JP2013163422A - 車両運動制御装置及び車両運動制御方法 - Google Patents

車両運動制御装置及び車両運動制御方法 Download PDF

Info

Publication number
JP2013163422A
JP2013163422A JP2012026638A JP2012026638A JP2013163422A JP 2013163422 A JP2013163422 A JP 2013163422A JP 2012026638 A JP2012026638 A JP 2012026638A JP 2012026638 A JP2012026638 A JP 2012026638A JP 2013163422 A JP2013163422 A JP 2013163422A
Authority
JP
Japan
Prior art keywords
braking
braking force
vehicle
driving force
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012026638A
Other languages
English (en)
Other versions
JP5879143B2 (ja
Inventor
Atsushi Yokoyama
篤 横山
Toshiya Osawa
俊哉 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012026638A priority Critical patent/JP5879143B2/ja
Priority to US13/760,167 priority patent/US20130211644A1/en
Priority to EP13154158.3A priority patent/EP2626259B1/en
Priority to CN201310049190.1A priority patent/CN103241127B/zh
Publication of JP2013163422A publication Critical patent/JP2013163422A/ja
Application granted granted Critical
Publication of JP5879143B2 publication Critical patent/JP5879143B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/266Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means
    • B60T8/267Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means for hybrid systems with different kind of brakes on different axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/613ESP features related thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】電気モータを用いて回生制動を行う車両において、車輪のスリップ状態や路面摩擦係数に応じて回生制動力を適切に制御して車両の走行安定性を維持すると共に、緩制動から急制動の広範囲において電気モータによる回生エネルギの回生量を確保することができる車両運動制御装置を提供する。
【解決手段】車両50に要求される制駆動力に基づいて、前輪と後輪とに制駆動力を配分すると共に、前輪と後輪の少なくとも一方におけるスリップ率に対する制動力の割合が減少した際には、前輪と後輪のうち電気モータ13によって制駆動力が発生される車輪の制駆動力を減少させる。
【選択図】図2

Description

本発明は車両運動制御装置及び車両運動制御方法に関し、例えばエンジンと電気モータとを用いて駆動力を発生すると共に、摩擦ブレーキと電気モータとを用いて制動力を発生する車両の運動を制御する制御装置及び制御方法に関する。
従来から、電気モータを備えた車両は、効率的な車両の制動制御を実行するために、車輪に設けられた摩擦材により車両の運動エネルギを熱エネルギへ変換して車両を減速させる摩擦制動と、電気モータにより車両の運動エネルギを電気エネルギとして回収して車両を減速させる回生制動とを併用している。
上記する電気モータを備えた車両においては、当該車両の制動時の走行安定性を阻害しない範囲内で電気モータでより多くの制動力を発生させることによって、車両の運動エネルギの回生量を効果的に増加させることができる。また、前記車両においては、エンジンの駆動効率が低い場合に電気モータでより多くの駆動力を発生させることによって、当該車両の燃料消費を効果的に抑制することができる。
ところで、特許文献1には、前輪に電気モータを備えた車両の制動制御に関する技術が開示されている。
特許文献1に開示されている制動制御装置は、従来のアンチスキッド制御よりも小さいスリップ率の制御介入閾値を設定し、前記スリップ率がこの制御介入閾値以上となった場合にその時点で摩擦制動手段が発生している制動トルクが小さいほど、前記摩擦制動手段への制動トルクの分配量の比率が大きくなるように、目標制動トルクを回生制動手段と摩擦制動手段とに分配する装置である。
特許文献1に開示されている制動制御装置によれば、慣性質量の大きさ等によって回生制動による車輪速度の応答速度が遅れる状況下であっても、小さいスリップ率で摩擦制動へ移行させ、応答速度の速い摩擦制動を使用することで、総合的な応答速度を向上させることができ、回生制動が作用する車輪の速度を迅速に車体速度に復帰させることができる。
しかしながら、特許文献1に開示されている制動制御装置においては、スリップ率を指標として制御介入を判断しており、例えば路面と車輪との摩擦係数が低い場合等、路面と車輪との摩擦状態によってはその応答性が低下する可能性がある。例えば、路面と車輪との摩擦係数が低い状況下でその応答性を向上させるために、前記スリップ率の制御介入閾値を極力小さく設定することが考えられるものの、前記スリップ率の制御介入閾値を小さく設定すると、路面と車輪との摩擦係数が高い状況下では、車輪のグリップ(路面とタイヤとの間の粘着度合い)に余裕があるにも関わらず、容易に前記スリップ率が制御介入閾値を上回り、回生制動手段の回生量が必要以上に抑制されてしまうといった問題がある。
このような問題に対して、特許文献2には、路面と車輪との摩擦係数(以下「路面μ」という。)に応じて前後の車輪の制動力を配分することによって車両の姿勢を制御する技術が開示されている。
特許文献2に開示されている制動力配分制御装置は、各車輪の路面μ勾配値(車輪スリップに対する路面μ)が略同一、あるいは、後輪の路面μ勾配値が前輪の路面μ勾配値よりも大きくなるように各車輪の目標制動力を演算する装置である。
また、特許文献3には、路面μ勾配値と同様の指標として各車輪のスリップ率の変化に対する制動力の変化の値を用いることによって車両の運動を制御する技術が開示されている。
特許文献3に開示されている車両運動制御装置は、スリップ率の変化に対する制動力の変化の値に基づいて前後加速度最大値を設定し、車輪に作用する制駆動トルクを制御して車両の運動を制御する装置である。
特開2003−320929 特開2001−287635 特開2010−228690
特許文献2に開示されている制動力配分制御装置によれば、路面μ勾配に応じて前後の車輪の制動力を配分することによって、過大な制動力配分に起因する車輪のスリップを防止し、路面μに応じた最大限の制動力を発生させることができ、車輪の荷重のみならず路面μも考慮した車両の制動力制御を実行することができる。
また、特許文献3に開示されている車両運動制御装置によれば、スリップ率の変化に対する制動力の変化の値に基づいて車輪に作用する制駆動トルクを制限することによって、路面μに応じた旋回性能を確保することができ、路面摩擦が変化した場合であってもドライバビリティを確保した自動加減速設定を実現することができる。
しかしながら、特許文献2に開示されている制動力配分制御装置においては、前輪や後輪の路面μ勾配のバランスを大きく変化させる制御や、電気モータによる前輪や後輪の駆動力や制動力を増加させる制御は行われていない。また、路面μ勾配値に応じて前輪や後輪の駆動力配分を調節する制御については開示されていない。
また、特許文献3に開示されている車両運動制御装置においても、前輪や後輪の制駆動トルクの配分を大きく変化させて回生制動の量を増加させる制御や、車両の前輪や後輪の駆動力や制動力の配分を調整する制御については開示されていない。
さらに、特許文献1〜3のいずれにおいても、制動力の変化速度に対応するための技術は開示されておらず、緩やかな制動から急制動までといった様々な状況下において、電気モータによる制駆動力の増加と車両の走行安定性の確保の双方を実現し得る技術を構築することが当該分野おける希求の課題となっている。
本発明は、前記課題に鑑みてなされたものであって、その目的とするところは、車輪のスリップ状態や路面と車輪との摩擦係数に応じて電気モータの回生制動力や電気駆動力を適切に制御して車両の走行安定性を維持すると共に、緩制動から急制動まで、あるいは、穏やかな発進から急発進までといった様々な状況下において、電気モータの回生制動力や電気駆動力を効果的に増加させることのできる車両運動制御装置と車両運動制御方法を提供することにある。
上記する課題を解決するために、本発明に係る車両運動制御装置は、前輪と後輪の少なくとも一方に制動力を発生させるブレーキ装置と、前輪と後輪の少なくとも一方に駆動力を発生させる駆動源と、前輪もしくは後輪に回生制動力と電気駆動力を発生させる電気モータと、を備えた車両の運動を制御する車両運動制御装置であって、前記車両運動制御装置は、前記車両に要求される制駆動力に基づいて、前記前輪と前記後輪とに制駆動力を配分する制駆動力配分部を備え、前記制駆動力配分部は、前記前輪と前記後輪の少なくとも一方におけるスリップ率に対する制駆動力の割合が減少した際に、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする。
また、本発明に係る車両運動制御方法は、前輪と後輪の少なくとも一方に制動力を発生させるブレーキ装置と、前輪と後輪の少なくとも一方に駆動力を発生させる駆動源と、前輪もしくは後輪に回生制動力と電気駆動力を発生させる電気モータと、を備えた車両の運動を制御する車両運動制御方法であって、前記車両に要求される制駆動力に基づいて、前記前輪と前記後輪とに制駆動力を配分すると共に、前記前輪と前記後輪の少なくとも一方におけるスリップ率に対する制動力の割合が減少した際には、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする。
本発明の車両運動制御装置と車両運動制御方法によれば、相対的に小さいスリップ量で車輪のグリップが飽和状態に近づいていることを検知することができ、回生制動時の車両の走行安定性を効率的に向上させることができる。また、車輪のスリップ状態に応じて電気モータによる回生制動力や電気駆動力を適切に抑制して車両の走行安定性を維持することができると共に、緩制動から急制動まで、あるいは、穏やかな発進から急発進までといった様々な状況下において、電気モータによる制駆動力を効果的に増加させることができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明に係る車両運動制御装置が適用される車両の基本構成を示す全体構成図。 図1に示す車両運動制御装置の内部構成を概略的に示す概略構成図。 異なる路面摩擦係数におけるスリップ率と制動力の関係を示す図であって、ブレーキングスティフネスの閾値を説明した図。 異なる路面摩擦係数におけるスリップ率と制動力の関係を示す図であって、スリップ率の閾値を説明した図。 図2に示す前後制動力配分部の目標前輪制動力と目標後輪制動力の関係を示す図であって、制動力の前後配分に用いる前後制動力配分線を説明した図。 図2に示す前後制動力配分部の目標前輪制動力と目標後輪制動力の関係を示す図であって、回生能力が減少した場合の制動力の前後配分に用いる前後制動力配分線を説明した図。 図2に示す前後制動力配分部による前後制動力配分方法を説明した図。 図2に示す前後制動力配分部の目標前輪制動力と目標後輪制動力の関係を示す図であって、ブレーキングスティフネスの補正ゲインを変化させた場合の制動力の前後配分に用いる前後制動力配分線を説明した図。 図2に示す前後制動力配分部の目標前輪制動力と目標後輪制動力の関係を示す図であって、要求総制動力時間変化率の補正ゲインを変化させた場合の制動力の前後配分に用いる前後制動力配分線を説明した図。 図2に示す前後制動力配分部における低μ路の場合の制動力とスリップ率とブレーキングスティフネスの変化を時系列で示す図。 図2に示す前後制動力配分部における高μ路の場合の制動力とスリップ率とブレーキングスティフネスの変化を時系列で示す図。 図2に示す前後制動力配分部における低μ路の場合の制動力とスリップ率とブレーキングスティフネスの変化を時系列で示す図。 車両旋回時における各車輪の制動力を模式的に示す図。 図2に示す前後制動力配分部における車両旋回時の制動力とブレーキングスティフネスの変化を時系列で示す図。
以下、本発明に係る車両運動制御装置と車両運動制御方法の実施の形態を図面を参照して説明する。
図1は、本発明に係る車両運動制御装置10が適用される車両50の基本構成を示したものである。
前記車両50は、その前方部と後方部に左右の前輪7FL、7FRと左右の後輪7RL、7RRを備えている。
前記車両50の前輪7FL、7FRには、エンジン(駆動源)4が機械的に連結されており、前記エンジン4は車両50を推進する駆動力を前記前輪7FL、7FRに発生させる。
また、車両50の後輪7RL、7RRには、電気モータ13が機械的に連結されており、前記電気モータ13は車両50の制駆動力を前記後輪7RL、7RRに発生させる。なお、前記制駆動力は、制動力と駆動力の少なくとも一方を含んでいればよく、例えば制動力のみを含む場合や駆動力のみを含む場合、制動力と駆動力の双方を含む場合が含まれる。
ここで、前記車両50の前輪7FL、7FRに連結されたエンジン4は小型モータ19を備えている。この小型モータ19は、発電時にエンジン4を介して前輪7FL、7FRに制動力を発生し得るものの、発生される制動力は後輪7RL、7RRに連結された電気モータ13よりも相対的に小さい。また、小型モータ19は、エンジン4を始動するための駆動力や車両50を推進するための駆動力を発生し得るものの、発生される駆動力は前記電気モータ13よりも相対的に小さい。したがって、本実施の形態において主として車両の制駆動力を発生するために用いられる電気モータは、後輪7RL、7RRに連結された電気モータ13である。
車両50の後輪7RL、7RRに連結された電気モータ13はインバータ16と接続されており、前記インバータ16は、電気モータ13へ通電する電力を制御している。前記インバータ16は、バッテリ17と電気的に接続されており、前記バッテリ17は、インバータ16を介して電気モータ13へ電力を供給している。また、電気モータ13で発生された制動トルクは、回生エネルギとしてバッテリ17へ蓄電されるようになっている。なお、前記バッテリ17は、バッテリ17に蓄えられた電力の残量や回生エネルギの受入能力等を監視するバッテリコントローラ18を備えており、前記バッテリコントローラ18は、これらの情報をコントローラ11へ送信するようになっている。
また、車両50は、運転者が操作するアクセルペダル1aやブレーキペダル1bを備えており、各ペダル1a、1bには、運転者の操作量を検出するためのアクセルペダル操作量検出器2aとブレーキ操作量検出器2bが付設されている。各操作量検出器2a、2bは、コントローラ11と電気的に接続されており、各ペダル1a、1bの運転者による操作量はコントローラ11へ送信されるようになっている。なお、ブレーキペダル1bには、その操作力を圧力へ変換する油圧式のマスタシリンダ3が接続されている。
なお、コントローラ11には、上記情報のほか、車両状態検出器14や外界情報検出器15、車輪速センサ8FL、8FR、8RL、8RR等の情報が入力されるようになっている。ここで、車両状態検出器14としては、例えば前後方向加速度センサや横方向加速度センサ、ヨーレートセンサ、操舵角センサ、摩擦ブレーキの圧力センサ等を挙げることができ、車両の運転状態を検出するための各種センサが含まれる。また、外界情報検出器15としては、例えばレーダやカメラ、超音波センサ、無線受信機、GPS等を挙げることができ、自車両周辺の環境や状況を検出するための各種検出器が含まれる。
前記コントローラ11は、入力された前記情報に基づいて、インバータ16へ目標制駆動力を送信して電気モータ13の制駆動力を制御すると共に、エンジン4へ目標駆動力を送信してエンジン4の駆動力を制御している。また、車両50は、マスタシリンダ3と各車輪に設けられた摩擦ブレーキ6FL、6FR、6RL、6RRとに接続された摩擦ブレーキ制御装置12を備えており、前記コントローラ11は、この摩擦ブレーキ制御装置12へ目標制動力を電気的に送信して各車輪に設けられた摩擦ブレーキ6FL、6FR、6RL、6RRの圧力を電子的に制御している。なお、摩擦ブレーキ6FL、6FR、6RL、6RRの圧力は、従来知られた機構に基づいて各車輪7FL、7FR、7RL、7RRの制動力へ機械的に変換されるようになっている。
このように、車両50の前輪7FL、7FRには、エンジン4による駆動力と摩擦ブレーキ6FL、6FRによる制動力が作用され、後輪7RL、7RRには、電気モータ13の制駆動力(回生制動力と電気駆動力)と摩擦ブレーキ6RL、6RRによる制動力が作用されるようになっている。そして、コントローラ11には車両運動制駆装置10が内蔵されており、この車両運動制駆装置10は、駆動源としてのエンジン4、ブレーキ装置としての摩擦ブレーキ6FL、6FR、6RL、6RR、及び電気モータ13によって各車輪に発生される制駆動力を適切に配分して車両の運動を制御する。
図2は、図1に示す車両運動制御装置10の内部構成を概略的に示したものである。
前記車両運動制御装置10は、主として車輪速算出部21と加速度算出部24と要求総制動力算出部31と外界情報検出部33と回生能力算出部35とを備えている。
前記車輪速算出部21は、車輪速センサ8FL、8FR、8RL、8RRから出力された信号に基づいて各車輪の車輪速(回転速度)wを算出し、その算出結果を車両速度算出部22とスリップ率算出部23へ送信する。車両速度算出部22は、各車輪の車輪速wと加速度算出部24から入力される情報に基づいて、車両50の速度Vを算出し、その算出結果をスリップ率算出部23へ送信する。
例えば、車両50の減速時には、車両速度算出部22は、各輪の車輪速wのうち最大の車輪速を車両速度Vとして採用する。一方、例えば、全ての車輪の車輪速wが急激に変化した場合には、車輪速wと車両速度Vとの相関が低いと判断し、加速度算出部24から入力される車両状態検出器14の前後加速度axに基づいて車両速度Vを補正し、新たな車両速度Vを算出する。
スリップ率算出部23は、車輪速算出部21から送信される車輪速wと車両速度算出部22から送信された車両速度Vに基づいて、各車輪のスリップ率sと車両平均のスリップ率Sを算出して、その算出結果をブレーキングスティフネス算出部26へ送信する。
加速度算出部24は、車両状態検出器14の加速度センサ値に基づいて車両50の前後加速度axと横加速度ayを算出しており、その算出結果を車両速度算出部22と制駆動力算出部25と路面μ算出部27と前後駆動力配分部41へ送信している。前記制駆動力算出部25は、加速度算出部24から送信された車両50の前後加速度axと予め記憶している車両重量に基づいて車両50全体の制駆動力Xを算出すると共に、車両50全体の制駆動力Xを各車輪に割付けて各車輪の制駆動力xを算出し、その算出結果をブレーキングスティフネス算出部26へ送信する。
ブレーキングスティフネス算出部26は、スリップ率算出部23から送信された車両平均のスリップ率Sと各車輪のスリップ率sと、制駆動力算出部25から送信された車両全体の制駆動力Xと各車輪の制駆動力xとの関係に基づいて、ブレーキングスティフネスBS、bsを算出し、その算出結果を路面μ算出部27と前後駆動力配分部41へ送信する。ここで、前記ブレーキングスティフネスBSは、車両平均のスリップ率Sに対する車両全体の制動力Xの割合を表したものであり、ブレーキングスティフネスbsは、各車輪のスリップ率sに対する各車輪の制動力xの割合を表したものである。
路面μ算出部27は、ブレーキングスティフネス算出部26から送信されたブレーキングスティフネスBS、bsと加速度算出部24から送信された前後加速度axに基づいて路面摩擦係数μを算出し、その算出結果を前後駆動力配分部41へ送信する。
したがって、前後駆動力配分部41には、車輪速算出部21と加速度算出部24に入力された情報に基づいてブレーキングスティフネスBS、bsと路面摩擦係数μと前後加速度axと横加速度ayとが入力されるようになっている。
ここで、図3を参照して、上記するブレーキングスティフネス算出部26におけるブレーキングスティフネスBS、bsと路面μ算出部27における路面摩擦係数μの算出方法について具体的に説明する。図3は、横軸をスリップ率、縦軸を制動力としたときの、異なる路面摩擦係数における車両50のスリップ率と制動力の関係を示したものである。
上記するように、例えばブレーキングスティフネスBSは、車両平均のスリップ率Sに対する車両全体の制動力Xの割合であるから、図3中の動作点と原点とを結ぶ直線の傾きで表すことができる。すなわち、車両平均のブレーキングスティフネスBSは、車両全体の制駆動力Xを各車輪のスリップ率の合計値s_massで除算して算出することができ、各輪のブレーキングスティフネスbsは、各輪の制駆動力xを対応する各車輪のスリップ率sで除算して算出することができる。なお、同様にして、前輪の2輪と後輪の2輪のブレーキングスティフネスを算出することもできる。
ここで、図3に示すように、スリップ率Sに対する制動力Xの特性は、路面の摩擦状態によって変化するものの、スリップ率が小さい領域、すなわち制動力が小さい領域においては、路面摩擦係数μが変化してもブレーキングスティフネスBSは略一定である。一方、制動力が路面の摩擦限界に近づいて制動力の飽和が開始すると、ブレーキングスティフネスBSは次第に減少する。
そこで、路面μ算出部27は、ブレーキングスティフネスBSに対して閾値BSthを予め設けておき、ブレーキングスティフネスBSがこの閾値BSthよりも小さい場合には、加速度算出部24から送信された車両50の前後加速度axを路面摩擦係数μとして採用する。
図3に示すように、ブレーキングスティフネスBSが閾値BSthよりも小さくなるスリップ率Sは、例えば氷結路のような路面摩擦係数μが0.1程度の低μ路と乾燥路のような路面摩擦係数μが約1.0の高μ路とでは異なる場合があり、ブレーキングスティフネスBSは、例えば氷結路のような低μ路では相対的に小さいスリップ率で減少を開始し、乾燥路のような高μ路では相対的に大きいスリップ率で減少を開始する場合がある。ブレーキングスティフネスBSが減少を開始することは車輪のグリップが飽和し始めたことを表しているため、上記する方法を用いることで、低μ路では小さいスリップ率で路面摩擦係数μを検出することができ、高μ路では大きいスリップ率で路面摩擦係数μを検出することができる。
なお、図4に示すように、スリップ率Sに閾値Sthを設けて低μ路を判別する方法もある。この方法によれば、例えば閾値SthをSth1=0.05に設定した場合には、氷結路のような低μ路から乾燥路のような高μ路までの範囲で、路面の摩擦限界付近の車両50の前後加速度axを路面摩擦係数μとして採用できるものの、低μ路のスリップ率がオーバーシュートして路面摩擦係数μのピーク値が0.1前後と過大になってしまう可能性がある。すなわち、路面摩擦係数μの推定精度を確保することができるものの、車両50の走行安定性が不十分となることが考えられる。また、例えば閾値Sthを相対的に小さいSth2=0.02に設定した場合には、氷結路のような低μ路ではスリップ率を小さく維持したまま、路面の摩擦限界付近の車両50の前後加速度axを路面摩擦係数μとして採用できるものの、乾燥路のような高μ路では、路面の摩擦限界までにマージン(余裕)があるにも関わらず、その時点の前後加速度axを路面摩擦係数μとして採用してしまう可能性がある。すなわち、車両50の走行安定性は確保できるものの、高μ路での路面摩擦係数μの推定精度が低下し、十分な回生を行うことができなくなる可能性がある。
したがって、図3に示すようにブレーキングスティフネスの減少に基づく路面摩擦係数μ推定を行うことで、例えばスリップ率を閾値とした路面摩擦係数μ推定と比較して、低μ路では小さいスリップ率で路面摩擦係数μを検出することができ、高μ路では大きいスリップ率で路面摩擦係数μを検出することできるため、低μ路で走行安定性を確保しながら、路面摩擦係数μの推定精度を確保することができる。
図2に示す要求総制動力算出部31は、車両全体に要求される制動力目標値を演算するためのものであり、運転者によるアクセルペダル1aやブレーキペダル1bの操作量や、車両状態検出器14、外界情報検出器15等からの情報等に基づいて要求総制動力Xreqを算出する。例えば運転者によってブレーキペダル1bの操作がなされた場合や走行方向前方の先行車両や障害物との衝突を避ける場合等には、車両50を減速するための要求総制動力Xreqを算出し、その算出結果を前後制動力配分部41と要求総制動力時間変化率算出部32へ送信する。
要求総制動力時間変化率算出部32は、要求総制動力算出部31から送信された要求総制動力Xreqを時間微分して時間変化率Xreq’を算出し、その算出結果を前後制動力配分部41へ送信する。ここで、要求総制動力の時間変化率Xreq’が大きい場合には、急制動の走行状態であり、このような状態は時間変化率が減少しても所定時間維持したほうがよいと考えられることから、時間変化率のピーク値を所定時間保持するようなフィルタリングを実施したり、時間変化率のピーク値が逓減するように減少方向にのみローパスフィルタ等のフィルタリングを実施することができる。
また、外界情報検出部33は、自車両周辺の環境や状況を検出するためのものであり、例えば、レーダやカメラ、超音波センサ、温度センサ等を用いて、他車両や歩行者、障害物、区画線、路肩、外気温等を検出し、その検出結果を不安定リスク算出部34へ送信する。なお、前記外界情報検出部33は、例えば、無線受信機やGPS等を用いて、自車両の位置や進路の道路状況、落下物状況、事故状況、渋滞状況、道路凍結状況等を受信し、それらの情報を不安定リスク算出部34へ送信することもできる。
不安定リスク算出部34は、外界情報検出部33から送信された情報や車両状態検出器14からの情報に基づいて、車両50の不安定リスクの大小に関する指標Riskを算出し、その算出結果を前後制動力配分部41へ送信する。
ここで、例えば、他車両や歩行者、障害物等との相対距離が近く、それらとの相対速度が大きい場合には、急制動や急操舵等の運転者の操作頻度が高くなるため、不安定リスクが高いとみなされる。また、例えば、区画線や路肩との相対距離が近い場合には、走行路からの逸脱を回避するための急制動や急操舵等の操作が多くなるため、不安定リスクが高いとみなされる。また、例えば、道路勾配が大きい降坂路を走行している場合やこれから走行することが予測される場合には、後輪の摩擦限界が低くなるため、不安定リスクが高いとみなされる。また、例えば、外気温が低い場合には、氷結路等の低μ路を走行する頻度が高くなるため、不安定リスクが高いとみなされる。さらに、例えば、無線受信機等を用いて進行路に落下物や事故が発生している情報を受信した場合には、将来において事故を回避するための運転操作が行われる可能性が高いため、不安定リスクが高いとみなされる。
また、回生能力算出部35は、インバータ16やバッテリコントローラ18から送信される回生能力情報に基づいて、車両50に発生し得る最大回生制動力Rr_maxを算出し、その算出結果を前後制動力配分部41と摩擦回生配分部42へ送信する。ここで、前記最大回生制動力Rr_maxは、電気モータ13とインバータ16の電気的な制約から車両速度Vに依存する傾向があるため、車両速度Vに関するマップデータを用いて算出することができる。その際、バッテリ17の電圧や電力受入能力の変化に応じて前記最大回生制動力Rr_maxを補正してもよい。
前後制動力配分部41は、上記する各種情報に基づいて前輪制動力Fと後輪制動力Rを算出し、前記前輪制動力Fを摩擦制動力配分部43へ送信し、前記後輪制動力Rを摩擦回生配分部42へ送信する。
摩擦回生配分部42は、回生能力算出部35から送信された最大回生制動力Rr_maxと前後制動力配分部41から送信された後輪制動力Rに基づいて、目標摩擦制動力Rfと目標回生制動力Rrを算出し、目標摩擦制動力Rfを摩擦制動力配分部43へ送信する。また、目標回生制動力Rrはインバータ16へ送信され、電気モータ13の回生制動力を用いて車両50が減速される。
また、摩擦制動力配分部43は、前後制動力配分部41から送信された前輪制動力Fと摩擦回生配分部42から送信された目標摩擦制動力Rfに基づいて、各車輪の摩擦ブレーキ制動力Ffl、Ffr、Rfl、Rfrを算出し、その算出結果を摩擦ブレーキ制御装置12へ送信し、各車輪に設けられた摩擦ブレーキ6FL、6FR、6RL、6RRの圧力を制御して車両50が減速される。
ここで、図5及び図6を参照して、上記する前後制動力配分部41における前輪制動力Fと後輪制動力R、摩擦回生配分部42における目標摩擦制動力Rfと目標回生制動力Rr、摩擦制動力配分部43における各車輪の摩擦ブレーキ制動力Ffl、Ffr、Rfl、Rfrの算出方法について具体的に説明する。図5は、図2に示す前後制動力配分部41の目標前輪制動力と目標後輪制動力の関係を示す図であって、制動力の前後配分に用いる前後制動力配分線を説明したものであり、図6は、回生能力が減少した場合の制動力の前後配分に用いる前後制動力配分線を説明したものである。
図5に示すように、前後制動力配分部41は、要求総制動力算出部31によって算出される要求総制動力Xreqに対する前輪制動力と後輪制動力の配分量を設定するための前後制動力配分線(横軸が前輪制動力F、縦軸が後輪制動力Rの座標系において前輪と後輪の制動力が遷移する線)を備えると共に、要求総制動力算出部31から送信される要求総制動力Xreqと回生能力算出部35から送信される最大回生制動力Rr_max等の回生能力情報等に応じて前記前後制動力配分線を変化させるようになっている。
具体的には、例えば電気モータ13やバッテリ17に回生能力がない場合には、後輪制動力を前輪制動力よりも相対的に大きく設定する必要がないため、前輪制動力が後輪制動力よりも相対的に大きくなるような一定配分の前後制動力配分線(図5中のLa線)に従って前輪7FL、7FRと後輪7RL、7RRの制動力を配分する。このように、前輪制動力を後輪制動力よりも相対的に大きく設定することで、後輪7RL、7RRのスリップ率の増加を抑制することができ、車両50の走行安定性を維持することができる。
より具体的には、例えば要求総制動力Xreqが一定の場合には、この総制動力一定の線は図5中のLc線のように描くことができ、上記するように電気モータ13やバッテリ17に回生能力がない場合には、La線とLc線の交点Aから目標前輪制動力Faと目標後輪制動力Raを算出することができる。この場合には、上記するように目標前輪制動力Faが目標後輪制動力Raよりも相対的に大きくなり、前輪7FL、7FRの制動力とスリップ率が後輪7RL、7RRの制動力とスリップ率よりも相対的に大きく設定されるため、車両50の走行安定性を確保することができる。
なお、前後制動力配分部41によって算出された目標後輪制動力Rは、図2に示す摩擦回生配分部42で目標摩擦制動力Rfと目標回生制動力Rrに配分されるものの、電気モータ13やバッテリ17に回生能力が見込まれず、図5中のLa線のような一定配分の前後制動力配分線に従って前輪7FL、7FRと後輪7RL、7RRの制動力を配分した場合には、前記目標後輪制動力Rは全て摩擦ブレーキによる目標摩擦制動力Rfに割り当てられることとなる。
一方で、例えば電気モータ13やバッテリ17に回生能力がある場合には、後輪制動力を可能な限り大きく設定する方がよいことから、図5中のLb線で示すように、目標後輪制動力Rを最大回生制動力Rr_maxに設定するように前後制動力配分線を規定し、その前後制動力配分線に従って前輪7FL、7FRと後輪7RL、7RRの制動力を配分する。そして、例えば要求総制動力Xreqが一定の場合には、この総制動力一定の線は図5中のLc線のように描くことができることから、Lb線とLc線の交点Bから目標前輪制動力Fbと目標後輪制動力Rbを算出することができる。なお、目標前輪制動力Fや目標後輪制動力Rが相対的に大きい場合には、前輪制動力が後輪制動力よりも相対的に大きくなるような一定配分の前後制動力配分線に従って前輪7FL、7FRと後輪7RL、7RRの制動力を配分する。したがって、例えば電気モータ13やバッテリ17に回生能力がある場合の目標後輪制動力Rbは、電気モータ13やバッテリ17に回生能力がない場合の目標後輪制動力Raよりも相対的に大きく設定されることとなる。
前記目標後輪制動力Rbは、図2に示す摩擦回生配分部42で目標摩擦制動力Rfと目標回生制動力Rrに配分されるものの、この目標後輪制動力Rbは一般に最大回生制動力Rr_maxと等しく設定されるため、目標後輪制動力Rbは全て目標回生制動力Rrに割り当てられることになり、回生能力に応じたより多くのエネルギを電気モータ13を介して回生することができる。
次に、図6を参照して、要求総制動力Xreqが一定の条件下で、回生能力が次第に減少した場合の制動力の前後配分の変化について説明すると、まず、回生能力が相対的に大きい場合には、Ld線で示すように前後制動力配分線を規定し、総制動力一定の線(Lc線)との交点Dから目標前輪制動力Fdと目標後輪制動力Rdを算出することができる。図示例においては、要求総制動力Xreqの全てが後輪7RL、7RRの回生制動で発生されており、すなわち、目標前輪制動力Fdはほぼゼロであり、目標後輪制動力Rdは要求総制動力Xreqとほぼ等しくなっている。
次いで、回生能力が幾分か低下した場合には、Le線で示すように前後制動力配分線を規定し、総制動力一定の線(Lc線)との交点Eから目標前輪制動力Feと目標後輪制動力Reを算出することができる。この場合には、回生能力が相対的に低下するものの、所定の間は後輪7RL、7RRの制動力の全てを回生制動力で発生させることができる。また、目標前輪制動力Fや目標後輪制動力Rが相対的に大きい場合には、一定配分の前後制動力配分線に沿った前輪と後輪の制動力配分となっている。
前後制動力配分部41によって算出された目標後輪制動力Reは、摩擦回生配分部42で目標摩擦制動力Rfと目標回生制動力Rrに配分されるものの、上記所定の間には前記目標後輪制動力Reは全て目標回生制動力Rrに割り当てられることとなる。
次に、回生能力が更に低下した場合には、Lf線で示すように前後制動力配分線を規定し、目標前輪制動力Ffと目標後輪制動力Rfを算出することができる。この場合には、一定配分の前後制動力配分線へ移行する目標前輪制動力Fや目標後輪制動力Rは、上記するLe線よりも相対的に早くなり、総制動力一定の線(Lc線)との交点Fは点Eと同一となり、目標前輪制動力Ffと目標後輪制動力Rfは、上記する目標前輪制動力Feと目標後輪制動力Reと同値となる。
ここで、回生制動力は可能な限り大きく設定する方が良いものの、この場合の目標後輪制動力Rfは最大回生制動力Rr_maxよりも相対的に大きくなることから、摩擦回生配分部42による目標摩擦制動力Rfと目標回生制動力Rrの配分においては、目標回生制動力Rrfは最大回生制動力Rr_maxに設定され、目標摩擦制動力Rffは前記目標後輪制動力Rfに対する不足分に設定されることとなる。
このように、回生能力が変化した場合であっても、その回生能力に応じて前輪と後輪の制動力を適切に配分し、例えば回生制動に不足が生じた場合には摩擦制動によってその不足分を補完することで、回生制動による回生エネルギの回収量を効果的に高めることができる。
なお、上記する方法によって算出された目標前輪制動力Fと目標摩擦制動力Rfは、摩擦制動力配分部43へ送信され、各車輪の摩擦ブレーキ制動力Ffl、Ffr、Rfl、Rfrに配分されて摩擦ブレーキ制御装置12へ送信される。
図7は、図2に示す前後制動力配分部41よる前輪と後輪の制動力配分方法をより詳細に説明したものである。
前記前後制動力配分部41は、横加速度ayと最大後輪制動力Rm_maxとの関係を規定する制御マップM51と、ブレーキングスティフネスBSと補正ゲインGbsとの関係を規定する制御マップM52と、要求総制動力時間変化率Xreq’と補正ゲインGxrとの関係を規定する制御マップM53と、不安定リスクの指標Riskと補正ゲインGrskとの関係を規定する制御マップM54と、目標前輪制動力Fと目標後輪制動力Rとの関係を規定する制御マップM55と、を予め備えている。
まず、前後制動力配分部41は、加速度算出部24から送信された横加速度ayと路面μ算出部から送信された路面摩擦係数μと制御マップM51を用いて、前記横加速度ayと路面摩擦係数μに応じた最大後輪制動力Rm_maxを算出し、その算出結果を最大回生制動力Rr_maxのための補正演算部45へ送信する。
具体的には、例えば車両50の旋回中は横加速度ayの絶対値が増加し、前輪7FL、7FRと後輪7RL、7RRに発生する横力も増加することとなり、このような状態で後輪7RL、7RRに対して相対的に大きな制動力を発生させると、後輪7RL、7RRの横力が減少し、前輪7FL、7FRと後輪7RL、7RRの横力のバランスが崩れて車両50の走行安定性が低下する可能性がある。そこで、前後制動力配分部41は、制御マップM51に示すように、車両50の横加速度ayの絶対値が増加するに従って最大後輪制動力Rm_maxを減少させるように前記最大後輪制動力Rm_maxを設定する。また、路面摩擦係数μが小さくなるに従って後輪7RL、7RRで発生し得る横力と制動力は減少することから、前後制動力配分部41は、路面摩擦係数μが低下するに従って最大後輪制動力Rm_maxを減少させるように前記最大後輪制動力Rm_maxを設定する。
また、前後制動力配分部41は、ブレーキングスティフネス算出部から送信されたブレーキングスティフネスBSと制御マップM52を用いて、前記ブレーキングスティフネスBSに応じた最大回生制動力Rr_maxの低減補正ゲインGbs(0≦Gbs≦1)を算出し、その算出結果を最大回生制動力Rr_maxの補正演算部45へ送信する。
具体的には、ブレーキングスティフネスBSが減少するに従って後輪7RL、7RRのグリップが低下していることとなる(図3参照)ため、前後制動力配分部41は、ブレーキングスティフネスBSが閾値BSth未満では補正ゲインGbsを1未満に設定する。これにより、最大回生制動力Rr_maxを低減することができ、後輪7RL、7RRのスリップを抑制することができる。また、ブレーキングスティフネスBSがさらに減少した場合には、ブレーキングスティフネスBSの所定値で補正ゲインGbsをゼロに設定し、図5等に示す前後制動力配分線を一定配分の前後制動力配分線に設定する。
図8を参照して、上記する補正ゲインGbsによって最大回生制動力Rr_maxを低減させる場合における前後制動力配分線の変化についてより詳細に説明する。
ブレーキングスティフネスBSが相対的に大きい場合、より具体的にはブレーキングスティフネスBSが閾値BSthよりも大きく後輪7RL、7RRのスリップが少ない場合には、Lh線で示すように前後制動力配分線を規定し、総制動力一定の線(Lc線)との交点Hから目標前輪制動力Fhと目標後輪制動力Rhを算出する。この場合には、目標後輪制動力Rhは、目標前輪制動力Fhよりも相対的に大きく設定され、より多くの回生制動が確保されるように前輪7FL、7FRと後輪7RL、7RRの制動力が配分されることとなる。
また、ブレーキングスティフネスBSが幾分か減少した場合、より具体的にはブレーキングスティフネスBSが閾値BSthよりも小さく後輪7RL、7RRのスリップが大きくなった場合には、Li線で示すように前後制動力配分線を規定し、総制動力一定の線(Lc線)との交点Iから目標前輪制動力Fiと目標後輪制動力Riを算出する。この場合には、補正ゲインGbsが1未満に設定されており、最大回生制動力Rr_maxが幾分か低減されるため、図示するように目標後輪制動力Riも減少する。なお、図示例では、目標前輪制動力Fiが目標後輪制動力Riよりも相対的に大きく設定されているため、車両50の走行安定性を向上させることができる。
また、ブレーキングスティフネスBSが更に減少した場合、より具体的にはブレーキングスティフネスBSが更に小さく後輪7RL、7RRのスリップが更に大きくなった場合には、補正ゲインGbsを更にゼロに近づけることにより最大回生制動力Rr_maxを低減し、例えばLj線で示すように前後制動力配分線を規定して目標前輪制動力Fjと目標後輪制動力Rjを算出する。この場合には、図6に基づいて説明したように、目標前輪制動力Fjと目標後輪制動力Rjは、上記する目標前輪制動力Fiと目標後輪制動力Riと同値となり、前記目標後輪制動力Rjは、摩擦回生配分部42で目標摩擦制動力Rfjと目標回生制動力Rrjに配分されることとなる。
後輪制動力は、走行安定性を確保し得る範囲内で回生制動を用いて発生させることが望ましいものの、回生制動のみでは、後輪7RL、7RRに連結された電気モータ13の慣性モーメントが大きく、後輪7RL、7RRのスリップを十分な応答性で制御できない場合があるため、上記するように、ブレーキングスティフネスBS等の指標に基づいて摩擦制動による制動力の配分量を増加させ、摩擦制動を用いたスリップ制御へ円滑に移行することで、車両50の車輪のスリップを効果的に抑制することができる。
このように、電気モータ13と摩擦ブレーキ装置12によって発生される制駆動力を前輪7FL、7FRと後輪7RL、7RRに配分して車両50の運動を制御する車両運動制御装置10は、スリップ率に対する制駆動力の割合が減少した場合に、電気モータ13によって制駆動力が発生される後輪7RL、7RRの制駆動力を減少させることによって、車輪のスリップ状態に応じて電気モータ13による回生制動や電気駆動の量を適切に制御することができ、車両50の走行安定性を維持しなながら電気モータ13による回生量と駆動力とを効果的に高めることができる。
また、前後制動力配分部41は、図7に示すように、要求総制動力時間変化率算出部32から送信された要求総制動力時間変化率Xreq’と制御マップM53を用いて、要求総制動力時間変化率Xreq’に応じた最大回生制動力Rr_maxの低減補正ゲインGxr(0≦Gxr≦1)を算出し、その算出結果を最大回生制動力Rr_maxの補正演算部45へ送信する。
例えば、一旦車輪のスリップ率が増加し始めると、制動力を減少させてそのスリップ率を抑制しようとしても、電気モータ13や車輪等の慣性モーメントによってスリップ率が増加し続けてしまう場合がある。また、例えば、ブレーキングスティフネス算出部26や路面μ算出部27の演算においては、ローパスフィルタ処理等の時間遅れを伴う演算が含まれることがあり、スリップ制御の応答時間に制約がある場合がある。このため、要求総制動力時間変化率Xreq’が増加する場合には、後輪7RL、7RRのスリップ率が急激に増加し、後輪7RL、7RRのグリップが低下する傾向が高くなる。
そこで、前後制動力配分部41は、後輪7RL、7RRのスリップを抑制するため、要求総制動力時間変化率Xreq’が大きくなるに従って最大回生制動力Rr_maxを低減させるような補正ゲインGxrを設定する。
図9を参照して、上記する補正ゲインGxrによって最大回生制動力Rr_maxを低減させる場合における前後制動力配分線の変化について説明する。
図8を用いて説明したのと同様に、前後制動力配分部41は、要求総制動力時間変化率Xreq’が所定の閾値よりも大きい場合には補正ゲインGxrを1未満に設定し、その補正ゲインGxrを用いて最大回生制動力Rr_maxを補正することによって、最大回生制動力Rr_maxを相対的に低減させる。これにより、後輪7RL、7RRの制動力を相対的に減少させ、制動力の増加による後輪7RL、7RRのスリップ率の増加を効果的に抑制することができる。
このように、運転者や別途の制御装置から要求される制駆動力の時間変化率を算出する要求制駆動力時間変化率算出部32により算出された時間変化率が増加した場合に、電気モータ13によって制駆動力が発生される後輪7RL、7RRの制動力を減少させることよって、緩制動から急制動までの広範囲内で車両50の走行安定性を維持しながら電気モータ13による回生制動力を効果的に高めることができる。
また、前後制動力配分部41は、不安定リスク算出部34から送信された不安定リスクの指標Riskと制御マップ54を用いて、不安定リスクの指標Riskに応じた最大回生制動力の低減補正ゲインGrsk(0≦Grsk≦1)を算出し、その算出結果を最大回生制動力Rr_maxの補正演算部45へ送信する。
例えば、急制動のような時間変化率の大きい制動力が要求される場合や、路面摩擦係数の低い道路を将来的に走行することが予測される場合には、車両50の不安定リスクが増加する。このような状況を考慮して、前後制動力配分部41は、不安定リスクの増加に従って最大回生制動力Rr_maxを低減させるような補正ゲインGrskを設定する。これにより、後輪7RL、7RRのグリップのマージン(余裕)を予め確保して車両50の走行安定性を維持することができ、例えば車輪のスリップ状態が限界に近づいてから後輪7RL、7RRの制動力を制御する場合と比較してより確実に車両50の走行安定性を確保することができる。
補正演算部45は、その演算部46で、回生能力算出部35から送信された回生能力に基づく最大回生制動力Rr_maxと横加速度ayと路面摩擦係数μと制御マップM51を用いて算出された最大後輪制動力Rm_maxとを比較し、それらのうちいずれか小さい方を新たな最大回生制動力Rr_maxとして採用する。このように、例えば回生能力が大きい場合であっても、車両50の旋回状態や路面摩擦係数μに応じて車輪のグリップ限界を見極めて後輪制動力を制限することにより、例えば車輪のスリップ状態が限界に近づいてから後輪7RL、7RRの制動力を制御する場合と比較して車両50の走行安定性を効果的に向上させることができる。
また、補正演算部45は、その演算部47で、上記する低減補正ゲインGbs、Gxr、Grskを比較し、それらのうち最も小さい補正ゲインを最大回生制動力Rr_maxの補正ゲインとして採用する。
そして、補正演算部45は、演算部46で採用した最大回生制動力Rr_maxと演算部47で採用した補正ゲインを乗算して新たな最大回生制動力Rr_maxを算出する。
補正演算部45は、図5等を用いて説明したように、要求総制動力算出部31から送信された要求総制動力Xreqと新たな最大回生制動力Rr_maxと制御マップ56を用いて、前輪目標制動力Fと目標後輪制動力Rを算出し、その算出結果を摩擦回生配分部42や摩擦制動力配分部43へ送信する。
次に、図10〜図12を参照して、図2に示す前後制動力配分部41における路面摩擦係数が異なる場合の制動力とスリップ率とブレーキングスティフネスの変化について説明する。
図10は、路面摩擦係数μが0.1前後の低μ路において、要求総制動力Xreqがランプ状(傾斜路状)かつ相対的に緩やかに増加した場合の、制動力とスリップ率とブレーキングスティフネスの変化を時系列で示したものであり、上段から総制動力、前輪制動力、後輪制動力、後輪スリップ率、ブレーキングスティフネスの変化を示したものである。
制動初期(図中、A10a区間)においては、図6のLd線を用いて説明したように、前輪7FL、7FRと後輪7RL、7RRの制動力は後輪7RL、7RRの制動力のみに配分されている。したがって、要求総制動力Xreqの立ち上がり開始時期においては、前輪7FL、7FRの制動力は発生せず、後輪7RL、7RRの回生制動力Rrのみが発生する。そして、後輪7RL、7RRの制動力の増加に伴って、車両平均のブレーキングスティフネスBSや後輪7RL、7RRのブレーキングスティフネスBSrは減少し始める。
次いで、車両平均のブレーキングスティフネスBSが閾値BSthよりも小さくなると(図中、A10b区間)、前後制動力配分部41は車輪のスリップが大きくなったと判断し、後輪7RL、7RRの回生制動の配分量を減少させ、前輪7FL、7FRの摩擦制動の配分量を増加させる。後輪7RL、7RRの回生制動力Rrが減少すると、後輪7RL、7RRのスリップ率も減少し始め、後輪7RL、7RRのブレーキングスティフネスBSrが回復し始める。
図示例においては、後輪7RL、7RRの回生制動の抑制を開始する時点での後輪スリップ率が0.05未満となっており、上記するように、後輪7RL、7RRの回生制動の配分量を減少させ、前輪7FL、7FRの摩擦制動の配分量を増加させることで、回生制動の抑制の開始時点での後輪スリップ率を低く維持した状態で、後輪7RL、7RRのグリップを迅速に回復させることができ、車両50の走行安定性を確保することができる。
次に、要求総制動力Xreqは依然として増加し続けているため、目標前輪制動力と目標後輪制動力も増加し続けることとなる。このため、A10c区間においては、前輪7FL、7FRのブレーキングスティフネスBSfが減少し、摩擦ブレーキによる制動力制御を用いたスリップ制御へ移行する。その際、平均ブレーキングスティフネスBSは閾値BSth付近を振動的に推移すると共に、後輪制動は、回生制動から摩擦制動へ移行することとなる。
そして、後輪制動が回生制動から摩擦制動へ完全に移行した後(図中、A10d区間及びA10e区間)は、前輪7FL、7FRと後輪7RL、7RRとの双方が摩擦制動のみによるスリップ制御へ移行することとなり、従来のABS(Antilocked Braking System)制御と同様に、前輪7FL、7FRのスリップ率が後輪7RL、7RRのスリップ率よりも相対的に大きくなるように、前輪制動力と後輪制動力とが制御される。
このように、スリップ率が高くなるまでは電気モータ13が接続された後輪7RL、7RRのみで制動することによってより多くの回生エネルギを回収し、ブレーキングスティフネスBS等の指標を用いて過大なスリップを検知した場合には、後輪7RL、7RRでの回生を抑制することで、路面摩擦係数μに応じた回生制動力を発生させることができ、車両50の不安定な挙動を抑制して車両50の走行安定性を確保することができる。なお、このようなスリップ制御が実行される場合には、前輪の目標摩擦制動力Ffと後輪の目標摩擦制動力Rfと、実際の前輪制動力Ffactと後輪制動力Rfactとの間の乖離が大きくなる場合があり、実際の制動力Ffact、Rfactの波形は振動的に推移する場合がある。
図11は、路面摩擦係数μが1.0前後の高μ路において、要求総制動力Xreqがランプ状(傾斜路状)かつ相対的に緩やかに増加した場合の、制動力とスリップ率とブレーキングスティフネスの変化を時系列で示したものであり、上段から総制動力、前輪制動力、後輪制動力、後輪スリップ率、ブレーキングスティフネスの変化を示したものである。
制動初期(図中、A11a区間)においては、図6のLd線を用いて説明したように、前輪7FL、7FRと後輪7RL、7RRの制動力は後輪7RL、7RRの制動力のみに配分されている。したがって、要求総制動力Xreqの立ち上がり開始時期においては、前輪7FL、7FRの制動力は発生せず、後輪7RL、7RRの回生制動力Rrのみが発生する。そして、後輪7RL、7RRの制動力の増加に伴って、車両平均のブレーキングスティフネスBSや後輪7RL、7RRのブレーキングスティフネスBSrは緩やかに減少し始める。
ここで、図11に示す高μ路においては、図10に示す低μ路と比較して後輪7RL、7RRのグリップ能力が相対的に高くなるため、例えば低μ路と同じ制動力を発生させた場合であっても、ブレーキングスティフネスBS、BSrの低下率は相対的に小さくなる。
次いで、車両平均のブレーキングスティフネスBSが閾値BSthよりも小さくなると(図中、A11b区間)、前後制動力配分部41は車輪のスリップが大きくなったと判断し、後輪7RL、7RRの回生制動の配分量を減少させ、前輪7FL、7FRの摩擦制動の配分量を増加させる。後輪7RL、7RRの回生制動力Rrが減少すると、後輪7RL、7RRのスリップ率も減少し始め、後輪7RL、7RRのブレーキングスティフネスBSrが次第に回復し始める。
本実施の形態においては、ブレーキングスティフネスBS、BSrをスリップ制御の指標としているため、後輪7RL、7RRの回生制動の抑制を開始する時点での後輪スリップ率が0.05を超える場合であっても、回生能力が十分確保できる場合には低μ路よりも相対的に大きなスリップ率まで回生制動を維持することができ、路面摩擦係数μに応じた回生制動力を発生させながら、車両50の走行安定性を確保することができる。
図12は、路面摩擦係数μが0.1前後の低μ路において、要求総制動力Xreqがランプ状(傾斜路状)かつ相対的に急激に増加したときの、制動力とスリップ率とブレーキングスティフネスの変化を時系列で示したものであり、上段から総制動力、前輪制動力、後輪制動力、スリップ率、ブレーキングスティフネスの変化を示したものである。
要求総制動力Xreqの立ち上がり開始時期(図中、A12a区間)においては、要求総制動力Xreqの時間変化率が大きいため、図9に基づいて説明したように、最大回生制動力Rr_maxは所定の補正ゲインを用いて低減補正される。したがって、前輪7FL、7FRと後輪7RL、7RRの制動力配分は、一定配分の前後制動力配分線近傍に補正されることとなり、前輪制動力が後輪制動力よりも相対的に大きくなるように前輪7FL、7FRと後輪7RL、7RRの制動力が配分される。なお、要求総制動力Xreqは増加し続けるものの、後輪7RL、7RRの制動力の配分量が最大回生制動力Rr_maxよりも大きくなるまでは、後輪制動力は回生制動力によって発生される。
このように、要求総制動力Xreqが相対的に急激に増加する場合には、要求総制動力Xreqが相対的に緩やかに増加する場合と比較して、後輪制動力が制限され、前輪制動力が大きくなる。したがって、要求総制動力Xreqが相対的に緩やかに増加する場合と比較して後輪7RL、7RRのスリップ率が大きくなり、例えば後輪7RL、7RRのスリップ率が0.05を超える場合であっても、前記後輪7RL、7RRのスリップ率よりも前輪7FL、7FRのスリップ率が相対的に大きくなるため、車両50の不安定な走行状態を抑制してその走行安定性を確保することができる。
次いで、車両平均のブレーキングスティフネスBSが閾値BSthよりも小さくなると(図中、A12b区間)、最大回生制動力Rr_maxはより一層低減補正されることとなり、後輪7RL、7RRの回生制動の配分量は減少し、前輪7FL、7FRの摩擦制動の配分量は増加し、後輪制動力は摩擦制動力へ次第に移行する。
そして、後輪制動が回生制動から摩擦制動に完全に移行した後(図中、A12c区間及びA10d区間)は、前輪7FL、7FRと後輪7RL、7RRとの双方が摩擦制動のみによるスリップ制御へ移行し、摩擦ブレーキ6FL、6FR、6RL、6RRによるスリップ制御が実行される。
このように、要求総制動力Xreqの時間変化率が大きい場合には、制動初期の時点から前輪制動力を相対的に大きくすることによって、電気モータ13が接続された後輪7RL、7RRのスリップ率が過大になることを抑制して車両50の走行安定性を確保できる。すなわち、要求総制動力Xreqの時間変化率が増加した場合に、電気モータ13によって制駆動力が発生される後輪7RL、7RRの制動力を減少させることによって、車両50の走行安定性を確保することができる。
次に、図13及び図14を参照して、図2に示す前後制動力配分部41における車両旋回時の制動力とブレーキングスティフネスの変化について説明する。
図13は、車両旋回時における各車輪の制動力を模式的に示したものであり、図14は、車両旋回時における制動力とブレーキングスティフネスの変化を時系列で示したものであり、上段から回生制動力、前輪摩擦制動力、後輪摩擦制動力、ブレーキングスティフネスの変化を示したものである。
図13中のA13a区間や図14中のA14a区間においては、車両50の左旋回時に後輪7RL、7RRの回生制動のみを用いて車両50の運動を制御しており、後輪7RL、7RRのスリップ率が増加してブレーキングスティフネスBSが閾値BSthよりも小さくなるまではこのような制動制御を実行する。
次いで、車両平均のブレーキングスティフネスBSが閾値BSthよりも小さくなると(図14中、A14b区間)、前後制動力配分部41は、後輪7RL、7RRの回生制動の配分量を減少させ、前輪7FL、7FRの摩擦制動の配分量を増加させる。その際、後輪7RL、7RRのスリップ率が増加して車両50の走行安定性が低下している可能性があるため、右前輪7FRの摩擦制動力(摩擦ブレーキ制動力)Ffrを左前輪7FLの摩擦制動力Fflよりも相対的に大きく設定する。
これにより、左右の制動力差を用いて旋回を抑制するヨーモーメントを当該車両50に作用させることができ、例えば後輪7RL、7RRのスリップ等によって車両50の走行安定性が急激に低下する場合であっても、車両50の走行安定性を迅速に回復することができる。
また、図13中のA13c区間や図14中のA14c区間においては、後輪制動を回生制動から摩擦制動へ完全に移行する前に、前輪7FL、7FRと同様に、右後輪7RRの摩擦制動力Rfrを左後輪7RLの摩擦制動力Rflよりも相対的に大きく設定する。
これにより、左右の制動力差を用いて旋回を抑制するヨーモーメントを当該車両50に作用させることができ、例えば後輪7RL、7RRのスリップ等によって車両50の走行安定性が急激に低下する場合であっても、車両50の走行安定性をより迅速に回復することができる。
次に、図14中のA14d区間においては、回生制動力がゼロとなり、後輪制動は摩擦制動へ完全に移行し、前輪7FL、7FRのスリップ率が後輪7RL、7RRのスリップ率よりも大きくなって車両50が安定化するため、前輪7FL、7FRと後輪7RL、7RRの左右の制動力差を減少させ、図13中のA13e区間や図14中のA14e区間において左右の制動力を略一致させる。
このように、車両50の旋回中に後輪7RL、7RRの過大スリップを検知した場合には、後輪7RL、7RRから前輪7FL、7FRへ制動力を移行する際に、旋回外側の車輪の制動力を旋回内側の車輪の制動力よりも相対的に大きくすることによって、後輪7RL、7RRのスリップによる走行安定性の低下を効果的に抑制することができる。
なお、上記する図3〜図14においては、主として車両平均のブレーキングスティフネスBSを用いた車両運動制御について説明したが、各輪のブレーキングスティフネスbsを用いた場合であっても同様の車両運動制御を実行することができる。
また、上記する実施の形態においては、回生制動力をより多く確保するために、主として車両の制動開始の直後から後輪制動力の配分量を相対的に大きく設定する形態について説明したが、制動開始直後の前輪制動力と後輪制動力を一定配分の前後制動力配分線に従って配分し、前輪制動力が後輪制動力よりも相対的に大きくなるように配分し、制動開始後にブレーキングスティフネスが閾値よりも大きくなる際には車両の走行安定性が確保されていると判断し、後輪制動力が大きくなるように配分して回生制動の量を増加させてもよい。このような場合には、制動開始直後は前輪制動力を相対的に大きく設定し、ブレーキングスティフネスに応じて後輪制動力を増加させることができ、走行安定性を遂次反映しながら電気モータによる回生エネルギの回生量を増加させることができる。
また、上記する実施の形態においては、制動力と駆動力のうち、特に制動力を用いた車両運動制御について説明したが、駆動力を用いた場合であっても同様の車両運動制御を実行することができる。その際、上記するブレーキングスティフネスなる指標に代えて、車輪のスリップ率に対する駆動力の割合を表すドライブングスティフネスなる指標を用いることができる。また、本実施の形態で適用される駆動源としては、エンジン等の内燃機関のほか、前輪や後輪に連結された電気モータを使用することができ、例えば上記する電気モータ13の駆動力をより多く用いて駆動源とすることもできる。
また、上記する実施の形態においては、後輪に電気モータが接続された車両の運動制御について説明したが、前輪に電気モータが接続された車両であってもよい。なお、前輪に電気モータが接続された車両では、電気モータによって過大な回生が行われた際にアンダーステアの発生を低減するこができるため、車両旋回時に車両軌道が膨らむことを効果的に抑制することができる。
また、上記する実施の形態においては、コントローラ11と摩擦ブレーキ制御装置12が別体に構成され、双方が電気的に接続された構成について説明したが、例えばコントローラ11の機能が摩擦ブレーキ制御装置12に含まれていてもよい。コントローラ11の機能が摩擦ブレーキ制御装置12に含まれている場合には、電気的な接続による通信遅れやノイズの発生を抑制することができ、運動制御の応答性を高めることができる。
なお、本実施の形態においては、スリップ率がゼロ付近の立ち上がり勾配のみならず、スリップ率が相対的に大きく非線形特性を示す範囲も含むものとする。また、本実施の形態においては、スリップ率と制動力との関係について、制動力をスリップ率で除したブレーキングスティフネスを指標としたが、スリップ率の変化に対する制駆動力の変化が反映される指標であれば、上記するブレーキングスティフネス以外の指標を用いてもよい。例えば、スリップ率の変化に対する制動力の偏微分値を用いても良いし、制駆動力に代えて、制駆動力を車輪の荷重で除した値を用いてもよい。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1a アクセルペダル
1b ブレーキペダル
2a アクセルペダル操作量検出器
2b ブレーキペダル操作量検出器
3 マスタシリンダ
4 エンジン(駆動源)
6FL、6FR、6RL、6RR 摩擦ブレーキ(ブレーキ装置)
7FL、7FR 前輪
7RL、7RR 後輪
8FL、8FR、8RL、8RR 車輪速センサ
10 車両運動制御装置
11 コントローラ
12 摩擦ブレーキ制御装置
13 電気モータ
14 車両状態検出器
15 外界情報検出器
16 インバータ
17 バッテリ
18 バッテリコントローラ
19 小型モータ
21 車輪速算出部
22 車両速度算出部
23 スリップ率算出部
24 加速度算出部
25 制駆動力算出部
26 ブレーキングスティフネス算出部
27 路面μ算出部
31 要求総制動力算出部
32 要求総制動力時間変化率算出部
33 外界情報検出部
34 不安定リスク算出部
35 回生能力算出部
41 前後制動力配分部
42 摩擦回生配分部
43 摩擦制動力配分部
45 補正演算部
50 車両

Claims (14)

  1. 前輪と後輪の少なくとも一方に制動力を発生させるブレーキ装置と、前輪と後輪の少なくとも一方に駆動力を発生させる駆動源と、前輪もしくは後輪に回生制動力と電気駆動力を発生させる電気モータと、を備えた車両の運動を制御する車両運動制御装置であって、
    前記車両運動制御装置は、前記車両に要求される制駆動力に基づいて、前記前輪と前記後輪とに制駆動力を配分する制駆動力配分部を備え、
    前記制駆動力配分部は、前記前輪と前記後輪の少なくとも一方におけるスリップ率に対する制駆動力の割合が減少した際に、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする車両運動制御装置。
  2. 前記制駆動力配分部は、運転者及び/又は別途の制御装置から前記車両に要求される前記制駆動力の時間変化率が増加した際に、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする請求項1に記載の車両運動制御装置。
  3. 前記制駆動力配分部は、運転者によって操作されるブレーキペダルもしくはアクセルペダルの操作量の時間変化率が増加した際に、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする請求項2に記載の車両運動制御装置。
  4. 前記電気モータは前記後輪に接続されており、
    前記制駆動力配分部は、前記前輪と前記後輪の少なくとも一方におけるスリップ率に対する制動力の割合が減少した際に、前記後輪の制動力を減少させることを特徴とする請求項1に記載の車両運動制御装置。
  5. 前記制駆動力配分部は、前記車両の加速度もしくは前記車両の加速度の予測値が増加した際に、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする請求項1に記載の車両運動制御装置。
  6. 前記制駆動力配分部は、現在及び/又は将来の車両の不安定リスクが高い及び/又は高くなると判断した際に、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする請求項1に記載の車両運動制御装置。
  7. 前記制駆動力配分部は、自車両周辺の外界情報に基づいて前記車両の不安定リスクが高い及び/又は高くなると判断することを特徴とする請求項6に記載の車両運動制御装置。
  8. 前記車両運動制御装置は、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させる際に、前記電気モータによって発生される回生制動力を前記ブレーキ装置によって発生される制動力よりも大きくすることを特徴とする請求項1に記載の車両運動制御装置。
  9. 前記車両運動制御装置は、前記車両の旋回時に前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させる際に、旋回外側の車輪の制動力を旋回内側の車輪の制動力よりも大きくすることを特徴とする請求項1に記載の車両運動制御装置。
  10. 前記制駆動力配分部は、前記前輪と前記後輪の少なくとも一方におけるスリップ率に対する前記車両の加速度の割合が所定値よりも減少した際に、前記電気モータによって発生される制駆動力を減少させることを特徴とする請求項1に記載の車両運動制御装置。
  11. 前記スリップ率は、前記車両の各車輪の車輪速と前記車両の速度とに基づいて算出されることを特徴とする請求項1に記載の車両運動制御装置。
  12. 前輪と後輪の少なくとも一方に制動力を発生させるブレーキ装置と、前輪と後輪の少なくとも一方に駆動力を発生させる駆動源と、前輪もしくは後輪に回生制動力と電気駆動力を発生させる電気モータと、を備えた車両の運動を制御する車両運動制御方法であって、
    前記車両に要求される制駆動力に基づいて、前記前輪と前記後輪とに制駆動力を配分すると共に、前記前輪と前記後輪の少なくとも一方におけるスリップ率に対する制動力の割合が減少した際には、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする車両運動制御方法。
  13. 運転者及び/又は別途の制御装置から前記車両に要求される前記制駆動力の時間変化率が増加した際に、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする請求項12に記載の車両運動制御方法。
  14. 運転者によって操作されるブレーキペダルもしくはアクセルペダルの操作量の時間変化率が増加した際には、前記前輪と前記後輪のうち前記電気モータによって制駆動力が発生される車輪の該制駆動力を減少させることを特徴とする請求項12に記載の車両運動制御方法。





JP2012026638A 2012-02-09 2012-02-09 車両運動制御装置及び車両運動制御方法 Active JP5879143B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012026638A JP5879143B2 (ja) 2012-02-09 2012-02-09 車両運動制御装置及び車両運動制御方法
US13/760,167 US20130211644A1 (en) 2012-02-09 2013-02-06 Vehicle Motion Control Apparatus, and Vehicle Motion Control Method
EP13154158.3A EP2626259B1 (en) 2012-02-09 2013-02-06 Vehicle motion control apparatus, and vehicle motion control method
CN201310049190.1A CN103241127B (zh) 2012-02-09 2013-02-07 车辆运动控制装置以及车辆运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026638A JP5879143B2 (ja) 2012-02-09 2012-02-09 車両運動制御装置及び車両運動制御方法

Publications (2)

Publication Number Publication Date
JP2013163422A true JP2013163422A (ja) 2013-08-22
JP5879143B2 JP5879143B2 (ja) 2016-03-08

Family

ID=47713917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026638A Active JP5879143B2 (ja) 2012-02-09 2012-02-09 車両運動制御装置及び車両運動制御方法

Country Status (4)

Country Link
US (1) US20130211644A1 (ja)
EP (1) EP2626259B1 (ja)
JP (1) JP5879143B2 (ja)
CN (1) CN103241127B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152377A1 (ja) * 2014-04-04 2015-10-08 日立オートモティブシステムズ株式会社 車両制御装置及び車両制御方法
JP2017073868A (ja) * 2015-10-06 2017-04-13 株式会社デンソー モータ制御装置
JP2017210180A (ja) * 2016-05-27 2017-11-30 株式会社アドヴィックス 車両の制動制御装置
US9919603B2 (en) 2014-03-31 2018-03-20 Hitachi Automotive Systems, Ltd. Operation control system for vehicle, vehicle, and program
JP2019214338A (ja) * 2018-06-14 2019-12-19 トヨタ自動車株式会社 車両のブレーキ制御装置
US20210046911A1 (en) * 2019-08-15 2021-02-18 Lyft, Inc. Systems and methods for intelligently engaging multiple brakes
CN112550269A (zh) * 2019-09-09 2021-03-26 丰田自动车株式会社 电动车辆和电动车辆的控制方法
WO2022091272A1 (ja) * 2020-10-28 2022-05-05 日産自動車株式会社 電動車両の制御方法、及び電動車両の制御システム
CN114435144A (zh) * 2022-01-14 2022-05-06 深圳拓邦股份有限公司 一种电动车刹车方法、装置及电动车

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016095A1 (ja) * 2009-08-07 2011-02-10 トヨタ自動車株式会社 ブレーキ制御装置及びブレーキ制御方法
US9381896B2 (en) * 2012-02-26 2016-07-05 Toyota Jidosha Kabushiki Kaisha Driving force control device of vehicle
US9878621B2 (en) * 2012-12-08 2018-01-30 Ford Global Technologies, Llc System and method for improved ABS performance during parallel regenerative braking
JP6040306B2 (ja) * 2013-03-28 2016-12-07 本田技研工業株式会社 車両用ブレーキシステム
JP5880500B2 (ja) * 2013-08-29 2016-03-09 トヨタ自動車株式会社 車両
FR3010674B1 (fr) * 2013-09-13 2017-01-13 Technoboost Systeme de controle de freinage pour un vehicule hybride ou electrique comprenant une commande de regulation de vitesse ou de distance
JP6236672B2 (ja) * 2013-09-26 2017-11-29 日立オートモティブシステムズ株式会社 電動車両の制御装置
US9139177B1 (en) * 2014-05-09 2015-09-22 GM Global Technology Operations LLC Method of controlling the brake bias in a vehicle braking system
KR101583942B1 (ko) * 2014-06-17 2016-01-11 현대자동차주식회사 구동모터 제어방법 및 제어장치
US9457777B2 (en) * 2014-07-16 2016-10-04 Ford Global Technologies, Llc System and method for applying regenerative braking during high friction coefficient braking
JP6329105B2 (ja) * 2015-05-13 2018-05-23 トヨタ自動車株式会社 四輪駆動車両の駆動力制御装置
GB201515813D0 (en) * 2015-09-07 2015-10-21 Jaguar Land Rover Ltd Controller for a braking system
US10148202B2 (en) * 2015-10-16 2018-12-04 Kohler Co. Hybrid device with segmented waveform converter
CN106314163A (zh) * 2016-08-26 2017-01-11 北京长城华冠汽车科技股份有限公司 一种电动车的制动控制方法及装置
JP6811062B2 (ja) * 2016-09-15 2021-01-13 矢崎総業株式会社 回生制御装置
US11427172B2 (en) * 2016-10-19 2022-08-30 Robert Bosch Gmbh Lateral dynamic control for regenerative and friction brake blending
CN106627166B (zh) * 2016-10-31 2019-05-28 中山大学 一种双轴驱动纯电动汽车再生制动策略的生成方法
KR101905568B1 (ko) * 2016-12-15 2018-10-08 현대자동차 주식회사 차량의 코너링 제어 장치 및 방법
JP6583255B2 (ja) * 2016-12-27 2019-10-02 トヨタ自動車株式会社 車両走行制御装置
CN108263217A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 车辆及其制动方法和装置
KR102224145B1 (ko) * 2017-02-24 2021-03-05 현대자동차주식회사 자동차용 후륜 회생제동 제어 시스템 및 방법
WO2019035188A1 (ja) 2017-08-16 2019-02-21 日産自動車株式会社 車両の制御方法及び車両の制御装置
JP6879467B2 (ja) * 2017-10-05 2021-06-02 トヨタ自動車株式会社 車両用制動力制御装置
JP6718427B2 (ja) * 2017-12-01 2020-07-08 株式会社Subaru 車両の制御装置及び車両の制御方法
SE541907C2 (en) * 2018-05-21 2020-01-07 Scania Cv Ab Method and control device for controlling operation of a brake system of a motor vehicle
JP6814192B2 (ja) * 2018-11-26 2021-01-13 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7310169B2 (ja) * 2019-02-25 2023-07-19 株式会社アドヴィックス 車両の制動制御装置
CN109941245B (zh) * 2019-04-08 2022-02-01 哈尔滨理工大学 一种电动汽车制动力分配方法
TWI712525B (zh) * 2019-07-04 2020-12-11 品睿綠能科技股份有限公司 電動機車之可變式連動煞車系統
JP2021087235A (ja) * 2019-11-25 2021-06-03 トヨタ自動車株式会社 電動車両の制動装置
WO2021152619A1 (en) * 2020-02-01 2021-08-05 Tvs Motor Company Limited Brake assembly for a vehicle
JP7327256B2 (ja) * 2020-04-10 2023-08-16 トヨタ自動車株式会社 電動車両の回生制動制御装置
US20210362719A1 (en) * 2020-05-19 2021-11-25 Waymo Llc Arbitrating friction and regenerative braking for autonomous vehicles
CN112248819B (zh) * 2020-10-20 2022-04-08 一汽解放汽车有限公司 一种新能源汽车再生制动力分配方法及新能源汽车
CN114559913B (zh) * 2021-02-03 2023-03-24 长城汽车股份有限公司 一种智能飞车控制方法、装置及车辆
JP7468554B2 (ja) * 2022-01-26 2024-04-16 トヨタ自動車株式会社 車両及び車両制御方法
CN115723725B (zh) * 2022-12-12 2024-04-05 北京理工大学 一种分体式飞行车辆的线控底盘制动系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191539A (ja) * 1997-09-25 1999-04-06 Toyota Central Res & Dev Lab Inc 摩擦状態演算装置及び制駆動力制御装置
JP2002356151A (ja) * 2001-05-30 2002-12-10 Toyota Motor Corp 車輌の制動力制御装置
JP2005219580A (ja) * 2004-02-04 2005-08-18 Toyota Motor Corp 車両の挙動制御装置
JP2009143432A (ja) * 2007-12-14 2009-07-02 Toyota Motor Corp 車両用挙動制御装置
JP2010510931A (ja) * 2006-11-29 2010-04-08 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー 運転状態を検知するためのデバイス、及び結合された車両ブレーキ・システムの、駆動状態に依存する運転のための方法
JP2010228690A (ja) * 2009-03-30 2010-10-14 Hitachi Ltd 車両運動制御装置
JP2011240740A (ja) * 2010-05-14 2011-12-01 Advics Co Ltd 車両の制動制御装置
JP2011254590A (ja) * 2010-05-31 2011-12-15 Nobuyoshi Muto 電気自動車およびプログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287635A (ja) 2000-04-05 2001-10-16 Toyota Central Res & Dev Lab Inc 制動力配分制御装置
JP3797266B2 (ja) 2002-04-30 2006-07-12 日産自動車株式会社 制動制御装置
US20030230933A1 (en) * 2002-06-17 2003-12-18 Ford Motor Company Control of regenerative braking during a yaw stability control event
WO2006000560A1 (de) * 2004-06-24 2006-01-05 Continental Teves Ag & Co. Ohg Verfahren zur steuerung eines bremssystems eines allradgetriebenen kraftfahrzeuges
JP2006240394A (ja) * 2005-03-01 2006-09-14 Toyota Motor Corp 車輌の制駆動力制御装置
JP4765487B2 (ja) * 2005-08-29 2011-09-07 株式会社アドヴィックス 車両用ブレーキ装置
US8366210B2 (en) * 2006-04-03 2013-02-05 Advics Co., Ltd. Braking apparatus for vehicle
JP4830588B2 (ja) * 2006-04-03 2011-12-07 株式会社アドヴィックス 車両用制動装置
JP4901503B2 (ja) * 2007-01-24 2012-03-21 日立オートモティブシステムズ株式会社 制動制御装置
US8308248B2 (en) * 2007-04-05 2012-11-13 Continental Teves Ag & Co. Ohg Method for operating a vehicle brake system and vehicle brake system
FR2917694B1 (fr) * 2007-06-21 2009-08-21 Renault Sas Procede de controle du freinage recuperatif pour vehicule hybride et/ou a quatre roues motrices et arrangement pour vehicule mettant en oeuvre le procede
EP2172378B1 (en) * 2008-10-06 2019-07-03 Volvo Car Corporation A method and device for regenerative braking in a vehicle
US9162657B2 (en) * 2009-06-22 2015-10-20 Ford Global Technologies, Llc Automotive braking system
US8303049B2 (en) * 2010-03-12 2012-11-06 GM Global Technology Operations LLC Method for operating a vehicle brake system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191539A (ja) * 1997-09-25 1999-04-06 Toyota Central Res & Dev Lab Inc 摩擦状態演算装置及び制駆動力制御装置
JP2002356151A (ja) * 2001-05-30 2002-12-10 Toyota Motor Corp 車輌の制動力制御装置
JP2005219580A (ja) * 2004-02-04 2005-08-18 Toyota Motor Corp 車両の挙動制御装置
JP2010510931A (ja) * 2006-11-29 2010-04-08 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー 運転状態を検知するためのデバイス、及び結合された車両ブレーキ・システムの、駆動状態に依存する運転のための方法
JP2009143432A (ja) * 2007-12-14 2009-07-02 Toyota Motor Corp 車両用挙動制御装置
JP2010228690A (ja) * 2009-03-30 2010-10-14 Hitachi Ltd 車両運動制御装置
JP2011240740A (ja) * 2010-05-14 2011-12-01 Advics Co Ltd 車両の制動制御装置
JP2011254590A (ja) * 2010-05-31 2011-12-15 Nobuyoshi Muto 電気自動車およびプログラム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9919603B2 (en) 2014-03-31 2018-03-20 Hitachi Automotive Systems, Ltd. Operation control system for vehicle, vehicle, and program
WO2015152377A1 (ja) * 2014-04-04 2015-10-08 日立オートモティブシステムズ株式会社 車両制御装置及び車両制御方法
JP2015201913A (ja) * 2014-04-04 2015-11-12 日立オートモティブシステムズ株式会社 車両制御装置及び車両制御方法
US10336195B2 (en) 2014-04-04 2019-07-02 Hitachi Automotive Systems, Ltd. Vehicle control apparatus and vehicle control method
JP2017073868A (ja) * 2015-10-06 2017-04-13 株式会社デンソー モータ制御装置
JP2017210180A (ja) * 2016-05-27 2017-11-30 株式会社アドヴィックス 車両の制動制御装置
JP2019214338A (ja) * 2018-06-14 2019-12-19 トヨタ自動車株式会社 車両のブレーキ制御装置
JP7010152B2 (ja) 2018-06-14 2022-02-10 トヨタ自動車株式会社 車両のブレーキ制御装置
US20210046911A1 (en) * 2019-08-15 2021-02-18 Lyft, Inc. Systems and methods for intelligently engaging multiple brakes
CN112550269A (zh) * 2019-09-09 2021-03-26 丰田自动车株式会社 电动车辆和电动车辆的控制方法
WO2022091272A1 (ja) * 2020-10-28 2022-05-05 日産自動車株式会社 電動車両の制御方法、及び電動車両の制御システム
CN116368046A (zh) * 2020-10-28 2023-06-30 日产自动车株式会社 电动汽车的控制方法、以及电动汽车的控制系统
US11932138B2 (en) 2020-10-28 2024-03-19 Nissan Motor Co., Ltd. Electric vehicle control method and electric vehicle control system
CN114435144A (zh) * 2022-01-14 2022-05-06 深圳拓邦股份有限公司 一种电动车刹车方法、装置及电动车

Also Published As

Publication number Publication date
CN103241127A (zh) 2013-08-14
EP2626259B1 (en) 2017-04-26
US20130211644A1 (en) 2013-08-15
CN103241127B (zh) 2015-11-04
JP5879143B2 (ja) 2016-03-08
EP2626259A1 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5879143B2 (ja) 車両運動制御装置及び車両運動制御方法
US10046643B2 (en) Braking force control apparatus for a vehicle
JP4901503B2 (ja) 制動制御装置
JP6073941B2 (ja) 車両用走行制御装置
JP4179392B1 (ja) 車両の旋回挙動制御装置
JP6042706B2 (ja) 車両制御装置
US20100191423A1 (en) Vehicle rollover prevention control apparatus and vehicle rollover prevention control method
US20080283325A1 (en) Apparatus for controlling load for vehicle driving wheel
JP2007255664A (ja) 車両の旋回挙動制御装置
EP3529113B1 (en) Lateral dynamic control for regenerative and friction brake blending
KR20210071133A (ko) 차량의 자세 제어 방법
JP2008189008A (ja) 車両統合制御装置
US10124781B2 (en) Vehicle brake device
JP5505177B2 (ja) 車両の制動制御装置
JP2016086536A (ja) 車両のトラクション制御装置
WO2021145391A1 (ja) 制動制御装置
JP4239861B2 (ja) 車両の挙動制御装置
JP5176732B2 (ja) 車両運動制御システム
WO2020045566A1 (ja) 車両制御装置
JP2024025446A (ja) 車両の旋回挙動制御装置
JP2022014403A (ja) 車両の駆動力制御装置
JP2021146788A (ja) 車両制動制御装置及び車両制動制御方法
JP2020055353A (ja) 制動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5879143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250