1の平面内のマイクロ流体チャネルは、該第1の平面内の別のマイクロ流体チャネルをまたいで、該別のマイクロ流体チャネルと交差しないように第2の平面中へと延在し、これによって、第1及び第2の平面内のネットワークを通る三次元の流体流れを容易にしている。能動要素が少なくとも1つのマイクロ流体チャネルに組み込まれている。(複数の)流体アクチュエーターが、少なくとも1つのマイクロ流体チャネル内に非対称に組み込まれており、コントローラが、該流体アクチュエーターを選択的に作動させて、該ネットワーク内を一定方向に流れるように制御された流体流れパターンが生じるようにすることができる。
ある別の実施形態では、マイクロ流体ネットワーク内に正味の流体流れを生成する方法は、ある持続時間中、時間的に非対称な圧縮性流体変位と伸張性流体変位を生成することを含む。これらの変位は、マイクロ流体チャネル内に非対称に組み込まれている流体アクチュエーターを用いて生成される。
ある別の実施形態では、マイクロ流体システムは、マイクロ流体ネットワークを含む。流体アクチュエーターは、該ネットワークのあるチャネル内に非対称な位置に組み込まれて、該チャネル内に持続時間が互いに異なる圧縮性流体変位と伸張性流体変位が生成されるようにする。コントローラは、該流体アクチュエーターの圧縮性流体変位及び伸張性流体変位の持続時間を制御することによって、該チャネルを通る流体流れの方向を調整する。
ある別の実施形態では、マイクロ流体ネットワーク内の流体流れを制御する方法は、マイクロ流体チャネル内に非対称に配置されている流体アクチュエーターを用いてマイクロ流体チャネル内に非対称な流体変位を生成することを含む。
例示的な実施形態
図1は、本開示の1実施形態にしたがう、(本明細書に開示されている)マイクロ流体デバイス、ネットワーク、及び慣性ポンプを組み込むのに適したマイクロ流体システム100を示す。マイクロ流体システム100を、たとえば、分析システム、マイクロエレクトロニクス冷却システム、ポリメラーゼ連鎖反応(PCR)システムなどの核酸増幅システム、または、同じ体積の流体の使用及び/または操作及び/または制御を伴う任意のシステムとすることができる。マイクロ流体システム100は、広範なマイクロ流体応用を可能にするために、典型的には、マイクロ流体チップ(たとえば「ラボオンチップ」)などのマイクロ流体デバイス102を実装している。マイクロ流体デバイス102は、一般的に、流体をネットワーク中を循環させるための慣性ポンプを具備するチャネルを有する1以上の流体ネットワーク103を備える。一般に、マイクロ流体デバイス102の構造及びコンポーネント(構成要素)を、電鋳法、レーザーアブレーション、異方性エッチング、スパッタリング、ドライエッチング、写真平板(フォトリソグラフィー)、キャスティング、成形(モールディング)、スタンピング、機械加工、スピンコーティング、積層法などの従来の集積回路微細加工技術を用いて製造することができる。マイクロ流体システム100は、流体をマイクロ流体デバイス102に供給し及び/または循環させるための外部の流体容器(たとえば液体タンク)104を含むこともできる。マイクロ流体システム100はまた、電子制御装置(電子コントローラ)106、並びに、マイクロ流体デバイス102、該電子制御装置106、及び、システム100の一部とすることができる他の電気的構成要素(電気コンポーネント)に電力を供給するための電源108を備える。
電子制御装置(以下、コントローラという)106は、典型的には、プロセッサ、ファームウェア、ソフトウェア、揮発性及び不揮発性のメモリー要素を含む1以上のメモリー要素、マイクロ流体デバイス102及び流体容器104と通信乃至連絡し及びそれらを制御する他の電子機器乃至電子部品を備える。したがって、コントローラ106は、プログラム可能であって、典型的には、メモリー(記憶装置)に格納されて、マイクロ流体デバイス102を制御するために実行可能な1以上のソフトウェアモジュールを有している。かかるモジュールは、たとえば、図1に示すように、流体アクチュエーター選択、タイミング及び頻度モジュール110、及び、流体アクチュエーター非対称作動モジュール112を含むことができる。
コントローラ106はまた、コンピュータなどのホストシステムからデータ114を受け取って、該データ114をメモリーに一時的に保存することができる。典型的には、データ114は、電子式伝送経路、赤外線伝送経路、光学式伝送経路、または、他の情報伝送経路に沿ってマイクロ流体システム100に送られる。データ114は、たとえば、マイクロ流体デバイス102内の流体流れを制御するための実行可能命令及び/またはパラメータであって、コントローラ106に格納されているソフトウェア/ファームウェアモジュールにおいて単独で、または、他の実行可能命令と共に使用される。プログラム可能なコントローラ106上で実行可能な種々のソフトウェア及びデータ114は、マイクロ流体デバイス102のネットワークチャネル内に組み込まれている流体アクチュエーターの選択的作動を可能にすると共に、そのような作動による圧縮性変位及び伸張性変位のタイミング、頻度、及び持続時間の正確な制御を可能にする。流体アクチュエーターの制御を容易に変更可能(すなわち、プログラム可能)であることによって、所与のマイクロ流体デバイス102において多くの流体流れパターンをオンザフライで(すなわち動作中に)利用することが可能になる。
図2は、本開示のいくつかの実施形態にしたがう、マイクロ流体デバイス102内に実施するのに適した、一体化された(すなわち、組み込み式の)慣性ポンプ200を有する、閉じた、一方向及び一次元(すなわち線形)の流体ネットワーク103のいくつかの例(A、B、C、D)を示す。本明細書において、「閉じた」ネットワークとは、外部流体容器に接続されないネットワークを意味し、「一方向」ネットワークとは、一つの方向だけに流れる流体流れを生成するネットワークを意味し、一次元ネットワークは、線形ネットワークを意味する。慣性ポンプ200は、一般的に、ポンプチャネル206の一方の端部の近く(すなわち、他方の端部よりも該一方の端部の近い位置)に非対称に配置されている一体化された(すなわち、組み込み式の)流体アクチュエーター202を具備する該ポンプチャネル206を備える。後述するいくつかの実施形態では、ネットワークチャネル204自体がポンプチャネル206として機能することに留意されたい。図2に示す例示的な慣性ポンプ200の各々は、ポンプチャネル206を介して流体をネットワークチャネル204間(チャネル1と2の間)で移動させるための流体ポンプアクチュエーター202を有している。この例では、各ネットワークチャネル204は、ポンプチャネル206の各端部における流体容器として機能する。ネットワーク103(A、B、C、D)は、一方の端部から他方の端部に流体が流れる一次元(すなわち線形)型であるが、ネットワークチャネル204(チャネル1及び2)の端部に示されている破線によって、いくつかの実施形態では、ネットワークチャネル204は、追加の次元(すなわち、二次元及び三次元)を有するより大きなネットワーク103の一部としてより遠くに延びることができることを示すことが意図されており、その場合には、ネットワークチャネル204は、そのようなより大きなネットワーク103の一部として他のネットワークチャネルと交差する。そのようなより大きなネットワークの例については後述する。
図2のネットワークA、B、C、Dに示す4つの慣性ポンプ200の各々は、ポンプチャネル206の(他方の端部よりも)一方の端部に近い、ポンプチャネル206内の非対称な位置に配置されている単一の一体化された(すなわち組み込み式の)流体ポンプアクチュエーター202を備えている。図2中の説明欄において示されているように、ネットワークA及びCのポンプ200中の流体アクチュエーター202は休止しており、すなわち、作動していない。したがって、ネットワークチャネル1と2(204)の間でポンプチャネル206を通る正味の流体流れは存在しない。しかしながら、ネットワークB及びDのポンプ200中の流体アクチュエーター202は作動しているので、ネットワークチャネル1と2(204)の間でポンプチャネル206を通る正味の流体流れが生じる。
流体ダイオード特性(すなわち、流体の一方方向への流れ)は、ネットワークB及びDのように、流体アクチュエーター202がポンプチャネル206内に非対称な位置に配置された状態で、慣性ポンプ200を作動させることによって実現される。慣性ポンプチャネル206の幅が、該チャネル206が接続しているネットワークチャネル204(すなわちネットワークチャネル1及び2)の幅よりも小さい場合には、慣性ポンプ200の駆動力(または推進力)は、主に、ポンプチャネル206の特性(すなわち、ポンプチャネルの幅及びポンプチャネル内の流体アクチュエーター202の非対称性)によって決まる。ポンプチャネル206内の流体アクチュエーター202の正確な位置は、多少異なりうるが、いずれの場合でも、ポンプチャネル206の長さ(全長)に関して非対称である。したがって、流体アクチュエーター202は、ポンプチャネル206の中央点(で分割したときの2つの側のうち)の一方の側に配置される。所与の流体アクチュエーター202に関して、その非対称配置によって、ポンプチャネル206の短い側と長い側が画定される。したがって、ネットワークBの慣性ポンプ200内の作動している流体アクチュエーター202の非対称位置、すなわち、アクチュエーター202がより広いネットワークチャネル2(204)の方に近い位置にあることは、ネットワークチャネル2からネットワークチャネル1に向かう(すなわち、右から左に向かう)正味の流体流れを引き起こす、ポンプチャネル206内の流体ダイオード特性を基礎付けるものである。同様に、ネットワークDのポンプ200中の作動している流体アクチュエーター200がポンプチャネル206の短い側に位置していることによって、ネットワークチャネル1からネットワークチャネル2に向かう(すなわち、左から右に向かう)正味の流体流れが引き起こされる。ポンプチャネル206内の流体アクチュエーター202の非対称位置によって、ポンプチャネル206内の流体ダイオード特性(正味の流体流れ)を駆動する慣性メカニズムが生じる。流体アクチュエーター202は、ポンプチャネル206に沿って互いに逆の2つの方向に流体を押しやる、ポンプチャネル206内を伝搬する波を生成する。流体アクチュエーター202がポンプチャネル206内に非対称に配置されている場合には、ポンプチャネル206を通る正味の流体流れが存在する。流体のより重い部分または流体がより多く存在する部分(これは、典型的には、ポンプチャネル206の長い方の側にある)は、流体アクチュエーターのポンプ前進ストロークの終わりにおいてより大きな機械的慣性を有する。したがって、流体のこの部分は、該チャネルの短い方の側にある流体(液体)よりもゆっくりと進行方向が逆転する。該チャネルの短い側にある流体は、流体アクチュエーターのポンプ後退ストローク中に力学的運動量を獲得するのにより長い時間がかかる。したがって、該後退ストロークの終わりにおいて、該チャネルの短い方の側にある流体は、該チャネルの長い方の側にある流体よりもより大きな力学的運動量を有する。この結果、典型的には、正味の流れは、ポンプチャネル206の短い方の側から長い方の側に向かう流れとなる。正味の流れが、2つの流体要素(すなわち、チャネルの短い側と長い側)の異なる慣性特性の結果として生じることから、このタイプのマイクロポンプは、慣性ポンプと呼ばれる。
図3は、本開示のいくつかの実施形態にしたがう、たとえば図2を参照して説明した、マイクロ流体デバイス102内に実装するのに適した一体化された(すなわち組み込み式の)慣性ポンプ200を有する、閉じた、二方向、一次元(すなわち線形)の流体ネットワーク103のいくつかの例(A及びB)を示す。図3の例示的な慣性ポンプ200は、1つの流体ポンプアクチュエーター202に代えて、流体をネットワークチャネル204中を移動させ、及び、流体を該チャネル204間で移動させるための2つの流体ポンプアクチュエーター202を有する。これら2つの流体ポンプアクチュエーター202は、各ポンプチャネル206の互いに反対側にある2つのそれぞれの側において他方の側の端部よりも一方の側の端部に近いところに非対称に配置されている。ポンプチャネル206のそれぞれの側に流体アクチュエーター202を有することによって、どの流体アクチュエーター202が作動しているかによって決まる(いずれか一方の)方向にチャネル206を通る正味の流体流れを生成することが可能になる。したがって、図3のネットワークAの慣性ポンプ200では、作動している流体アクチュエーター202は、(ネットワークチャネル1よりも)ネットワークチャネル2の方に近い、ポンプチャネル206の右側の方に非対称に配置されており、生じる正味の流体流れは、ポンプチャネル206の右側(短い側)から左側(長い側)に向かうものであり、これによって、流体はネットワークチャネル2からネットワークチャネル1に向かって移動する。同様に、ネットワークBの慣性ポンプ200では、作動している流体アクチュエーター202は、(ネットワークチャネル2よりも)ネットワークチャネル1の方に近い、ポンプチャネル206の左側の方に非対称に配置されており、生じる正味の流体流れは、ポンプチャネル206の左側(ここでも短い側)から右側(長い側)に向かうものであり、これによって、流体はネットワークチャネル1からネットワークチャネル2に向かって移動する。
上述したように、コントローラ106は、種々のやり方でマイクロ流体デバイス102を制御するようにプログラム可能である。1例として、それぞれが単一の一体化された流体ポンプアクチュエーター202を有する図2の慣性ポンプ200に関しては、コントローラ106中のモジュール110(すなわち、流体アクチュエーター選択、タイミング及び頻度モジュール110)は、ネットワーク103中の任意の数のポンプチャネル206内の任意の数のアクチュエーター202を選択的に作動させることができる。したがって、ネットワークA、B、C、及びDは、一次元であって、その慣性ポンプ200は流体アクチュエーター202を1つだけしか有していないが、別の実施形態では、それらのネットワークをより大きなネットワークの一部とすることができ、この場合、他の相互接続しているネットワークチャネル204における他のアクチュエーター202を選択的に作動させることによって、より大きなネットワーク103を通る流体流れの向きを制御可能である。モジュール110はまた、流体アクチュエーター202の作動のタイミング及び頻度を制御することによって、正味の流体流れが生じるタイミング並びに流体流れの流速乃至流量の制御を可能にする。各ポンプチャネル206の互いに逆側にあるそれぞれの側において他方の端部よりも一方の端部に近いところに非対称に配置された2つの流体アクチュエーター202を有する図3の慣性ポンプ200に関しては、コントローラ106にあるモジュール110は、単一のポンプチャネル206内の2つのアクチュエーターの選択的作動を、より大きなネットワーク103中の任意の数の他のポンプチャネル内の任意の数のアクチュエーターの選択的作動に加えて可能にする。このように流体アクチュエーターを選択的に作動させる能力は、拡張されたネットワーク103全体における流体流れの方向だけではなく、個々のネットワークチャネル204内の流体流れの方向を制御することを可能にする。
図4は、本開示の1実施形態にしたがう、マイクロ流体デバイス102内に実装するのに適した一体化された(もしくは組み込み式の)慣性ポンプ200を有する、開いた、二方向、一次元の流体ネットワーク103の1例を示す。本明細書では、「開いた」ネットワークは、容器400などの少なくとも1つの外部流体容器に接続するネットワークである。ネットワークチャネル204に接続するのと同じようにして、流体容器400に接続している場合において、慣性ポンプ200の幅が、該ポンプ200が接続している流体容器400の幅よりも小さい場合には、慣性ポンプ200の駆動力は、主に、ポンプチャネル206の特性(すなわち、ポンプチャネルの幅及びポンプチャネル内の流体アクチュエーター202の非対称性)によって決まる。したがって、この例では、ポンプチャネル206の一方の端部は外部流体容器400に接続し、ポンプチャネル206の他方の端部はネットワークチャネル204(チャネル1)に接続しているが、該容器400とネットワークチャネル204のいずれも、慣性ポンプ200の駆動力に関しては流体容器として機能する。かかる「開いた」ネットワーク103の他の実施例では、ポンプチャネル206の両端部を、外部流体容器400に容易に接続することができる。流体アクチュエーター202を、より(幅の)広い流体容器400に近い、ポンプチャネル206の短い側に配置すること、すなわち、ネットワーク103のポンプ200内に非対称に配置することは、流体容器400からネットワークチャネル1に向かう(すなわち、右から左に向かう)正味の流体流れを引き起こす、ポンプチャネル206内の流体ダイオード特性を基礎付けるものである。1つの容器400を、2つ以上のポンプチャネル206によってネットワーク103に接続でき、または、該1つの容器400を、任意の慣性ポンプを用いてもしくは任意の慣性ポンプを用いることなく、1つ以上のネットワークチャネル204に接続できることに留意されたい。一般に、容器は、種々の流体を格納し及びそれらの流体にアクセスできるようにすることによって、分析対称の生体サンプル、廃棄物収集器、及び、DNAビルディングブロック(DNA building block)の容器などの種々の流体応用を容易にすることができる。
上記したように、マイクロ流体デバイス102内のネットワーク103は、一次元、二次元、または、三次元のトポロジーを有することができる。たとえば、上述した図2及び図3のネットワークは、線形すなわち一次元のネットワーク103として示されている。しかしながら、これらのネットワーク内のネットワークチャネル204が、より大きなネットワーク103の一部として他のネットワークチャネルに接続される可能性があることも説明されている。図5〜図7は、二次元ネットワークトポロジーを有する、そのようなより大きなネットワーク103のいくつかの例を示している。
図5は、本開示の1実施形態にしたがう、閉じた二次元の流体ネットワーク103内の単一の流体ポンプアクチュエーター202の選択的作動を用いるそれぞれ異なるポンプ作動方式によって生成された流体流れパターン(A、B、C、D)を示す、該ネットワーク103の1例を示している。二次元ネットワーク103は、4つの流体ポンプアクチュエーター202と、5つの頂点(バーテックス)すなわちチャネル交差部(1、2、3、4、5で参照されている)によって分離された8つのネットワークチャネル(またはエッジ)を有する。この実施形態では、慣性ポンプは、ネットワークチャネル204に組み込まれた流体ポンプアクチュエーター202を備える。したがって、上述のネットワークに関して説明した個別のポンプチャネルは図示されていない。ネットワークチャネル204は、それ自体、流体ポンプアクチュエーター202に対するポンプチャネルとして機能する。比較的幅が広いチャネル交差部(頂点1、2、3、4、5)において接続されているネットワークチャネル204の幅が狭くなっているために、慣性ポンプの駆動力を有効に発生させることができるが、これは、ネットワークチャネル204の狭くなっている幅内に流体アクチュエーター202が非対称に配置されていることに基づいている。
流体流れパターンAを示している図5のネットワーク103を参照すると、作動している流体アクチュエーター202(作動している流体アクチュエーターを特定している図5中の説明を参照)は、正味の流れ方向指示矢印によって示されているように、頂点3から頂点5の方向に向かう正味の流体流れを生じさせる。流体の流れは、頂点5で分かれて、頂点5から頂点1、2、及び4へと延びているネットワークチャネルを通ってそれぞれ異なる方向に進む。その後、流体は、正味の流れ方向指示矢印によって示されているように、頂点1、2、及び4から頂点3に戻る方向に流れる。したがって、流れパターンAに示すように、頂点3の近くにある単一流体ポンプアクチュエーター202を選択的に作動させることによって、ネットワーク全体にわたる特定の方向の流体流れが生じることになる。
これとは対照的に、流れパターンB、C、及びDにおいて示されている他の個々の流体ポンプアクチュエーター202の選択的作動によって生じる、ネットワーク103中の流体の流れ方向は全く異なる。たとえば、流体流れパターンBを示している図5のネットワーク103を参照すると、作動している流体アクチュエーター202は、正味の流れ方向指示矢印によって示されているように、頂点1から頂点5に向かう方向に正味の流体流れを生じさせる。流体の流れは、頂点5で分かれて、頂点5から頂点2、3、及び4へと延びているネットワークチャネルを通ってそれぞれ異なる方向に進む。その後、流体は、正味の流れ方向指示矢印によって示されているように、頂点2、3、及び4から頂点1に戻る方向に流れる。同様に、流れパターンC及びDでも異なる方向の流体流れが生じる。したがって、マイクロ流体システム100内のプログラム可能なコントローラ106は、マイクロ流体デバイス102の特定のネットワーク103内の単一の流体ポンプアクチュエーター202を選択的に作動させることによって、該ネットワーク103内の流体流れパターンを容易に調整することができる。
図6は、本開示の1実施形態にしたがう、閉じた二次元の流体ネットワーク103内の2つの流体ポンプアクチュエーター202の同時選択作動を用いるそれぞれ異なるポンプ作動方式によって生成された流体流れパターン(E、F、G、H、I、J)を示す、該ネットワーク103の1例を示している。二次元ネットワーク103は、図5に示すものと同じであって、4つの流体ポンプアクチュエーター202と、5つの頂点(バーテックス)すなわちチャネル交差部(1、2、3、4、5で参照されている)によって分離された8つのネットワークチャネル(またはエッジ)を有する。流体流れパターン(E、F、G、H、I、J)において示されているように、2つの流体ポンプアクチュエーター202を同時に選択的に作動させることによって、ネットワーク103を通る(それぞれのパターン間で互いに異なる)特定の方向の流体流れが生じることになる。
たとえば流体流れパターンEを示している図6のネットワーク103を参照すると、作動している流体アクチュエーター202は、正味の流れ方向指示矢印によって示されているように、頂点2及び3から頂点5に向かう方向に正味の流体流れを生じさせる。流体の流れは、頂点5で分かれて、頂点5から頂点1及び4へと延びているネットワークチャネルを通ってそれぞれ異なる方向に進む。その後、流体は、正味の流れ方向指示矢印によって示されているように、頂点1及び4から頂点2及び3に戻る方向に流れる。頂点1と4の間、及び、頂点2と3の間のネットワークチャネルには正味の流体流れは存在しないことに留意されたい。したがって、流体流れパターンEにおいて示されているように、頂点2及び3の近くにそれぞれある2つの流体ポンプアクチュエーター202を同時に選択的に作動させることによって、ネットワーク全体わたる特定の方向の流体流れが生じることになる。図6に示されている他の流体流れパターンの各々についても、各パターン中の正味の流れ方向指示矢印によって示されているように、それぞれ異なる方向の流体流れが生じる。したがって、マイクロ流体システム100内のプログラム可能なコントローラ106は、マイクロ流体デバイス102の特定のネットワーク103内の2つの流体ポンプアクチュエーター202を同時に選択的に作動させることによって、該ネットワーク103内の流体流れパターンを容易に調整することができる。
図7は、本開示の1実施形態にしたがう、閉じた二次元の流体ネットワーク103内の3つの流体ポンプアクチュエーター202の同時選択作動を用いるそれぞれ異なるポンプ作動方式によって生成された流体流れパターン(K、L、M、N)を示す、該ネットワーク103の1例を示している。二次元ネットワーク103は、図5に示すものと同じであって、4つの流体ポンプアクチュエーター202と、5つの頂点(バーテックス)すなわちチャネル交差部(1、2、3、4、5で参照されている)によって分離された8つのネットワークチャネル(またはエッジ)を有する。流体流れパターン(K、L、M、N)において示されているように、3つの流体ポンプアクチュエーター202を同時に選択的に作動させることによって、ネットワーク103を通る(それぞれのパターン間で互いに異なる)特定の方向の流体流れが生じることになる。
たとえば流体流れパターンKを示している図7のネットワーク103を参照すると、作動している流体アクチュエーター202は、正味の流れ方向指示矢印によって示されているように、頂点1、2、及び3から頂点5を通って頂点4に向かう方向に正味の流体流れを生じさせる。流体の流れは、頂点4で分かれて、頂点4から頂点1及び3へと延びているネットワークチャネルを通ってそれぞれ異なる方向に進む。正味の流れ方向指示矢印によって示されているように、頂点1及び3に到達した流体は再び分かれて、頂点5及び頂点2へとそれぞれ異なる方向に進む。したがって、流体流れパターンKにおいて示されているように、4つの流体ポンプアクチュエーター202のうち、頂点1、2、及び3の近くにそれぞれある3つの流体ポンプアクチュエーター202を同時に選択的に作動させることによって、ネットワーク103全体わたる特定の方向の流体流れが生じることになる。図7に示されている他の流体流れパターンの各々についても、各パターン中の正味の流れ方向指示矢印によって示されているように、それぞれ異なる方向の流体流れが生じる。プログラム可能なコントローラ106によって流体アクチュエーター202を選択的に作動させることによって、マイクロ流体デバイス102のネットワークにおいて、種々の流体流れパターンを提供することができる。
上述したように、マイクロ流体デバイス102内のネットワーク103は、一次元、二次元、または、三次元のトポロジーを有することができる。図8は、本開示の1実施形態にしたがう、開いた、二方向、三次元の流体ネットワーク103の1例のトップダウンビュー(上から見下ろしたときの図)及び対応する断面図である。この開いた流体ネットワーク103は、流体容器400に接続されており、別の流体チャネルを(またいで)横断している流体チャネルを用いて三次元における流体流れを容易にする。かかるネットワークを、たとえば、ウェットフィルム(wet film)スピンコーティング及び/またはドライフィルムラミネーション(dry film lamination)などの従来の微細加工技術やSU−8多層(multilayer SU8)技術を用いて製造することができる。SU8は、半導体デバイス製造用のフォトレジストマスクとして一般的に使用されている透明な写真画像を形成可能なポリマー材料である。図8に示すように、たとえば、流体容器400及びネットワークチャネル1、2、及び3を、第1のSU8層中に作製することができる。次に、第2のSU8層802を用いて、流体チャネルを他のチャネルの上に通すことによって、望ましくないチャネル交差がネットワーク内に生じないようにすることができる。かかる三次元トポロジーは、一体化された(または組み込み式の)慣性ポンプをマイクロ流体デバイス内に有する複雑で多用性のあるマイクロ流体ネットワークを可能にする。
マイクロ流体デバイス102の有用性は、分析、検出、加熱などに使用される種々の能動要素及び受動要素を組み込むことによって大幅に向上する。そのような組み込まれた要素の例には、抵抗加熱器、ペルチェクーラー(Peltier cooler)、物理センサー、化学センサー、生物学的センサー、光源、及び、それらの組み合わせがある。図9には、流体ポンプアクチュエーター202と能動要素900の両方を組み込んでいるいくつかの流体ネットワーク103の例が示されている。本明細書で説明されている流体ネットワークの各々は、該ネットワーク内に種々の流体流れパターンを提供する流体ポンプアクチュエーターに加えて、そのような組み込み式の要素900を組み込むのに適している。
特定の流体ネットワークを図示し説明したが、本明細書で考慮されているマイクロ流体デバイス102及びシステムは、一次元、二次元、三次元における種々のレイアウト(構成及び/または配置)を有し、一体化された(または組み込み式の)流体ポンプアクチュエーターと他の能動及び受動要素の多様な構成を含む多くの他の流体ネットワークを実施することができる。
前述したように、流体ポンプアクチュエーター202のポンピング効果は、流体チャネル内(たとえば、ポンプチャネル206内)のアクチュエーターの非対称配置に依存し、この場合、該流体チャネルの幅は、流体を送り込む側の容器または(ネットワークチャネル204などの)他のチャネルの幅よりも狭い(この場合も、ポンプチャネル自体を、たとえば、(幅や口径が)より広い流体容器間で流体を送り出すネットワークチャネルとすることができる)。流体チャネルの中央点(で分割したときの2つの側のうち)の一方の側に流体アクチュエーター202を非対称に配置することによって、該チャネルの短い側と長い側が画定され、該チャネルの該短い側(この短い側に流体アクチュエーターが配置されている)から該長い側に向かう方向に進む一方向の流体流れを実現することができる。流体チャネル内に対称に(すなわち、該チャネルの中心に)配置されている流体ポンプアクチュエーターが引き起こす正味の流れはゼロであろう。したがって、流体ネットワークチャネル内の流体アクチュエーター202の非対称配置は、該チャネルを通る正味の流体流れを生じさせることができるポンピング効果を達成するために必要な1つの条件(第1の条件)である。
しかしながら、流体チャネル内の流体アクチュエーター202の非対称配置に加えて、流体アクチュエーターのポンピング効果の別の要素としてその動作態様がある。具体的には、ポンピング効果及びチャネルを通る正味の流体流れを達成するために、流体アクチュエーターは、該チャネル内の流体の変位(または移動)に対して非対称に動作することも必要である。動作中、流体チャネル中の流体アクチュエーターは、(ある可撓性膜やピストンストロークなどでもって)最初に第1の方向に湾曲乃至たわみを生じ、次に、他方の方向に湾曲乃至たわんで、該チャネル内で流体変位を引き起こす。上述したように、流体アクチュエーター202は、チャネルに沿って互いに逆の2つの方向に流体を押しやる、流体チャネル中を伝搬する波を生成する。流体アクチュエーターが、流体を両方向に同じ速度で移動させるように湾曲乃至たわみ動作をする場合には、該流体アクチュエーターによって該チャネル内に生成される正味の流体流れはゼロであろう。正味の流体流れを生成するためには、流体アクチュエーターの湾曲乃至たわみ、すなわち流体変位が対称にならないように該流体アクチュエーターの動作を設定乃至構成する必要がある。したがって、湾曲乃至たわみストローク(たわみ行程)のタイミングに関する流体アクチュエーターすなわち流体変位の非対称動作は、チャネルを通る正味の流体流れを生成することができるポンピング効果を達成するために必要な第2の条件である。
図10は、本開示の1実施形態にしたがう、いくつかの異なる動作段階にある一体化された(すなわち、組み込み式の)流体ポンプアクチュエーター1002を有する流体ネットワークチャネル1000の1例の側面図である。流体容器1004は、チャネル1000のそれぞれの端部に接続されている。一体化されている流体アクチュエーター1002は、流体容器1004に対する入力の近くのチャネルの短い側に非対称に配置されて、該チャネルを通る正味の流体流れを生じることができるポンピング効果を生成するのに必要な第1の条件を満たしている。ポンピング効果を生成するために必要な第2の条件は、上述したように、流体アクチュエーター1002の非対称動作である。本明細書では、流体アクチュエーター1002は、流体チャネル内を上下に湾曲乃至たわむ(この上下の湾曲乃至たわみをピストンストロークという場合もある)ことによって、具体的に制御することができる流体変位を生じさせる圧電膜であるものとして一般的に記述されている。しかしながら、流体アクチュエーターを実施するために、たとえば、蒸気泡を発生するための抵抗加熱器、静電(MEMS)膜、機械駆動式/インパクト駆動式膜、ボイスコイル、磁歪駆動などの他の種々のデバイスを使用することができる。
図10に示す動作段階Aでは、流体アクチュエーター1002は、静止位置にあって休止しているので、チャネル1000を通る正味の流体流れは存在しない。動作段階Bでは、流体アクチュエーター1002は作動しており、膜は流体チャネル100の内部に向かって上方に湾曲乃至たわむ。この上方への湾曲乃至たわみ、すなわち、前進ストロークによって、該膜が流体を外側に押し出すので、チャネル1000内に流体の圧縮性変位が生じる。動作段階Cでは、流体アクチュエーター1002は作動しており、膜は、元の静止位置に戻るために、下方に湾曲乃至たわみ始める。膜のこの下方への湾曲乃至たわみ、すなわち、後退ストロークによって、該膜が流体を下方に引き寄せるので、チャネル1000内に流体の伸張性変位が生じる。一回の上方への湾曲乃至たわみと一回の下方への湾曲乃至たわみの組が1つのたわみサイクルである。繰り返し行われるたわみサイクルにおいて、上方への湾曲乃至たわみ(すなわち圧縮性変位)と下方への湾曲乃至たわみとの間に時間的非対称性がある場合には、チャネル1000中に正味の流体流れが生じる。時間的非対称性及び正味の流体流れの方向については図11〜図14を参照して後述するので、図10では、動作段階BとCにおいて、互いに逆向きの正味の流れ方向指示矢印間に疑問符?が挿入されている。これらの疑問符は、圧縮性変位と伸張性変位の間の時間的非対称性が指定されておらず、したがって、流れの方向は(流れがもしあったとしても)まだ不明であることを示すことが意図されている。
図11は、本開示の1実施形態にしたがう、流体アクチュエーター1002によって生成された圧縮性変位と伸張性変位との間の時間的非対称性を説明するのに役立つ図であり、図10の動作段階BとCにおける動作している流体アクチュエーター1002をタイムマーカー「t1」と「t2」と共に示している。時間t1は、流体アクチュエーター膜が上方に湾曲乃至たわんで、圧縮性流体変位を生成するのに要する時間である。時間t2は、流体アクチュエーター膜が下方に、すなわち、元の位置に戻る方向に湾曲乃至たわんで、伸張性流体変位を生成するのに要する時間である。圧縮性変位(上方への膜の湾曲乃至たわみ)の持続時間t1が伸張性変位(下方への膜の湾曲乃至たわみ)の持続時間t2よりも長いかまたは短い(すなわち、両者が同じではない)場合には、流体アクチュエーター1002の非対称動作が行われる。繰り返して行われるたわみサイクルにおけるそのような流体アクチュエーターの非対称動作によって、チャネル1000内に正味の流体流れが生成される。しかしながら、圧縮性変位の持続時間t1と伸張性変位の持続時間t2が等しい、すなわち、対称である場合には、チャネル1000内に流体アクチュエーター1002が非対称に配置されているにもかかわらず、チャネル1000を通る正味の流体流れはほとんど存在しないかまたは全く存在しないであろう。
図12、図13、及び図14は、本開示のいくつかの実施形態にしたがう、図10の動作段階B及びCにおける動作している流体アクチュエーター1002を示しており、(流体流れがある場合に)流体がチャネル1000をどの方向に流れるかを示す正味の流体流れ指示矢印を含んでいる。正味の流体流れの方向は、アクチュエーターの圧縮性変位の持続時間t1と伸張性変位の持続時間t2に依存する。図15、図16、及び図17は、図12、図13、及び図14の変位の持続時間t1とt2にそれぞれ対応する持続時間を有する例示的な変位パルス波形を示している。種々の流体ポンプアクチュエーターについて、圧縮性変位の持続時間t1と伸張性変位の持続時間t2を、たとえば、マイクロ流体システム100内のモジュール112(流体アクチュエーター非対称作動モジュール112)などからの命令を実行するコントローラ106によって正確に制御することができる。
図12を参照すると、圧縮性変位の持続時間t1は、伸張性変位の持続間t2よりも短いので、チャネル1000の短い側(すなわち、アクチュエーターが配置されている側)から該チャネルの長い側に向かう方向の正味の流体流れが存在する。圧縮性変位の持続時間t1と伸張性変位の持続時間t2の違いは、圧縮性変位の持続時間t1及び伸張性変位の持続時間t2を有する流体アクチュエーターによって生成することができる対応する例示的な変位パルス波形を示している図15から理解することができる。図15の波形は、約1ピコリットル(pl)が、およそ0.5マイクロ秒の圧縮性変位の持続時間t1、及び、およそ9.5マイクロ秒の伸張性変位の持続時間t2で変位する変位パルス/サイクルを示している。流体変位の量及び流体変位の持続時間の値は例示に過ぎず、いかなる点においても限定することを意図したものではない。
図13を参照すると、圧縮性変位の持続時間t1は、伸張性変位の持続間t2よりも長いので、チャネル1000の長い側から該チャネルの短い側に向かう方向の正味の流体流れが存在する。圧縮性変位の持続時間t1と伸張性変位の持続時間t2の違いは、圧縮性変位の持続時間t1及び伸張性変位の持続時間t2を有する流体アクチュエーターによって生成することができる対応する例示的な変位パルス波形を示している図16から理解することができる。図16の波形は、約1ピコリットル(pl)が、およそ9.5マイクロ秒の圧縮性変位の持続時間t1、及び、およそ0.5マイクロ秒の伸張性変位の持続時間t2で変位する変位パルス/サイクルを示している。
図14では、圧縮性変位の持続時間t1は、伸張性変位の持続間t2と等しいので、チャネル1000を通る正味の流体流れはほとんど存在しないかまたは全く存在しない。圧縮性変位の持続時間t1と伸張性変位の持続時間t2が等しい様子は、圧縮性変位の持続時間t1及び伸張性変位の持続時間t2を有する流体アクチュエーターによって生成することができる対応する例示的な変位パルス波形を示している図17から理解することができる。図17の波形は、約1ピコリットル(pl)が、およそ5.0マイクロ秒の圧縮性変位の持続時間t1、及び、およそ5.0マイクロ秒の伸張性変位の持続時間t2で変位する変位パルス/サイクルを示している。
図14では、チャネル1000内に流体アクチュエーター1002が非対称に配置されている(ポンピング効果を達成するための1つの条件を満たしている)が、流体アクチュエーターの動作が非対称ではない(ポンピング効果を達成するための第2の条件を満たしていない)ために、依然として、チャネル1000を通る正味の流体流れはほとんどまたは全く存在しないことに留意されたい。同様に、流体アクチュエーターの位置が対称で(すなわち、流体アクチュエーターがチャネルの中心に配置されており)、かつ、該アクチュエーターの動作が非対称である場合には、ポンピング効果の2つの条件が共に満たされているわけではないので、依然として、チャネルを通る正味の流体流れはほとんどまたは全く存在しないであろう。
上記の例及び図10〜図17の説明から、流体アクチュエーターの非対称位置というポンピング効果(を達成するための)条件と流体アクチュエーターの非対称動作というポンピング効果(を達成するための)条件との間の相互作用に留意することが重要である。すなわち、流体アクチュエーターの非対称位置と非対称動作が同じ方向に作用する場合には、流体ポンプアクチュエーターは、高効率のポンピング効果を示すであろう。しかしながら、流体アクチュエーターの非対称位置と非対称動作が互いに対して不利に作用する場合には、流体アクチュエーターの非対称動作は、該流体アクチュエーターの非対称位置によって引き起こされる正味の流れベクトルを反転させ、正味の流れは、チャネル1000の長い側から該チャネルの短い側に向かうものとなる。
さらに、上記の例及び図10〜図17の説明から、図2〜図8のマイクロ流体ネットワーク103に関して説明した流体ポンプアクチュエーター202は、圧縮性変位の持続時間が伸張性変位の持続時間よりも短いアクチュエーターデバイスであることが想定されていることをより良く理解することができる。そのようなアクチュエーターの例は、流体を加熱して、超臨界蒸気の爆発によって変位を生じさせる抵抗加熱素子である。そのような事象は、膨張期(すなわち、圧縮性変位)が崩壊期(収縮期、すなわち伸張性変位)より速い、爆発に関する非対称性を有する。この事象の非対称性は、たとえば、圧電膜アクチュエーターによって生じる変位の非対称性と同じやり方では制御できない。
図18は、本開示の1実施形態にしたがう、いくつかの異なる動作段階にある一体化された(すなわち、組み込み式の)流体ポンプアクチュエーター1002を有する流体ネットワークチャネル1000の1例の側面図である。この実施形態は、チャネル1000内の圧縮性変位及び伸張性変位を生成するために、図10に関して説明した実施形態とは異なるやり方で流体アクチュエーター膜の湾曲乃至たわみが作用するものとして示されている点を除いて、図10に関して説明した実施形態に類似する。図18に示す動作段階Aでは、流体アクチュエーター1002は、静止位置にあって、休止しているので、チャネル1000を通る正味の流体流れはない。動作段階Bでは、流体アクチュエーター1002は作動しており、該膜は、流体チャネル1000の外側へと下方に湾曲乃至たわむ。該膜のこの下方への湾曲乃至たわみによって、該膜が流体を下方に引き寄せるので、チャネル1000内に流体の伸張性変位が引き起こされる。動作段階Cでは、流体アクチュエーター1002は作動しており、該膜は、元の静止位置に戻るために上方に湾曲乃至たわみ始める。この上方への湾曲乃至たわみによって、該膜が流体をチャネル1000中へと上方に押し上げるので、チャネル1000内に流体の圧縮性変位が引き起こされる。圧縮性変位と伸張性変位の間に時間的非対称性が存在する場合には、チャネル1000を通る正味の流体流れが生成される。正味の流体流れの方向は、上述したのと同様に、圧縮性変位の持続時間と伸張性変位の持続時間に依存する。

Claims (15)

  1. マイクロ流体システムであって、
    それぞれの端部で流体容器に結合された流体チャネルと、
    前記チャネルの長い側と短い側を画定するために前記チャネル内に非対称に配置された流体アクチュエーターであって、前記チャネルのそれぞれの端部に向かって伝搬する波を生成し、及び、一方向の正味の流体流れを生成する流体アクチュエーターと、
    前記チャネルを通る一方向の正味の流体流れを制御するために前記流体アクチュエーターを選択的に作動させるためのコントローラ
    を備え、
    前記長い側と前記短い側の慣性特性は異なる、マイクロ流体システム。
  2. 前記一方向の正味の流体流れは、前記チャネルの前記短い側から前記長い側に向かって進む、請求項1のマイクロ流体システム。
  3. 前記流体アクチュエーターが、前記チャネルの第1の端部の近くに配置された第1の流体アクチュエーターを備える、請求項1のマイクロ流体システムであって、
    前記チャネル内において、該チャネルの第2の端部の近くに非対称に配置された第2の流体アクチュエーター
    をさらに備え、
    前記コントローラによって前記第1の流体アクチュエーターを作動させることによって、前記第1の端部から前記第2の端部に向かう第1の方向に前記チャネルを通る正味の流体流れを生じさせ、前記コントローラによって前記第2の流体アクチュエーターを作動させることによって、前記第2の端部から前記第1の端部に向かう第2の方向に前記チャネルを通る正味の流体流れを生じさせる、請求項1のマイクロ流体システム。
  4. 前記コントローラ上で実行可能な、前記チャネルを通る流体流れの方向、速度及びタイミングを制御するための流れモジュールをさらに備える、請求項3のマイクロ流体システム。
  5. 前記チャネル内に組み込まれた能動要素をさらに備える、請求項1のマイクロ流体システム。
  6. 前記能動要素は、抵抗加熱器、ペルチェクーラー、物理センサー、化学センサー、生物学的センサー、光源、及び、これらの組み合わせからなるグループから選択される、請求項5のマイクロ流体システム。
  7. 前記容器は、2つの異なる容器であり、前記流体チャネルのそれぞれの端部は、それら2つの容器の1つにそれぞれ結合される、請求項1のマイクロ流体システム。
  8. 第1の端部と第2の端部を有するマイクロ流体チャネルのネットワークを備えるマイクロ流体システムであって、前記第1の端部と前記第2の端部は、端部−チャネル交差部において種々のやり方で互いに結合されており、
    少なくとも1つのチャネルが短い側と長い側を有するポンプチャネルであって、該短い側と該長い側は、該ポンプチャネルの互いに反対側にある端部の間に非対称に配置された流体アクチュエーターによって区別され、
    前記流体アクチュエーターは、前記ポンプチャネルの前記互いに反対側にある端部に向かって伝搬する波を生成し、及び、前記ポンプチャネルを通る一方向の正味の流体流れを生成することからなる、マイクロ流体システム。
  9. 前記流体アクチュエーターは、前記ポンプチャネルの第1の端部の近くに配置された第1の流体アクチュエーターである、請求項8のマイクロ流体システムであって、
    前記ポンプチャネルの第2の端部の近くに非対称に配置された第2の流体アクチュエーターと、
    前記ネットワークを通る二方向の流体流れを生成するために、前記第1及び第2の流体アクチュエーターを選択的に作動させるコントローラ
    をさらに備える、請求項8のマイクロ流体システム。
  10. 複数のマイクロ流体チャネルの第1の端部と第2の端部の近くに非対称に配置された追加の流体アクチュエーターと、
    前記ネットワーク内に方向が制御された流体流れパターンを引き起こすために前記流体アクチュエーターを選択的に作動させるコントローラ
    をさらに備える、請求項8のマイクロ流体システム。
  11. 前記ネットワーク内に方向が制御された種々の流体流れパターンを引き起こすために、前記コントローラにおいて実行可能な流れモジュールをさらに備える、請求項10のマイクロ流体システム。
  12. それぞれの第1の端部と第2の端部の間で互いに交差して、中間−チャネル交差部を形成するマイクロ流体チャネルをさらに備える、請求項8のマイクロ流体システム。
  13. 中間−チャネル交差部が生じないようにするために他の流体チャネルをまたぐマイクロ流体チャネルをさらに備える、請求項12のマイクロ流体システム。
  14. 前記マイクロ流体チャネルは、前記交差部よりも幅が狭い、請求項8のマイクロ流体システム。
  15. マイクロ流体ネットワークであって、
    第1の平面内にあって、該第1の平面内において前記ネットワークを通る二次元の流体流れを容易にするマイクロ流体チャネルと、
    前記第1の平面内にあって、該第1の平面内の他のマイクロ流体チャネルをまたいで、該他のマイクロ流体チャネルと交差しないように第2の平面内に延びて、前記第1及び第2の平面内において前記ネットワークを通る三次元の流体流れを容易にするマイクロ流体チャネルと、
    マイクロ流体チャネル内に組み込まれた能動要素と、
    少なくとも1つのマイクロ流体チャネル内に非対称に組み込まれた流体アクチュエーターと、
    前記ネットワーク内に方向が制御された流体流れパターンを引き起こすために、前記流体アクチュエーターを選択的に作動させるコントローラ
    を備えるマイクロ流体ネットワーク。
JP2013511154A 2010-05-21 2011-01-13 マイクロ流体システム及びネットワーク Expired - Fee Related JP5756852B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
USPCT/US2010/035697 2010-05-21
PCT/US2010/035697 WO2011146069A1 (en) 2010-05-21 2010-05-21 Fluid ejection device including recirculation system
PCT/US2011/021168 WO2011146145A1 (en) 2010-05-21 2011-01-13 Microfluidic systems and networks

Publications (2)

Publication Number Publication Date
JP2013533101A true JP2013533101A (ja) 2013-08-22
JP5756852B2 JP5756852B2 (ja) 2015-07-29

Family

ID=44991957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013511154A Expired - Fee Related JP5756852B2 (ja) 2010-05-21 2011-01-13 マイクロ流体システム及びネットワーク

Country Status (7)

Country Link
US (6) US9090084B2 (ja)
EP (1) EP2572110B1 (ja)
JP (1) JP5756852B2 (ja)
KR (2) KR101776357B1 (ja)
CN (1) CN103003577B (ja)
BR (1) BR112012029581B1 (ja)
WO (2) WO2011146069A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506725A (ja) * 2014-01-29 2017-03-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. マイクロ流体バルブ
WO2017110714A1 (en) * 2015-12-21 2017-06-29 Funai Electric Co., Ltd. Micro-fluidic device
JP2018503829A (ja) * 2015-01-30 2018-02-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. マイクロ流体制御

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540355B2 (en) * 2010-07-11 2013-09-24 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
US9090084B2 (en) 2010-05-21 2015-07-28 Hewlett-Packard Development Company, L.P. Fluid ejection device including recirculation system
US9963739B2 (en) 2010-05-21 2018-05-08 Hewlett-Packard Development Company, L.P. Polymerase chain reaction systems
US8657429B2 (en) * 2010-10-26 2014-02-25 Eastman Kodak Company Dispensing liquid using overlapping outlet/return dispenser
CN103502013B (zh) * 2011-04-29 2016-11-09 惠普发展公司,有限责任合伙企业 流体除气的系统和方法
CN104169093A (zh) 2012-03-05 2014-11-26 富士胶卷迪马蒂克斯股份有限公司 打印头的加强
WO2013162606A1 (en) * 2012-04-27 2013-10-31 Hewlett-Packard Development Company, L.P. Fluid ejection device with two-layer tophat
WO2014007814A1 (en) 2012-07-03 2014-01-09 Hewlett-Packard Development Company, L.P. Fluid ejection apparatus
CN104470724B (zh) * 2012-07-24 2016-04-27 惠普发展公司,有限责任合伙企业 具有颗粒容忍薄膜延伸部的流体喷射装置
US10286366B2 (en) 2012-09-24 2019-05-14 Hewlett-Packard Development Company, L.P. Microfluidic mixing device
US9409170B2 (en) * 2013-06-24 2016-08-09 Hewlett-Packard Development Company, L.P. Microfluidic mixing device
CN107073949B (zh) * 2014-10-30 2019-03-26 惠普发展公司,有限责任合伙企业 打印头感测室循环
WO2016068989A1 (en) 2014-10-31 2016-05-06 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2016068988A1 (en) 2014-10-31 2016-05-06 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2016068987A1 (en) 2014-10-31 2016-05-06 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2016122528A1 (en) * 2015-01-29 2016-08-04 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2016175865A1 (en) 2015-04-30 2016-11-03 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2017010996A1 (en) 2015-07-14 2017-01-19 Hewlett-Packard Development Company, L.P. Fluid recirculation channels
WO2017074324A1 (en) * 2015-10-27 2017-05-04 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2017074427A1 (en) * 2015-10-30 2017-05-04 Hewlett-Packard Development Company, L.P. Fluid ejection device with a fluid recirculation channel
JP6964975B2 (ja) * 2016-01-08 2021-11-10 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置
US10179453B2 (en) 2016-01-08 2019-01-15 Canon Kabushiki Kaisha Liquid ejection head and liquid ejection apparatus
WO2017131736A1 (en) * 2016-01-29 2017-08-03 Hewlett-Packard Development Company, L.P. Microfluidics system
EP3222351A1 (en) * 2016-03-23 2017-09-27 Ecole Polytechnique Federale de Lausanne (EPFL) Microfluidic network device
JP6868036B2 (ja) * 2016-04-14 2021-05-12 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 毛細管室を有するマイクロ流体デバイス
WO2018017120A1 (en) * 2016-07-22 2018-01-25 Hewlett-Packard Development Company, L.P. Microfluidic devices
WO2018022103A1 (en) * 2016-07-29 2018-02-01 Hewlett-Packard Development Company, L.P. Fluid ejection device
US10780705B2 (en) 2016-07-29 2020-09-22 Hewlett-Packard Development Company, L.P. Fluid ejection device
IT201600083000A1 (it) * 2016-08-05 2018-02-05 St Microelectronics Srl Dispositivo microfluidico per la spruzzatura termica di un liquido contenente pigmenti e/o aromi con tendenza all'aggregazione o al deposito
WO2018057005A1 (en) 2016-09-23 2018-03-29 Hewlett-Packard Development Company, L.P. Microfluidic device
US10632747B2 (en) 2016-10-14 2020-04-28 Hewlett-Packard Development Company, L.P. Fluid ejection device
JP6776447B2 (ja) 2016-11-01 2020-10-28 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 流体出力チャネルを含む流体射出装置
WO2018136097A1 (en) * 2017-01-23 2018-07-26 Hewlett-Packard Development Company, L.P. Fluid ejection device
US11001724B2 (en) * 2017-01-31 2021-05-11 Hewlett-Packard Development Company, L.P. Inkjet ink composition and inkjet cartridge
CN109844042B (zh) 2017-01-31 2022-04-19 惠普发展公司,有限责任合伙企业 喷墨打印系统
CN110023089A (zh) 2017-01-31 2019-07-16 惠普发展公司,有限责任合伙企业 喷墨打印的方法和定影组合物
EP3494185B1 (en) 2017-01-31 2020-04-15 Hewlett-Packard Development Company, L.P. Inkjet ink set
US11208570B2 (en) 2017-04-13 2021-12-28 Hewlett-Packard Development Company, L.P. White inks
US11066566B2 (en) 2017-06-09 2021-07-20 Hewlett-Packard Development Company, L.P. Inkjet printing systems
US10442195B2 (en) 2017-06-22 2019-10-15 Fujifilm Dimatix, Inc. Piezoelectric device and method for manufacturing an inkjet head
JP2019010758A (ja) * 2017-06-29 2019-01-24 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置
JP7057071B2 (ja) 2017-06-29 2022-04-19 キヤノン株式会社 液体吐出モジュール
JP2019014245A (ja) * 2017-07-04 2019-01-31 キヤノン株式会社 インクジェット記録方法及びインクジェット記録装置
JP2019014243A (ja) 2017-07-04 2019-01-31 キヤノン株式会社 インクジェット記録方法及びインクジェット記録装置
JP6976753B2 (ja) * 2017-07-07 2021-12-08 キヤノン株式会社 液体吐出ヘッド、液体吐出装置、及び液体の供給方法
US11401408B2 (en) 2017-07-27 2022-08-02 Hewlett-Packard Development Company, L.P. Polymer particles
JP6945064B2 (ja) 2017-09-11 2021-10-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 入口及び出口チャネルを備えた流体ダイ
CN111372782B (zh) * 2017-11-27 2021-10-29 惠普发展公司,有限责任合伙企业 跨管芯再循环通道和腔室再循环通道
US11761459B2 (en) * 2018-01-16 2023-09-19 Hewlett-Packard Development Company, L.P. Inertial pump fluid dispensing
WO2019194832A1 (en) * 2018-04-06 2019-10-10 Hewlett-Packard Development Company, L.P. Sense measurement indicators to select fluidic actuators for sense measurements
EP3758844B1 (en) * 2018-06-11 2023-03-29 Hewlett-Packard Development Company, L.P. Microfluidic valves
EP4265420A3 (en) * 2018-07-23 2024-01-03 Hewlett-Packard Development Company, L.P. Fluid ejection with micropumps and pressure-difference based fluid flow
EP3824102A4 (en) * 2018-11-14 2021-07-21 Hewlett-Packard Development Company, L.P. MICROFLUIDIC DEVICES
JP7183023B2 (ja) * 2018-12-19 2022-12-05 キヤノン株式会社 素子基板、液体吐出ヘッド、及び記録装置
JP7309359B2 (ja) * 2018-12-19 2023-07-18 キヤノン株式会社 液体吐出装置
JP7237567B2 (ja) 2018-12-25 2023-03-13 キヤノン株式会社 液体吐出ヘッド及び液体吐出ヘッドの制御方法
JP7171424B2 (ja) 2018-12-26 2022-11-15 キヤノン株式会社 液体吐出ヘッド、液体吐出装置、および液体供給方法
JP7251175B2 (ja) * 2019-01-31 2023-04-04 セイコーエプソン株式会社 インクジェット記録方法、記録ヘッドセット及びインクジェット記録装置
JP7234697B2 (ja) * 2019-02-28 2023-03-08 カシオ計算機株式会社 電子機器及び印刷装置
JP7419008B2 (ja) 2019-10-01 2024-01-22 キヤノン株式会社 液体吐出ヘッド
JP2021066041A (ja) * 2019-10-18 2021-04-30 キヤノン株式会社 液体吐出ヘッド
CN115023350B (zh) * 2020-02-14 2024-05-28 惠普发展公司,有限责任合伙企业 打印方法和流体喷射设备
US20230106541A1 (en) * 2020-03-05 2023-04-06 Hewlett-Packard Development Company, L.P. Fluid-ejection element having above-chamber layer through which fluid is to recirculate
CN115279592A (zh) * 2020-03-05 2022-11-01 惠普发展公司,有限责任合伙企业 流体喷射元件的腔室间流体再循环路径

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526170A (ja) * 1991-07-18 1993-02-02 Aisin Seiki Co Ltd 流体制御装置
JP2003527616A (ja) * 2000-03-17 2003-09-16 アクララ バイオサイエンシーズ, インコーポレイテッド さらなる周辺チャンネルを有する微小流動デバイスおよびシステム
JP2003286940A (ja) * 2002-03-27 2003-10-10 Minolta Co Ltd 流体輸送システム
JP2003534538A (ja) * 2000-05-25 2003-11-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ 3次元配列チャネルネットワークを含む微量流体システム
JP2004513342A (ja) * 2000-10-31 2004-04-30 カリパー・テクノロジーズ・コープ. 現場で材料を濃縮するミクロ流体方法、装置及びシステム
JP2006510854A (ja) * 2002-11-19 2006-03-30 ビオメリュー マイクロシステムに使用するための、二つの効果を有する火薬式(pyrotechnic)マイクロアクチュエーター、及び、これを使用したマイクロシステム
JP2007224844A (ja) * 2006-02-24 2007-09-06 Konica Minolta Medical & Graphic Inc マイクロポンプによる送液方法および送液システム

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE329025B (ja) 1968-03-20 1970-09-28 Lkb Produkter Ab
US3856467A (en) 1972-06-05 1974-12-24 Univ Sherbrooke Cumulative thermal detector
US4318114A (en) 1980-09-15 1982-03-02 The Mead Corporation Ink jet printer having continuous recirculation during shut down
JPH0526170Y2 (ja) 1987-07-14 1993-07-01
EP0317171A3 (en) 1987-11-13 1990-07-18 Hewlett-Packard Company Integral thin film injection system for thermal ink jet heads and methods of operation
GB2266751A (en) 1992-05-02 1993-11-10 Westonbridge Int Ltd Piezoelectric micropump excitation voltage control.
US5807749A (en) 1992-10-23 1998-09-15 Gastec N.V. Method for determining the calorific value of a gas and/or the Wobbe index of a natural gas
US5412411A (en) 1993-11-26 1995-05-02 Xerox Corporation Capping station for an ink-jet printer with immersion of printhead in ink
WO1995034427A1 (fr) 1994-06-15 1995-12-21 Citizen Watch Co., Ltd. Methode permettant de commander une tete a jet d'encre
DE4429592A1 (de) 1994-08-20 1996-02-22 Eastman Kodak Co Tintendruckkopf mit integrierter Pumpe
ATE174406T1 (de) 1995-09-15 1998-12-15 Hahn Schickard Ges Rückschlagventillose fluidpumpe
US6017117A (en) 1995-10-31 2000-01-25 Hewlett-Packard Company Printhead with pump driven ink circulation
US6010316A (en) * 1996-01-16 2000-01-04 The Board Of Trustees Of The Leland Stanford Junior University Acoustic micropump
US5917508A (en) 1996-03-20 1999-06-29 Diagraph Corporation Piezoelectric ink jet printing system
US5820260A (en) 1996-07-12 1998-10-13 Badger Meter, Inc. Measuring heating value using predetermined volumes in non-catialytic combustion
JPH10151761A (ja) 1996-11-21 1998-06-09 Brother Ind Ltd インクジェット記録装置
US5818485A (en) * 1996-11-22 1998-10-06 Xerox Corporation Thermal ink jet printing system with continuous ink circulation through a printhead
JPH10175307A (ja) 1996-12-18 1998-06-30 Tec Corp インクジェットプリンタ
US6086582A (en) 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US6055002A (en) 1997-06-03 2000-04-25 Eastman Kodak Company Microfluidic printing with ink flow regulation
US6079873A (en) 1997-10-20 2000-06-27 The United States Of America As Represented By The Secretary Of Commerce Micron-scale differential scanning calorimeter on a chip
JP2004249741A (ja) 1998-01-22 2004-09-09 Matsushita Electric Ind Co Ltd インキジェット装置
US6351879B1 (en) 1998-08-31 2002-03-05 Eastman Kodak Company Method of making a printing apparatus
US6360775B1 (en) 1998-12-23 2002-03-26 Agilent Technologies, Inc. Capillary fluid switch with asymmetric bubble chamber
US6283718B1 (en) 1999-01-28 2001-09-04 John Hopkins University Bubble based micropump
US6283575B1 (en) 1999-05-10 2001-09-04 Eastman Kodak Company Ink printing head with gutter cleaning structure and method of assembling the printer
US6193413B1 (en) 1999-06-17 2001-02-27 David S. Lieberman System and method for an improved calorimeter for determining thermodynamic properties of chemical and biological reactions
US6877713B1 (en) 1999-07-20 2005-04-12 Deka Products Limited Partnership Tube occluder and method for occluding collapsible tubes
US6244694B1 (en) * 1999-08-03 2001-06-12 Hewlett-Packard Company Method and apparatus for dampening vibration in the ink in computer controlled printers
JP3814132B2 (ja) 1999-10-27 2006-08-23 セイコーインスツル株式会社 ポンプ及びその駆動方法
JP2001205810A (ja) 2000-01-28 2001-07-31 Kyocera Corp インクジェットヘッド
US6845962B1 (en) 2000-03-22 2005-01-25 Kelsey-Hayes Company Thermally actuated microvalve device
US6770024B1 (en) 2000-03-28 2004-08-03 Stony Brook Surgical Innovations, Inc. Implantable counterpulsation cardiac assist device
JP3629405B2 (ja) 2000-05-16 2005-03-16 コニカミノルタホールディングス株式会社 マイクロポンプ
US6412904B1 (en) 2000-05-23 2002-07-02 Silverbrook Research Pty Ltd. Residue removal from nozzle guard for ink jet printhead
US8329118B2 (en) 2004-09-02 2012-12-11 Honeywell International Inc. Method and apparatus for determining one or more operating parameters for a microfluidic circuit
US6615856B2 (en) * 2000-08-04 2003-09-09 Biomicro Systems, Inc. Remote valving for microfluidic flow control
AU2002211389A1 (en) 2000-10-03 2002-04-15 California Institute Of Technology Microfluidic devices and methods of use
US8900811B2 (en) 2000-11-16 2014-12-02 Caliper Life Sciences, Inc. Method and apparatus for generating thermal melting curves in a microfluidic device
US6631983B2 (en) 2000-12-28 2003-10-14 Eastman Kodak Company Ink recirculation system for ink jet printers
US20020098122A1 (en) 2001-01-22 2002-07-25 Angad Singh Active disposable microfluidic system with externally actuated micropump
US6450773B1 (en) 2001-03-13 2002-09-17 Terabeam Corporation Piezoelectric vacuum pump and method
US6431694B1 (en) 2001-04-24 2002-08-13 Hewlett-Packard Company Pump for recirculating ink to off-axis inkjet printheads
WO2002090117A1 (fr) 2001-05-09 2002-11-14 Matsushita Electric Industrial Co., Ltd. Dispositif a jet d'encre, encre pour dispositif a jet d'encre et procede permettant de produire un composant electronique au moyen de ce dispositif et de cette encre
US6629820B2 (en) 2001-06-26 2003-10-07 Micralyne Inc. Microfluidic flow control device
US7147865B2 (en) 2001-06-29 2006-12-12 The Board Of Trustees Of The Leland Stanford University Artificial synapse chip
US7075162B2 (en) 2001-08-30 2006-07-11 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
US7025323B2 (en) 2001-09-21 2006-04-11 The Regents Of The University Of California Low power integrated pumping and valving arrays for microfluidic systems
US6655924B2 (en) 2001-11-07 2003-12-02 Intel Corporation Peristaltic bubble pump
US7182442B2 (en) 2002-01-02 2007-02-27 Jemtex Ink Jet Printing Ltd. Ink jet printing apparatus
US6568799B1 (en) 2002-01-23 2003-05-27 Eastman Kodak Company Drop-on-demand ink jet printer with controlled fluid flow to effect drop ejection
DE10202996A1 (de) 2002-01-26 2003-08-14 Eppendorf Ag Piezoelektrisch steuerbare Mikrofluidaktorik
US7094040B2 (en) * 2002-03-27 2006-08-22 Minolta Co., Ltd. Fluid transferring system and micropump suitable therefor
US6752493B2 (en) 2002-04-30 2004-06-22 Hewlett-Packard Development Company, L.P. Fluid delivery techniques with improved reliability
AU2003277853A1 (en) 2002-06-24 2004-01-06 Fluidigm Corporation Recirculating fluidic network and methods for using the same
DE60307289T2 (de) 2002-06-27 2007-10-18 Schering Corp. Spirosubstituierte piperidine als selektive antagonisten des melanin konzentrierenden hormon rezeptors für die behandlung von fettleibigkeit
US7052117B2 (en) 2002-07-03 2006-05-30 Dimatix, Inc. Printhead having a thin pre-fired piezoelectric layer
US6910797B2 (en) 2002-08-14 2005-06-28 Hewlett-Packard Development, L.P. Mixing device having sequentially activatable circulators
DE10238564B4 (de) 2002-08-22 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pipettiereinrichtung
US7455770B2 (en) 2002-09-09 2008-11-25 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
JP3725109B2 (ja) 2002-09-19 2005-12-07 財団法人生産技術研究奨励会 マイクロ流体デバイス
TW590982B (en) 2002-09-27 2004-06-11 Agnitio Science & Technology I Micro-fluid driving device
EP1411355A1 (en) 2002-10-18 2004-04-21 Emerson Electric Co. Method and device for determining a characteristic value that is representative of the condition of a gas
US6811385B2 (en) 2002-10-31 2004-11-02 Hewlett-Packard Development Company, L.P. Acoustic micro-pump
US6880926B2 (en) 2002-10-31 2005-04-19 Hewlett-Packard Development Company, L.P. Circulation through compound slots
US7040745B2 (en) 2002-10-31 2006-05-09 Hewlett-Packard Development Company, L.P. Recirculating inkjet printing system
US6755509B2 (en) 2002-11-23 2004-06-29 Silverbrook Research Pty Ltd Thermal ink jet printhead with suspended beam heater
US20080047836A1 (en) 2002-12-05 2008-02-28 David Strand Configurable Microfluidic Substrate Assembly
JP4059073B2 (ja) 2002-12-13 2008-03-12 コニカミノルタホールディングス株式会社 合流装置における液体の圧送方法および合流装置
US7195026B2 (en) * 2002-12-27 2007-03-27 American Air Liquide, Inc. Micro electromechanical systems for delivering high purity fluids in a chemical delivery system
US7049558B2 (en) 2003-01-27 2006-05-23 Arcturas Bioscience, Inc. Apparatus and method for heating microfluidic volumes and moving fluids
US6986649B2 (en) 2003-04-09 2006-01-17 Motorola, Inc. Micropump with integrated pressure sensor
KR100539174B1 (ko) 2003-08-28 2005-12-27 박란규 가습헤어부러시
JP2005081775A (ja) 2003-09-10 2005-03-31 Fuji Photo Film Co Ltd インクジェット記録ヘッドアセンブリ及びインクジェット記録装置
DE602004012502T2 (de) 2003-09-24 2009-06-10 Fujifilm Corporation Tröpfchenausstosskopf und Tintenstrahlaufzeichnungsgerät
JP4457637B2 (ja) 2003-10-24 2010-04-28 ソニー株式会社 ヘッドカートリッジ及び液体吐出装置
KR20050059752A (ko) 2003-12-15 2005-06-21 삼성전자주식회사 개스 버블을 이용하여 유체를 펌핑하는 장치 및 방법
JP3767605B2 (ja) 2004-02-02 2006-04-19 コニカミノルタホールディングス株式会社 流体輸送システム
SG114773A1 (en) 2004-03-01 2005-09-28 Sony Corp Liquid ejection head and liquid ejection device
GB2412088B (en) 2004-03-19 2007-09-19 Zipher Ltd Liquid supply system
CN100458152C (zh) 2004-03-24 2009-02-04 中国科学院光电技术研究所 一种微机械往复膜片泵
US20050220630A1 (en) 2004-03-31 2005-10-06 Sebastian Bohm Method of using triggerable passive valves to control the flow of fluid
WO2006073426A2 (en) 2004-04-20 2006-07-13 California Institute Of Technology Microscale calorimeters
US7204585B2 (en) 2004-04-28 2007-04-17 Hewlett-Packard Development Company, L.P. Method and system for improving printer performance
US20050249607A1 (en) 2004-05-10 2005-11-10 Klee Matthew S Apparatus and method for pumping microfluidic devices
US7427274B2 (en) 2004-05-13 2008-09-23 Brookstone Purchasing, Inc. Method and apparatus for providing a modifiable massager
US7118189B2 (en) 2004-05-28 2006-10-10 Videojet Technologies Inc. Autopurge printing system
JP3969404B2 (ja) * 2004-06-16 2007-09-05 コニカミノルタホールディングス株式会社 燃料電池装置
GB0419050D0 (en) 2004-08-26 2004-09-29 Munster Simms Eng Ltd A diaphragm and a diaphragm pump
DE102004042987A1 (de) 2004-09-06 2006-03-23 Roche Diagnostics Gmbh Push-Pull betriebene Pumpe für ein mikrofluidisches System
CA2580771A1 (en) 2004-09-18 2006-03-23 Xaar Technology Limited Fluid supply method and apparatus
US7832429B2 (en) 2004-10-13 2010-11-16 Rheonix, Inc. Microfluidic pump and valve structures and fabrication methods
DE102004051394B4 (de) 2004-10-21 2006-08-17 Advalytix Ag Verfahren zur Bewegung von kleinen Flüssigkeitsmengen in Mikrokanälen und Mikrokanalsystem
EP1812813A4 (en) 2004-11-05 2008-04-09 Univ California ADAPTIVE FLUID LENS SYSTEMS WITH PUMP SYSTEMS
SE0402731D0 (sv) 2004-11-10 2004-11-10 Gyros Ab Liquid detection and confidence determination
JP2006156894A (ja) 2004-12-01 2006-06-15 Kyocera Corp 圧電アクチュエータ、圧電ポンプ及びインクジェットヘッド
US7976286B2 (en) 2005-01-25 2011-07-12 The Regents Of The University Of California Method and apparatus for pumping liquids using directional growth and elimination bubbles
JP4543986B2 (ja) 2005-03-24 2010-09-15 コニカミノルタエムジー株式会社 マイクロ総合分析システム
JP4646665B2 (ja) 2005-03-28 2011-03-09 キヤノン株式会社 インクジェット記録ヘッド
US7784495B2 (en) 2005-05-02 2010-08-31 Massachusetts Institute Of Technology Microfluidic bubble logic devices
US8308452B2 (en) 2005-09-09 2012-11-13 The Board Of Trustees Of The University Of Illinois Dual chamber valveless MEMS micropump
US20080271799A1 (en) * 2005-09-20 2008-11-06 Koninklijke Philips Electronics, N.V. Microfluidic Regulating Device
DE602006015209D1 (de) 2005-10-06 2010-08-12 Unilever Nv Mikrofluidnetz und verfahren
US7763453B2 (en) 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
JP4681654B2 (ja) 2006-03-03 2011-05-11 シルバーブルック リサーチ ピーティワイ リミテッド インクジェットプリンタ
WO2007106580A2 (en) 2006-03-15 2007-09-20 Micronics, Inc. Rapid magnetic flow assays
AU2007248494B2 (en) 2006-05-05 2012-11-08 Cytonome/St, Llc Actuation of parallel microfluidic arrays
US7997709B2 (en) 2006-06-20 2011-08-16 Eastman Kodak Company Drop on demand print head with fluid stagnation point at nozzle opening
KR101212086B1 (ko) 2006-07-04 2012-12-13 삼성전자주식회사 잉크 순환장치 및 이 잉크 순환장치를 포함하는 잉크젯프린터
WO2008091294A2 (en) 2006-07-28 2008-07-31 California Institute Of Technology Polymer nems for cell physiology and microfabricated cell positioning system for micro-biocalorimeter
US20090270834A1 (en) 2006-08-21 2009-10-29 Koninklijke Philips Electronics N.V. Drug delivery device
KR101306005B1 (ko) 2006-09-29 2013-09-12 삼성전자주식회사 잉크순환시스템과 잉크젯 기록장치 및 잉크 순환방법
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
US7926917B2 (en) 2006-12-06 2011-04-19 Canon Kabushiki Kaisha. Liquid recording head
JP4872649B2 (ja) 2006-12-18 2012-02-08 富士ゼロックス株式会社 液滴吐出ヘッドおよび液滴吐出装置
EP1992410A1 (en) 2007-03-12 2008-11-19 Stichting Dutch Polymer Institute Microfluidic system based on actuator elements
AU2008232534B2 (en) 2007-03-30 2013-10-31 Anatech B.V. Sensor for thermal analysis and systems including same
WO2008130977A2 (en) 2007-04-16 2008-10-30 The General Hospital Corporation D/B/A Massachusetts General Hospital Systems and methods for particle focusing in microchannels
US20090038938A1 (en) 2007-05-10 2009-02-12 The Regents Of The University Of California Microfluidic central processing unit and microfluidic systems architecture
CN101306792B (zh) 2007-05-17 2013-09-11 研能科技股份有限公司 微致动流体供应器及其所适用的微泵结构及喷墨头结构
US8071390B2 (en) 2007-06-05 2011-12-06 Ecolab Usa Inc. Temperature stabilized optical cell and method
US20090007969A1 (en) 2007-07-05 2009-01-08 3M Innovative Properties Company Microfluidic actuation structures
KR20090010791A (ko) * 2007-07-24 2009-01-30 삼성전자주식회사 잉크젯 화상형성장치 및 그 제어방법
US8083327B2 (en) 2007-07-27 2011-12-27 Xerox Corporation Hot melt ink delivery reservoir pump subassembly
JP4976225B2 (ja) 2007-07-27 2012-07-18 大日本スクリーン製造株式会社 画像記録装置
US20090040257A1 (en) 2007-08-06 2009-02-12 Steven Wayne Bergstedt Inkjet printheads with warming circuits
WO2009039466A1 (en) 2007-09-20 2009-03-26 Vanderbilt University Free solution measurement of molecular interactions by backscattering interferometry
JP2009117344A (ja) 2007-10-15 2009-05-28 Sanyo Electric Co Ltd 流体移送装置及びこれを具えた燃料電池
KR100911090B1 (ko) 2008-01-28 2009-08-06 재단법인서울대학교산학협력재단 정확도가 향상된 마이크로칼로리미터 소자
JP2009190370A (ja) 2008-02-18 2009-08-27 Canon Finetech Inc 液体吐出ヘッドおよび液体吐出方法
KR100998535B1 (ko) * 2008-04-11 2010-12-07 인싸이토 주식회사 나노틈새를 가지는 미세유체 채널이 구비된 미세유체회로소자 및 이의 제조 방법
KR20100008868A (ko) * 2008-07-17 2010-01-27 삼성전자주식회사 잉크젯 타입 화상형성장치의 헤드칩
CN101391530B (zh) 2008-09-28 2011-07-27 北大方正集团有限公司 一种循环供墨方法和循环供墨系统
US8651624B2 (en) 2008-10-14 2014-02-18 Hewlett-Packard Development Company, L.P. Fluid ejector structure
US20100101764A1 (en) 2008-10-27 2010-04-29 Tai-Her Yang Double flow-circuit heat exchange device for periodic positive and reverse directional pumping
US8201924B2 (en) 2009-06-30 2012-06-19 Eastman Kodak Company Liquid diverter for flow through drop dispenser
US9970422B2 (en) 2010-03-30 2018-05-15 Georgia Tech Research Corporation Self-pumping structures and methods of using self-pumping structures
US9090084B2 (en) 2010-05-21 2015-07-28 Hewlett-Packard Development Company, L.P. Fluid ejection device including recirculation system
EP2571696B1 (en) * 2010-05-21 2019-08-07 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
CN102985261B (zh) 2010-05-21 2016-02-03 惠普发展公司,有限责任合伙企业 具有循环泵的流体喷射设备
US10132303B2 (en) 2010-05-21 2018-11-20 Hewlett-Packard Development Company, L.P. Generating fluid flow in a fluidic network
US9963739B2 (en) * 2010-05-21 2018-05-08 Hewlett-Packard Development Company, L.P. Polymerase chain reaction systems
US9395050B2 (en) 2010-05-21 2016-07-19 Hewlett-Packard Development Company, L.P. Microfluidic systems and networks
US8540355B2 (en) 2010-07-11 2013-09-24 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
KR101694577B1 (ko) 2010-07-28 2017-01-09 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 순환 펌프를 갖는 유체 토출 어셈블리
US8573743B2 (en) 2010-10-26 2013-11-05 Eastman Kodak Company Liquid dispenser including curved vent
US8439481B2 (en) * 2010-10-26 2013-05-14 Eastman Kodak Company Liquid dispenser including sloped outlet opening wall
KR101686286B1 (ko) 2010-10-28 2016-12-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 순환 펌프를 구비한 유체 분사 어셈블리
US9381739B2 (en) * 2013-02-28 2016-07-05 Hewlett-Packard Development Company, L.P. Fluid ejection assembly with circulation pump
JP6755671B2 (ja) * 2016-02-19 2020-09-16 キヤノン株式会社 記録素子基板、液体吐出ヘッドおよび液体吐出装置
US10668720B2 (en) * 2016-10-03 2020-06-02 Hewlett-Packard Development Company, L.P. Controlling recirculating of nozzles
JP6949513B2 (ja) * 2017-03-08 2021-10-13 東芝テック株式会社 循環装置及び液体吐出装置
CN111372782B (zh) * 2017-11-27 2021-10-29 惠普发展公司,有限责任合伙企业 跨管芯再循环通道和腔室再循环通道

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526170A (ja) * 1991-07-18 1993-02-02 Aisin Seiki Co Ltd 流体制御装置
JP2003527616A (ja) * 2000-03-17 2003-09-16 アクララ バイオサイエンシーズ, インコーポレイテッド さらなる周辺チャンネルを有する微小流動デバイスおよびシステム
JP2003534538A (ja) * 2000-05-25 2003-11-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ 3次元配列チャネルネットワークを含む微量流体システム
JP2004513342A (ja) * 2000-10-31 2004-04-30 カリパー・テクノロジーズ・コープ. 現場で材料を濃縮するミクロ流体方法、装置及びシステム
JP2003286940A (ja) * 2002-03-27 2003-10-10 Minolta Co Ltd 流体輸送システム
JP2006510854A (ja) * 2002-11-19 2006-03-30 ビオメリュー マイクロシステムに使用するための、二つの効果を有する火薬式(pyrotechnic)マイクロアクチュエーター、及び、これを使用したマイクロシステム
JP2007224844A (ja) * 2006-02-24 2007-09-06 Konica Minolta Medical & Graphic Inc マイクロポンプによる送液方法および送液システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506725A (ja) * 2014-01-29 2017-03-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. マイクロ流体バルブ
KR101919974B1 (ko) * 2014-01-29 2018-11-19 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 미세유체 밸브
US11209102B2 (en) 2014-01-29 2021-12-28 Hewlett-Packard Development Company, L.P. Microfluidic valve
JP2018503829A (ja) * 2015-01-30 2018-02-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. マイクロ流体制御
US11097268B2 (en) 2015-01-30 2021-08-24 Hewlett-Packard Development Company, L.P. Microfluidic flow control
WO2017110714A1 (en) * 2015-12-21 2017-06-29 Funai Electric Co., Ltd. Micro-fluidic device

Also Published As

Publication number Publication date
KR20130113957A (ko) 2013-10-16
US10807376B2 (en) 2020-10-20
US9604212B2 (en) 2017-03-28
KR101846808B1 (ko) 2018-04-06
US20190111698A1 (en) 2019-04-18
CN103003577A (zh) 2013-03-27
US20150273853A1 (en) 2015-10-01
EP2572110B1 (en) 2019-10-23
US10173435B2 (en) 2019-01-08
US9090084B2 (en) 2015-07-28
KR101776357B1 (ko) 2017-09-07
US20170151807A1 (en) 2017-06-01
WO2011146069A1 (en) 2011-11-24
BR112012029581A2 (pt) 2016-08-02
CN103003577B (zh) 2016-06-29
US11260668B2 (en) 2022-03-01
US20130155152A1 (en) 2013-06-20
EP2572110A1 (en) 2013-03-27
US20210023852A1 (en) 2021-01-28
EP2572110A4 (en) 2018-04-11
KR20170101319A (ko) 2017-09-05
WO2011146145A1 (en) 2011-11-24
US10272691B2 (en) 2019-04-30
US20160318015A1 (en) 2016-11-03
BR112012029581B1 (pt) 2020-12-29
JP5756852B2 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6445608B2 (ja) 流体ネットワークにおける流体流れの生成
JP5756852B2 (ja) マイクロ流体システム及びネットワーク
US9395050B2 (en) Microfluidic systems and networks
US10415086B2 (en) Polymerase chain reaction systems
Pelesko et al. Modeling mems and nems
US11278891B2 (en) Fluidic channels for microfluidic devices
ITTO20070554A1 (it) Dispositivo per il controllo del moto di fluidi in micro o nanocanali tramite onde acustiche superficiali.
US10132303B2 (en) Generating fluid flow in a fluidic network
BRPI0715138A2 (pt) sistema micro-fluÍdico, mÉtodos para fabricar um sistema micro-fluÍdico e para controlar um fluxo de fluido atravÉs de um micro-canal de um sistema micro-fluÍdico, e, uso do sistema micro-fluÍdico
TWI659211B (zh) 微流體裝置
JP2010521321A (ja) 磁気アクチュエータ素子を基本とする微小流体システム
Tang et al. Manipulating fluid with vibrating 3D-printed paddles for applications in micropump
Yiannacou et al. Acoustic Manipulation of Particles in Microfluidic Chips with an Adaptive Controller that Models Acoustic Fields
Cheng et al. A capillary system with 1× 4 microflow switches via a micronozzle–diffuser pump and hydrophobic-patch design for continuous liquid handling
Goh Effects of wall compliance on pulsatile flow attenuation in microchannels
Hermosilla A microgripper for single cell manipulation
Cheng et al. A capillary system with thermal-bubble-actuated 1/spl times/N micro flow switch via time-sequence power control for continuous liquid handling
Križaj et al. Analysis of Fluid Pumping with a Throttle Type Piezoelectric Micro Pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent or registration of utility model

Ref document number: 5756852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees