JP2013191734A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2013191734A
JP2013191734A JP2012057175A JP2012057175A JP2013191734A JP 2013191734 A JP2013191734 A JP 2013191734A JP 2012057175 A JP2012057175 A JP 2012057175A JP 2012057175 A JP2012057175 A JP 2012057175A JP 2013191734 A JP2013191734 A JP 2013191734A
Authority
JP
Japan
Prior art keywords
termination
region
semiconductor device
trench
trenches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012057175A
Other languages
English (en)
Other versions
JP5758824B2 (ja
Inventor
Hideshi Takatani
秀史 高谷
Shigemasa Soejima
成雅 副島
Yukihiko Watanabe
行彦 渡辺
Jun Sakakibara
純 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2012057175A priority Critical patent/JP5758824B2/ja
Publication of JP2013191734A publication Critical patent/JP2013191734A/ja
Application granted granted Critical
Publication of JP5758824B2 publication Critical patent/JP5758824B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】半導体装置の耐圧特性を向上することを課題とする。
【解決手段】半導体装置100は、セルエリア105を取囲む終端エリア107を備えている。終端エリア107は、終端トレンチ161〜163と、拡散領域181〜186を備えている。終端トレンチ161〜163は、半導体基板102の表面からボディ領域141を貫通してドリフト領域112に達すると共に、その内部に酸化膜171が形成されている。終端トレンチ161〜163のそれぞれの底部には、ドリフト領域112に囲まれるとともにp型であるフローティング領域151が形成されている。拡散領域181〜186は、p型であり、終端トレンチ163より外周側の領域に形成されている。拡散領域181〜186の下端部の位置は、フローティング領域151の位置よりも上方であって、ボディ領域141の下端部よりも下方である。
【選択図】 図2

Description

本明細書に開示の技術は、半導体装置の耐圧を向上する技術に関する。特に、シリコンカーバイド(以下、SiCと略す)の半導体基板を用いた半導体装置であって、半導体構造(例えば、MOSFET構造、IGBT構造あるいはダイオード構造等)が作り込まれているセルエリアと、セルエリアを取り囲んで拡がっている終端絶縁領域(終端エリア)とを有する半導体装置の耐圧を向上することができる技術に関する。
第2導電型(例えばn型)のドリフト領域の表面に、第1導電型(例えばp型)のボディ領域が積層されている半導体基板に、半導体装置として機能する半導体構造(MOSFET、IGBT、ダイオード等)を作り込む技術が発達している。この種の半導体装置では、MOSFETやIGBTやダイオード等として機能する半導体構造が作り込まれている範囲(セルエリア)の外側に、セルエリアを取り囲む終端絶縁領域(終端エリア)を形成することによって、半導体装置の耐圧が高められることが知られている。
特許文献1には、半導体装置の耐圧を高める技術として、トレンチの底部にフローティング領域を形成する構造が開示されている。この構造では、半導体基板には、n型ドリフト領域の上面にp型のボディ領域が積層されている。また、セルエリアの外周に環状にトレンチが形成される。トレンチは半導体基板の上面からボディ領域を貫通して形成されており、トレンチの底部はドリフト層に到達している。トレンチの底部には、p型のフローティング領域が形成されている。この構造では、ゲート電圧のスイッチオフ時に、p型のフローティング領域の下端部からn型のドレイン領域に向けて空乏層が広がっていく。すなわち、フローティング領域によってドリフト領域の空乏化を促進することができる。これにより、半導体装置の高耐圧化を図ることができる。
なお、上記技術に関連して、特許文献2が開示されている。
特許4538211号公報 特開2011−114028号公報
特許文献1に開示の半導体装置をSiC基板を用いて作成した場合には、最外周のフローティング領域の近傍に、空乏層の分布プロファイルの曲率半径が小さい部分が存在する場合がある。空乏層の分布プロファイルにおいて、曲率半径が小さい部分(曲がり具合がきつい部分)には、電界が集中し易い。電解集中が生じると、最外周のフローティング領域でブレークダウンが発生することになるため、半導体装置の高耐圧化を図ることが困難となる。
本明細書に開示の技術は、半導体装置の耐圧を高めることができる新規な耐圧構造を提供する。
本明細書に開示される半導体装置は、セルエリアと、そのセルエリアを取囲んでいる終端エリアを有するSiCの半導体基板を備えている。終端エリアは、1又は複数の終端トレンチと、1又は複数の拡散領域とを備えている。1又は複数の終端トレンチはセルエリアを取囲んでいる。1又は複数の終端トレンチは、その最外周側に第1の終端トレンチを有している。第1の終端トレンチより内周側の領域の半導体基板では、第2導電型のドリフト領域の表面に第1導電型のボディ領域が積層されている。1又は複数の終端トレンチは、半導体基板の表面からボディ領域を貫通してドリフト領域に達すると共に、その内部に絶縁層が形成されている。1又は複数の終端トレンチのそれぞれの底部には、ドリフト領域に囲まれるとともに第1導電型であるフローティング領域が形成されている。第1の終端トレンチより外周側の領域の半導体基板では、ボディ領域が形成されていない。1又は複数の拡散領域は、第1導電型であり、第1の終端トレンチより外周側の領域に形成されている。1又は複数の拡散領域は、半導体装置を平面視したときに1又は複数の終端トレンチを取り囲んでいるとともに、半導体基板の表面から下方側へ伸びている形状を有している。1又は複数の拡散領域の下端部の位置は、フローティング領域の位置よりも上方であって、ボディ領域の下端部よりも下方である。
上記の半導体装置では、最外周側の第1の終端トレンチのさらに外周側に、拡散領域が形成されている。また拡散領域は第1導電型であり、第2導電型のドリフト領域と接している。よって、拡散領域からドレイン領域に向けて空乏層を広げることができる。また、拡散領域の下端部の位置は、ボディ領域の下端部よりも下方に配置されている。これにより、最外周側の第1の終端トレンチの底部に設けられているフローティング領域から拡がる空乏層を、拡散領域から拡がる空乏層と繋げることができる。また、拡散領域の下端部の位置は、フローティング領域の位置よりも上方に位置している。これにより、半導体装置の内周側から外周側に向かうに従って、徐々に半導体基板の内部から表面に向かうように、空乏層の分布プロファイルの曲率半径を大きくする(分布を滑らかにする)ことができる。これにより、最外周側の第1の終端トレンチの底部に設けられているフローティング領域の部分に、電界が集中してしまう事態を防止できる。よって、半導体装置の高耐圧化を図ることが可能となる。
半導体装置を示す平面図である。 図1のII−II線の断面図である。 本明細書に開示の半導体装置における空乏層の分布プロファイルを示す図である。 比較説明用の半導体装置における空乏層の分布プロファイルを示す図である。 半導体装置の製造プロセスを示す図である。 半導体装置の製造プロセスを示す図である。
以下に説明する実施例の主要な特徴を列記しておく。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。
(特徴1)終端エリアは、複数の終端トレンチを有していてもよい。複数の終端トレンチは、第1の終端トレンチの内周側に隣接して配置されている第2の終端トレンチを有していてもよい。第1の終端トレンチの外周側に隣接して配置されている拡散領域と第1の終端トレンチとの間の第1距離は、第1の終端トレンチと第2の終端トレンチとの間の第2距離よりも小さくてもよい。第1距離が第2距離よりも小さいことによって、最外周側の第1の終端トレンチの底部に設けられているフローティング領域から拡がる空乏層を、拡散領域から拡がる空乏層と繋げやすくすることができる。よって、最外周側の第1の終端トレンチの底部に設けられているフローティング領域近傍における空乏層の分布プロファイルの曲率半径を、大きくすることができる。これにより、第1の終端トレンチのフローティング領域に、電界が集中してしまう事態を防止できる。
(特徴2)拡散領域の数は、終端トレンチの数よりも多くてもよい。これにより、拡散領域から拡がる空乏層を、半導体装置の内周側から外周側に向かうに従って、徐々に半導体基板の内部から表面に向かうように形成することができる。よって、最外周側の第1の終端トレンチの底部に設けられているフローティング領域近傍における空乏層の分布プロファイルの曲率半径を、大きくすることができる。
(特徴3)拡散領域の不純物濃度は、フローティング領域の不純物濃度よりも低くてもよい。拡散領域の下端部の位置は、フローティング領域の位置よりも上方に位置している。また、拡散領域の不純物濃度がフローティング領域の不純物濃度よりも低いため、フローティング領域から拡がる空乏層よりも拡散領域から拡がる空乏層をより拡がりやすくすることができる。これにより、最外周側の第1の終端トレンチの底部に設けられているフローティング領域から拡がる空乏層の下端部の位置と、拡散領域から拡がる空乏層の下端部の位置との深さ方向の差を縮小することができるため、フローティング領域から拡がる空乏層と拡散領域から拡がる空乏層とが繋がる部分における空乏層の分布プロファイルの曲率半径を、大きくすることができる。
(特徴4)終端エリアが形成されている領域の表面が絶縁層で被覆されていてもよい。1又は複数の拡散領域が形成されている部分の絶縁層の表面が導電層で被覆されていてもよい。導電層がソース電極と接続されていてもよい。拡散領域が形成されている部分の上方には、絶縁層を介して導電層が形成されている。また導電層には、ソース電極に印加される電位と同電位の電位が印加されている。これにより、フィールドプレート構造を形成することができる。そして、拡散領域が形成されている部分にフィールドプレート構造を形成することで、終端トレンチが形成されている部分にフィールドプレート構造を形成する場合に比して、導電層の下方に存在する絶縁層の厚さを薄くすることができる。よって、フィールドプレートが奏する、半導体中に形成される空乏層を拡げて電界集中を防止する効果を、より高めることができる。
(特徴5)複数の終端トレンチは、第2の終端トレンチの内周側に隣接して配置されている第3の終端トレンチを有していてもよい。前記第2距離は、第2の終端トレンチと第3の終端トレンチとの間の第3距離よりも小さくてもよい。第2の終端トレンチと第1の終端トレンチとを近づけることによって、第2の終端トレンチの底部に設けられているフローティング領域から拡がる空乏層が、第1の終端トレンチの底部に設けられているフローティング領域から拡がる空乏層に与える影響を、より大きくすることができる。これにより、第1の終端トレンチの底部に設けられているフローティング領域近傍における空乏層の分布プロファイルの曲率半径を、大きくする効果を得ることができる。
(特徴6)ボディ領域は不純物打ち込みにより形成されており、拡散領域に打ち込まれる不純物の原子質量は、ボディ領域に打ち込まれる不純物の原子質量よりも小さくてもよい。不純物を打ち込む際の注入深さは、加速電圧や不純物の原子質量によって決まる。同じ加速電圧の場合は、不純物の原子質量が軽いほど深く注入される。これにより、拡散領域の下端部の位置を、ボディ領域の下端部よりも下方にすることができる。
(特徴7)拡散領域に打ち込まれる不純物はボロンであり、ボディ領域に打ち込まれる不純物はアルミニウムであってもよい。ボロンの原子質量は、アルミニウムの原子質量よりも小さい。これにより、拡散領域の下端部の位置を、ボディ領域の下端部よりも下方にすることができる。
(特徴8)拡散領域の数は、終端トレンチの数の2倍以上であってもよい。これにより、最外周側の第1の終端トレンチの底部に設けられているフローティング領域近傍における空乏層の分布プロファイルの曲率半径を、大きくすることができる。
以下、図面を参照しつつ本発明を具現化した半導体装置の実施例を詳細に説明する。図1は、第1実施例の半導体装置100の平面図である。図2は、図1のII−II線の断面図である。なお正確には、図2のI−I線の断面図が図1に該当する。ただし、図1において、ドリフト領域112に対するハッチングは省略されている。
半導体装置100は、図1に示すように、外周104を有する半導体基板102を利用して製造されている。半導体基板102は、トランジスタ動作をする半導体構造が作り込まれているセルエリア105(図1中の破線で示す枠X内)と、そのセルエリア105を取り囲む終端エリア107に区分されている。
セルエリア105には、6本のメイントレンチ113が、図1の上下方向に伸びるように形成されている。なおメイントレンチ113の本数は6本に限られず、任意の数に設定することが可能である。終端エリア107には、セルエリア105を囲むように伸びる3重の終端トレンチ161〜163が形成されている。終端トレンチ161〜163は、外周104に沿ってセルエリア105を一巡する閉ループ形状となっている。また終端エリア107には、終端トレンチ161〜163を囲むように伸びる6重の拡散領域181〜186が形成されている。拡散領域181〜186は、外周104に沿って終端トレンチ161〜163を一巡する閉ループ形状となっている。
図2を参照して、半導体装置100の内部構造を説明する。半導体装置100は、シリコンカーバイド(以下、SiCと略す)が用いられた半導体装置である。セルエリア105の構造について説明する。図2に示すように、セルエリア105では、裏面側から表面側(図の下側から上側)に向けて、n+ドレイン領域111、n−ドリフト領域112、p−ボディ領域141の順に積層されている。ボディ領域141は、イオン注入により形成されている。注入されるイオン種は、例えばアルミニウム(Al)であってもよい。
メイントレンチ113は、半導体基板102の表面101からボディ領域141を貫通してドリフト領域112に達している。隣接するメイントレンチ113同士の間隔は均一である。各々のメイントレンチ113の側壁は、ゲート酸化膜で被覆されている。また各々のメイントレンチ113の底面には、酸化膜171aが埋め込まれている。各々のメイントレンチ113には、ゲート酸化膜および酸化膜171aによって半導体基板102から絶縁された状態で、ゲート電極122が埋め込まれている。ゲート電極122の材料は、ポリシリコンである。各々のゲート電極122は、ボディ領域141の表面からボディ領域141を貫通してドリフト領域112の深さにまで達している。
半導体基板102の表面101において、メイントレンチ113に隣接する位置には、n+ソース領域131が形成されている。また、ソース領域131同士の間隙には、p+ボディコンタクト領域132が形成されている。ソース領域131とボディコンタクト領域132の表面には、ソース電極133が形成されている。ソース電極133はソース配線Sに接続されている。なお、終端トレンチ161によって取り囲まれた領域の外側には、ソース電極133が形成されていない。
ゲート電極122は、ゲート配線Gに接続されている。ゲート電極122にはゲート電圧が印加される。ゲート電極122は、ソース電極133とソース配線Sから絶縁されている。ゲート電圧は、セルエリア105に電流を流すか否かを制御するための電圧である。n+ドレイン領域111は、ドレイン配線Dに接続されている。ドレイン配線Dはプラスの電位に接続され、ソース配線Sは接地されて用いられる。セルエリア105内には、ソース領域131とボディ領域141とドリフト領域112とドレイン領域111とゲート電極122によって、縦型のパワーMOSFETトランジスタ構造が形成されている。
各メイントレンチ113の底面に沿って、p型不純物を含むフローティング領域151が形成されている。フローティング領域151は、ドリフト領域112内のメイントレンチ113の底面を囲む範囲に形成されている。フローティング領域151の断面は、メイントレンチの底面を中心とする略円形となっており、その直径はメイントレンチ113の幅よりも大きい。フローティング領域151は、メイントレンチ113の側面よりも側方に張り出した形状を有している。ただし、隣接するフローティング領域151同士はつながっていない。隣接するフローティング領域151の間には、十分なスペースがある。よって、半導体装置100のオン状態において、フローティング領域151の存在がドレイン電流に対する妨げとなることはない。また、ドリフト領域112の上端は、フローティング領域151の上端よりも上方に位置している。フローティング領域151は、イオン注入により形成されている。注入されるイオン種は、例えばボロン(B)であってもよい。フローティング領域151のp型不純物の濃度は、半導体装置の分野において一般的に用いられる不純物の濃度よりも高くてもよい。例えば、フローティング領域151のp型不純物の濃度は、1×1018(cm−3)以上であってもよい。フローティング領域151のp型不純物の濃度を高くすると、フローティング領域151近傍でブレークダウンが発生しやすくなる場合があるが、拡散領域181〜186が存在していることによって、フローティング領域151近傍でのブレークダウンの発生を防止することができる。
終端エリア107の構造について説明する。終端エリア107は、内周側終端エリア107aと、外周側終端エリア107bを備えている。内周側終端エリア107aは、終端トレンチ161〜163を備えているエリアである。外周側終端エリア107bは、拡散領域181〜186を備えているエリアである。
内周側終端エリア107aの構造について説明する。図2に示すように、内周側終端エリア107aでは、裏面側から表面側(図の下側から上側)に向けて、ドレイン領域111、ドリフト領域112、ボディ領域141の順に積層されている。ボディ領域141は、イオン注入により形成されている。終端トレンチ161〜163は、半導体基板102の表面101からボディ領域141を貫通して、ドリフト領域112に達している。終端トレンチ161〜163の深さは、互いに同一とされている。また終端トレンチ161〜163の深さは、メイントレンチ113と同じ深さとされている。終端トレンチ161〜163の内部には、酸化膜171が埋め込まれている。また内周側終端エリア107a内の半導体基板102の表面101は、酸化膜171によって被覆されている。
終端トレンチ161〜163の各々の底面に沿って、p型不純物を含むフローティング領域151が形成されている。フローティング領域151の断面は、終端トレンチ161〜163の底面を中心とする略円形となっており、その直径は終端トレンチ161〜163の幅よりも大きい。フローティング領域151は、終端トレンチ161〜163の側面よりも側方に張り出した形状を有している。ただし、隣接するフローティング領域151同士はつながっていない。
終端トレンチ163は、最外周側の終端トレンチである。終端トレンチ162は、終端トレンチ163の内周側に隣接して配置されている終端トレンチである。終端トレンチ161は、最内周側の終端トレンチである。終端トレンチ163と終端トレンチ162との間の距離W2は、終端トレンチ162と終端トレンチ161との間の距離W3よりも小さい。
外周側終端エリア107bの構造について説明する。図2に示すように、外周側終端エリア107bでは、裏面側から表面側(図の下側から上側)に向けて、ドレイン領域111、ドリフト領域112の順に積層されている。外周側終端エリア107bには、ボディ領域が形成されていない。外周側終端エリア107bには、拡散領域181〜186が形成されている。拡散領域181〜186は、半導体基板102の表面101から下方側へ伸びている形状を有している。拡散領域181〜186は、p型不純物を含む領域である。拡散領域181〜186は、イオン注入により形成されている。注入されるイオン種は、例えばボロン(B)であってもよい。拡散領域181〜186の数(6個)は、終端トレンチ161〜163の数(3個)の2倍の数とされている。p型拡散領域181〜186が終端トレンチ161〜163の外周をリング状に取り囲むように形成されているため、p型拡散領域181〜186によって、FLR(Field Limiting Ring)構造が形成される。
拡散領域181〜186の深さは、互いに同一とされている。拡散領域181〜186の下端部の位置P1は、フローティング領域151の位置P2よりも上方側に位置している。また位置P1は、ボディ領域141の下端部の位置P3よりも下方側に位置している。拡散領域181は、最内周側の拡散領域である。拡散領域181は、終端トレンチ163に隣接して配置されている。拡散領域181と終端トレンチ163との間の距離W1は、終端トレンチ163と終端トレンチ162との間の距離W2よりも小さい。
外周側終端エリア107b内の半導体基板102の表面101は、酸化膜171によって被覆されている。外周側終端エリア107b内の酸化膜171の表面には、導電層190が形成されている。導電層190は、ソース配線Sに接続されているため、導電層190には、ソース電極133と同一の電圧が印加されている。これにより、外周側終端エリア107bの表面部に、フィールドプレート構造が形成されている。
半導体装置100の動作を説明する。半導体装置100は、ソース配線Sが接地されてGND電位に維持され、ドレイン配線Dに正の電圧が印加された状態で用いられる。ゲート電極122に正の電圧を加えると、ゲート電極122に向かい合う領域において、ボディ領域141が反転し、チャネルが形成され、ソース領域131とドレイン領域111の間が導通する。ゲート電極122に正の電圧を加えなければ、ソース領域131とドレイン領域111の間に電流が流れない。これにより半導体装置100は、トランジスタ動作をする。
本明細書に開示されている半導体装置100の効果を説明する。図3および図4を用いて、拡散領域181〜186による耐圧向上の効果を説明する。図3の半導体装置100は、拡散領域181〜186が形成されている、本明細書に開示の半導体装置である。一方、図4に示す半導体装置100aは、拡散領域が形成されていない、比較説明用の半導体装置である。図3および図4では、内周側終端エリア107aと外周側終端エリア107bとの境界近傍の断面における、空乏層の広がりを示している。図3および図4では、ゲート電圧のスイッチオフ後、空乏層が伸びきった状態について示している。また、半導体装置に逆バイアス電圧が印加されている場合について示している。
図4の比較説明用の半導体装置100aにおいて、ドリフト領域112内では、ドリフト領域112とボディ領域141とのPN接合部から空乏層が形成されるとともに、ドリフト領域112とフローティング領域151とのPN接合部から空乏層が形成される。そして、複数のフローティング領域151の各々から形成された空乏層は、互いに繋がる。すると図4に示すように、空乏層が分布プロファイルR1(図4)のように分布する。空乏層の分布プロファイルR1では、最外周の終端トレンチ163のフローティング領域151の近傍に、分布プロファイルR1の曲率半径が小さい(曲がり具合がきつい)領域A1が存在する。空乏層の分布プロファイルにおいて、曲率半径が小さい部分には電界が集中し易いため、領域A1の近傍で電解集中が生じる。すると、最外周の終端トレンチ163のフローティング領域151でブレークダウンが発生することになるため、半導体装置100aの高耐圧化を図ることが困難となる場合がある。
一方、図3の本明細書に開示されている半導体装置100では、終端トレンチ163の外周側に拡散領域181〜186が形成されている。また拡散領域181〜186はp型の半導体領域であり、n型のドリフト領域112とPN接合している。よって、拡散領域181〜186からドリフト領域112に向けて空乏層を広げることができる。また、拡散領域181〜186の下端部の位置P1は、ボディ領域141の下端部の位置P3よりも下方に配置されている。これにより、最外周側の終端トレンチ163の底部に設けられているフローティング領域151から拡がる空乏層を、拡散領域181〜186から拡がる空乏層と繋げることができる。すると図3に示すように、空乏層が分布プロファイルR2(図3)のように分布する。空乏層の分布プロファイルR2は、内周側終端エリア107aから外周側終端エリア107bに向かうに従って、徐々に半導体基板102の内部から表面101に向かうようなプロファイルを有している。これにより、最外周の終端トレンチ163のフローティング領域151の近傍の領域A2における分布プロファイルR2の曲率半径を、前述の領域A1における分布プロファイルR1の曲率半径よりも大きくする(曲がり具合を緩く、滑らかにする)ことができる。よって、最外周の終端トレンチ163のフローティング領域151での電界集中を緩和することができる。最外周の終端トレンチ163の近傍でブレークダウンが発生してしまう事態を防止することができるため、半導体装置100の高耐圧化を図ることが可能となる。
本明細書に開示されている半導体装置100では、拡散領域181と終端トレンチ163との間の距離W1が、終端トレンチ163と終端トレンチ162との間の距離W2よりも小さい。これにより、最外周側の終端トレンチ163の底部に設けられているフローティング領域151から拡がる空乏層を、拡散領域181〜186から拡がる空乏層と繋げやすくすることができる。よって、最外周側の終端トレンチ163の底部に設けられているフローティング領域151近傍における、空乏層の分布プロファイルR2の曲率半径を、大きくすることができる。これにより、終端トレンチ163のフローティング領域151に、電界が集中してしまう事態を防止できる。
本明細書に開示されている半導体装置100では、拡散領域181〜186の数(6個)は、終端トレンチ161〜163の数(3個)の2倍とされている。これにより、外周側終端エリア107bにおいて、拡散領域181〜186から拡がる空乏層を、半導体装置100の内周側から外周側に向かうに従って、徐々に半導体基板の内部から表面101に向かうように形成することができる。よって、最外周側の終端トレンチ163の底部に設けられているフローティング領域151近傍における、空乏層の分布プロファイルR2の曲率半径を、大きくすることができる。
本明細書に開示されている半導体装置100では、外周側終端エリア107b内の半導体基板102の表面101には、酸化膜171を介して導電層190が形成されている。また導電層190には、ソース配線Sに印加される電位と同電位の電位が印加されている。これにより、フィールドプレート構造を形成することができるため、外周側終端エリア107b内のドリフト領域112の空乏化を促進することができる。また、内周側終端エリア107aにフィールドプレート構造を形成する場合には、導電層190の下方に存在する絶縁層の厚さは、表面101を被覆する酸化膜171の厚さと終端トレンチに埋め込まれている酸化膜171の厚さの合計値となる。一方、本明細書に開示されている半導体装置100では、外周側終端エリア107bにフィールドプレート構造を形成しているため、導電層190の下方に存在する絶縁層の厚さは、表面101を被覆する酸化膜171の厚さのみとすることができる。これにより、内周側終端エリア107aにフィールドプレート構造を形成する場合に比して、導電層190の下方に存在する絶縁層の厚さを薄くすることができるため、フィールドプレートが奏する効果をより高めることが可能となる。
本明細書に開示されている半導体装置100では、終端トレンチ163と終端トレンチ162との間の距離W2は、終端トレンチ162と終端トレンチ161との間の距離W3よりも小さい。終端トレンチ162と終端トレンチ163との距離を近づけることによって、終端トレンチ162の底部に設けられているフローティング領域151から拡がる空乏層が、終端トレンチ163の底部に設けられているフローティング領域151から拡がる空乏層に与える影響を、より大きくすることができる。これにより、終端トレンチ163の底部に設けられているフローティング領域151近傍における、空乏層の分布プロファイルR2の曲率半径を、大きくする効果を得ることができる。
半導体装置100の製造プロセスを図5および図6を用いて説明する。図5および図6は、図1のII−II線の断面図である。まず、半導体基板102の表面101に、CVD(Chemical Vapor Deposition)法によって酸化膜層を形成し、酸化膜層の上面にレジスト層を形成する。そしてフォトエッチング技術により、セルエリア105および内周側終端エリア107aに対応した開口部を酸化膜層に形成する。なお、フォトエッチング技術とは、フォトリソグラフィからRIE等のエッチングまでの一連の処理を意味する。フォトエッチング技術では従来公知の方法を用いることができるため、ここでは詳細な説明を省略する。次に、酸化膜層をマスクとして、セルエリア105および内周側終端エリア107aの全面に、アルミニウムイオンを注入する。これにより、セルエリア105および内周側終端エリア107aには、ドリフト領域112上にボディ領域141が形成される。なお、外周側終端エリア107bには、ボディ領域141が形成されない。
ソース領域131およびボディコンタクト領域132が形成される。フォトエッチング技術により、セルエリア105に複数のメイントレンチ113が形成され、内周側終端エリア107aに終端トレンチ161〜163が形成される。これにより、図5に示す構造が形成される。
半導体基板102の表面101に、酸化膜層201を形成する。フォトエッチング技術を用いて、メイントレンチ113および終端トレンチ161〜163に対応した開口部を、酸化膜層201に形成する。酸化膜層201をマスクとして、メイントレンチ113および終端トレンチ161〜163を形成する領域に、ボロンイオンを注入する。これにより図6に示すように、終端トレンチ161〜163の各々の底面にフローティング領域151が形成されるとともに、拡散領域181〜186が形成される。
酸化膜層201を除去した後に、CVD法によって、半導体基板102の表面101の全面に所定厚さの酸化膜171が堆積される。これにより、メイントレンチ113および終端トレンチ161〜163の内部に、酸化膜171が埋め込まれる。酸化膜171は、例えばTEOS(Tetra Ethyl Ortho Silicate)、BPSG(Boron Phosphor Silicate Glass)、SOG(Spin on Glass)を原料として用いても良い。フォトエッチング技術により、セルエリア105内のボディ領域141の表面が露出される。また、メイントレンチ113内に充填されている酸化膜171aの高さ調節が行なわれる。メイントレンチ113の壁面に、熱酸化工程によって熱酸化膜が形成される。これにより、ゲート酸化膜が形成される。次に、メイントレンチ113がポリシリコンで充填されることで、ゲート電極122が形成される。最後にソース電極133、導電層190、およびドレイン電極を形成することにより、図2に示した半導体装置100が完成する。
本明細書に開示されている半導体装置100の製造プロセスにより得られる効果を説明する。本明細書に開示されている製造プロセスでは、終端トレンチ161〜163の各々の底面に形成されるフローティング領域151と、拡散領域181〜186とを、1回のイオン注入工程で同時に形成することができる。よって、拡散領域181〜186を形成するための追加工程は不要であるため、半導体装置100の製造工程を簡略化することができる。
不純物を打ち込む際の注入深さは、加速電圧が同等である場合には、不純物の原子質量が小さいほど深くすることができる。本明細書に開示されている半導体装置100の製造プロセスでは、拡散領域181〜186に打ち込まれる不純物(ボロン)の原子質量は、ボディ領域141に打ち込まれる不純物(アルミニウム)の原子質量よりも小さくされている。これにより、拡散領域181〜186の下端部の位置P1を、ボディ領域141の下端部の位置P3よりも下方にすることができる。
以上、本明細書に開示の技術の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
拡散領域181〜186のp型不純物の濃度は、フローティング領域151のp型不純物の濃度より低くてもよい。拡散領域181〜186の下端部の位置P1は、フローティング領域151の位置P2よりも上方に位置している。ここで、拡散領域181〜186の不純物濃度がフローティング領域151の不純物濃度よりも低いと、拡散領域181〜186から拡がる空乏層の方を、フローティング領域151から拡がる空乏層よりも拡がりやすくすることができる。これにより、最外周側の終端トレンチ163の底部に設けられているフローティング領域151から拡がる空乏層の下端部の位置と、拡散領域181〜186から拡がる空乏層の下端部の位置との深さ方向の差を縮小することができる。よって、フローティング領域151から拡がる空乏層と拡散領域181〜186から拡がる空乏層とが繋がる部分(終端トレンチ163と拡散領域181との間の領域)における空乏層の分布プロファイルの曲率半径を、大きくすることができる。また、拡散領域181〜186のp型不純物の濃度を低下させるほど、拡散領域181〜186へのイオン注入工程に必要な作業時間を減少させることや、イオン注入時に発生してしまう結晶欠陥を減少させることができる。
拡散領域181〜186の数(6個)が、終端トレンチ161〜163の数(3個)の2倍である場合を説明したが、この形態に限られず、2倍以上の数であってもよい。拡散領域の数を増加させるほど、拡散領域から拡がる空乏層の分布プロファイルを滑らかにすることができる。
半導体装置100の製造に使用される半導体はSiCに限らない。GaN、GaAs等の他の種類の半導体であってもよい。また、本実施形態はパワーMOSFET構造について説明したが、この形態に限られない。本明細書に開示の技術をIGBT構造に適用しても、同様の効果を得ることができる。
また本明細書に実施例として開示した半導体装置100では、終端トレンチが3個形成されており、拡散領域が6個形成されているが、この数に限られない。終端トレンチや拡散領域の数を増加させるほど、耐圧を向上させることができる。一方、終端トレンチや拡散領域の数を増加させるほど、終端エリア107のスペースが広くなり、半導体装置100全体のコンパクト化の妨げとなる。よって、終端トレンチおよび拡散領域の数は、必要な耐圧に合わせて決定することが好ましい。
また、各半導体領域については、P型とN型とを入れ替えてもよい。また、絶縁領域については、酸化膜に限らず、窒化膜等の他の種類の絶縁膜でもよいし、複合膜でもよい。
なお、一枚の半導体基板に一個の半導体装置100のみが形成されるとは限られない。一枚の半導体基板に複数個の半導体装置100が形成されることもある。あるいは一枚の半導体基板に半導体装置100とその他の半導体装置が一緒に形成されることもある。この場合の終端エリア107は、半導体装置100を形成するセルアリア105を取り囲む範囲であり、必ずしも半導体基板の外周に沿って伸びる範囲であるとは限られない。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
100: 半導体装置、102: 半導体基板、105: セルエリア、107: 終端エリア、111: ドレイン領域、112: ドリフト領域、113: メイントレンチ、122: ゲート電極、133: ソース電極、141: ボディ領域、151:フローティング領域、161〜163:終端トレンチ、171:酸化膜

Claims (6)

  1. セルエリア{105}と、そのセルエリアを取囲んでいる終端エリア{107}を有するSiCの半導体基板を備えており、
    終端エリアは、1又は複数の終端トレンチ{161−163}と、1又は複数の拡散領域とを備えており、
    1又は複数の終端トレンチ{161−163}はセルエリアを取囲んでおり、
    1又は複数の終端トレンチは、その最外周側に第1の終端トレンチ{163}を有しており、
    第1の終端トレンチより内周側の領域の半導体基板では、第2導電型{n型}のドリフト領域{112}の表面に第1導電型{p型}のボディ領域{141}が積層されており、
    1又は複数の終端トレンチは、半導体基板の表面からボディ領域を貫通してドリフト領域に達すると共に、その内部に絶縁層{171}が形成されており、
    1又は複数の終端トレンチのそれぞれの底部には、ドリフト領域に囲まれるとともに第1導電型{p型}であるフローティング領域{151}が形成されており、
    第1の終端トレンチより外周側の領域の半導体基板では、ボディ領域が形成されておらず、
    1又は複数の拡散領域は、第1導電型{p型}であり、第1の終端トレンチより外周側の領域に形成されており、
    1又は複数の拡散領域は、半導体装置を平面視したときに1又は複数の終端トレンチを取り囲んでいるとともに、半導体基板の表面から下方側へ伸びている形状を有しており、
    1又は複数の拡散領域の下端部の位置は、フローティング領域の位置よりも上方であって、ボディ領域の下端部よりも下方であることを特徴とする半導体装置。
  2. 終端エリアは、複数の終端トレンチ{161−163}を有しており、
    複数の終端トレンチは、第1の終端トレンチ{163}の内周側に隣接して配置されている第2の終端トレンチ{162}を有しており、
    第1の終端トレンチの外周側に隣接して配置されている拡散領域と第1の終端トレンチとの間の第1距離{W1}は、第1の終端トレンチと第2の終端トレンチとの間の第2距離{W2}よりも小さいことを特徴とする請求項1に記載の半導体装置。
  3. 拡散領域の数は、終端トレンチの数よりも多いことを特徴とする請求項1または2に記載の半導体装置。
  4. 拡散領域の不純物濃度は、フローティング領域の不純物濃度よりも低いことを特徴とする請求項1〜3の何れか1項に記載の半導体装置。
  5. 終端エリアが形成されている領域の表面が絶縁層で被覆されており、
    1又は複数の拡散領域が形成されている部分の絶縁層の表面が導電層{190}で被覆されており、
    導電層がソース電極と接続されていることを特徴とする請求項1または2に記載の半導体装置。
  6. 複数の終端トレンチは、第2の終端トレンチ{162}の内周側に隣接して配置されている第3の終端トレンチ{161}を有しており、
    前記第2距離は、第2の終端トレンチと第3の終端トレンチとの間の第3距離{W3}よりも小さいことを特徴とする請求項2に記載の半導体装置。
JP2012057175A 2012-03-14 2012-03-14 半導体装置および半導体装置の製造方法 Expired - Fee Related JP5758824B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057175A JP5758824B2 (ja) 2012-03-14 2012-03-14 半導体装置および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057175A JP5758824B2 (ja) 2012-03-14 2012-03-14 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2013191734A true JP2013191734A (ja) 2013-09-26
JP5758824B2 JP5758824B2 (ja) 2015-08-05

Family

ID=49391696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057175A Expired - Fee Related JP5758824B2 (ja) 2012-03-14 2012-03-14 半導体装置および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5758824B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118721A1 (ja) * 2014-02-10 2015-08-13 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP2015185751A (ja) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 絶縁ゲート型半導体装置
JP2016096286A (ja) * 2014-11-17 2016-05-26 トヨタ自動車株式会社 半導体装置
WO2016199390A1 (en) 2015-06-11 2016-12-15 Toyota Jidosha Kabushiki Kaisha Insulated gate switching device and method for manufacturing the same
US9853139B2 (en) 2014-04-09 2017-12-26 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method for manufacturing the semiconductor device
CN110931548A (zh) * 2019-12-16 2020-03-27 安建科技(深圳)有限公司 一种半导体器件结构及其制造方法
CN113948577A (zh) * 2021-10-15 2022-01-18 捷捷微电(无锡)科技有限公司 一种高可靠性mosfet集成电路芯片及其制备方法
CN117711938A (zh) * 2024-02-05 2024-03-15 深圳腾睿微电子科技有限公司 隔离槽型终端igbt器件及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128507A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 絶縁ゲート型半導体装置およびその製造方法
JP2009267394A (ja) * 2008-04-01 2009-11-12 Denso Corp 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128507A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 絶縁ゲート型半導体装置およびその製造方法
JP2009267394A (ja) * 2008-04-01 2009-11-12 Denso Corp 半導体装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118721A1 (ja) * 2014-02-10 2015-08-13 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
US9640651B2 (en) 2014-02-10 2017-05-02 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing semiconductor device
JP2015185751A (ja) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 絶縁ゲート型半導体装置
US9853139B2 (en) 2014-04-09 2017-12-26 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method for manufacturing the semiconductor device
JP2016096286A (ja) * 2014-11-17 2016-05-26 トヨタ自動車株式会社 半導体装置
WO2016199390A1 (en) 2015-06-11 2016-12-15 Toyota Jidosha Kabushiki Kaisha Insulated gate switching device and method for manufacturing the same
US10153345B2 (en) 2015-06-11 2018-12-11 Toyota Jidosha Kabushiki Kaisha Insulated gate switching device and method for manufacturing the same
CN110931548A (zh) * 2019-12-16 2020-03-27 安建科技(深圳)有限公司 一种半导体器件结构及其制造方法
CN113948577A (zh) * 2021-10-15 2022-01-18 捷捷微电(无锡)科技有限公司 一种高可靠性mosfet集成电路芯片及其制备方法
CN117711938A (zh) * 2024-02-05 2024-03-15 深圳腾睿微电子科技有限公司 隔离槽型终端igbt器件及其制造方法

Also Published As

Publication number Publication date
JP5758824B2 (ja) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5758824B2 (ja) 半導体装置および半導体装置の製造方法
JP5633992B2 (ja) 半導体装置および半導体装置の製造方法
JP5812029B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5569162B2 (ja) 半導体装置および半導体装置の製造方法
JP5136578B2 (ja) 半導体装置
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
JP2007189192A (ja) 半導体装置
JP4735235B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
JP2006269720A (ja) 半導体素子及びその製造方法
JP2008103683A (ja) 省スペース型のエッジ構造を有する半導体素子
JP5878331B2 (ja) 半導体装置及びその製造方法
JP2016092257A (ja) 炭化珪素半導体装置およびその製造方法
TWI633674B (zh) 半導體裝置以及半導體裝置的製造方法
JP5795452B1 (ja) 炭化ケイ素半導体装置、炭化ケイ素半導体装置の製造方法及び炭化ケイ素半導体装置の設計方法
JP2013058575A (ja) 半導体装置及びその製造方法
US8017494B2 (en) Termination trench structure for mosgated device and process for its manufacture
JP2016021547A (ja) 半導体装置の製造方法
JP2011044508A (ja) 電力用半導体装置
JP7420485B2 (ja) 炭化珪素半導体装置およびその製造方法
KR20160016519A (ko) 반도체 장치
JP2009141185A (ja) 半導体装置及びその製造方法
JP2012160601A (ja) 半導体装置の製造方法
JP2012195394A (ja) 半導体装置の製造方法
JP2010192691A (ja) 半導体装置
JP6521851B2 (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R151 Written notification of patent or utility model registration

Ref document number: 5758824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees