JP2013522861A - 熱電変換素子とその製造方法 - Google Patents

熱電変換素子とその製造方法 Download PDF

Info

Publication number
JP2013522861A
JP2013522861A JP2012541274A JP2012541274A JP2013522861A JP 2013522861 A JP2013522861 A JP 2013522861A JP 2012541274 A JP2012541274 A JP 2012541274A JP 2012541274 A JP2012541274 A JP 2012541274A JP 2013522861 A JP2013522861 A JP 2013522861A
Authority
JP
Japan
Prior art keywords
thermoelectric material
substrate
material layer
type thermoelectric
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012541274A
Other languages
English (en)
Other versions
JP5308577B2 (ja
Inventor
かおり 豊田
隆亮 東田
良久 大井戸
隆志 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012541274A priority Critical patent/JP5308577B2/ja
Publication of JP2013522861A publication Critical patent/JP2013522861A/ja
Application granted granted Critical
Publication of JP5308577B2 publication Critical patent/JP5308577B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、単位面積当たりのpn接合対の数が多く、かつ、熱電材料チップが破損しにくい熱電変換素子とその製造方法を提供する。本発明の熱電変換素子は、膜状の熱電材料が表面に形成された基板が複数枚積層されている。その結果、単位面積当たりのpn接合対の数が多いため、高出力を得ることができる。また、熱電材料が膜状のため、単位面積当たりのpn接合対の数が多い、即ち断面形状が小さい熱電材料でも、熱電材料破損による信頼性低下を防ぐことができる。

Description

本発明は、熱電変換素子とその製造方法に関する。
熱電変換素子には、ペルチェ効果、あるいはゼーベック効果を利用した素子が用いられる。この熱電変換素子は構造が簡単で、かつ取扱いが容易で安定な特性を維持できることから、広範囲にわたる利用が注目されている。特に熱電変換素子は、電子冷却素子としては、局所冷却及び室温付近の精密な温度制御が可能であることから、オプトエレクトロニクス、半導体レーザー等の恒温化等に向けて広く研究が進められている。
この電子冷却及び熱電発電に用いる熱電変換素子は、従来では、図8に示すように、p型熱電材料804とn型熱電材料805とを接合電極806を介して接合してpn接合対を形成し、このpn接合対を複数個直列に配列して構成されている。図8中、803は基板であり、801は電流導入端子(正極)であり、802は電流導入端子(負極)であり、Hは熱の流れ方向を示す矢印である。図8に示す熱電変換素子は、接合部を流れる電流の方向によって、一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるように構成されている。
この熱電変換素子の材料には、その利用温度域で性能指数Zが大きな材料が用いられる。性能指数Zは、物質固有の定数であるゼーベック係数aと比抵抗rと熱伝導率Kによって表される(Z=a2/rK)。熱電変換素子として一般に用いられる材料は、Bi2Te3系材料であるが、これら結晶は著しいへき開性を有している。このため前記熱電変換素子では、インゴットから熱電素子を得るためのスライシング、ダイシング工程等を経ると、割れや欠けの為に歩留りが極めて低くなるという問題がある。
この問題を解決するために、下記の方法が試みられている。この方法は、所望の組成をもつように材料粉末を混合し、加熱溶融せしめる加熱工程と、菱面体構造(六方晶構造)を有する熱電半導体材料の固溶体インゴットを形成する凝固工程と、固溶体インゴットを粉砕し固溶体粉末を形成する粉砕工程と、固溶体粉末の粒径を均一化する整粒工程と、粒径の均一となった固溶体粉末を加圧焼結せしめる焼結工程と、この粉末焼結体を熱間で塑性変形させ、展延することで、粉末焼結組織の結晶粒が性能指数の優れた結晶方位に配向せしめる熱間すえこみ鍛造工程と、を経て熱電変換モジュールを作製する(例えば、特許文献1参照)。
熱電変換素子として用いる個々の熱電材料チップの大きさは、一辺が数百μmから数mmの直方体である。近年では、室温付近で数十度の温度差のもとで使用する熱電変換素子では、大きさと厚さが数十から数百μmの熱電変換素子がより高性能であると言われている(例えば、非特許文献1参照。)。
また、一つの熱電変換素子内におけるpn接合対の数は、多くても数百個までであり、その密度も数十対/cm程度までであった。pn接合対の数を多くすることは、熱電変換性能の向上と熱電変換素子の用途拡大を図るうえで、重要な要素の一つとなっている。特に小さな温度差を利用した発電では、発生する起電力がpn接合対の数に比例する。このため、高い電圧を取り出すために、熱電変換素子内の直列に繋ぐpn接合対の数をできるだけ多くすることが望まれている。
更に、冷却素子や温度制御用の素子として熱電変換素子を用いる場合においても、直列に接続した熱電材料チップの数が少ないと、熱電変換素子に流す電流が大きくなる。このため、配線を大きくしたり、電源を大きくしたりする必要がある。よって、できるだけ多くの熱電材料チップを直列に接続することが望まれている。
図9(a)〜(e)に、熱電材料チップの大きさを小さくし、かつ、単位面積当たりの熱電材料チップ数(チップ密度)を多くした熱電変換素子の従来の製造方法を示す。
まず、バンプ形成工程(a)で、板状又は棒状のp型又はn型の熱電材料ウエハ601の両面にはんだバンプ602を形成する。次に、電極配線工程(b)で、基板101上の表面に電極配線301を形成する。次に、接合工程(c)で、上記バンプ形成工程(a)ではんだバンプ602が形成された熱電材料ウエハ601を、基板101と対向して配置する。その後、基板101上の電極配線301と熱電材料ウエハ601とをはんだによって接合する。図9(c)の場合、p型又はn型の熱電材料ウエハ601と基板101上の電極配線301との接合を示している。例えば、図9(c)が、p型の熱電材料ウエハ601と基板101上の電極配線301との接合を示す場合、同様に別途、n型の熱電材料ウエハ601と基板101上の電極配線301との接合も行う。
次に、切断・削除工程(d)で、互いに異種の型の熱電材料チップが接合されるべき電極配線301が現れるように、接合された熱電材料ウエハ601を必要に応じて切断・除去する。この工程により、p型の熱電材料チップ603が所定の電極配線301に接合され、かつ、n型の熱電材料チップ603が接合されるべき電極配線301が表面に現れている基板101が作製される。同様に、n型の熱電材料チップ603が所定の電極配線301nに接合され、かつ、p型の熱電材料チップが接合されるべき電極が表面に現れている基板101が作製される。
次に、組み立て工程(e)で、これらの2枚の基板101について、熱電材料チップ603が接合されている面を向かい合わせる。そして、相互の熱電材料チップ603と電極配線301を所定の位置に合わせる。そして、一方の基板101の熱電材料チップ603の先端と、他方の基板101上の、当該チップに対応する電極配線301とを接合する。こうして、金属等の電極を介するpn接合対を有する熱電変換素子を形成する(特許文献2参照)。
しかしながら、前記従来の構成では、ウエハを切断・除去することにより、熱電材料チップの基板に平行な面での断面が小さい熱電材料チップを作製するため、切削・除去工程、及び使用中にチップが破損するという課題を有している。また、ウエハを切断・除去することにより、熱電材料チップを作製するため、熱電材料の歩留まりも悪くなるという問題が生じる。
前述した熱電変換素子の他にも、p型熱電変換材料の層とn型熱電変換材料の層とを、基板等の絶縁層を介して交互に積層してなる熱電変換素子が知られている。
このような積層型の熱電変換素子としては、p型熱電変換材料の層とn型熱電変換材料の層とが、これらの層の端で電気的に直列に接続されている熱電変換素子が知られている(例えば、特許文献3〜9参照。)。
また、前記積層型の熱電変換素子としては、p型熱電変換材料の層とn型熱電変換材料の層とが、これらの層の端部で、直接、又は導電層を介する面接触によって電気的に直列に接続されている熱電変換素子も知られている(例えば、特許文献10〜12参照。)。
また、ポリイミド等の絶縁性の基板上に、BiTe系材料の層をスパッタリングにより形成する方法が、熱電変換材料の層を形成する方法として知られている(例えば、特許文献13、14、及び非特許文献2参照。)。
特許第3958857号公報 特許第3592395号公報 特開平8−222770号公報 特開平11−274581号公報 特開2008−205181号公報 特開昭50−141287号公報 米国特許第3,930,303号明細書 国際公開第05/047560号 米国特許出願公開第2005/0178424号明細書 特開平1−93182号公報 米国特許第5,055,140号明細書 米国特許出願公開第2010/0116308号明細書 特開2006−86510号公報 特許第3927784号公報
電子情報通信学会論文誌 C Vol.J75−C2 No.8 pp.416−424 酒井三佳 他著、「Bi−Te系薄膜上熱電モジュールの研究開発」、「熱電変換シンポジウム2003論文集(熱電変換研究会)」、2003年、p.24−25
本発明は、単位面積当たりのpn接合対の数が多く、かつ熱電材料チップが破損しにくい熱電変換素子と、その製造方法を提供することを目的とする。
上記目的を達成するために、以下の熱電変換素子を提供する。
[1] 交互に積層されたp型熱電材料層及びn型熱電材料層と、
隣接する前記p型熱電材料層及び前記n型熱電材料層の間に配置された複数の基板と、
前記p型熱電材料層と一方で隣り合う前記基板の、積層方向と直交する方向における一端部に配置されたコンタクトホールと、
前記p型熱電材料層と他方で隣り合う前記基板の、積層方向と直交する方向における他端部に配置されたコンタクトホールと、
前記コンタクトホール内に配置され、前記基板を介して隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する導電性材料と、
を有する、熱電変換素子。
[2] 前記基板と前記p型熱電材料層との間に高熱伝導膜が形成されてなる、[1]に記載の熱電変換素子。
[3] 前記基板と前記n型熱電材料層との間に高熱伝導膜が形成されてなる、[1]に記載の熱電変換素子。
[4] 前記p型熱電材料層が形成された第1基板と、前記n型熱電材料層が形成された第2基板とが、交互に複数積層されてなる、[1]〜[3]のいずれか一項に記載の熱電変換素子。
[5] 前記第1基板は、前記第1基板上に複数本配置された前記p型熱電材料層を有し、かつ前記第2基板は、前記第2基板上に複数本配置された前記n型熱電材料層を有する、[4]に記載の熱電変換素子。
[6] 前記p型熱電材料層及びn型熱電材料層はそれぞれ、前記基板に複数本、配置されてなる、[1]〜[3]のいずれか一項に記載の熱電変換素子。
[7] 前記導電性材料が前記コンタクトホールから突出した凸部を有し、
前記p型熱電材料層及びn型熱電材料層と前記基板との間に、隙間が形成されている、[1]〜[6]のいずれか一項に記載の熱電変換素子。
また上記目的を達成するために、以下の熱電変換素子の製造方法を提供する。
[8] 第1基板の一方の面にp型熱電材料層を形成し、かつ第1基板の一端部に第1基板を貫通する第1のコンタクトホールを形成する工程と、
第2基板の一方の面にn型熱電材料層を形成し、かつ第2基板の他端部に第2基板を貫通する第2のコンタクトホールを形成する工程と、
前記第1基板と前記前記第2基板とを積み重ねて、前記p型熱電材料層と前記n型熱電材料層とを、基板を介して交互に積層して、前記第1のコンタクトホール及び前記第2のコンタクトホールを、前記積層方向に直交する方向における前記基板の一端部と他端部とに交互に配置する工程と、を含み、
前記コンタクトホールを介して互いに隣り合うp型熱電材料層とn型熱電材料層とが電気的に接続される熱電変換素子の製造方法。
[9] 前記第1基板及び前記第2基板に、前記p型熱電材料層及び前記n型熱電材料層をそれぞれ形成した後に、前記第1のコンタクトホール及び第2のコンタクトホールをそれぞれ形成し、
前記第1のコンタクトホール及び前記第2のコンタクトホールの内部に、導電性材料を配置して、互いに隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する、[8]に記載の製造方法。
[10] 前記第1基板及び前記第2基板に、前記第1のコンタクトホール及び前記第2のコンタクトホールをそれぞれ形成した後に、前記p型熱電材料層及び前記n型熱電材料層をそれぞれ形成し、
前記第1のコンタクトホール及び前記第2のコンタクトホールの壁面を介して基板の裏側まで付着した前記p型熱電材料層及び前記n型熱電材料層によって、互いに隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する、[8]に記載の製造方法。
本発明は、基板を介して交互にp型熱電材料層及びn型熱電材料層が積層される。このため、単位面積当たりのpn接合対の数を多くすることができ、かつ、熱電材料チップの破損を抑制することができる。
また本発明は、コンタクトホールの形成及び導電性材料の配置と、基板の積み重ねとによって各熱電材料が電気的に直列に接続される。本発明では、基板に形成されたコンタクトホール内に導電性材料が配置されることから、導電性材料の厚さを制御しやすい。このため、基板を積み重ねたとき、各熱電材料層と導電性材料とが容易かつ確実に接触するので、各熱電材料層にかかる応力が低減される。このため、基板及び各熱電材料層をより薄く形成することができる。よって、単位面積当たりのpn接合対の数を多くすることができる。
また本発明の熱電変換素子では、基板に形成したコンタクトホール内に配置された導電性材料で、基板の積み重ねによって積層された熱電材料層を電気的に直列に接続する。よって、従来の熱電変換素子ように、基板を介して交互に積層させたp型熱電材料層とn型熱電材料層とを、縁に形成した電極で接続する場合に比べて、本発明の熱電変換素子の生産性はより高い。
本発明の熱電変換素子によれば、熱電材料が層であるため、単位面積当たりのpn接合対の数が多い。このため、高出力を得ることができる。さらに、熱電材料が、基板に挟まれた層であるため、熱電材料であるにも係わらず、熱電材料の破損による信頼性低下を防ぐことができる。
本発明の実施の形態1における熱電変換素子の概略構成を示す図である。 本発明の実施の形態2における熱電変換素子の概略構成を示す図である。 本発明の実施の形態2における熱電変換素子の製造方法を示す図である。 本発明の実施の形態における熱電変換素子の他の製造方法を示す図である。 本発明の実施の形態3における熱電変換素子の概略構成を示す図である。 本発明の実施の形態4における熱電変換素子の概略構成を示す図である。 本発明の実施の形態4における熱電変換素子の製造方法を示す図である。 特許文献1に記載された従来の熱電変換素子の斜視図である。 特許文献2に記載された従来の熱電変換素子の製造方法を示す図である。
以下、本発明の実施の形態について、図面を参照しながら説明する。図中、特にp型熱電材料層に関する構成には「p」を付け、特にn型熱電材料に関する構成には「n」を付けて示す。
(実施の形態1)
図1は、本発明の実施の形態1における熱電変換素子100の概略構成を示す図であり、図1(a)は斜視図、図1(b)は図1(a)のA−A断面図である。
図1に示すように、本実施の形態の熱電変換素子100は、複数の基板101と、基板101を介して交互に積層されたp型熱電材料層102p及びn型熱電材料層102nとを有する。図中、Xは基板101、p型熱電材料層102p、及びn型熱電材料層102nの積層方向を示す。図中、YはX方向(すなわち積層方向)に直交する方向を示す。図中、ZはX及びY方向に直交する方向を示す。
p型熱電材料層102pとX方向における一方で隣り合う基板101pは、例えばY方向における一端部にコンタクトホール103pを有する。このとき、p型熱電材料層102pとX方向における他方で隣り合う基板101nは、Y方向における他端部にコンタクトホール103nを有する。コンタクトホール103内には、基板101を介して隣り合うp型熱電材料層102pとn型熱電材料層102nとを電気的に接続する導電性材料104が配置されている。
基板101はフィルム状であることが好ましい。薄いフィルムを用いることにより、熱電変換素子のうち、絶縁基板の占める体積を減らして、熱電材料の占める体積を増やすことができる。これにより、単位面積当たりのpn接合対の数を多くし、より高電圧の出力を得ることができる。
基板101の材料には、耐熱性の高い材料を用いることが好ましい。基板101の材料は、無機物であってもよいが、ポリイミド等の耐熱性樹脂であってもよい。基板101の材料に耐熱性の高い材料を用いることにより、製造中及び使用中の温度域をより高温まで広げることができる。基板101には、例えば厚さが1〜100μmのポリイミドのフィルムを用いることができる。また基板101の大きさは、例えば、Y方向の長さが1〜5mmであり、Z方向の長さが10〜50mmである。
p型熱電材料層102p及びn型熱電材料層102nはそれぞれ、両端に温度差を生じさせると起電力が生じる材料層である。熱電材料層の材料は、使用時に生じる温度差に応じて選ぶことができる。前記材料としては、例えば、前記温度差が常温から500Kまでであればビスマス・テルル系(Bi−Te系)が、前記温度差が常温から800Kまでであれば鉛・テルル系(Pb−Te系)が、前記温度差が常温から1,000Kまでであればシリコン・ゲルマニウム系(Si−Ge系)が挙げられる。
p型及びn型の熱電材料層の材料は、例えば、前記材料に適当なドーパントを添加することによって得ることができる。p型の熱電材料層の材料を得るためのドーパントとしては、例えばSbが挙げられる。n型の熱電材料層の材料を得るためのドーパントとしては、例えばSeが挙げられる。これらのドーパントの添加によって前記材料は混晶を形成する。したがって、これらのドーパントは、例えば「Bi0.5Sb1.5Te」や「BiTe2.7Se0.3」のような、前記材料の組成式で表される程度の量で、前記材料に添加される。
p型熱電材料層102pおよびn型熱電材料層102nの熱電材料は、例えば、室温付近で性能が優れている材料であるBi−Te系材料であることが好ましい。
熱電材料層102及び103の厚さは特に限定されない。熱電材料層102が薄いことは、単位面積当たりのpn接合対の数をより多くし、より高電圧の出力を得る観点から好ましい。この点で好ましい熱電材料層としては、例えば400〜500nmの厚さの層が挙げられる。一方、熱電材料層102が厚いことは、熱電材料層102及び103形成時に、より簡易で安価なプロセスを選択できる観点から好ましい。このように比較的厚さが大きい熱電材料層は、オフセット、インクジェット等の印刷や、めっき等によって形成することができる。
コンタクトホール103は、基板101に形成されている。コンタクトホール103は、p型熱電材料層102p又はn型熱電材料層102nのY方向における一端部又は他端部に一つ以上形成されている。一熱電材料層当たりのコンタクトホール103の数は、工程の簡略化の観点から一つであることが好ましいが、例えば積層時における基板同士の接触状態の安定性の観点から、二つ又はそれ以上あってもよい。コンタクトホール103の孔径は、特に限定されないが、導電性材料104を内部に十分に導入する観点から、基板101の厚さの0.8倍以上であることが好ましく、1〜10倍であることがより好ましい。
コンタクトホール103内に配置された導電性材料104は、X方向において、基板101を介して隣り合うp型熱電材料層102pとn型熱電材料層102nとの両方に接触する。導電性材料104は、コンタクトホール103内に充填されていてもよいし、コンタクトホール103の内周壁を覆っていてもよい。コンタクトホール103の内周壁を覆う導電性材料104は、前記内周壁の全面を覆っていなくてもよく、コンタクトホール103の軸方向(X方向)に沿って、基板101を介して隣り合うp型熱電材料層102pとn型熱電材料層102nとの両方の間を接続していればよい。
導電性材料104は、例えば、コンタクトホール103に充填されるAgペースト等の導電性ペースト、コンタクトホール103の内周壁を覆うCu等の金属層、基板101の表面からコンタクトホール103の内周壁を覆うように形成されるp型又はn型熱電材料層102又は103、及びこれらの二以上の組み合わせである。
実施の形態1の熱電変換素子は、以下の方法によって製造することができる。
まず、基板101p上に、例えばスパッタリングによりp型熱電材料層102pを形成する。また基板101n上に、同様にスパッタリングによりn型熱電材料層102nを形成する。
例えば、基板101として厚さ50μmのポリイミドを使用する。その基板101上に、スパッタリングにより、例えば、p型熱電材料層102pとして厚さ約25〜30μmの(BiTe0.25(SbTe0.75の層を形成し、n型熱電材料層102nとして厚さ約25〜30μmのBiTe2.7Se0.3の層を形成する。
各熱電材料のターゲットとしては、メカニカルアロイング法とパルス通電焼結法により作製したターゲットを使用できる(非特許文献2参照)。
p型及びn型熱電材料層102p、102nの形成には、RFスパッタ装置を用い、スパッタガスとしてArを使用する。スパッタ条件は、例えば出力が40Wであり、Arガス圧が1×10−1〜1.5×10−1Paである。
スパッタリングの後に、p型及びn型熱電材料層102p、102nを有する基板101を、大気中、真空中、又は窒素等の不活性ガス中で加熱してもよい。この加熱により、p型及びn型熱電素子層102p、102nが安定化され、p型及びn型熱電素子層102p、102nの電気抵抗が下がる。このため、p型及びn型熱電素子層102p、102nの性能を上げることができる。
次に、基板101pの端部にコンタクトホール103pを形成し、基板101nの端部にコンタクトホール103nを形成する。コンタクトホール103は、例えばレーザーやドリルによる加工、パンチング、エッチング等の通常の穿孔方法によって形成される。
次に、コンタクトホール103の内部に導電性材料104を配置する。導電性材料104は、例えば、コンタクトホール103に導電性ペーストを充填することによって、或いは、コンタクトホール103を金属でめっきすることによって、コンタクトホール103に形成することができる。
次いで、基板101pと基板101nとを積み重ねて、p型熱電材料層102pとn型熱電材料層102nとを、基板101を介して交互に積層する。このとき、コンタクトホール103pを基板101pのY方向における一端部に配置したら、コンタクトホール103nを基板101nのY方向におけるもう一方の端部に配置する。
このような積層によって、各基板101に形成されたコンタクトホール103は、X方向に沿って、Y方向における一端部と他端部とに交互に配置される。その結果、基板101を介して互いに隣り合うp型熱電材料層102pとn型熱電材料層102nとが電気的に直列に接続される。
前記熱電変換素子において、前記の積層構造は一体化させることが好ましい。前記積層構造は、Y方向における端面に、X方向における全域に亘って粘着テープを貼り付けることによって一体化させることができる。或いは、積層された基板101を枠体で束縛することによって一体化させることができる。或いは、互いに接触するp型熱電材料層102p、n型熱電材料層102n、及び基板101を接着剤によって接着して一体化させることができる。
前記熱電変換素子は、Y方向を熱の流れ方向と一致させて配置することによって、温度差による発電に用いることができる。また前記熱電変換素子は、通電することによって、温度制御装置として用いることができる。
前記熱電変換素子は、基板101を介してp型熱電材料層102p及びn型熱電材料層102nを交互に積層させてなる積層構造を有する。よって、単位面積当たりのpn接合対の数が多く、熱電材料チップが破損しにくい。
また前記熱電変換素子は、コンタクトホール103の内部に配置された導電性材料104によって、p型熱電材料層102pとn型熱電材料層102nとが電気的に直列に接続される。このように導電性材料104はコンタクトホール103内に配置されることから、導電性材料104の厚さを制御しやすい。このため、基板101を積み重ねたときに、各熱電材料層102と導電性基材104とが容易かつ確実に接触する。従って、基板101を積み重ねたときに、各熱電材料層にかかる応力が低減されるので、基板101及び各熱電材料層102をより薄く形成することができる。このような観点からも、前記熱電変換素子は、単位面積当たりのpn接合対の数を多くすることができる。
また前記熱電変換素子には、コンタクトホール103の内部に配置された導電性材料104によって、基板101のY方向における端部に導電路が形成される。そして、それぞれの材料層を有する基板101を交互に積層することによって、各材料層が電気的に直列に接続される。よって、各熱電材料層と基板との積層物の端面に電極を形成した従来の熱電変換素子に比べて、前記熱電変換素子はより容易に作製することができる。このため高い生産性を有する。
前記熱電変換素子は、基板101pのY方向における一端部に形成されるコンタクトホール103pと、基板101nのY方向における他端部に形成されるコンタクトホール103nを有する。そのため、コンタクトホール103pの温度とコンタクトホール103nの温度との差が確保されるので、前記熱電変換素子は高出力を得ることができる。
また前記熱電変換素子では、熱電材料層がスパッタリングによって形成される。スパッタリング膜は薄膜であり、かつそれを構成する熱電材料の結晶粒が微細になる。このため、前記熱電変換素子は単位面積当たりのpn接合対の数を多くでき、さらに高出力を得ることができる。
(実施の形態2)
図2は、本発明の実施の形態2における熱電変換素子200の概略構成を示す図である。図2(a)は斜視図、図2(b)は図2(a)のA−A断面図である。
図2に示すように、本実施の形態の熱電変換素子200は、p型熱電材料層102pが表面に形成された基板101pと、n型熱電材料層102nが表面に形成された基板101nとが、交互に複数枚積層されている。基板101pには、複数に分割されたp型熱電材料層102pが形成されている。基板101nには、複数に分割されたn型熱電材料層102nが形成されている。図2(a)に示すように、各基板101において、それぞれのp型熱電材料層102p及びn型熱電材料層102nは、それぞれZ方向に配列されている。そしてY方向に細長い矩形に形成されている。この矩形に形成された各熱電材料層102の大きさは、例えば、Y方向の長さが1〜5mmであり、Z方向の長さが0.05〜2mmである。
基板101pとp型熱電材料層102pとの間、及び基板101nとn型熱電材料層102nとの間には、高い熱伝導性(例えば50W/(m・K)以上)を有する高熱伝導膜105が形成されている。高熱伝導膜105は、基板101の一表面の全面に形成されていてもよいし、図示するように、熱電材料層と同じく、Z方向に並んで配列される、Y方向に細長い複数の矩形の膜であってもよい。高熱伝導膜105として、例えばAg(銀)、Au(金)、Pd(パラジウム)、Pt(白金)もしくはW(タングステン)等の、薄膜又は厚膜を用いることができる。薄膜として、例えば200nmの厚さの膜を用いることができる。
基板101、例えば基板101p、を介して隣り合うp型熱電材料層102pとn型熱電材料層102nとは、図2(b)に示すように、コンタクトホール103pの内部に配置された導電性材料104pによって電気的に接続されている。基板101pのコンタクトホール103pは、長手方向(Y方向)の一方の端部に形成されている。基板101nのコンタクトホール103nは、長手方向(Y方向)のもう一方の端部に形成されている。
導電性材料104は、コンタクトホール103内に充填されている。図2(b)に示されるように、導電性材料104は、コンタクトホール103のX方向における一方側(基板101側)の端から突出している。このため、基板101と、そのX方向の一方側にあるp型熱電材料層102p又はn型熱電材料層102nとの間に、隙間が存在している。
次に、本実施の形態の熱電変換素子200の製造方法の一例について、図3を参照して説明する。
まず、ポリイミドからなる基板101上にメタルマスク(図示せず)を設置し、例えばスパッタリングにより、基板101上に、所定の形状に高熱伝導膜105を形成する。
次に、メタルマスクを設置したままで、スパッタリングにより、高熱伝導膜105上に、所定の形状にp型熱電材料層102p又はn型熱電材料層102nを形成する。なお、本実施の形態では、高熱伝導膜105及びp型熱電材料層102p又はn型熱電材料層102nをスパッタリングにより形成したが、蒸着、プラズマCVD等の方法を用いてもよい。
このように、メタルマスクを基板上に設置することにより、複数に分割された所定の形状の高熱伝導膜105、p型熱電材料層102p、n型熱電材料層102nを形成した。しかしながら、基板101の略全面に高熱伝導膜105、p型熱電材料層102p、n型熱電材料層102nを形成した後、レーザー照射、切削、エッチング等により、一部を除去して複数に分割してもよい。
また、メタルマスクの材質としてSUS304を用いることができるが、これに限るものではない。メタルマスクの材質は、目的の成膜条件や形状に合わせ、耐熱性、加工性を考慮し、選定すればよい。
次に、熱電材料層102を形成した基板101にコンタクトホール103を形成する。コンタクトホール103は、レーザーやドリルによる加工、パンチング、エッチング等の方法を用いて、基板101に穴を穿つことで形成される。各基板101におけるp型熱電材料層102p及びn型熱電材料層102nの配置及び形状が、Y及びZ方向のそれぞれにおいて対照である場合には、複数の基板101を重ねて基板101に孔を穿ってもよい。
次いで、コンタクトホール103内に導電性材料104が配置される。導電性材料104は、例えばコンタクトホール103の内側にAgペースト等の導電性ペーストを充填することによって配置される。図3(c)に示すように、導電性材料104における熱電材料層側の端は、コンタクトホール103表面と同一平面となるように形成されている。導電性材料104における基板101側の端は、コンタクトホール103から突出する凸部が形成されている。凸部の突出長さは、例えば0.01〜1μmである。
前記凸部は、例えば、導電性ペーストの充填時又は充填後に、コンタクトホール103と略同径の孔と所望の厚さとを有するプレートを基板101に重ねて、コンタクトホール103を前記プレートで囲み、前記プレートの表面に沿って余剰のペーストを削除し、前記プレートを基板101から外すことによって形成することができる。
次に、p型熱電材料層102pが表面に形成された基板101pと、n型熱電材料層102nが表面に形成された基板101nとを、交互に積層する。このとき、基板101pのコンタクトホール103pは、Y方向における一端部に配置する。そして、基板101nのコンタクトホール103nは、Y方向における他端部に配置する。
基板101の積層によって、p型熱電材料層102pとn型熱電材料層102nとが、導電性材料104を介してX方向に沿って電気的に直列に接続される。また、p型熱電材料層102pの積層群およびn型熱電材料層102nの積層群はそれぞれ、Z方向に配列される。各積層群を構成する全ての熱電材料層102および103は、コンタクトホール103内に配置された導電性材料104によって電気的に直列に接続される。
第一の実施形態の熱電変換素子と同様、Y方向の端面の粘着テープによる貼り付け、枠体による束縛、或いは前記凸部と熱電材料層との接着剤による接着によって、各熱電材料層と基板とが一体化され、熱電変換素子が形成される。そして、前記熱電変換素子は、Y方向を熱の流れ方向として配置することによって、温度差による発電に用いることができる。また前記熱電変換素子は、通電することによって、温度制御装置として用いることができる。
前記熱電変換素子は、前述した実施形態1と同様の構成においては同様の効果を奏する。
また、基板101pにはp型熱電材料層102pのみが形成され、基板101nにはn型熱電材料層102nのみが形成されることが好ましい。1枚の基板101に形成する熱電材料層を、全てp型又はn型とすることにより、1枚の基板101にp型とn型両方の熱電材料層を形成するよりも、熱電材料形成時の工程数を減らすことができる。
また前記熱電変換素子では、基板101pに複数本のp型熱電材料層102pが形成され、基板101nに複数本のn型熱電材料層102nが形成される。このため、単位面積当たりのpn接合対の数をより一層多くでき、より高出力を得ることができる。
また前記熱電変換素子は、導電性材料104がコンタクトホール103から突出した凸部を有する。そのため、熱電材料層102と基板101との間に隙間が形成される。この隙間が存在することで、熱電変換素子200使用時に、高温端と低温端の熱伝導が小さくなり、より高出力を得ることができる。
また前記熱電変換素子は、熱電材料層102と基板101との間に高熱伝導膜105をさらに有する。高熱伝導膜105を形成することにより、熱電材料層102の成膜時に、熱電材料層102の熱電材料の結晶配向性が助長される。また前記成膜時に、熱電材料が高熱伝導膜105上で急冷されることにより、熱電材料の結晶粒が微細になる。これらにより、熱電材料層102の熱電性能がより一層向上し、より一層高い出力を得ることができる。
また、本実施の形態では、熱電材料層102としてBi−Te系材料を使用したが、特に限定はなく、熱電変換素子200の使用環境や使用目的に応じて任意に変えることができる。
また、本実施の形態では、基板101に熱電材料層102を成膜した後にコンタクトホール103を形成した。しかしながら本発明では、熱電材料層102を成膜する前に、基板101にコンタクトホール103の穴を穿ってもよい。これにより、その後の高熱伝導膜105及び熱電材料102を形成する際に、同時にコンタクトホール103の電気的導通を確保することができる。
以下、この電気的な接続の形成方法について、基板101上に熱電材料層を直接形成する形態を例に説明する。
図4に示されるように、まず基板101にコンタクトホール103を形成する(図4(a))。次いで、熱電材料層102をスパッタリングで成膜する。熱電材料は、コンタクトホール103の内壁に付着すると共に、一部が基板101の裏側まで回り込む。このため、コンタクトホール103のX方向(基板101)側の開口縁に熱電材料が付着する(図4(b))。この開口縁に付着した熱電材料が、凸部を形成する。すなわち、コンタクトホール103の内部に付着し、さらに凸部を形成した熱電材料が、導電性材料となる。
このような熱電材料層を有する基板101を積層すると、図4(c)に示すように、熱電材料の凸部が、各熱電材料層に接触する。そして前記凸部が、x方向に沿ってY方向の一端部と他端部とで交互に配置される。このように、熱電材料によって凸部を形成することは、工程の簡略化の観点からより一層効果的である。
図4に示される方法では、高熱伝導膜105を有する基板101にコンタクトホール103を形成し、その後に熱電材料層を成膜してもよい。この方法によれば、高熱伝導膜105を有し、熱電材料を導電性材料とする熱電変換素子を製造することが可能である。
熱電材料が配置されたコンタクトホール103の内部に、導電性材料104をさらに配置してもよい。この場合、熱電材料が導電性材料104の下地層としても機能する。このため、導電性材料104をより強固にコンタクトホール103内に配置する観点からより効果的である。
また、熱電材料に代えて高熱伝導膜105の材料を用い、コンタクトホール103が形成された基板101に、高熱伝導膜105を形成すると、上記の方法における熱電材料と同じく、高熱伝導膜105の材料を導電性材料として用いることができる。
(実施の形態3)
本発明の熱電変換素子は、X方向に沿ってp型熱電材料層及びn型熱電材料層が交互に積層されるが、同一基板上において、Y方向におけるコンタクトホールの配置や、Z方向での熱電材料層の配置が異なっていてもよい。
例えば図5に示される熱電変換素子300は、X方向に沿って、p型熱電材料層102pとn型熱電材料層102nとが交互に配列している。一基板101’上では、Z方向に沿って、p型熱電材料層102pとn型熱電材料層102nとが交互に配置されている。例えば、一基板101’上には、Y方向における一端側にコンタクトホール103pを有するp型熱電材料層102pと、一端側にコンタクトホール103nを有するn型熱電材料層102nと、他端側にコンタクトホール103pを有するp型熱電材料層102p’と、他端側にコンタクトホール103nを有するn型熱電材料層102n’とが、Z方向に沿って配置されている。このように基板101’上での熱電材料層のコンタクトホール103の位置は同一ではない。X方向に沿って、コンタクトホール103は、Y方向における一方の端部ともう一方の端部とに交互に配置されている。
熱電変換素子300は、基板101’上に、p型熱電材料層102pとn型熱電材料層102nとをZ方向に沿って交互に配置すること、及び、各熱電材料層の種類に応じてコンタクトホール103の位置を一端部又は他端部とすること以外は、図3に示す方法で製造することができる。熱電変換素子300は、前述した実施形態1及び2と同様の構成において同様の効果を奏する。
このように本発明の熱電変換素子は、コンタクトホールが、X方向に沿って、Y方向における一方の端部ともう一方の端部とに交互に配置されていればよく、一つの基板101において、全てのコンタクトホールが一方の端部に形成されていなくてもよい。
図示の形態以外にも、例えば、同一基板において、p型熱電材料層102pに対応するコンタクトホール103pの全てが基板101のY方向の一端部に形成され、n型熱電材料層102nに対応するコンタクトホール103n全てが基板101の他端部に形成されていてもよい。
(実施の形態4)
図6は、本発明の実施の形態4における熱電変換素子の概略構成を示す図である。図6(a)は斜視図、図6(b)は図6(a)のA−A断面図である。
図6に示すように、本実施の形態の熱電変換素子400では、p型熱電材料層102pとn型熱電材料層102nとが表面に形成された基板101aと、熱電材料層102が形成されていない基板101bとが、交互に複数枚積層されている。基板101aの一方の面にはp型熱電材料層102pが形成され、基板101aの他方の面にはn型熱電材料層102nが形成されている。
各熱電材料層は、第2の実施形態と同様に、Y方向に細長な矩形の複数の層が、Z方向に沿って配列されている。p型熱電材料層102p及びn型熱電材料層102nと、基板101aとの間には、高熱伝導膜105が形成されている。
基板101aのY方向における一端部には、p型熱電材料層102p及びn型熱電材料層102nと基板101aを貫通するコンタクトホール103aが形成されている。基板101bのY方向における他端部には、基板101bを貫通するコンタクトホール103bが形成されている。
コンタクトホール103aの内部には、導電性材料104aが配置されている。導電性材料104aは、n型熱電材料層102n側の一端のみに凸部を有している。この凸部は、基板101bの表面に当接している。
コンタクトホール103bの内部には、導電性材料104bが配置されている。導電性材料104bは、両端に基板101bの表面から突出する凸部を有している。これらの凸部のうち、X方向の一方における凸部は、p型熱電材料層102pに当接している。またX方向の他方における凸部は、n型熱電材料層102nに当接している。
p型熱電材料層102pと基板101bとの間、及びn型熱電材料層102nと基板101bとの間には、それぞれ、前記凸部の突出長さの隙間が形成されている。このように、コンタクトホール103aの導電性材料104aの前記凸部は、スペーサとして機能する。また、コンタクトホール103bの導電性材料104bの前記凸部は、X方向において基板101bを挟むp型熱電材料層102pとn型熱電材料層102nとの電気的接点、及び、スペーサとして機能する。
次に、本実施の形態の熱電変換素子400の製造方法を、図7を参照して説明する。
まず、ポリイミドからなる基板101a上にメタルマスク(図示せず)を設置し、スパッタリングにより、基板101aの2つの表面上に、所定の形状に高熱伝導膜105を形成する(図7(a))。
次に、基板101aの一方の表面に形成された高熱伝導膜105上に、p型熱電材料102pを、基板101aのもう一方の表面に形成された高熱伝導膜105上に、n型熱電材料102nを、スパッタリングにより、高熱伝導膜105とほぼ同じ形状に形成する(図7(b))。
次に、基板101aの端部にコンタクトホール103aを形成する。一方で、基板101bを用意し、この基板101bの端部にコンタクトホール103bを形成する。コンタクトホール103a、103bは、レーザーやドリルによる加工、パンチング、エッチング等の方法を用いて、基板101a、101bに穴を穿つことで形成される。コンタクトホール103aには、一端に凸部を有する導電性材料104aを配置する。コンタクトホール103bには、両端に凸部を有する導電性材料104bを配置する(図7(c))。
導電性材料104aは、例えば以下の方法で形成される。
コンタクトホール103aの内部に導電性ペーストを十分に充填する。p型熱電材料層102p側の端面をp型熱電材料層102pの表面と同一平面になるように成形する。n型熱電材料層102n側の端面は、n型熱電材料層102nの表面から所望の長さだけ突出するように成形する。こうしてn型熱電材料層102n側の端に凸部を有する導電性材料103aを形成する。
同様に、導電性材料104bは、例えば以下の方法で形成される。
コンタクトホール103bの内部に導電性ペーストを十分に充填する。充填した導電性ペーストの両端を、基板101bの表面から所望の長さだけ突出するように成形する。こうして基板101bの両面において凸部を有する導電性材料104bを形成する。
次に、熱電材料102が形成された基板101aと、熱電材料102が形成されていない基板101bとを、交互に積層する(図7(d))。このとき、基板101aのコンタクトホール103aをY方向における一端側に配置したら、基板101bのコンタクトホール103bをY方向における他端側に配置するように、基板101aと基板101bとを交互に積層する。このような積層によって、p型熱電材料層102pとn型熱電材料層102nとが、基板101a又は101bを介して交互に積層され、かつY方向における一端部及び他端部で交互に、X方向に電気的に接続される。また、導電性材料104a及び104bの凸部によって、p型熱電変換素子102pと基板101bとの間、及びn型熱電材料層102nと基板101bとの間に隙間が形成される。
前記熱電変換素子は、前述した実施形態1〜3における同様の構成において同様の効果を奏する。前記熱電変換素子では、基板101a、p型熱電材料層102p、n型熱電材料層102n、及びこれらの熱電材料層を電気的に接続する導電性材料104aが一体的に形成される。よって、前述した実施形態2に比べて、電気的な接続の信頼性をより高める観点からより効果的である。
また前記熱電変換素子では、導電性材料104aは、X方向における一端に基板101bに当接する凸部を有する。このため、X方向における一方において、基板101aと基板101bとの間の隙間は、二つの凸部によって保持される。よって、一つの凸部で前記の隙間を保持する形態に比べて、前記隙間を有する積層状態を保つ観点からより効果的である。
本出願は、2011年2月22日出願の特願2011−035648に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
本発明の熱電変換素子及びその製造方法は、単位面積当たりの熱電材料チップ対の数が多く、かつチップが破損しにくい熱電変換素子を得ることが可能である。
100、200、300、400 熱電変換素子
101、101’101p、101n、101a、101b、803 基板
102p、102p’ p型熱電材料層
102n、102n’ n型熱電材料層
103a、103b、103p、103n コンタクトホール
104a、104b、104p、104n 導電性材料
105 高熱伝導膜
301 電極配線
601 熱電材料ウエハ
602 はんだバンプ
603 熱電材料チップ
801 電流導入端子(正極)
802 電流導入端子(負極)
804 p型熱電材料
805 n型熱電材料
806 接合電極
H 熱の流れ方向を示す矢印
上記目的を達成するために、以下の熱電変換素子を提供する。
[1] p型熱電材料層が形成された第1基板と、
n型熱電材料層が形成された第2基板と、
隣接する前記p型熱電材料層前記n型熱電材料層とを電気的に接続する導電性材料とを有する熱電変換素子であって、
前記第1基板と前記第2基板は、交互に複数積層されてなり、
隣接する前記p型熱電材料層及び前記n型熱電材料層のうち前記第1基板及び前記第2基板の積層方向と直交する方向における一端部にコンタクトホールを有し、
前記導電性材料は、前記コンタクトホール内に配置されている、熱電変換素子。
[2] 前記第1基板と前記p型熱電材料層との間に高熱伝導膜が形成されてなる、[1]に記載の熱電変換素子。
[3] 前記第2基板と前記n型熱電材料層との間に高熱伝導膜が形成されてなる、[1]に記載の熱電変換素子。
] 前記第1基板は、前記第1基板上に複数本配置された前記p型熱電材料層を有し、かつ前記第2基板は、前記第2基板上に複数本配置された前記n型熱電材料層を有する、[]に記載の熱電変換素子。
] 前記p型熱電材料層及び前記n型熱電材料層はそれぞれ、前記第1基板及び第2ベース基板上に複数本配置されてなる、[]に記載の熱電変換素子。
] 前記導電性材料が前記コンタクトホールから突出した凸部を有し、
前記p型熱電材料層及び前記n型熱電材料層と前記第1基板又は前記第2基板との間に、隙間が形成されている、[]に記載の熱電変換素子。
[7] 互いに隣り合う前記p型熱電材料層及び前記n型熱電材料層は、第1のコンタクトホール及び第2のコンタクトホールの壁面を介して前記第1ベース基板及び前記第2ベース基板の裏側まで付着することにより電気的に接続されている、[1]に記載の熱電変換素子。
また上記目的を達成するために、以下の熱電変換素子の製造方法を提供する。
[8] 第1基板の一方の面にp型熱電材料層を形成し、かつ前記第1基板の一端部に前記第1基板を貫通する第1のコンタクトホールを形成する工程と、
第2基板の一方の面にn型熱電材料層を形成し、かつ前記第2基板の他端部に前記第2基板を貫通する第2のコンタクトホールを形成する工程と、
前記第1基板と前記第2基板とを交互に積層させて、前記第1のコンタクトホール及び前記第2のコンタクトホールを、前記積層方向に直交する方向における前記第1基板及び前記第2基板の一端部と他端部とに交互に配置する工程と、を含み、
前記コンタクトホールを介して互いに隣り合うp型熱電材料層とn型熱電材料層とが電気的に接続される熱電変換素子の製造方法。
[9] 前記第1基板及び前記第2基板に、前記p型熱電材料層及び前記n型熱電材料層をそれぞれ形成した後に、前記第1のコンタクトホール及び前記第2のコンタクトホールをそれぞれ形成し、
前記第1のコンタクトホール及び前記第2のコンタクトホールの内部に、導電性材料を配置して、互いに隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する、[8]に記載の製造方法。
[10] 前記第1基板及び前記第2基板に、前記第1のコンタクトホール及び前記第2のコンタクトホールをそれぞれ形成した後に、前記p型熱電材料層及び前記n型熱電材料層をそれぞれ形成し、
前記第1のコンタクトホール及び前記第2のコンタクトホールの壁面を介して第1基板及び前記第2基板の裏側まで付着した前記p型熱電材料層及び前記n型熱電材料層によって、互いに隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する、[8]に記載の製造方法。

Claims (10)

  1. 交互に積層されたp型熱電材料層及びn型熱電材料層と、
    隣接する前記p型熱電材料層及び前記n型熱電材料層の間に配置された複数の基板と、
    前記p型熱電材料層と一方で隣り合う前記基板の、積層方向と直交する方向における一端部に配置されたコンタクトホールと、
    前記p型熱電材料層と他方で隣り合う前記基板の、積層方向と直交する方向における他端部に配置されたコンタクトホールと、
    前記コンタクトホール内に配置され、前記基板を介して隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する導電性材料と、
    を有する、熱電変換素子。
  2. 前記基板と前記p型熱電材料層との間に高熱伝導膜が形成されてなる、請求項1に記載の熱電変換素子。
  3. 前記基板と前記n型熱電材料層との間に高熱伝導膜が形成されてなる、請求項1に記載の熱電変換素子。
  4. 前記p型熱電材料層が形成された第1基板と、前記n型熱電材料層が形成された第2基板とが、交互に複数積層されてなる、請求項1に記載の熱電変換素子。
  5. 前記第1基板は、前記第1基板上に複数本配置された前記p型熱電材料層を有し、かつ前記第2基板は、前記第2基板上に複数本配置された前記n型熱電材料層を有する、請求項4に記載の熱電変換素子。
  6. 前記p型熱電材料層及びn型熱電材料層はそれぞれ、前記基板に複数本配置されてなる、請求項1に記載の熱電変換素子。
  7. 前記導電性材料が前記コンタクトホールから前記p型熱電材料層及び前記n型熱電材料層の積層方向に突出した凸部を有し、
    前記p型熱電材料層及びn型熱電材料層と前記基板との間に、隙間が形成されている、請求項1に記載の熱電変換素子。
  8. 第1基板の一方の面にp型熱電材料層を形成し、かつ第1基板の一端部に第1基板を貫通する第1のコンタクトホールを形成する工程と、
    第2基板の一方の面にn型熱電材料層を形成し、かつ第2基板の他端部に第2基板を貫通する第2のコンタクトホールを形成する工程と、
    前記第1基板と前記第2基板とを積み重ねて、前記p型熱電材料層と前記n型熱電材料層とを、基板を介して交互に積層して、前記第1のコンタクトホール及び第2のコンタクトホールを、前記積層方向に直交する方向における前記基板の一端部と他端部とに交互に配置する工程と、を含み、
    前記コンタクトホールを介して互いに隣り合う前記p型熱電材料層と前記n型熱電材料層とが電気的に接続される熱電変換素子の製造方法。
  9. 前記第1基板及び前記第2基板に、前記p型熱電材料層及び前記n型熱電材料層をそれぞれ形成した後に、前記第1のコンタクトホール及び第2のコンタクトホールをそれぞれ形成し、
    前記第1のコンタクトホール及び前記第2のコンタクトホールの内部に、導電性材料を配置して、互いに隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する、請求項8に記載の製造方法。
  10. 前記第1基板及び前記第2基板に、前記第1のコンタクトホール及び前記第2のコンタクトホールをそれぞれ形成した後に、前記p型熱電材料層及び前記n型熱電材料層をそれぞれ形成し、
    前記第1のコンタクトホール及び前記第2のコンタクトホールの壁面を介して基板の裏側まで付着した前記p型熱電材料層及び前記n型熱電材料層によって、互いに隣り合う前記p型熱電材料層と前記n型熱電材料層とを電気的に接続する、請求項8に記載の製造方法。
JP2012541274A 2011-02-22 2012-01-23 熱電変換素子とその製造方法 Expired - Fee Related JP5308577B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012541274A JP5308577B2 (ja) 2011-02-22 2012-01-23 熱電変換素子とその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011035648 2011-02-22
JP2011035648 2011-02-22
JP2012541274A JP5308577B2 (ja) 2011-02-22 2012-01-23 熱電変換素子とその製造方法
PCT/JP2012/000376 WO2012114650A1 (en) 2011-02-22 2012-01-23 Thermoelectric conversion element and producing method thereof

Publications (2)

Publication Number Publication Date
JP2013522861A true JP2013522861A (ja) 2013-06-13
JP5308577B2 JP5308577B2 (ja) 2013-10-09

Family

ID=45811593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012541274A Expired - Fee Related JP5308577B2 (ja) 2011-02-22 2012-01-23 熱電変換素子とその製造方法

Country Status (5)

Country Link
US (1) US9219214B2 (ja)
EP (1) EP2534707B1 (ja)
JP (1) JP5308577B2 (ja)
CN (1) CN103299443B (ja)
WO (1) WO2012114650A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129082A1 (ja) * 2015-02-12 2016-08-18 株式会社日立製作所 薄膜熱電変換モジュールおよびその製造方法
JP2017050400A (ja) * 2015-09-02 2017-03-09 学校法人神奈川大学 フレキシブル熱電変換部材の作製方法
WO2017038717A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 熱電変換モジュール
JP2017063141A (ja) * 2015-09-25 2017-03-30 Tdk株式会社 薄膜熱電素子
JP2018018916A (ja) * 2016-07-27 2018-02-01 小島プレス工業株式会社 熱電変換モジュール及びその製造方法
WO2023224091A1 (ja) * 2022-05-18 2023-11-23 国立大学法人東京大学 熱電変換素子及び熱電変換デバイス

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869354B1 (en) 2013-06-11 2017-03-01 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion module
JP5984748B2 (ja) * 2013-07-01 2016-09-06 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
DE102013219541B4 (de) * 2013-09-27 2019-05-09 Evonik Degussa Gmbh Verbessertes Verfahren zur pulvermetallurgischen Herstellung thermoelektrischer Bauelemente
ES2487590B1 (es) * 2014-05-22 2015-06-02 Universidad Politécnica De Valencia Micro-generador termoeléctrico basado en contactos eléctricos pasantes
RU2601209C2 (ru) * 2014-11-17 2016-10-27 Александр Григорьевич Григорьянц Способ создания гибкого термоэлектрического модуля
USD816198S1 (en) 2015-01-28 2018-04-24 Phononic, Inc. Thermoelectric heat pump
CN105006996B (zh) * 2015-08-06 2018-11-27 浙江嘉熙科技有限公司 相变抑制传热温差发电器件及其制造方法
DK3196951T3 (en) 2016-01-21 2019-01-21 Evonik Degussa Gmbh RATIONAL PROCEDURE FOR POWDER METAL SURGICAL MANUFACTURING THERMOELECTRIC COMPONENTS
JP6399251B2 (ja) * 2016-03-31 2018-10-03 株式会社村田製作所 熱電変換素子および熱電変換素子の製造方法
DE102017217123A1 (de) * 2017-09-26 2019-03-28 Mahle International Gmbh Verfahren zum Herstellen eines thermoelektrischen Wandlers
USD833588S1 (en) 2017-10-11 2018-11-13 Phononic, Inc. Thermoelectric heat pump
CN110690339A (zh) * 2018-07-06 2020-01-14 新奥科技发展有限公司 温差发电模块及其制造方法
CN110071211B (zh) * 2019-03-11 2020-11-03 江苏大学 一种非对称的pn结热电偶结构及其参数确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303471A (ja) * 1997-04-28 1998-11-13 Sharp Corp 熱電素子及びそれを用いた熱電素子モジュール
JP2001119076A (ja) * 1999-08-10 2001-04-27 Matsushita Electric Works Ltd 熱電変換モジュール及びその製造方法
JP2009246296A (ja) * 2008-03-31 2009-10-22 Tdk Corp 熱電モジュール
JP2011199091A (ja) * 2010-03-23 2011-10-06 Kyocera Corp 熱電変換モジュール

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2261639B1 (ja) 1974-02-15 1976-11-26 Cit Alcatel
US5055140A (en) 1987-10-05 1991-10-08 Murata Mfg. Co., Ltd. Thermoelectric element using semiconductive ceramic material
JPH0193182A (ja) 1987-10-05 1989-04-12 Murata Mfg Co Ltd 熱起電力素子
JP3592395B2 (ja) 1994-05-23 2004-11-24 セイコーインスツル株式会社 熱電変換素子とその製造方法
JPH08222770A (ja) 1995-02-15 1996-08-30 Citizen Watch Co Ltd 熱電素子の製造方法
JP3958857B2 (ja) 1998-03-13 2007-08-15 株式会社小松製作所 熱電半導体材料の製造方法
JPH11274581A (ja) 1998-03-26 1999-10-08 Toshiba Corp 熱電変換素子およびその製造方法
DE10022726C2 (de) * 1999-08-10 2003-07-10 Matsushita Electric Works Ltd Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben
JP3927784B2 (ja) 2001-10-24 2007-06-13 北川工業株式会社 熱電変換部材の製造方法
DE10232376A1 (de) * 2002-07-17 2004-02-12 Infineon Technologies Ag Verfahren zum Herstellen einer Mäanderstruktur, Mäanderstruktur und thermoelektrisches Element
JP3803365B2 (ja) 2003-11-17 2006-08-02 松下電器産業株式会社 結晶膜の製造方法、結晶膜付き基体の製造方法、および熱電変換素子の製造方法
JP2006086510A (ja) 2004-08-17 2006-03-30 Nagoya Institute Of Technology 熱電変換装置及びその製造方法
JP2008108900A (ja) * 2006-10-25 2008-05-08 Toshiba Corp 熱電変換モジュールおよび熱電変換装置
JP2008205181A (ja) 2007-02-20 2008-09-04 Ngk Spark Plug Co Ltd 熱電モジュール
JP4983920B2 (ja) 2007-06-22 2012-07-25 株式会社村田製作所 熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法
CN101840989B (zh) 2009-03-18 2013-05-22 财团法人工业技术研究院 热电转换装置
JP2011035648A (ja) 2009-07-31 2011-02-17 Sanyo Electric Co Ltd 投写型映像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303471A (ja) * 1997-04-28 1998-11-13 Sharp Corp 熱電素子及びそれを用いた熱電素子モジュール
JP2001119076A (ja) * 1999-08-10 2001-04-27 Matsushita Electric Works Ltd 熱電変換モジュール及びその製造方法
JP2009246296A (ja) * 2008-03-31 2009-10-22 Tdk Corp 熱電モジュール
JP2011199091A (ja) * 2010-03-23 2011-10-06 Kyocera Corp 熱電変換モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129082A1 (ja) * 2015-02-12 2016-08-18 株式会社日立製作所 薄膜熱電変換モジュールおよびその製造方法
WO2017038717A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 熱電変換モジュール
JPWO2017038717A1 (ja) * 2015-08-31 2018-08-16 富士フイルム株式会社 熱電変換モジュール
JP2017050400A (ja) * 2015-09-02 2017-03-09 学校法人神奈川大学 フレキシブル熱電変換部材の作製方法
JP2017063141A (ja) * 2015-09-25 2017-03-30 Tdk株式会社 薄膜熱電素子
JP2018018916A (ja) * 2016-07-27 2018-02-01 小島プレス工業株式会社 熱電変換モジュール及びその製造方法
WO2023224091A1 (ja) * 2022-05-18 2023-11-23 国立大学法人東京大学 熱電変換素子及び熱電変換デバイス

Also Published As

Publication number Publication date
CN103299443B (zh) 2016-04-27
WO2012114650A1 (en) 2012-08-30
EP2534707B1 (en) 2016-01-20
US9219214B2 (en) 2015-12-22
US20130284228A1 (en) 2013-10-31
EP2534707A1 (en) 2012-12-19
CN103299443A (zh) 2013-09-11
JP5308577B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5308577B2 (ja) 熱電変換素子とその製造方法
JP6114398B2 (ja) 熱電モジュール
US7871847B2 (en) System and method for high temperature compact thermoelectric generator (TEG) device construction
JP3927784B2 (ja) 熱電変換部材の製造方法
KR101680422B1 (ko) 써멀비아전극을 구비한 열전모듈 및 그 제조방법
KR101888113B1 (ko) 열전 변환 장치의 제조 방법
JP4383056B2 (ja) 熱電素子モジュールの製造方法
JP4284589B2 (ja) 熱電半導体の製造方法、熱電変換素子の製造方法及び熱電変換装置の製造方法
JP5373225B2 (ja) 熱電変換素子モジュールの製造方法
JP2003282970A (ja) 熱電変換装置及び熱電変換素子、並びにこれらの製造方法
KR101593498B1 (ko) 소결층을 포함하는 열전모듈 및 그 제조 방법
KR20160002608A (ko) 써멀비아전극을 구비한 열전모듈 및 그 제조방법
JP2018032687A (ja) 熱電モジュール
KR20170019109A (ko) 열전모듈의 제조방법 및 이에 의해 제조된 열전모듈
KR20150084314A (ko) 써멀비아전극을 구비한 열전모듈 및 그 제조방법
JP4124150B2 (ja) 熱電モジュールの製造方法
JP2990352B2 (ja) 熱電素子の製造方法
JP2893258B1 (ja) 熱電素子及びその製造方法
JP2009016495A (ja) 熱電素子およびその製造方法
JP2004072020A (ja) 熱電変換装置及びその製造方法
JP2003017766A (ja) 熱電素子の製造方法
KR20150084315A (ko) 써멀비아전극을 구비한 열전모듈 및 그 제조방법
Ngan et al. Bismuth Telluride Modules
JP2024072793A (ja) 積層型熱電変換素子とその製造方法
KR20230094293A (ko) 유연성 열전모듈

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees