JP2013190554A - 顕微鏡 - Google Patents

顕微鏡 Download PDF

Info

Publication number
JP2013190554A
JP2013190554A JP2012055972A JP2012055972A JP2013190554A JP 2013190554 A JP2013190554 A JP 2013190554A JP 2012055972 A JP2012055972 A JP 2012055972A JP 2012055972 A JP2012055972 A JP 2012055972A JP 2013190554 A JP2013190554 A JP 2013190554A
Authority
JP
Japan
Prior art keywords
image
sample
optical
image acquisition
acquisition unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012055972A
Other languages
English (en)
Other versions
JP5867194B2 (ja
Inventor
Takeshi Umaji
健 馬路
Tomoo Shinoyama
智生 篠山
Kasumi Yokota
佳澄 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012055972A priority Critical patent/JP5867194B2/ja
Priority to CN2012105952539A priority patent/CN103308464A/zh
Priority to US13/727,621 priority patent/US9402059B2/en
Publication of JP2013190554A publication Critical patent/JP2013190554A/ja
Application granted granted Critical
Publication of JP5867194B2 publication Critical patent/JP5867194B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/088Condensers for both incident illumination and transillumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】 試料上における赤外光や紫外光や可視光等の測定光の照射位置を容易に短時間で指定することができる顕微鏡の提供。
【解決手段】 測定光を検出する検出部40と、可視光が検出面に入射して光学像を取得する第一画像取得部50と、試料S上の分析位置からの測定光が検出部40に導かれる光路上に配置され、光路を切り替えるか若しくは分割することによって可視光を第一画像取得部50の検出面に導く切替鏡又はビームスプリッタ70とを備え、試料Sを検出部40及び第一画像取得部50に対して移動させることが可能な顕微鏡1であって、検出部40に導かれなる光路上でない位置に配置され、可視光が検出面に導かれることにより、第一画像取得部50で取得される試料S表面上の分析位置を含む領域の光学像より大きい試料S表面上の分析位置を含む大領域の光学像を取得する第二画像取得部80を備える。
【選択図】図1

Description

本発明は、巨視的な試料の表面における微視的な分析位置に赤外光や紫外光や可視光等の測定光を照射する顕微鏡に関する。
赤外顕微鏡は、例えば固体(試料)表面に付着した有機物等の官能基に基づき分子構造等を調べる目的で使用される。具体的には、微小径に集束させた赤外光を試料表面上の特定の微小部位(例えば、15μm×15μmの分析位置)に照射する。試料表面上の特定の微小部位からは有機物等の官能基に基づき分子構造等に特有のスペクトルが発生するため、このスペクトルを検出して分析することにより、有機物等の同定や定量を行っている(例えば、特許文献1参照)。
このような赤外顕微鏡は、分析者が試料表面の観察を行うためのCCDカメラやCMOSカメラ等の画像取得部を備え、画像取得部を用いて試料表面の光学像が観察されながら試料表面上における分析位置の決定等が行われている。例えば、ハロゲンランプ等の光源から試料表面上の分析位置を含む領域に可視光を照射して、試料表面上の分析位置を含む領域で反射した可視光をCCDカメラで検出することにより、検出された可視光に基づいて光学像が作成され光学像画像が表示されている。これにより、分析者は、光学像画像を観察しながら試料上の赤外光の照射位置を指定したり、試料上の分析範囲の位置を指定したりしている。
図6は、従来の赤外顕微鏡の要部の構成を示す図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。
赤外顕微鏡101は、試料Sが載置される試料ステージ(試料設置機構)10と、赤外光を出射する赤外光源部20と、可視光を出射する可視光源部30と、赤外光を検出する検出部40と、可視光を検出する検出面を有する画像取得装置50と、カセグレン鏡(光学素子)260、261と、平板形状の切替鏡70と、赤外顕微鏡101全体の制御を行うコンピュータ190とを備える。
試料ステージ10は、移動体である微動ステージ(試料台)とX方向駆動機構(図示せず)とY方向駆動機構(図示せず)とZ方向駆動機構(図示せず)とを備える。
微動ステージの上面には、試料Sを載せたり取り除いたりすることが可能となっている。このような微動ステージは、コンピュータ190の試料ステージ制御部191aによって駆動機構へ必要な駆動信号が出力されることにより、所望のX方向とY方向とZ方向とに移動できるようになっている。
赤外光源部20は、時間的に強弱の変化をする赤外光(インターフェログラム)を出射するフーリエ変換赤外分光光度計である。そして、赤外光源部20は、出射した赤外光が、ミラー21や切替ミラー22や透過/反射切替ミラー23や凹面鏡24、25や半透鏡26、27で反射した後、カセグレン鏡260、261によって集光されて、試料ステージ10に載せられた試料S上の分析位置(例えば、15μm×15μm)に照射されるように配置されている。
検出部240は、検出器241と、検出器241の前方に配置された集光鏡242やミラー243とを備える。
可視光源部30は、可視光を出射するものである。そして、可視光源部30は、出射した可視光が、レンズ31や切替ミラー22や透過/反射切替ミラー23や凹面鏡24、25や半透鏡26、27で透過したり反射したりした後、カセグレン鏡260、261によって集光されて、試料ステージ10に載せられた試料S表面上の分析位置を含む領域に照射されるように配置されている。
画像取得装置50は、可視光を検出する検出面を有するCCDカメラ51と、CCDカメラ51の前方に配置されたリレーレンズ52とを備える。
ところで、画像取得装置50が試料S表面上の分析位置を含む領域の光学像を、検出部40に赤外光を導く光学系と同じ光軸(光路)で取得するために、試料ステージ10の上方(−Z方向)で検出部40に赤外光を導く光路上に、光路上と光路上でない位置とに移動可能な切替鏡70が配置されている。
これにより、試料S上の分析位置からの赤外光がカセグレン鏡260によって集光されて、所定方向(−Z方向)に進行する赤外光となって、光路上に配置された切替鏡70によって赤外光が−X方向に反射された後、検出部240で検出されるようになっている。また、試料S表面上の分析位置を含む領域からの可視光がカセグレン鏡260によって集光されて、所定方向(−Z方向)に進行する可視光となった後、CCDカメラ51の検出面で検出されるようになっている。
コンピュータ190は、CPU(制御部)191を備え、さらにモニタ(表示装置)93と操作部(入力装置)92とが連結されている。また、CPU191が処理する機能をブロック化して説明すると、試料ステージ10を制御する試料ステージ制御部191aと、画像取得装置50から光学像を取得してモニタ93に光学像画像(測定画像)を表示する画像取得制御部191bと、検出部240から試料S上の分析位置の赤外光情報を取得することによりフーリエ変換して赤外スペクトルを算出する分析制御部191cとを有する。
ここで、図7は、赤外顕微鏡101により表示されたモニタ画面の一例を示す図である。
モニタ93には、画像取得装置50から取得された測定画像(例えば、500μm×400μm)が表示されている。測定画像上には、現在の微動ステージの位置関係での分析位置(例えば、50μm×50μm)を示す点線の四角形の分析位置画像が表示されている。
試料ステージ制御部191aは、操作部92からの信号に基づいて、微動ステージをX方向とY方向とZ方向とに移動させる制御を行う。例えば、分析者は、モニタ93に表示された測定画像を観察しながら、操作部92を用いて測定画像上でマウスドラッグやスクロールバーの操作等を実行することにより、試料S上の赤外光の照射位置(分析位置)を指定する。これにより、試料ステージ制御部191aは、指定された位置が赤外光の照射位置となるように、微動ステージをX方向とY方向とZ方向とに移動させる。そして、分析者は、所望の位置でない場合は再度位置を修正するといった操作を繰り返し、測定画像上の分析位置画像の位置を確認して、測定を開始させることになる。つまり、分析者は、試料S表面上の分析位置を含む領域をCCDカメラ51に結像させ、測定画像を頼りとして所望の分析位置を決定している。或いは、測定光学系の光軸が試料Sのどの辺りに位置するかを目視にて確認して大まかな位置合わせを行う。そして、分析者は、所望の位置でない場合は再度目視にて位置を修正するといった操作を繰り返し、測定画像上の分析位置画像の位置を確認して、測定を開始させることになる。
特開2000−121554号公報
しかしながら、上述したような赤外顕微鏡101では、画像取得装置50で取得される光学像の倍率が、カセグレン鏡260を介するため高い(例えば、15〜30倍)ので、分析者は、試料S表面の全体を把握することができず、赤外光の照射位置を指定する際に、操作部92を用いて測定画像に表示される試料S表面の範囲を変更するために、微動ステージを少しずつ移動させる必要があり、時間がかかっていた。なお、測定画像として試料S表面の全体を観測できるような光学素子を別途用意し、必要に応じて切り替えるようにすることが考えられるが、低倍率が5倍程度に制限されること、切り替えにそれなりの時間を要すること、光学素子切替に伴う位置ズレ等の問題が発生することになる。
そこで、本発明は、試料上における赤外光や紫外光や可視光等の測定光の照射位置を容易に短時間で指定することができる顕微鏡を提供することを目的とする。
上記課題を解決するためになされた本発明の顕微鏡は、試料上の分析位置に測定光を出射する測定光源部と、前記試料上の分析位置を含む領域に可視光を出射する可視光源部と、前記試料上の分析位置からの測定光を検出する検出部と、前記試料上の分析位置を含む領域からの可視光が検出面に入射して光学像を取得する第一画像取得部と、前記試料上の分析位置からの測定光が検出部に導かれる光路上に配置され、当該光路を切り替えるか若しくは分割することによって前記試料上の分析位置を含む領域からの可視光を前記第一画像取得部の検出面に導く光束分離手段とを備え、前記試料を前記検出部及び前記第一画像取得部に対して移動させることが可能な顕微鏡であって、前記検出部に導かれる光路上でない位置に配置され、前記可視光が検出面に導かれることにより、前記第一画像取得部で取得される前記試料表面上の分析位置を含む領域の光学像より大きい前記試料表面上の分析位置を含む大領域の光学像を取得する第二画像取得部を備えるようにしている。
ここで、「測定光」としては、例えば、赤外光、紫外光、可視光等が挙げられる。また、干渉計やその他の変調手段によって時間的な強度変化を伴うこともできる。
また、「光束分離手段」としては、空間的・波長的に分割されて両方の検出器(検出部及び第一画像取得部)に導入されるものであれば何でも良く、例えば、切替鏡やビームスプリッタ等が挙げられ、さらに「ビームスプリッタ」としては、波長で透過と反射とを切り分けるダイクロックミラーのようなものや、空間で透過と反射とを切り分けるエッジミラーやポルカドットミラーのようなもの等が挙げられる。
以上のように、本発明の顕微鏡によれば、従来からの第一画像取得部に加えて、第一画像取得部から独立した光路となる第二画像取得部を1つ以上設けている。この第二画像取得部は、主に試料の全体像を受け持つ。これにより、第一画像取得部で取得される光学像より大きい試料表面上の分析位置を含む大領域の光学像を取得するので、大領域の光学像を俯瞰することができるため、操作を繰り返すことがなくなり、測定光の照射位置を容易に短時間で指定することができる。
(他の課題を解決するための手段及び効果)
また、本発明の顕微鏡において、前記第二画像取得部は、取得する大領域の光学像を縮小又は拡大することが可能な縮小拡大機構を有するようにしてもよい。
本発明の顕微鏡によれば、試料表面を把握しやすい範囲となるように大領域の光学像を拡大したり縮小したりすることができ、その結果、概略的な位置合わせがより容易となる。
また、本発明の顕微鏡において、前記第二画像取得部は、前記検出部に測定光を導く光学系とは異なる光軸で可視光を取得し、前記第二画像取得部で取得された大領域の光学像の歪みを、前記検出部に測定光を導く光学系と同じ光軸で取得されたように補正して、大領域光学像画像を表示する制御部を備えるようにしてもよい。
本発明の顕微鏡によれば、第二画像取得部の光学系の光軸が、第一画像取得部の光学系の光軸に対してある角度を有している場合、大領域の光学像は試料を斜めから観測したものとなり歪みが存在することとなる。また、第二画像取得部と第一画像取得部とが有する歪みは一般的に異なる。よって、第二画像取得部で取得された大領域の光学像の歪みを、検出部に測定光を導く光学系と同じ光軸で取得されたように補正するので、測定光の照射位置を正確に指定することができる。また、第二画像取得部と第一画像取得部とが有する歪みを補正することで、第二画像取得部と第一画像取得部とから得られた画像を直接対応させて扱うことができ、位置決めが容易となる。
また、本発明の顕微鏡において、前記試料が載置された試料台を移動させることが可能な試料設置機構を備えるようにしてもよい。
また、本発明の顕微鏡において、前記制御部は、前記第一画像取得部で取得された光学像画像と、前記大領域光学像画像とを同時に表示するか、或いは、切り替えて表示するようにしてもよい。
また、本発明の顕微鏡において、前記制御部は、前記大領域光学像画像上に、前記第一画像取得部で取得された光学像画像の位置を示す光学像位置画像を表示するか、或いは、前記分析位置を示す分析位置画像を表示するかの少なくともいずれかの画像を表示するようにしてもよい。
また、本発明の顕微鏡において、前記制御部は、前記大領域光学像画像上における光学像位置画像又は分析位置画像の位置が入力装置によって操作されることにより、前記試料ステージを移動させるようにしてもよい。
本発明の顕微鏡によれば、例えば、試料台の移動方法に関して、別途設けられたジョイスティックやキーボード等の専用操作部を用いるものでも問題ないが、大領域光学像画像上における光学像位置画像又は分析位置画像をドラッグしたり、大領域光学像画像上において目的とする位置をダブルクリックしたりして通知すること等の操作と連動する試料ステージを設けることで、より直感的で直接的な位置の指定が可能となり、位置決め操作を容易にするととともに、位置決めに要する時間を短縮することができる。
また、本発明の顕微鏡において、前記試料ステージが前記検出部に導かれる光路方向に移動すると、前記試料表面上における前記第一画像取得部の視野中心と前記第二画像取得部の視野中心とが一致するように、前記第二画像取得部は視野中心方向を変化させることが可能となっているようにしてもよい。
本発明の顕微鏡によれば、第二画像取得部の光学系の光軸が、第一画像取得部の光学系の光軸に対してある角度を有している場合、試料ステージが検出部に導かれる光路方向に移動することで、試料上における各々の光軸中心位置(視野中心)が一致しなくなるが、試料ステージが検出部に導かれる光路方向に移動する移動量に連動して、第二画像取得部は、視野中心方向を変化させる。これにより、観測位置のズレや合焦状態のズレを修正するため、試料ステージが光路方向に移動する移動量を気にすることなく、分析位置を正確に決定することが可能となる。なお、厚みのある試料や、補助的な試料保持機構を試料ステージに設置する場合にも有効となる。
また、本発明の顕微鏡において、前記測定光源部からの測定光を集光して、前記試料上の分析位置に照射するとともに、前記試料上の分析位置を含む領域からの光を集光して光を出射する光学素子を備え、前記光学素子は、カセグレン鏡主鏡とカセグレン鏡副鏡とを有するカセグレン鏡であり、前記第二画像取得部又は第二画像取得部の検出面に導くための光学系は、前記カセグレン鏡副鏡の背面に配置されているようにしてもよい。
本発明の顕微鏡によれば、カセグレン鏡副鏡の背面では中心部の光は使用していないため、カセグレン鏡副鏡の背面に第二画像取得部や光学系を設置しても、測定光学系の光をさえぎることがない。
そして、本発明の顕微鏡において、前記第二画像取得部は、前記検出部に測定光を導く光学系とは同じ光軸で可視光を取得し、前記制御部は、前記第二画像取得部で取得された大領域の光学像を大領域光学像画像として表示する制御部を備えるようにしてもよい。
本発明の顕微鏡によれば、第二画像取得部は検出部に測定光を導く光学系と同じ光軸で可視光を取得しているので、測定光の照射位置を正確に指定することができる。
さらに、本発明の顕微鏡において、前記第一画像取得部と前記第二画像取得部との合焦範囲が重なるようにしてもよい。
本発明の顕微鏡によれば、第二画像取得部が第一画像取得部よりも低倍率であるので、第二画像取得部の焦点深度が第一画像取得部よりも深くなるため、第一画像取得部では凹凸がある試料を水平平面内で移動させたときにピントがずれて分析位置を見失うことがあったが、第二画像取得部では、ピントズレが少なくなり、位置決め時間を短縮する効果が高くなる。
第一実施形態の顕微鏡の要部の構成を示す図。 CCDカメラの移動を説明する図。 第一実施形態の顕微鏡により表示されたモニタ画面の一例を示す図。 第二実施形態の赤外顕微鏡の要部の構成を示す図。 第三実施形態の赤外顕微鏡の要部の構成を示す図。 従来の赤外顕微鏡の要部の構成を示す図。 従来の赤外顕微鏡により表示されたモニタ画面の一例を示す図。 第四実施形態の赤外顕微鏡の要部の構成を示す図。
以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれる。
<第一実施形態>
図1は、第一実施形態に係る顕微鏡の要部の構成を示す図である。なお、図1では、試料から検出器ないし観測画像を得るためのカメラ部分までが示されており、可視光の導入光学系や、測定光の導入光学系は省略している。
顕微鏡1は、試料Sが載置される試料ステージ10と、測定光を出射する測定光源部(図示せず)と、可視光を出射する可視光源部(図示せず)と、測定光を検出する検出部40と、可視光を検出する検出面を有する第一画像取得装置50と、可視光を検出する検出面を有する第二画像取得装置80と、光学素子60と、平板形状のビームスプリッタ70と、顕微鏡1全体の制御を行うコンピュータ90とを備える。
第二画像取得装置80は、可視光を検出する検出面を有するCCDカメラ81と、可視光を検出する検出面を有するCCDカメラ82と、各CCDカメラ81、82を移動させる移動機構(図示せず)とを備える。CCDカメラ81は、試料ステージ10の左上方(検出部40に測定光を導く光学系(光学素子60等)の光軸と所定の角度(45°)を有する位置)に配置されており、検出面が右下方を向くように配置されている。CCDカメラ82は、試料ステージ10の右上方(検出部40に測定光を導く光学系(光学素子60等)の光軸と所定の角度(−45°)を有する位置)に配置されており、検出面が左下方を向くように配置されている。
このような第二画像取得装置80によれば、試料S表面上の分析位置を含む大領域(試料S表面の全体)からの可視光がCCDカメラ81の検出面とCCDカメラ82の検出面とで検出されるようになっている。すなわち、光学素子60を介さずに可視光がCCDカメラ81の検出面とCCDカメラ82の検出面とで検出されるようになっている。また、CCDカメラ81、82は第一画像取得装置50よりも低倍率となるので、CCDカメラ81とCCDカメラ82との焦点深度が第一画像取得装置50の焦点深度よりも深くなる。よって、第一画像取得装置50では凹凸がある試料Sを水平平面(XY平面)内で移動させたときにピントがずれて測定対象部分を見失うことがあったが、ピントズレが少なくなり、位置決め時間を短縮する効果を得ることもできる。さらに、2台(複数)のCCDカメラ81、82の合焦位置を試料Sの深度方向で異なる位置に設定することで、本来合焦位置が複数存在するため焦点深度を深くする必要のある試料Sに対して、CCDカメラ81とCCDカメラ82とによる観測画像において、それぞれ合焦状態の部分のみを取り出し合成して表示する等、視野の明るさを損なうことなく試料S全体の合焦画像を得ることが可能となり、余計な合焦動作を省略することによる位置決めの時間短縮に寄与することができる。
また、CCDカメラ81は、微動ステージがZ方向へ移動する移動量に対応して、移動機構によって視野中心方向を変更するようにY方向を回転軸として回転移動可能となっている。CCDカメラ82は、微動ステージがZ方向へ移動する移動量に対応して、移動機構によって視野中心方向を変更するようにY方向を回転軸として回転移動可能となっている。なお、図2は、CCDカメラ81、82の移動を説明するための図である。
このような第二画像取得装置80によれば、微動ステージの上面が第一画像取得装置50の光学系にて合焦となるような位置において、第一画像取得装置50の光学系の光軸中心がCCDカメラ81、82の光軸中心と一致するように、CCDカメラ81、82の回転角度を調整し、その角度を予め記録しておく。この角度は製造時の調整に当たる。この状態で微動ステージをZ方向に位置を変更すれば、移動量に対応した回転を施すことにより、第一画像取得装置50の光学系の光軸中心をCCDカメラ81、82の視野中央に位置させることが可能となる。また、極めて厚みのある試料Sや、補助的な試料設置保持機構の厚みが問題となる場合は、CCDカメラ51ないしはCCDカメラ81、82でほぼ合焦となる位置に微動ステージをZ方向に移動させ、その位置を検出することで、厚みを考慮しない本来の合焦Z軸位置との差を決定でき、その量より今回の合焦位置でCCDカメラ51の光学系の光軸中心をCCDカメラ81、82の視野中央とするための追加回転量を決定すればよい。
よって、CCDカメラ81とCCDカメラ82とは、微動ステージが位置10’に移動しても、試料S表面上の分析位置を含む大領域(試料S表面の全体)からの可視光が検出面で検出されるようになっている。また、検出部40に測定光を導く光学系(光学素子60)の合焦する位置で、CCDカメラ81とCCDカメラ82との光学系が合焦するようにすることができる。すなわち、観測位置のズレや合焦状態のズレを修正することができる。
コンピュータ90は、CPU(制御部)91を備え、さらにモニタ(表示装置)93と操作部(入力装置)92とが連結されている。また、CPU91が処理する機能をブロック化して説明すると、試料ステージ10を制御する試料ステージ制御部91aと、第一画像取得装置50から光学像(測定画像)を取得してモニタ93に表示する第一画像取得制御部91bと、第二画像取得装置80から光学像を取得してモニタ93に表示する第二画像取得制御部91dと、検出部40から試料S上の分析位置の測定光情報を取得することによりフーリエ変換してスペクトルを算出する分析制御部91cとを有する。
第二画像取得制御部91dは、第二画像取得装置80から光学像を取得してモニタ93に表示する制御を行う。このとき、第二取得制御部91dは、第二画像取得部80で取得された大領域(試料S表面の全体)の光学像の歪みを、検出部40に測定光を導く光学系(光学素子60等)と同じ光軸で取得されたように補正することにより、大領域光学像画像(俯瞰画像)を表示する。ここで、補正する方法としては、例えば、CCDカメラ81とCCDカメラ82とで、予め格子状サンプルを撮影し、CCDカメラ81とCCDカメラ82とにおける格子点位置を記録することで、CCDカメラ81とCCDカメラ82との光学系の歪みを把握し、その情報に従い撮像された画像を変形することで画像補整を行うこと等が挙げられる。
ここで、図3は、顕微鏡1により表示されたモニタ画面の一例を示す図である。
モニタ93の左側領域には、現在の微動ステージの位置関係で第一画像取得装置50から取得された測定画像(例えば、500μm×400μm)が表示されるとともに、モニタ93の右側領域には、第二画像取得装置80から取得された大領域光学像画像(例えば、10,000μm×10,000μm)が表示されている。測定画像上には、現在の微動ステージの位置関係での分析位置(例えば、50μm×50μm)を示す点線の四角形の分析位置画像が表示されている。大領域光学像画像上には、測定画像の位置を示す実線の四角形の測定画像領域画像が表示されている。
ここで、点線の四角形は分析位置に対応しており、装置の試料マスク領域や試料アパーチャサイズの変更と連動していることになる。また、光学素子60を変更して倍率が変更されれば、その倍率に応じた測定画像が表示され、点線の四角は倍率に応じた大きさに変更される。一方、実線の四角形は、測定画像で表示されている範囲を示しており、光学素子60の倍率と連動している。すなわち、実際の測定画像領域のサイズに対応して変更される。ここでは、図示されていないが、大領域光学像画像上にも、分析位置(例えば、50μm×50μm)を示す分析位置画像が表示されてもよい。
なお、これらの四角形は、各画像の中央部分に配置させる必要はなく、任意の場所に配置させることができる。また、図3では、測定画像と大領域光学像画像との両方が同時に表示されているが、各々を選択切り替えて表示してもよい。また、複数のCCDカメラを設置した場合、大領域光学像画像の表示は一度に行っても、特定の1つ以上の画像を選択切り替えて表示してもよい。また、ポップアップ画面のように必要に応じて動的に各画像を表示してもよい。
さらに、第二画像取得制御部91dが表示した測定画像や大領域光学像画像や点線の四角形や実線の四角形に対して移動操作を行うことができるようになっている。そして、試料ステージ制御部91aは、その移動操作に対応して試料ステージ10を移動させる制御を行う。例えば、実線の四角形をマウスでドラッグ&ドロップすることで、その移動量の情報(例えば、画像上のピクセル数やマウス移動量、又は、それらの移動量に対応するステージ移動量や対応するステージ位置指定量等)を試料ステージ制御部91aに与え、試料ステージ制御部91aは速やかに位置の変更を実施する。その結果、画像表示画面には位置変更後の状態と画像とが反映される。必要に応じて、ドラッグ中でも試料ステージ制御部91aへ移動量を与え、連続的に試料ステージ10の位置とその画像とを更新することもできる。
このような顕微鏡1によれば、まず、分析者は、モニタ93に表示された大領域光学像画像を観察しながら、操作部92を用いて大領域光学像画像上でマウスドラッグやスクロールバーの操作等を実行することにより、試料S上の測定光の照射予定位置を含む領域を指定する。これにより、試料ステージ制御部91aは、指定された位置が測定画像として表示されるように、試料ステージ10をX方向とY方向とZ方向とに移動させる。次に、分析者は、モニタ93に表示された測定画像を観察しながら、操作部92を用いて測定画像上でマウスドラッグやスクロールバーの操作等を実行することにより、試料S上の測定光の照射位置(分析位置)を指定する。これにより、試料ステージ制御部91aは、指定された位置が測定光の照射位置となるように、試料ステージ10をX方向とY方向とZ方向とに移動させる。そして、分析者は、測定画像上の分析位置画像の位置を確認して、測定を開始させることになる。
以上のように、本発明の顕微鏡1によれば、第一画像取得部50で取得される光学像より大きい試料S表面上の分析位置を含む大領域の光学像(俯瞰画像)を取得する第二画像取得部80を備えるので、分析者は、大領域光学像画像上で概略位置の指定と、測定画像での精密位置指定との双方を特に切り替え等を意識せず、直感的直接に指定することが可能となる。また、第二画像取得部80で取得された大領域の光学像の歪みを、検出部40に測定光を導く光学系と同じ光軸で取得されたように補正するので、測定光の照射位置を正確に指定することができる。
<第二実施形態>
図4は、第二実施形態に係る赤外顕微鏡の要部の構成を示す図である。なお、上述した赤外顕微鏡101と同様のものについては、同じ符号を付している。
赤外顕微鏡201は、試料Sが載置される試料ステージ10と、赤外光を出射する赤外光源部20と、可視光を出射する可視光源部30と、赤外光を検出する検出部240と、可視光を検出する検出面を有する第一画像取得装置50と、可視光を検出する検出面を有する第二画像取得装置280と、カセグレン鏡(光学素子)260、261と、平板形状の切替鏡270と、赤外顕微鏡201全体の制御を行うコンピュータ(図示せず)とを備える。
カセグレン鏡(シュバルツシルド式反射対物鏡)260は、カセグレン鏡主鏡260aと、カセグレン鏡副鏡260bとを備える。
カセグレン鏡副鏡260bは、Z方向から視ると円形状であり、Y方向やX方向から視ると上面が半球状を有する凸面であるとともに下面が平面である。そして、カセグレン鏡副鏡260bは、試料ステージ10の上方に配置されており、上面が上方(−Z方向)を向くように配置されている。また、カセグレン鏡主鏡260aは、Z方向から視るとカセグレン鏡副鏡260bと同形状の開口を有する円環形状であり、Y方向やX方向から視ると下面が半球状を有する凹面であるとともに上面が平面である。そして、カセグレン鏡主鏡260aは、試料ステージ10の上方に配置され、さらにカセグレン鏡副鏡260bの上方に配置されており、上面が上方(−Z方向)を向くように配置されている。
これにより、赤外光源部20からの赤外光は、カセグレン鏡副鏡260bで反射された後、カセグレン鏡主鏡260aによって集光されて、試料S上の分析位置に照射されるようになっている。また、試料S上の分析位置を含む領域からの光は、カセグレン鏡主鏡260aで集光された後、カセグレン鏡副鏡260bで反射されて、−Z方向に進行するようになっている。
なお、カセグレン鏡(シュバルツシルド式反射対物鏡)261も、カセグレン鏡260と同様の構造をしており、試料ステージ10を挟んで上下対称となるように配置されている。
第二画像取得装置280は、可視光を検出する検出面を有するCCDカメラ281を備える。CCDカメラ281は、試料ステージ10の左上方(検出部40に赤外光を導く光学系(カセグレン鏡60等)の光軸と所定の角度(45°)を有する位置)に配置されており、検出面が右下方を向くように配置されている。
このような第二画像取得装置280によれば、試料S上の分析位置を含む大領域(試料S表面の全体)からの可視光がCCDカメラ281の検出面で検出されるようになっている。すなわち、カセグレン鏡260を介さずに可視光がCCDカメラ281の検出面で検出されるようになっている。
以上のように、本発明の赤外顕微鏡201によれば、第一画像取得部50で取得される光学像より大きい試料S表面上の分析位置を含む大領域の光学像(俯瞰画像)を取得することができるので、分析者は、大領域光学像画像と測定画像とを観察しながら、赤外光の照射位置を容易に指定することができる。
<第三実施形態>
図5は、第三実施形態に係る赤外顕微鏡の要部の構成を示す図である。なお、上述した赤外顕微鏡101と同様のものについては、同じ符号を付している。
赤外顕微鏡301は、試料Sが載置される試料ステージ10と、赤外光を出射する赤外光源部20と、可視光を出射する可視光源部30と、赤外光を検出する検出部240と、可視光を検出する検出面を有する第一画像取得装置50と、可視光を検出する検出面を有する第二画像取得装置380と、カセグレン鏡(光学素子)260、261と、平板形状の切替鏡270と、赤外顕微鏡301全体の制御を行うコンピュータ(図示せず)とを備える。
第二画像取得装置380は、可視光を検出する検出面を有するCCDカメラ381と、CCDカメラ381の前方に配置された撮影レンズ382とを備える。CCDカメラ381は、試料ステージ10の上方(検出部40に赤外光を導く光学系(カセグレン鏡60等)と同じ光軸となる位置)でカセグレン鏡副鏡260bの下方(裏側)に配置されており、検出面が下方を向くように配置されている。
このような第二画像取得装置380によれば、試料S上の分析位置を含む大領域(試料S表面の全体)からの可視光が撮影レンズ382を介してCCDカメラ381の検出面で検出されるようになっている。すなわち、カセグレン鏡260を介さずに可視光がCCDカメラ381の検出面で検出されるようになっている。
以上のように、本発明の赤外顕微鏡301によれば、第一画像取得部50で取得される光学像より大きい試料S上の分析位置を含む大領域の光学像(俯瞰画像)を取得することができるので、分析者は、大領域光学像画像と測定画像とを観察しながら、赤外光の照射位置を容易に指定することができる。さらに、赤外顕微鏡201では、第一画像取得部50の光学系の光軸と第二画像取得部280の光学系の光軸とを同一にできないため、第二画像取得部280の光学系の光軸が斜めからになり、歪んだ画像になってしまうという問題があるが(特にシュバルツシルド式反射対物鏡を有する赤外顕微鏡では、カセグレン鏡260の半径が大きいため、第二画像取得部240の光学系の光軸の角度が第一画像取得部50の光学系の光軸に対して大きくなってしまい、画像の歪みも大きくなってしまうが)、第二画像取得部380は、検出部240に赤外光を導く光学系(カセグレン鏡260等)と同じ光軸で可視光を取得し、制御部は、第二画像取得部380で取得された大領域の光学像を大領域光学像画像(俯瞰画像)として表示するので、赤外光の照射位置を正確に指定することができる。
<他の実施形態>
(1)上述したような顕微鏡1では、第一画像取得装置50がビームスプリッタ70の上方に配置されるとともに、検出部40がビームスプリッタ70の右方に配置される構成としたが、第一画像取得装置50がビームスプリッタ70の右方に配置されるとともに、検出部40がビームスプリッタ70の上方に配置されるような構成としてもよい。
(2)上述したような顕微鏡1では、CCDカメラ81とCCDカメラ82とは、取得する大領域の光学像を縮小や拡大することが可能な縮小拡大機構を有するような構成としてもよい。この縮小拡大機構としては、例えば、ズームレンズ等のような光学的手段や、高画素数撮像素子の一部領域を取り出したデジタルズームのような手段等が挙げられる。
(3)上述したような顕微鏡1では、第二画像取得装置80は、CCDカメラ81と、CCDカメラ82との2台のカメラを備える構成としたが、3台以上のカメラを備える構成としてもよい。
(4)上述したような赤外顕微鏡301では、CCDカメラ381と撮影レンズ382とは、カセグレン鏡副鏡260bの下方(裏側)に配置されている構成としたが、カセグレン鏡副鏡260bの下方(裏側)に、CCDカメラ481と撮影レンズ482(例えば、右方)に導くためのミラー483が配置され、CCDカメラ481と撮影レンズ482とは、カセグレン鏡副鏡260bの下方(裏側)でなく異なる位置(例えば、右方)に配置される構成としてもよい。図8は、第四実施形態に係る赤外顕微鏡401の要部の構成を示す図である。なお、上述した赤外顕微鏡301と同様のものについては、同じ符号を付している。
本発明は、試料に測定光を照射し、それによって試料から放出されたスペクトルを検出する顕微鏡等に好適に利用できる。
1 顕微鏡
10 試料ステージ
20 測定光源部
30 可視光源部
40 検出部
50 第一画像取得部
60 光学素子
70 ビームスプリッタ
80 第二画像取得部
91 CPU(制御部)

Claims (11)

  1. 試料上の分析位置に測定光を出射する測定光源部と、
    前記試料上の分析位置を含む領域に可視光を出射する可視光源部と、
    前記試料上の分析位置からの測定光を検出する検出部と、
    前記試料上の分析位置を含む領域からの可視光が検出面に入射して光学像を取得する第一画像取得部と、
    前記試料上の分析位置からの測定光が検出部に導かれる光路上に配置され、当該光路を切り替えるか若しくは分割することによって前記試料上の分析位置を含む領域からの可視光を前記第一画像取得部の検出面に導く光束分離手段とを備え、
    前記試料を前記検出部及び前記第一画像取得部に対して移動させることが可能な顕微鏡であって、
    前記検出部に導かれる光路上でない位置に配置され、前記可視光が検出面に導かれることにより、前記第一画像取得部で取得される前記試料表面上の分析位置を含む領域の光学像より大きい前記試料表面上の分析位置を含む大領域の光学像を取得する第二画像取得部を備えることを特徴とする顕微鏡。
  2. 前記第二画像取得部は、取得する大領域の光学像を縮小又は拡大することが可能な縮小拡大機構を有することを特徴とする請求項1に記載の顕微鏡。
  3. 前記第二画像取得部は、前記検出部に測定光を導く光学系とは異なる光軸で可視光を取得し、
    前記第二画像取得部で取得された大領域の光学像の歪みを、前記検出部に測定光を導く光学系と同じ光軸で取得されたように補正して、大領域光学像画像を表示する制御部を備えることを特徴とする請求項1又は請求項2に記載の顕微鏡。
  4. 前記試料が載置された試料台を移動させることが可能な試料設置機構を備えることを特徴とする請求項1〜請求項3のいずれか1項に記載の顕微鏡。
  5. 前記制御部は、前記第一画像取得部で取得された光学像画像と、前記大領域光学像画像とを同時に表示するか、或いは、切り替えて表示することを特徴とする請求項3又は請求項4に記載の顕微鏡。
  6. 前記制御部は、前記大領域光学像画像上に、前記第一画像取得部で取得された光学像画像の位置を示す光学像位置画像を表示するか、或いは、前記分析位置を示す分析位置画像を表示するかの少なくともいずれかの画像を表示することを特徴とする請求項5に記載の顕微鏡。
  7. 前記制御部は、前記大領域光学像画像上における光学像位置画像又は分析位置画像の位置が入力装置によって操作されることにより、前記試料ステージを移動させることを特徴とする請求項6に記載の顕微鏡。
  8. 前記試料ステージが前記検出部に導かれる光路方向に移動すると、前記試料表面上における前記第一画像取得部の視野中心と前記第二画像取得部の視野中心とが一致するように、前記第二画像取得部は視野中心方向を変化させることが可能となっていることを特徴とする請求項6に記載の顕微鏡。
  9. 前記測定光源部からの測定光を集光して、前記試料上の分析位置に照射するとともに、前記試料上の分析位置を含む領域からの光を集光して光を出射する光学素子を備え、
    前記光学素子は、カセグレン鏡主鏡とカセグレン鏡副鏡とを有するカセグレン鏡であり、
    前記第二画像取得部又は第二画像取得部の検出面に導くための光学系は、前記カセグレン鏡副鏡の背面に配置されていることを特徴とする請求項1又は請求項2に記載の顕微鏡。
  10. 前記第二画像取得部は、前記検出部に測定光を導く光学系とは同じ光軸で可視光を取得し、
    前記制御部は、前記第二画像取得部で取得された大領域の光学像を大領域光学像画像として表示する制御部を備えることを特徴とする請求項9に記載の顕微鏡。
  11. 前記第一画像取得部と前記第二画像取得部との合焦範囲が重なることを特徴とする請求項9又は請求項10に記載の顕微鏡。
JP2012055972A 2012-03-13 2012-03-13 顕微鏡 Active JP5867194B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012055972A JP5867194B2 (ja) 2012-03-13 2012-03-13 顕微鏡
CN2012105952539A CN103308464A (zh) 2012-03-13 2012-12-26 显微镜
US13/727,621 US9402059B2 (en) 2012-03-13 2012-12-27 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055972A JP5867194B2 (ja) 2012-03-13 2012-03-13 顕微鏡

Publications (2)

Publication Number Publication Date
JP2013190554A true JP2013190554A (ja) 2013-09-26
JP5867194B2 JP5867194B2 (ja) 2016-02-24

Family

ID=49133923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055972A Active JP5867194B2 (ja) 2012-03-13 2012-03-13 顕微鏡

Country Status (3)

Country Link
US (1) US9402059B2 (ja)
JP (1) JP5867194B2 (ja)
CN (1) CN103308464A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132451A1 (ja) * 2015-02-17 2016-08-25 株式会社島津製作所 顕微鏡
WO2016199262A1 (ja) * 2015-06-11 2016-12-15 株式会社島津製作所 カセグレン鏡保持機構及びこれを備えた顕微鏡、並びに、カセグレン鏡の取付方法
JP2017009718A (ja) * 2015-06-19 2017-01-12 株式会社島津製作所 顕微鏡
JP2019056855A (ja) * 2017-09-22 2019-04-11 オリンパス株式会社 顕微鏡システム、表示制御方法、及び表示制御プログラム。
JP2019184664A (ja) * 2018-04-03 2019-10-24 学校法人自治医科大学 顕微鏡システム
WO2020153354A1 (ja) * 2019-01-23 2020-07-30 株式会社ニコン 撮像装置
JP2020153682A (ja) * 2019-03-18 2020-09-24 株式会社キーエンス 画像測定装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090493A (ja) * 2013-11-07 2015-05-11 キヤノン株式会社 画像取得装置、及び、画像取得方法
JP2015094802A (ja) * 2013-11-11 2015-05-18 キヤノン株式会社 対物光学系および画像取得装置
US10641659B2 (en) * 2018-08-14 2020-05-05 Shimadzu Corporation Infrared microscope with adjustable connection optical system
JP7246151B2 (ja) * 2018-09-26 2023-03-27 京セラ株式会社 電磁波検出装置
JP7004632B2 (ja) * 2018-10-05 2022-01-21 京セラ株式会社 電磁波検出装置
CN110187532A (zh) * 2019-05-30 2019-08-30 深圳市华星光电技术有限公司 一种像素暗态漏光的检测装置
JP2021032628A (ja) * 2019-08-21 2021-03-01 株式会社ブイ・テクノロジー 顕微鏡画像測定装置及び顕微鏡画像測定方法
CN111412860B (zh) * 2020-03-25 2022-03-22 广东省微生物研究所(广东省微生物分析检测中心) 激光共聚焦显微镜生物被膜观察载物台

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424312U (ja) * 1987-08-04 1989-02-09
JPH01110243A (ja) * 1987-10-23 1989-04-26 Hitachi Vlsi Eng Corp 外観検査装置
JPH04308639A (ja) * 1991-04-08 1992-10-30 Nec Yamaguchi Ltd 走査型電子顕微鏡
JPH08273578A (ja) * 1995-03-30 1996-10-18 Topcon Corp 走査型電子顕微鏡装置
JPH1054709A (ja) * 1996-08-09 1998-02-24 Techno Horon:Kk 顕微鏡を用いた3次元画像認識装置
JP2000121554A (ja) * 1998-10-12 2000-04-28 Jasco Corp 赤外顕微鏡
US6075646A (en) * 1995-01-09 2000-06-13 Olympus Optical Co., Ltd. Observation optical apparatus
US6274871B1 (en) * 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
JP2003121526A (ja) * 2001-10-12 2003-04-23 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd 電波到来方向測定装置
JP2006010365A (ja) * 2004-06-23 2006-01-12 Kansai Electric Power Co Inc:The 電気設備点検方法及び装置、並びに紫外線映像処理方法及びプログラム
JP3121902U (ja) * 2006-03-07 2006-06-01 株式会社島津製作所 赤外顕微鏡
JP2006154558A (ja) * 2004-11-30 2006-06-15 Olympus Corp 実体顕微鏡
US20060146401A1 (en) * 2005-01-06 2006-07-06 Nikon Vision Co., Ltd. Stereomicroscope
US20060202124A1 (en) * 2000-08-29 2006-09-14 Hoult Robert A Detector array and cross-talk linearity connection
JP2009198709A (ja) * 2008-02-20 2009-09-03 Nikon Corp 観察装置と、観察方法
JP2012015031A (ja) * 2010-07-02 2012-01-19 Keyence Corp 拡大観察装置及び拡大観察方法
US20130188034A1 (en) * 2012-01-20 2013-07-25 Bruker Optik Gmbh IR microscope with image field curvature compensation, in particular with additional illumination optimization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029212B4 (de) * 2004-06-16 2006-07-13 Leica Microsystems Semiconductor Gmbh Vorrichtung und Verfahren zur optischen Auf- und/oder Durchlichtinspektion von Mikrostrukturen im IR
EP1882971A3 (en) * 2006-01-12 2008-11-26 Olympus Corporation Microscope examination apparatus
JP5014061B2 (ja) * 2007-10-22 2012-08-29 日本分光株式会社 顕微測定装置
JP2010054709A (ja) * 2008-08-27 2010-03-11 Tokai Rubber Ind Ltd トナー供給ロールおよびその製造方法
WO2010057081A1 (en) * 2008-11-14 2010-05-20 The Scripps Research Institute Image analysis platform for identifying artifacts in samples and laboratory consumables
CN102109671B (zh) * 2009-12-25 2014-12-31 株式会社尼康 显微镜装置
JP2012042669A (ja) * 2010-08-18 2012-03-01 Sony Corp 顕微鏡制御装置及び光学的歪み補正方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424312U (ja) * 1987-08-04 1989-02-09
JPH01110243A (ja) * 1987-10-23 1989-04-26 Hitachi Vlsi Eng Corp 外観検査装置
JPH04308639A (ja) * 1991-04-08 1992-10-30 Nec Yamaguchi Ltd 走査型電子顕微鏡
US6075646A (en) * 1995-01-09 2000-06-13 Olympus Optical Co., Ltd. Observation optical apparatus
JPH08273578A (ja) * 1995-03-30 1996-10-18 Topcon Corp 走査型電子顕微鏡装置
JPH1054709A (ja) * 1996-08-09 1998-02-24 Techno Horon:Kk 顕微鏡を用いた3次元画像認識装置
JP2000121554A (ja) * 1998-10-12 2000-04-28 Jasco Corp 赤外顕微鏡
US6274871B1 (en) * 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US20060202124A1 (en) * 2000-08-29 2006-09-14 Hoult Robert A Detector array and cross-talk linearity connection
JP2003121526A (ja) * 2001-10-12 2003-04-23 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd 電波到来方向測定装置
JP2006010365A (ja) * 2004-06-23 2006-01-12 Kansai Electric Power Co Inc:The 電気設備点検方法及び装置、並びに紫外線映像処理方法及びプログラム
JP2006154558A (ja) * 2004-11-30 2006-06-15 Olympus Corp 実体顕微鏡
US20060146401A1 (en) * 2005-01-06 2006-07-06 Nikon Vision Co., Ltd. Stereomicroscope
JP3121902U (ja) * 2006-03-07 2006-06-01 株式会社島津製作所 赤外顕微鏡
JP2009198709A (ja) * 2008-02-20 2009-09-03 Nikon Corp 観察装置と、観察方法
JP2012015031A (ja) * 2010-07-02 2012-01-19 Keyence Corp 拡大観察装置及び拡大観察方法
US20130188034A1 (en) * 2012-01-20 2013-07-25 Bruker Optik Gmbh IR microscope with image field curvature compensation, in particular with additional illumination optimization

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016132451A1 (ja) * 2015-02-17 2019-08-22 株式会社島津製作所 顕微鏡
WO2016132451A1 (ja) * 2015-02-17 2016-08-25 株式会社島津製作所 顕微鏡
US10649190B2 (en) 2015-06-11 2020-05-12 Shimadzu Corporation Cassegrain reflector retention mechanism, microscope equipped with same, and method for attaching Cassegrain reflector
WO2016199262A1 (ja) * 2015-06-11 2016-12-15 株式会社島津製作所 カセグレン鏡保持機構及びこれを備えた顕微鏡、並びに、カセグレン鏡の取付方法
JPWO2016199262A1 (ja) * 2015-06-11 2017-11-09 株式会社島津製作所 カセグレン鏡保持機構及びこれを備えた顕微鏡、並びに、カセグレン鏡の取付方法
JP2017009718A (ja) * 2015-06-19 2017-01-12 株式会社島津製作所 顕微鏡
JP2019056855A (ja) * 2017-09-22 2019-04-11 オリンパス株式会社 顕微鏡システム、表示制御方法、及び表示制御プログラム。
JP2019184664A (ja) * 2018-04-03 2019-10-24 学校法人自治医科大学 顕微鏡システム
JP7111936B2 (ja) 2018-04-03 2022-08-03 学校法人自治医科大学 顕微鏡システム
WO2020153354A1 (ja) * 2019-01-23 2020-07-30 株式会社ニコン 撮像装置
JPWO2020153354A1 (ja) * 2019-01-23 2021-10-21 株式会社ニコン 撮像装置
JP7215500B2 (ja) 2019-01-23 2023-01-31 株式会社ニコン 撮像装置
JP2020153682A (ja) * 2019-03-18 2020-09-24 株式会社キーエンス 画像測定装置
JP7240913B2 (ja) 2019-03-18 2023-03-16 株式会社キーエンス 画像測定装置

Also Published As

Publication number Publication date
CN103308464A (zh) 2013-09-18
JP5867194B2 (ja) 2016-02-24
US20130242078A1 (en) 2013-09-19
US9402059B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
JP5867194B2 (ja) 顕微鏡
TWI558997B (zh) 缺陷觀察方法及其裝置
KR101729952B1 (ko) 결함 검출 방법 및 그 장치 및 결함 관찰 방법 및 그 장치
JP2016038302A (ja) 欠陥検査装置及び欠陥検査方法
JP2013226588A (ja) リペア装置及びリペア方法
KR20170038666A (ko) 시료 위치 맞춤 방법 및 하전 입자 빔 장치
KR101652356B1 (ko) 광학적 웨이퍼 검사 장치
US20180024344A1 (en) Microscope
JPWO2012099034A1 (ja) 焦点位置維持装置及び顕微鏡
JP6702807B2 (ja) 電子顕微鏡および画像取得方法
JP4869727B2 (ja) 測定顕微鏡装置
JP2007285797A (ja) 電子プローブマイクロアナライザ
CN103799964B (zh) 眼科装置和眼科摄像方法
EP3282300B1 (en) Microscope
US11982631B2 (en) Defect detection device, defect detection method, and defect observation apparatus including defect detection device
JP5904737B2 (ja) 顕微鏡システム
JP7021870B2 (ja) 顕微鏡装置
JP2007187809A (ja) 自動焦点機構を備えた顕微鏡およびその調整方法
JP6488905B2 (ja) 顕微鏡
JP6362435B2 (ja) 顕微鏡システム
WO2018011869A1 (ja) 観察装置
JP2007085753A (ja) 3次元形状測定装置
WO2014061690A1 (ja) 電子顕微鏡
JP2016126274A (ja) 蛍光顕微鏡
JP6029396B2 (ja) 位相差顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151