WO2021145391A1 - 制動制御装置 - Google Patents

制動制御装置 Download PDF

Info

Publication number
WO2021145391A1
WO2021145391A1 PCT/JP2021/001106 JP2021001106W WO2021145391A1 WO 2021145391 A1 WO2021145391 A1 WO 2021145391A1 JP 2021001106 W JP2021001106 W JP 2021001106W WO 2021145391 A1 WO2021145391 A1 WO 2021145391A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
steering
vehicle
control
turning
Prior art date
Application number
PCT/JP2021/001106
Other languages
English (en)
French (fr)
Inventor
勇作 山本
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to CN202180010017.3A priority Critical patent/CN115003572B/zh
Priority to US17/792,855 priority patent/US20230025963A1/en
Publication of WO2021145391A1 publication Critical patent/WO2021145391A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/03Driver counter-steering; Avoidance of conflicts with ESP control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/03Vehicle yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/304ESP control system during driver brake actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/613ESP features related thereto

Definitions

  • the present invention relates to a braking control device.
  • the ratio of the braking force of the front and rear wheels and the regenerative braking force and the friction braking force are determined based on the driving operation information such as the braking operation amount and the steering wheel operation amount. Determine the ratio.
  • the braking control device regarding the attitude control when the vehicle turns, it is determined whether or not the attitude control is prioritized based on the magnitude of the steering wheel operation amount, and the ratio of the regenerative braking force and the friction braking force for the same wheel is determined. Only to change is described. That is, there is room for improvement in the braking control device from the viewpoint of improving the stability of the vehicle posture (straight running stability) and the turning responsiveness when the vehicle is turning when a braking force is generated.
  • An object of the present invention is to provide a braking control device capable of improving straight-line stability or turning responsiveness while a braking force is being generated and a value related to the steering angle of the steering wheel is detected. be.
  • the braking control device of the present invention has a first braking unit that applies a first braking force to the steering wheels of the vehicle, a second braking unit that applies a second braking force to the non-steering wheels of the vehicle, and a target braking force.
  • a control device for controlling the first braking unit and the second braking unit accordingly is provided, and the control device includes a steering angle information acquisition unit that acquires a steering angle-related value related to the steering angle of the steering wheel.
  • a distribution changing unit for executing distribution change control for changing the braking force distribution between the first braking force and the second braking force based on the steering angle related value is provided.
  • the braking force distribution between the steering wheel and the non-steering wheel is changed based on the steering angle related value related to the steering angle of the steering wheel (that is, the turning of the vehicle).
  • the steering angle-related value that is, the steering angle of the steering wheel
  • making it difficult to turn improves straight-line stability
  • making it easier to turn improves turning responsiveness that is, according to the present invention, it is possible to improve the straight running stability or the turning response in a state where a braking force is being generated and a value related to the steering angle is detected.
  • the braking control device 1 of the present embodiment includes a brake pedal 11, a booster 12, a master cylinder unit 13, a reservoir 14, a brake switch 15, a stroke sensor 16, and an actuator 5. , A steering angle sensor 72, a yaw rate sensor 74, a brake ECU (corresponding to a “control device”) 6, and a regenerative braking device 8.
  • the brake pedal 11 is an operating member that allows the driver to operate the brake.
  • the brake switch 15 is a sensor that detects whether or not the brake pedal 11 is operated.
  • the stroke sensor 16 is a sensor that detects the pedal stroke (hereinafter referred to as “stroke”) of the brake pedal 11.
  • the brake switch 15 and the stroke sensor 16 output a detection signal to the brake ECU 6.
  • the booster 12 is a device that assists the brake operation, and is a hydro booster including, for example, an accumulator and a solenoid valve.
  • the brake pedal 11 is provided with a stroke simulator (not shown) that generates a reaction force in response to the brake operation.
  • the booster 12 uses an accumulator to generate a servo pressure according to the stroke behind the master piston 133, which will be described later.
  • the master piston 133 is pressed by the servo pressure to move forward.
  • This configuration is a by-wire configuration in which the brake pedal 11 and the master cylinder unit 13 are interlocked by control.
  • the booster 12 is operated only when, for example, a large braking force is required.
  • the master cylinder unit 13 is a device that generates a master pressure according to the operation of the brake pedal 11.
  • the master cylinder 130 is a cylinder member and includes a first master chamber 131 and a second master chamber 132 in which a master pressure is generated.
  • the master cylinder unit 13 is configured so that the same hydraulic pressure is formed in the first master chamber 131 and the second master chamber 132.
  • the first master chamber 131 is formed between the first master piston 133 and the second master piston 134.
  • the second master chamber 132 is formed between the second master piston 134 and the bottom of the master cylinder 130.
  • a first spring 135 is interposed between the first master piston 133 and the second master piston 134.
  • a second spring 136 is interposed between the second master piston 134 and the bottom of the master cylinder 130.
  • the reservoir 14 stores the brake fluid and replenishes the master cylinders 130 (master chambers 131 and 132) with the brake fluid.
  • the communication between the reservoir 14 and the master chambers 131 and 132 is cut off when the master pistons 133 and 134 move forward by a predetermined amount.
  • the actuator 5 is a device that adjusts the hydraulic pressure of each wheel cylinder 181 to 184 (hereinafter referred to as "wheel pressure") based on the master pressure supplied from the master cylinder 130.
  • the actuator 5 is arranged between the master cylinder 130 and the wheel cylinders 181 to 184.
  • the actuator 5 adjusts the wheel pressure according to the instruction of the brake ECU 6.
  • a friction braking device (for example, a disc brake device or a drum brake device) 9 provided on each wheel Wf or Wr is driven according to the wheel pressure, and a friction braking force is applied to each wheel Wf or Wr.
  • the actuator 5 receives an instruction from the brake ECU 6 to increase the wheel pressure to the same level as the master pressure, pressurize the wheel pressure to be higher than the master pressure, reduce the wheel pressure, or reduce the wheel pressure. Executes retention control to retain.
  • the actuator 5 executes, for example, anti-skid control (also called ABS control), sideslip prevention control (ESC control), automatic pressurization control, or the like based on the instruction of the brake ECU 6.
  • the automatic pressurization control is, for example, in automatic driving, adaptive cruise control, etc., pressurization control is performed according to a set target deceleration regardless of whether or not the driver operates the brake.
  • the actuator 5 includes a first piping system (corresponding to the "first braking unit") 50a connected to the first master chamber 131 and a second piping system (“second braking unit”) connected to the second master chamber 132. (Corresponding to) 50b and.
  • the first piping system 50a includes an electric pump, a solenoid valve, and the like (not shown), and is connected to the wheel cylinders 181 and 182 of the front wheels Wf.
  • the second piping system 50b includes an electric pump, a solenoid valve, and the like (not shown), and is connected to the wheel cylinders 183 and 184 of the rear wheel Wr.
  • the actuator 5 can adjust the wheel pressure independently for the front and rear wheels. That is, the actuator 5 can independently control the front wheel braking force and the rear wheel braking force.
  • the actuator 5 is provided with a pressure sensor 71 that detects the master pressure. Further, in the vehicle, a wheel speed sensor 73 is installed for each wheel Wf and Wr.
  • the steering angle sensor 72 is a sensor that detects the steering angle, which is the turning angle of the steering 17. The detection result of the steering angle sensor 72 is used for controlling the steering angle of the wheels and is also transmitted to the brake ECU 6.
  • the yaw rate sensor 74 is a sensor that detects the yaw rate of the vehicle. The detection result of the yaw rate sensor 74 is transmitted to the brake ECU 6.
  • the brake ECU 6 is an electronic control unit including a CPU, a memory, and the like. In detail, the brake ECU 6 is configured to perform various controls by one or more processors. A brake switch 15, a stroke sensor 16, and sensors 71 to 74 are connected to the brake ECU 6 by a communication line (not shown). The brake ECU 6 determines whether or not the booster 12 and the actuator 5 need to be operated based on the detection results of these various sensors.
  • the brake ECU 6 determines that the actuator 5 needs to be operated, the brake ECU 6 calculates a target wheel pressure, which is a target value of the wheel pressure, for each wheel cylinder 181 to 184, and controls the actuator 5.
  • the target wheel pressure corresponds to the target deceleration and the target braking force.
  • the brake ECU 6 can calculate each wheel pressure based on the detected value of the pressure sensor 71 and the control status of the actuator 5.
  • the regenerative braking device 8 is a device that applies a regenerative braking force to the wheels.
  • the first motor 81 applies a regenerative braking force to the front wheels Wf.
  • the second motor 82 applies a regenerative braking force to the rear wheel Wr.
  • the ECU 83 controls the driving force and the regenerative braking force of the first motor 81 and the second motor 82.
  • the brake ECU 6 calculates the target braking force based on the stroke of the brake pedal 11 or the command value in the automatic braking control.
  • the brake ECU 6 commands the ECU 83 a target regenerative braking force based on the target braking force.
  • the ECU 83 is communicably connected to the brake ECU 6 and controls the first motor 81 and the second motor 82 so as to apply the target regenerative braking force to the wheels.
  • the brake ECU 6 sets the target wheel pressure, and the actuator 5 and the friction braking device 9 generate the friction braking force.
  • the brake ECU 6 also generates frictional braking force under predetermined conditions.
  • the braking control device 1 of the present embodiment is the first braking unit (first piping system 50a and the first piping system 50a) that applies the front wheel braking force (corresponding to the "first braking force") to the front wheel Wf which is the steering wheel. 1 motor 81) and a second braking unit (second piping system 50b and second motor 82) that applies rear wheel braking force (corresponding to "second braking force") to the rear wheel Wr which is a non-steering wheel.
  • the brake ECU 6 controls the actuator 5 and the regenerative braking device 8 according to the target braking force.
  • the first braking unit and the second braking unit are configured to be able to apply regenerative braking force and friction braking force to the wheels.
  • the brake ECU 6 includes a steering angle information acquisition unit 61, a determination unit 62, and a distribution change unit 63.
  • the steering angle information acquisition unit 61 acquires steering angle-related values related to the steering angle of the steering wheels. More specifically, the steering angle information acquisition unit 61 acquires steering angle information from the steering angle sensor 72, and calculates at least one of the steering angle, the steering angular velocity, and the steering angular acceleration.
  • the steering angle information acquisition unit 61 of the present embodiment calculates and acquires the steering angle, steering angular velocity, and steering angular acceleration as steering angle-related values by differential calculation or the like.
  • the steering angle corresponds to the target steering angle during automatic driving. That is, the steering angle is not limited to the steering operation amount by the driver, but may be a control target value.
  • the steering angle-related value may be a value related to the steering angle target value of the steering wheel.
  • the determination unit 62 determines whether or not to improve the straight-line stability of the vehicle based on the steering angle-related value. Further, the determination unit 62 determines whether or not to improve the turning responsiveness of the vehicle based on the steering angle related value. Improving the straight-line stability of the vehicle means that the vehicle is less likely to turn with respect to a change in the steering angle (or with respect to the steering angle of the steering wheel), that is, the vehicle is less likely to shake. Further, improving the turning responsiveness of the vehicle means that the vehicle can easily turn with respect to a change in the steering angle (or with respect to the steering angle of the steering wheel).
  • the determination unit 62 is, for example, when the steering angular velocity starts to increase from the steering angle 0 and the steering angular velocity is less than a predetermined speed threshold value, for example, when it is desired to reduce the responsiveness to steering at the initial stage of steering. It is judged that the straight running stability of the vehicle is improved.
  • the determination conditions of the determination unit 62 regarding the straight running stability can be arbitrarily set, and other examples will be described later.
  • the determination unit 62 determines, for example, that the driver intends to turn the vehicle when the steering angle is equal to or higher than a predetermined angle threshold value and the steering angular velocity is equal to or higher than the speed threshold value, and determines the turning responsiveness of the vehicle. Judge to improve.
  • the determination unit 62 of the present embodiment further uses the detection result of the yaw rate sensor 74 (hereinafter referred to as “actual yaw rate”) in order to improve the determination accuracy.
  • the brake ECU 6 calculates the target yaw rate, which is the control target, based on the detection result of the steering angle sensor 72.
  • the determination unit 62 calculates the difference between the target yaw rate and the actual yaw rate (hereinafter referred to as “yaw rate deviation”). In addition to the above determination conditions (steering angle ⁇ angle threshold value and steering angular velocity ⁇ speed threshold value), the determination unit 62 determines that the turning responsiveness of the vehicle is improved when the yaw rate deviation is equal to or greater than a predetermined threshold value.
  • the distribution change unit 63 executes distribution change control for changing the braking force distribution between the front wheel braking force and the rear wheel braking force when applying the target braking force based on the steering angle related value. More specifically, when the determination unit 62 determines that the straight-line stability of the vehicle is improved in a state where only the regenerative braking force is applied to the front wheels Wf and the rear wheels Wr, the distribution change unit 63 controls the distribution change. As a result, straight-ahead stability control is executed to reduce the regenerative braking force of the rear wheel Wr and increase the regenerative braking force of the front wheel Wf. The straight-line stability control increases the distribution ratio of the front wheel braking force (regenerative braking force) to the total braking force (regenerative braking force).
  • the distribution change unit 63 determines the distribution change control.
  • the turning improvement control that reduces the regenerative braking force of the front wheel Wf and increases the regenerative braking force of the rear wheel Wr is executed.
  • the turning improvement control reduces the distribution ratio of the front wheel braking force (regenerative braking force) to the total braking force (regenerative braking force).
  • the braking force distribution of the front and rear wheels is changed based on the steering angle related value related to the steering angle of the steering wheel (that is, the turning of the vehicle).
  • the ease of turning can be changed.
  • the steering angle-related value making it difficult to turn improves straight-line stability, and conversely, making it easier to turn improves turning responsiveness. That is, according to the present embodiment, it is possible to improve the straight running stability or the turning responsiveness in a state where a braking force is being generated and a value related to the steering angle is detected.
  • the braking force of the steering wheels is obtained by executing the straight running stability control.
  • the distribution rate of the regenerative braking force of the front wheels Wf is increased.
  • the front-rear force increases and the residual force (grip force) of the lateral force decreases. Therefore, it becomes difficult to turn and the straight running stability is improved.
  • the distribution rate of the regenerative braking force of the front wheels Wf can be reduced.
  • the front-rear force is reduced and the residual force (grip force) of the lateral force is increased. Therefore, it becomes easy to turn and the turning responsiveness is improved.
  • the straight-line stability can be said to be the comfort of the occupant.
  • the turning responsiveness can be said to be the followability of turning with respect to the steering angle of the front wheels Wf.
  • Control example 1 A control example 1 will be described with reference to FIG.
  • the driver does not operate either the accelerator pedal or the brake pedal 11 while the vehicle is turning, and normally (unless the distribution change control is executed), the regenerative braking force is applied to all the wheels. It is assumed that only is granted.
  • the target braking force (for example, a structurally determined value) set without operating the accelerator pedal and without operating the brake pedal 11 is applied to the wheels only by the regenerative braking force. At this time, the distribution rate of the front wheel braking force is usually 50%.
  • control example 1 for example, high-speed traveling is assumed.
  • the situation of the control example 1 is a situation in which the braking operation is not performed and the target braking force is applied to the wheels only by the regenerative braking force.
  • the determination unit 62 improves the straight running stability of the vehicle because the steering angular velocity is less than the speed threshold (the steering angle increases from 0 and the steering angular velocity ⁇ speed threshold). Is determined. That is, at time Ta1, the allocation change unit 63 executes straight-ahead stability control as allocation change control. As a result, the front wheel braking force (regenerative braking force) increases with a predetermined gradient, and the rear wheel braking force (regenerative braking force) decreases with a predetermined gradient. In this example, the distribution rate of the front wheel braking force becomes 100% by the straight running stability control.
  • the determination unit 62 determines that the turning responsiveness of the vehicle is improved. That is, at the time Ta2, the allocation change unit 63 executes the turning improvement control as the allocation change control.
  • the front wheel braking force regenerative braking force
  • the rear wheel braking force regenerative braking force
  • the distribution rate of the front wheel braking force becomes 0% by the turning improvement control.
  • the distribution rate in each control may be a numerical value other than this example. In this way, the distribution changing unit 63 changes the front-rear distribution of the regenerative braking force.
  • the steering angular velocity tends to decrease (changes due to the decreasing gradient) and is less than the speed threshold value, so that the determination unit 62 determines that the straight running stability of the vehicle is improved. do. That is, at the time Ta3, the allocation change unit 63 executes the straight-ahead stability control as the allocation change control. As a result, the front wheel braking force (regenerative braking force) increases with a predetermined gradient, and the rear wheel braking force (regenerative braking force) decreases with a predetermined gradient.
  • the steering angular velocity is maintained below the speed threshold value, and straight-line stability control is maintained.
  • the steering angle begins to increase and the steering angular velocity also increases, but since the steering angular velocity is less than the speed threshold value, straight-line stability control is maintained.
  • the straight-ahead stability control is first executed, and then the first turning improvement control is executed. Then, after the steering angular velocity exceeds the peak, the turning improvement control shifts to the straight running stable control.
  • the distribution of the regenerative braking force of the front wheels Wf may be reversed in FIG. 2 during the time Ta1 to the time Ta3. That is, the front wheel regeneration allocation rate may be decreased during the time Ta1 to time Ta2, and the front wheel regeneration allocation rate may be increased during the time Ta2 to time Ta3.
  • the turning responsiveness is improved in the time Ta1 to the time Ta2
  • the straight running stability is improved in the time Ta2 to the time Ta3.
  • the front wheel regeneration distribution rate after the time Ta3 is set to a predetermined value (0 to 100%).
  • the brake ECU 6 calculates the steering angle, the steering angular velocity, and the target yaw rate from the detection result of the steering angle sensor 72 (S102). Subsequently, the brake ECU 6 determines whether or not the steering angular velocity tends to decrease and the steering angular velocity is less than the speed threshold value (hereinafter referred to as "first predetermined condition") during the execution of the turning improvement control (S103). ). When the first predetermined condition is satisfied (S103: Yes), the brake ECU 6 executes straight-ahead stability control (S104). S104 corresponds to the state of time Ta3 in FIG.
  • the brake ECU 6 When the first predetermined condition is not satisfied (S103: No), in the brake ECU 6, the steering angle is equal to or greater than the angle threshold value, the steering angular velocity is equal to or greater than the speed threshold value, and the yaw rate deviation is equal to or greater than the threshold value (hereinafter, “the first”. (2) It is determined whether or not it is a predetermined condition (S105). When the second predetermined condition is satisfied (S105: Yes), the brake ECU 6 executes the turning improvement control (S106). S106 corresponds to the state of time Ta2 in FIG.
  • the brake ECU 6 determines whether or not the steering angle is larger than 0 and the steering angular velocity is less than the speed threshold value (hereinafter referred to as "third predetermined condition"). (S107).
  • the brake ECU 6 executes straight-ahead stability control (S108). S108 corresponds to the state of time Ta1 in FIG.
  • the brake ECU 6 does not execute the distribution change control. The brake ECU 6 executes the above process every time the steering angle information is acquired (at predetermined intervals).
  • the turning improvement control can be executed at a preferable timing by using the execution condition that can determine that the driver has a clear intention to operate and the yaw rate deviation. Further, in the control example 1, the execution condition is set so as to switch to the straight-ahead stable control when the turning state becomes stable after the turning improvement control is executed. This improves the convergence of the vehicle to the target trajectory. As described above, according to the control example 1, the distribution change control can be executed at a preferable timing in the vehicle that generates the regenerative braking force on the front and rear wheels.
  • the braking force distribution of the front and rear wheels is changed only by the regenerative braking force.
  • the regenerative braking force is more responsive to control (command) than the friction braking force using hydraulic pressure. That is, the braking force distribution can be changed quickly. Further, the regenerative braking force has a relatively high adjustment accuracy of the braking force. Therefore, it is possible to more effectively exert the effect of the distribution change control such as during turning. In addition, changes in front-rear distribution are difficult to convey to occupants, making it easier to maintain comfort.
  • Control example 2 A control example 2 will be described with reference to FIG.
  • the vehicle is provided with only the first motor 81, or the vehicle is provided with the motors 81 and 82 but the regenerative braking force is generated only on the front wheels Wf. That is, in the control example 2, it is assumed that the regenerative braking force is generated only in the front wheel Wf.
  • the first braking portions 50a and 81 are configured to be able to apply a regenerative braking force to the wheels.
  • the accelerator pedal is not operated and the brake pedal 11 is not operated, as in the control example 1.
  • the description of control example 1 will be referred to as appropriate.
  • the control example 2 assuming a low speed running, it is set to execute the turning improvement control instead of the straight running stability control at the initial stage of increasing the steering angle.
  • the turning improvement control in the control example 2 is a control in which at least a part of the regenerative braking force of the front wheel Wf is replaced with the friction braking force of the front wheel Wf. That is, when the determination unit 62 determines that the regenerative braking force, which is the front wheel braking force, is applied to the wheels, the distribution changing unit 63 improves the turning response of the vehicle, the friction braking force of the front wheels Wf.
  • the turning improvement control is executed to increase the amount of power and reduce the regenerative braking force of the front wheels Wf.
  • the straight-ahead stability control in Control Example 2 is a control in which the front wheel braking force (here, the friction braking force) is replaced with the friction braking force of the rear wheel Wr. That is, when the determination unit 62 determines that the straight-line stability of the vehicle is improved in the state where the front wheel braking force is applied to the wheels, the distribution change unit 63 controls the friction of the rear wheels Wr as the distribution change control.
  • Straight-line stability control that increases power and decreases front wheel braking force is executed.
  • the front wheel braking force may be a friction braking force or a regenerative braking force.
  • the brake ECU 6 determines that the turning state is stable, stops the distribution change control, and returns to a state without control, that is, a state in which only the regenerative braking force of the front wheel Wf is generated.
  • the straight running stability control is executed after the turning improvement control is executed according to the increase in the steering angle.
  • the replacement of the braking force is performed not all (0 or 100%) but a part. By substituting a part of the braking force between the front and rear wheels or between the regenerative friction, the degree of improvement in straight-line stability or turning response can be changed. The replacement may be performed with at least a portion of the braking force.
  • the friction braking force of the rear wheel Wr increases, and the steering angle (tire turning angle) of the rear wheel Wr faces slightly toward the inside of the vehicle.
  • the straight running stability control of the control example 2 may be executed in S104 and S108 of FIG. 2, and the turning improvement control of the control example 2 may be executed in S106 of FIG.
  • the brake ECU 6 may determine whether or not the regenerative braking force is applied to the front wheels Wf.
  • the brake ECU 6 executes straight-ahead stability control.
  • the brake ECU 6 determines the presence or absence of rolling based on the yaw rate deviation. For example, when the actual yaw rate is larger than the target yaw rate and the yaw rate deviation becomes equal to or more than a predetermined threshold value, the brake ECU 6 determines that rolling has occurred. In this case, the determination unit 62 determines that the straight-line stability of the vehicle is improved.
  • the presence or absence of vibration of the rudder angle-related value may be added as a determination factor of rolling. In this case, for example, after detecting the vibration, the brake ECU 6 determines that there is rolling when the yaw rate deviation becomes equal to or more than a predetermined threshold value.
  • the distribution changing unit 63 reduces the regenerative braking force of the front wheel Wf and increases the friction braking force of the rear wheel Wr as straight-ahead stability control. As a result, the turning of the vehicle is suppressed against rolling, and the vehicle posture is stabilized.
  • the determination unit 62 determines that the straight-line stability of the vehicle is improved when the vibration of the steering angle-related value is detected. For example, when the steering angle fluctuates so that a predetermined number of peaks appear within a predetermined change width within a predetermined time, the determination unit 62 determines that there is vibration. For example, when the driver is elderly, the steering wheel 17 may sway regardless of the driver's intention. In such a case, the straight-ahead stability control is executed to suppress unnecessary turning and stabilize the vehicle posture.
  • the braking force of the steering wheel is used as the regenerative braking force to increase the regenerative braking force of the steering wheel, or the non-steering wheel.
  • Straight-line stability control is executed in which the braking force is used as the frictional braking force to increase the frictional braking force of the non-steering wheels.
  • the brake ECU 6 improves the turning response of the vehicle while the vehicle is turning, the braking force of the steering wheel is used as the frictional braking force to increase the frictional braking force of the steering wheel, or the braking force of the non-steering wheel.
  • the turning improvement control is executed.
  • the distribution changing unit 63 improves the turning response of the vehicle while the vehicle is turning in a state where the regenerative braking force is applied to the steering wheels and the non-steering wheels
  • the regenerative braking force of the steering wheels is used as the distribution change control.
  • the turning improvement control is executed to reduce the amount of power and increase the regenerative braking force of the non-steering wheels.
  • the distribution change unit 63 controls the friction of the non-steering wheels as the distribution change control.
  • Straight-line stability control is performed to increase the braking force and decrease the braking force of the steering wheels.
  • the distribution changing unit 63 frictions as the braking force of the steering wheel.
  • the turning improvement control that increases the braking force and decreases the regenerative braking force of the steering wheel is executed.
  • the present invention is not limited to the above embodiments and control examples.
  • the determination condition by the determination unit 62 is not limited to the above.
  • the distribution changing unit 63 executes straight-line stability control when, for example, the steering angle, the steering angular velocity, and / or the steering angular acceleration (differential value of the steering angular velocity) is equal to or higher than the first predetermined value, and the steering angle, the steering angular velocity, And / or may be set to execute the turning improvement control when the steering angular acceleration is equal to or higher than the second predetermined value (first predetermined value ⁇ second predetermined value).
  • the determination can be made faster.
  • a predetermined angle range or a predetermined speed range may be used as the determination threshold value.
  • the present invention is applicable not only to electric vehicles and hybrid vehicles, but also to vehicles that do not generate regenerative braking force (vehicles whose braking force is friction braking force).
  • the present invention is also applicable to self-driving vehicles.
  • the steering angle-related value in the automatic operation may be a command value related to the steering angle (for example, a target yaw rate which is a control target value). That is, the steering angle is not limited to the result of the steering operation by the driver.
  • the braking unit (actuator 5) may be configured to include an electric cylinder.
  • the generation of the braking force is not limited to the operation of the brake pedal 11, but may be caused by the automatic brake control.
  • the present invention can also be applied to a vehicle provided with one pedal.
  • the distribution change control of the present invention can be executed in a state where deceleration is generated by some braking force.
  • the present invention can also be applied when the vehicle is moving backward.
  • the turning of the vehicle includes a steering operation (vibration) unintentional by the driver and a turning due to a crosswind.
  • the steering wheel may be the rear wheel Wr. Even in this case, the same effect as described above is exhibited.
  • the distribution changing unit 63 applies friction braking force to at least a part of the regenerative braking force of the steering wheel (rear wheel Wr). Replace with.
  • the steering angle of the rear wheel Wr faces inward due to the compliance steering, and the cornering force (lateral force) of the rear wheel Wr becomes small. Therefore, the cornering force of the rear wheel Wr is relatively small with respect to the cornering force of the front wheel Wf, and the difference between the two cornering forces is large. That is, the vehicle can easily turn.
  • the turning responsiveness is improved because the influence of the change in the steering angle of the turning outer wheels is large.
  • the wheel Wr is a steering wheel
  • the turning response is improved because the influence of the reduction of the cornering force of the rear wheel Wr is large.
  • the straight running stability control and the turning improvement control when the rear wheel Wr is a steering wheel, the same effect is exhibited by the same theory as when the front wheel Wf is a steering wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

本発明の制御装置6は、車両の操舵輪に第1制動力を付与する第1制動部50a、81と、車両の非操舵輪に第2制動力を付与する第2制動部50b、82と、目標制動力に応じて第1制動部50a、81及び第2制動部50b、82を制御する制御装置6と、を備え、制御装置6は、操舵輪の舵角に関連する舵角関連値を取得する舵角情報取得部61と、目標制動力の付与にあたり、舵角関連値に基づいて、第1制動力と第2制動力との制動力配分を変更する配分変更制御を実行する配分変更部63と、を備える。

Description

制動制御装置
 本発明は、制動制御装置に関する。
 従来から、制動時の車両姿勢を制御する制動制御装置が開発されている。例えば特開2013-180670号公報に記載の制動制御装置では、ブレーキ操作量やハンドル操作量などの運転操作情報に基づいて、前後輪の制動力の比率や、回生制動力と摩擦制動力との比率を決定する。
特開2013-180670号公報
 しかしながら、上記制動制御装置では、車両旋回時の姿勢制御については、ハンドル操作量の大小により、姿勢制御を優先させるか否かを判定し、同じ車輪に対する回生制動力と摩擦制動力との比率を変化させることしか記載されていない。つまり、上記制動制御装置では、制動力が発生している車両旋回時における車両姿勢の安定性(直進安定性)及び旋回応答性の向上の観点で改良の余地がある。
 本発明の目的は、制動力発生中で且つ操舵輪の舵角に関連する値が検出されている状態において、直進安定性又は旋回応答性を向上させることができる制動制御装置を提供することである。
 本発明の制動制御装置は、車両の操舵輪に第1制動力を付与する第1制動部と、前記車両の非操舵輪に第2制動力を付与する第2制動部と、目標制動力に応じて前記第1制動部及び前記第2制動部を制御する制御装置と、を備え、前記制御装置は、前記操舵輪の舵角に関連する舵角関連値を取得する舵角情報取得部と、前記目標制動力の付与にあたり、前記舵角関連値に基づいて前記第1制動力と前記第2制動力との制動力配分を変更する配分変更制御を実行する配分変更部と、を備える。
 本発明によれば、操舵輪の舵角(すなわち車両の旋回)に関連する舵角関連値に基づいて、操舵輪と非操舵輪との間の制動力配分が変更される。制動力配分を変更することで、旋回のしやすさを変更することができる。舵角関連値に応じて、旋回しにくくすることで直進安定性が向上し、反対に旋回しやすくすることで旋回応答性が向上する。つまり、本発明によれば、制動力発生中で且つ舵角に関連する値が検出されている状態において、直進安定性又は旋回応答性を向上させることができる。
本実施形態の制動制御装置の構成図である。 本実施形態の制御例1の配分変更制御を説明するためのタイムチャートである。 本実施形態の制御例1の配分変更制御を説明するためのフローチャートである。 本実施形態の制御例2の配分変更制御を説明するためのタイムチャートである。
 以下、本発明の実施形態について図に基づいて説明する。説明に用いる各図は概念図である。図1に示すように、本実施形態の制動制御装置1は、ブレーキペダル11と、倍力装置12と、マスタシリンダユニット13と、リザーバ14、ブレーキスイッチ15と、ストロークセンサ16と、アクチュエータ5と、操舵角センサ72と、ヨーレートセンサ74と、ブレーキECU(「制御装置」に相当する)6と、回生制動装置8と、を備えている。
 ブレーキペダル11は、運転者がブレーキ操作可能な操作部材である。ブレーキスイッチ15は、ブレーキペダル11に対する操作の有無を検出するセンサである。ストロークセンサ16は、ブレーキペダル11のペダルストローク(以下「ストローク」という)を検出するセンサである。ブレーキスイッチ15及びストロークセンサ16は、検出信号をブレーキECU6に出力する。
 倍力装置12は、ブレーキ操作を助勢する装置であって、例えばアキュムレータ及び電磁弁等を備えるハイドロブースタである。この場合、ブレーキペダル11には、ブレーキ操作に対して反力を発生させるストロークシミュレータ(図示略)が設けられている。倍力装置12は、アキュムレータを利用して、ストロークに応じたサーボ圧を後述するマスタピストン133の後方に発生させる。マスタピストン133は、サーボ圧によって押圧されて前進する。この構成は、ブレーキペダル11とマスタシリンダユニット13とが制御により連動するバイワイヤ構成となっている。倍力装置12は、例えば、大きな制動力が必要な場合にのみ作動される。
 マスタシリンダユニット13は、ブレーキペダル11の操作に応じたマスタ圧を発生させる装置である。具体的に、マスタシリンダ130は、シリンダ部材であって、マスタ圧が発生する第1マスタ室131および第2マスタ室132を備えている。マスタシリンダユニット13は、第1マスタ室131と第2マスタ室132とに同一の液圧が形成されるように構成されている。
 第1マスタ室131は、第1マスタピストン133と第2マスタピストン134との間に形成されている。第2マスタ室132は、第2マスタピストン134とマスタシリンダ130の底部との間に形成されている。第1マスタピストン133と第2マスタピストン134との間には、第1スプリング135が介装されている。第2マスタピストン134とマスタシリンダ130の底部との間には、第2スプリング136が介装されている。リザーバ14は、ブレーキ液を貯蔵し、マスタシリンダ130(マスタ室131、132)に当該ブレーキ液を補給する。リザーバ14とマスタ室131、132との連通は、マスタピストン133、134が所定量前進すると遮断される。
 アクチュエータ5は、マスタシリンダ130から供給されるマスタ圧に基づいて、各ホイールシリンダ181~184の液圧(以下「ホイール圧」という)を調整する装置である。アクチュエータ5は、マスタシリンダ130とホイールシリンダ181~184との間に配置されている。アクチュエータ5は、ブレーキECU6の指示に応じて、ホイール圧を調整する。ホイール圧に応じて、各車輪Wf、Wrに設けられた摩擦制動装置(例えばディスクブレーキ装置又はドラムブレーキ装置)9が駆動し、各車輪Wf、Wrに摩擦制動力が付与される。
 アクチュエータ5は、ブレーキECU6の指示に応じて、ホイール圧をマスタ圧と同レベルにする増圧制御、ホイール圧をマスタ圧よりも高くする加圧制御、ホイール圧を減圧する減圧制御、又はホイール圧を保持する保持制御を実行する。アクチュエータ5は、ブレーキECU6の指示に基づき、例えば、アンチスキッド制御(又はABS制御とも呼ばれる)、横滑り防止制御(ESC制御)、又は自動加圧制御等を実行する。自動加圧制御は、例えば自動運転やアダプティブクルーズコントロール等において、運転者のブレーキ操作の有無にかかわらず、設定された目標減速度に応じて加圧制御することである。
 アクチュエータ5は、第1マスタ室131に接続された第1配管系統(「第1制動部」に相当する)50aと、第2マスタ室132に接続された第2配管系統(「第2制動部」に相当する)50bと、を備えている。第1配管系統50aは、図示略の電動ポンプ及び電磁弁等を備え、前輪Wfのホイールシリンダ181、182に接続されている。第2配管系統50bは、図示略の電動ポンプ及び電磁弁等を備え、後輪Wrのホイールシリンダ183、184に接続されている。
 アクチュエータ5は、前後輪に対して独立してホイール圧を調整することができる。すなわち、アクチュエータ5は、前輪制動力と後輪制動力とを独立して制御することができる。アクチュエータ5には、マスタ圧を検出する圧力センサ71が設けられている。また、車両には、各車輪Wf、Wrに対して、車輪速度センサ73が設置されている。
 操舵角センサ72は、ステアリング17の切れ角である操舵角を検出するセンサである。操舵角センサ72の検出結果は、車輪の舵角制御に用いられる他、ブレーキECU6にも送信される。ヨーレートセンサ74は、車両のヨーレートを検出するセンサである。ヨーレートセンサ74の検出結果は、ブレーキECU6に送信される。
(ブレーキECU)
 ブレーキECU6は、CPUやメモリ等を備える電子制御ユニットである。詳細に、ブレーキECU6は、1つ又は複数のプロセッサにより、各種制御を実行するように構成されている。ブレーキECU6には、通信線(図示略)により、ブレーキスイッチ15、ストロークセンサ16、及び各センサ71~74等が接続されている。ブレーキECU6は、これら各種センサの検出結果に基づき、倍力装置12及びアクチュエータ5の作動が必要か否かを判断する。
 ブレーキECU6は、アクチュエータ5の作動が必要であると判定した場合、各ホイールシリンダ181~184に対してホイール圧の目標値である目標ホイール圧を演算し、アクチュエータ5を制御する。目標ホイール圧は、目標減速度や目標制動力に対応する。ブレーキECU6は、圧力センサ71の検出値とアクチュエータ5の制御状況に基づいて各ホイール圧を演算することができる。
(回生制動装置)
 回生制動装置8は、車輪に回生制動力を付与する装置である。本実施形態の前輪Wfに設けられた第1モータ(「第1制動部」に相当する)81と、後輪Wrに設けられた第2モータ(「第2制動部」に相当する)82と、ECU83と、図示略のインバータ及びバッテリと、を備えている。第1モータ81は、前輪Wfに回生制動力を付与する。第2モータ82は、後輪Wrに回生制動力を付与する。ECU83は、第1モータ81及び第2モータ82の駆動力及び回生制動力を制御する。
 ブレーキECU6は、ブレーキペダル11のストローク又は自動制動制御での指令値に基づいて、目標制動力を演算する。ブレーキECU6は、目標制動力に基づいて、ECU83に目標回生制動力を指令する。ECU83は、ブレーキECU6と通信可能に接続され、目標回生制動力を車輪に付与するように第1モータ81及び第2モータ82を制御する。ブレーキECU6は、例えば回生制動力によっても目標制動力に満たない場合、目標ホイール圧を設定し、アクチュエータ5及び摩擦制動装置9によって摩擦制動力を発生させる。ブレーキECU6は、その他、所定条件下で摩擦制動力を発生させる。
 このように、本実施形態の制動制御装置1は、操舵輪である前輪Wfに前輪制動力(「第1制動力」に相当する)を付与する第1制動部(第1配管系統50a及び第1モータ81)と、非操舵輪である後輪Wrに後輪制動力(「第2制動力」に相当する)を付与する第2制動部(第2配管系統50b及び第2モータ82)と、目標制動力に応じてアクチュエータ5及び回生制動装置8を制御するブレーキECU6と、を備えている。第1制動部及び第2制動部は、車輪に回生制動力及び摩擦制動力を付与可能に構成されている。
(配分変更制御)
 ブレーキECU6は、舵角情報取得部61と、判定部62と、配分変更部63と、を備えている。舵角情報取得部61は、操舵輪の舵角に関連する舵角関連値を取得する。より具体的に、舵角情報取得部61は、操舵角センサ72から操舵角情報を取得し、操舵角、操舵角速度、及び操舵角加速度の少なくとも1つを演算する。本実施形態の舵角情報取得部61は、微分演算等により、操舵角、操舵角速度、及び操舵角加速度を舵角関連値として演算し取得する。なお、操舵角は、自動運転中では、目標操舵角に相当する。つまり、操舵角は、運転者によるステアリング操作量に限らず、制御目標値であってもよい。舵角関連値は、操舵輪の舵角目標値に関連する値であってもよい。
 判定部62は、舵角関連値に基づいて車両の直進安定性を向上させるか否かを判定する。また、判定部62は、舵角関連値に基づいて車両の旋回応答性を向上させるか否かを判定する。車両の直進安定性が向上するとは、操舵角の変化に対して(又は操舵輪の舵角に対して)車両が旋回しづらくなること、すなわち車両の揺れが生じにくくなることである。また、車両の旋回応答性が向上するとは、操舵角の変化に対して(又は操舵輪の舵角に対して)車両が旋回しやすくなることである。
 判定部62は、例えば、操舵角0から操舵角速度が増大し始めた状態で、操舵角速度が所定の速度閾値未満である場合であって、例えば操舵初期の操舵に対する応答性を下げたいときに、車両の直進安定性を向上させると判定する。直進安定性に関する判定部62の判定条件は、任意に設定でき、その他の例は後述する。
 また、判定部62は、例えば、操舵角が所定の角度閾値以上であり且つ操舵角速度が速度閾値以上である場合、運転者に車両を旋回させる意思があると判定し、車両の旋回応答性を向上させると判定する。本実施形態の判定部62は、判定精度を上げるために、さらにヨーレートセンサ74の検出結果(以下「実ヨーレート」という)を用いる。
 ブレーキECU6(又は車両内の他のECU)は、操舵角センサ72の検出結果に基づいて、制御目標である目標ヨーレートを演算する。判定部62は、目標ヨーレートと実ヨーレートとの差(以下「ヨーレート偏差」という)を演算する。判定部62は、上記判定条件(操舵角≧角度閾値、且つ操舵角速度≧速度閾値)に加えて、ヨーレート偏差が所定閾値以上である場合に、車両の旋回応答性を向上させると判定する。
 配分変更部63は、舵角関連値に基づいて、目標制動力の付与にあたり、前輪制動力と後輪制動力との制動力配分を変更する配分変更制御を実行する。より詳細に、配分変更部63は、前輪Wf及び後輪Wrに回生制動力のみが付与されている状態において、判定部62により車両の直進安定性を向上させると判定された場合、配分変更制御として、後輪Wrの回生制動力を減少させ且つ前輪Wfの回生制動力を増大させる直進安定制御を実行する。直進安定制御により、全制動力(回生制動力)に対する前輪制動力(回生制動力)の配分率が増大する。
 また、配分変更部63は、前輪Wf及び後輪Wrに回生制動力のみが付与されている状態において、判定部62により車両の旋回応答性を向上させると判定された場合、配分変更制御として、前輪Wfの回生制動力を減少させ且つ後輪Wrの回生制動力を増大させる旋回向上制御を実行する。旋回向上制御により、全制動力(回生制動力)に対する前輪制動力(回生制動力)の配分率が減少する。
(本実施形態の効果)
 本実施形態によれば、操舵輪の舵角(すなわち車両の旋回)に関連する舵角関連値に基づいて、前後輪の制動力配分が変更される。前後輪の制動力配分を変更することで、旋回のしやすさを変更することができる。舵角関連値に応じて、旋回をしにくくすることで直進安定性が向上し、反対に旋回をしやすくすることで旋回応答性が向上する。つまり、本実施形態によれば、制動力発生中で且つ舵角に関連する値が検出されている状態において、直進安定性又は旋回応答性を向上させることができる。
 より詳細に、本実施形態によれば、前後輪に回生制動力のみが発生している間に旋回を抑制して直進安定性を向上させる場合、直進安定制御の実行により、操舵輪の制動力である前輪Wfの回生制動力の配分率が増大する。これにより、前輪Wfの摩擦円において、前後力が増大し、横力の余力(グリップ力)が減少する。したがって、旋回しにくくなり、直進安定性が向上する。
 また、本実施形態によれば、前後輪に回生制動力のみが発生している間に旋回応答性を向上させる場合、前輪Wfの回生制動力の配分率を減少させることができる。これにより、前輪Wfの摩擦円において、前後力が減少し、横力の余力(グリップ力)が増大する。したがって、旋回しやすくなり、旋回応答性が向上する。なお、直進安定性は、乗員の快適性ともいえる。また、旋回応答性は、前輪Wfの舵角に対する旋回の追従性ともいえる。
(制御例1)
 図2を参照して制御例1について説明する。制御例1では、車両が旋回中に、運転者はアクセルペダル及びブレーキペダル11のいずれも操作しておらず、通常であれば(配分変更制御が実行されなければ)、全車輪に回生制動力のみが付与される状態を前提としている。アクセルペダル操作なし且つブレーキペダル11操作なしの状態で設定される目標制動力(例えば構造上決まる値)は、回生制動力のみで車輪に付与される。この際、通常、前輪制動力の配分率は50%となる。制御例1では、例えば高速走行時を想定している。また、制御例1の状況は、ブレーキ操作が為されておらず、回生制動力のみで目標制動力を車輪に付与する状況である。
 時間Ta1において、操舵角が増大し始めると、判定部62は、操舵角速度が速度閾値未満であるため(操舵角が0から増大、且つ操舵角速度<速度閾値)、車両の直進安定性を向上させると判定する。つまり、時間Ta1において、配分変更部63は、配分変更制御として直進安定制御を実行する。これにより、前輪制動力(回生制動力)が所定勾配で増大し、後輪制動力(回生制動力)が所定勾配で減少する。本例では、直進安定制御により、前輪制動力の配分率が100%となる。
 時間Ta2において、操舵角速度が増大傾向で(増大勾配による変化し)且つ速度閾値以上であるため、判定部62は、車両の旋回応答性を向上させると判定する。つまり、時間Ta2において、配分変更部63は、配分変更制御として旋回向上制御を実行する。これにより、前輪制動力(回生制動力)が所定勾配で減少し、後輪制動力(回生制動力)が所定勾配で増大する。本例では、旋回向上制御により、前輪制動力の配分率が0%となる。なお、各制御での配分率は本例以外の数値でもよい。このように、配分変更部63は、回生制動力の前後配分を変更する。
 時間Ta3において、第1旋回向上制御の実行中で、操舵角速度が減少傾向で(減少勾配により変化し)且つ速度閾値未満であるため、判定部62は、車両の直進安定性を向上させると判定する。つまり、時間Ta3において、配分変更部63は、配分変更制御として直進安定制御を実行する。これにより、前輪制動力(回生制動力)が所定勾配で増大し、後輪制動力(回生制動力)が所定勾配で減少する。
 時間Ta3~時間Ta4において、操舵角速度が速度閾値未満で維持されており、直進安定制御が維持される。時間Ta4において、操舵角が増大し始め、操舵角速度も増大するが、操舵角速度が速度閾値未満であるため、直進安定制御が維持される。このように、本例では、運転者がステアリング17を操作し始めると、最初に直進安定制御が実行され、その後に第1旋回向上制御が実行される。そして、操舵角速度がピークを超えた後に、旋回向上制御から直進安定制御に移行する。
 なお、状況等(例えば車速、車種等)によっては、時間Ta1~時間Ta3において、前輪Wfの回生制動力の配分(前輪回生配分率)を図2の反対にしてもよい。つまり、時間Ta1~時間Ta2では前輪回生配分率を減少させ、時間Ta2~時間Ta3では前輪回生配分率を増大させてもよい。これにより、時間Ta1~時間Ta2で旋回応答性が向上し、時間Ta2~時間Ta3で直進安定性が向上する。この場合、時間Ta3以降の前輪回生配分率は、所定値(0~100%)に設定される。
 ここで、図3を参照して配分変更制御の流れを説明する。前後輪に回生制動力が付与されている状態において(S101:Yes)、ブレーキECU6は、操舵角センサ72の検出結果から操舵角、操舵角速度、及び目標ヨーレートを演算する(S102)。続いて、ブレーキECU6は、現状が、旋回向上制御の実行中において操舵角速度が減少傾向で且つ操舵角速度が速度閾値未満である(以下「第1所定条件」という)か否かを判定する(S103)。第1所定条件が満たされている場合(S103:Yes)、ブレーキECU6は、直進安定制御を実行する(S104)。S104は、図2の時間Ta3の状態に相当する。
 第1所定条件が満たされていない場合(S103:No)、ブレーキECU6は、操舵角が角度閾値以上であり、操舵角速度が速度閾値以上であり、且つヨーレート偏差が閾値以上である(以下「第2所定条件」という)か否かを判定する(S105)。第2所定条件が満たされている場合(S105:Yes)、ブレーキECU6は、旋回向上制御を実行する(S106)。S106は、図2の時間Ta2の状態に相当する。
 第2所定条件が満たされていない場合(S105:No)、ブレーキECU6は、操舵角が0より大きく且つ操舵角速度が速度閾値未満である(以下「第3所定条件」という)か否かを判定する(S107)。第3所定条件が満たされている場合(S107:Yes)、ブレーキECU6は、直進安定制御を実行する(S108)。S108は、図2の時間Ta1の状態に相当する。第3所定条件が満たされていない場合(S107:No)、ブレーキECU6は、配分変更制御を実行しない。ブレーキECU6は、操舵角情報を取得する度に(所定間隔で)、上記処理を実行する。
(制御例1の効果)
 制御例1によれば、本実施形態と同様の効果が発揮される。また、操舵角が0から増大し始めた当初、その検出値は、運転者の意図に反して(例えば高齢運転者による意図しない操作)ステアリング17が揺れてしまったものである可能性がある。したがって、操舵角の増大当初は、車両の直進安定性を向上させることで、不要な旋回を抑制し、車両姿勢の安定性及び乗員の快適性を向上させることができる。制御例1では、操舵角増大初期に直進安定制御が実行されるように実行条件が設定されている。このため、上記効果が発揮される。
 また、運転者の旋回意思が明らかである場合、及び/又は目標の旋回軌跡に対して車両の旋回度合いが不足している場合、旋回向上制御により、車両を旋回しやすくすることが好ましい。制御例1では、運転者の明確な操作意思があると判定できる実行条件、及びヨーレート偏差の利用により、好ましいタイミングで旋回向上制御を実行することができる。また、制御例1では、旋回向上制御を実行した後、旋回状態が安定した場合、直進安定制御に切り替わるように実行条件が設定されている。これにより、車両の目標軌跡への収束性が向上する。このように、制御例1によれば、前後輪に回生制動力を発生させる車両において、好ましいタイミングで配分変更制御を実行することができる。
 また、制御例1では、回生制動力のみにより前後輪の制動力配分が変更される。回生制動力は、液圧を用いる摩擦制動力と比較して、制御(指令)に対する応答性が高い。つまり、素早く制動力配分を変更することができる。また、回生制動力は、制動力の調整精度も相対的に高い。したがって、旋回中などの配分変更制御による作用をより有効に発揮させることができる。また、前後配分の変更が乗員に伝わりにくく、快適性が維持されやすい。
(制御例2)
 図4を参照して制御例2について説明する。制御例2では、車両に第1モータ81のみが設けられている場合、又は車両にモータ81、82が設けられているが前輪Wfにのみ回生制動力を発生させる場合を前提としている。つまり、制御例2では、前輪Wfにのみ回生制動力が発生する状況を前提とする。第1制動部50a、81は、車輪に回生制動力を付与可能に構成されている。制御例2では、制御例1同様、アクセルペダル操作なし且つブレーキペダル11操作なしの状態を前提とする。なお、制御例2の説明において、制御例1の説明が適宜参照される。また、制御例2では、低速走行時を想定し、操舵角増大初期に直進安定制御ではなく、旋回向上制御を実行するように設定されている。
 時間Tb1において、ブレーキECU6は、操舵角の増大に応じて、旋回向上制御を実行する。制御例2での旋回向上制御は、前輪Wfの回生制動力の少なくとも一部を前輪Wfの摩擦制動力にすり替える制御である。すなわち、配分変更部63は、前輪制動力である回生制動力が車輪に付与されている状態において、判定部62により車両の旋回応答性を向上させると判定された場合、前輪Wfの摩擦制動力を増大させ且つ前輪Wfの回生制動力を減少させる旋回向上制御を実行する。
 時間Tb2において、ブレーキECU6は、車両の目標路線への収束性を高めるため、直進安定制御を実行する。制御例2での直進安定制御は、前輪制動力(ここでは摩擦制動力)を後輪Wrの摩擦制動力にすり替える制御である。すなわち、配分変更部63は、前輪制動力が車輪に付与されている状態において、判定部62により車両の直進安定性を向上させると判定された場合、配分変更制御として、後輪Wrの摩擦制動力を増大させ且つ前輪制動力を減少させる直進安定制御を実行する。直進安定制御の実行時、前輪制動力は、摩擦制動力でも回生制動力でもよい。
 時間Tb3において、ブレーキECU6は、旋回状態が安定したと判断し、配分変更制御を停止し、制御がない状態すなわち前輪Wfの回生制動力のみが発生している状態に戻す。Tb4~Tb5では、上記同様、操舵角の増大に応じて、旋回向上制御の実行後、直進安定制御が実行される。この際、制動力のすり替えは、すべて(0又は100%)でなく、一部で行われる。制動力の一部を、前後輪間又は回生摩擦間ですり替えることで、直進安定性又は旋回応答性の向上度合いを変更することができる。すり替えは、制動力の少なくとも一部で行われてもよい。
(制御例2の効果)
 制御例2の旋回向上制御によれば、前輪Wfにおいて回生制動力と摩擦制動力とのすり替えが行われる。前輪制動力のうち摩擦制動力の割合が大きくなるほど、構造上、コンプライアンスステアの影響により、前輪Wfの舵角(タイヤ切れ角)が若干車両内側に向く。旋回中の接地荷重かかり方から、前輪Wfのうち旋回外輪の舵角(タイヤ切れ角)が、車両の旋回に対して相対的に大きく影響する。このため、車両内側すなわち旋回方向に旋回外輪が向くことで旋回応答性が向上する。
 一方、後輪Wrの摩擦制動力が増大し、後輪Wrの舵角(タイヤ切れ角)が若干車両内側に向く。後輪Wrの舵角(タイヤ切れ角)が車両内側に向くことで、車両が旋回しにくくなり、直進安定性が向上する。つまり、制御例2の直進安定制御によれば、車両の直進安定性が向上する。なお、制御例2の直進安定制御を図2のS104及びS108で実行し、制御例2の旋回向上制御を図2のS106で実行してもよい。また、制御例2の場合、S101では、ブレーキECU6が前輪Wfに回生制動力が付与されているか否かを判定してもよい。
(制御例3)
 横風や路面状態などにより運転者の意図でなく車両が横に振られた場合(以下「横揺れ」という)、ブレーキECU6は、直進安定制御を実行する。ブレーキECU6は、ヨーレート偏差に基づいて、横揺れの有無を判定する。ブレーキECU6は、例えば、実ヨーレートが目標ヨーレートよりも大きく且つヨーレート偏差が所定閾値以上になった場合、横揺れが発生していると判定する。判定部62は、この場合、車両の直進安定性を向上させると判定する。なお、横揺れの判定要素として、舵角関連値の振動の有無を加えてもよい。この場合、ブレーキECU6は、例えば、振動を検知した後に、ヨーレート偏差が所定閾値以上となった場合に、横揺れ有りと判定する。
 配分変更部63は、例えば、前輪制動力として回生制動力が発生している場合、直進安定制御として、前輪Wfの回生制動力を減少させ且つ後輪Wrの摩擦制動力を増大させる。これにより、横揺れに対して車両の旋回が抑制され、車両姿勢が安定する。
 また、判定部62は、舵角関連値の振動を検出すると、車両の直進安定性を向上させると判定する。例えば、操舵角が、所定時間内に所定変化幅内で所定数のピークが出るように変動している場合、判定部62は、振動有りと判定する。例えば運転者が高齢である場合、運転者の意図によらずステアリング17が揺れる場合がある。このような場合に、直進安定制御が実行されることで、不要な旋回が抑制され、車両姿勢が安定する。
 このように、ブレーキECU6は、車両の旋回中における車両の直進安定性を向上させる場合、操舵輪の制動力を回生制動力にして当該操舵輪の回生制動力を増加させる、又は非操舵輪の制動力を摩擦制動力にして当該非操舵輪の摩擦制動力を増加させる直進安定制御を実行する。また、ブレーキECU6は、車両の旋回中における車両の旋回応答性を向上させる場合、操舵輪の制動力を摩擦制動力にして当該操舵輪の摩擦制動力を増加させる、又は非操舵輪の制動力を回生制動力にして当該非操舵輪の回生制動力を増加させる旋回向上制御を実行する。
 配分変更部63は、操舵輪及び非操舵輪に回生制動力が付与されている状態において、車両の旋回中における車両の旋回応答性を向上させる場合、配分変更制御として、操舵輪の回生制動力を減少させ且つ非操舵輪の回生制動力を増大させる旋回向上制御を実行する。
 また、配分変更部63は、操舵輪の制動力が当該操舵輪に付与されている状態において、車両の旋回中における車両の直進安定性を向上させる場合、配分変更制御として、非操舵輪の摩擦制動力を増大させ且つ操舵輪の制動力を減少させる直進安定制御を実行する。
 また、配分変更部63は、操舵輪の制動力として回生制動力が操舵輪に付与されている状態において、車両の旋回中における車両の旋回応答性を向上させる場合、操舵輪の制動力として摩擦制動力を増大させ且つ当該操舵輪の回生制動力を減少させる旋回向上制御を実行する。
(その他)
 本発明は、上記実施形態及び制御例に限られない。例えば、判定部62による判定条件は、上記に限られない。配分変更部63は、例えば、操舵角、操舵角速度、及び/又は操舵角加速度(操舵角速度の微分値)が第1所定値以上である場合に直進安定制御を実行し、操舵角、操舵角速度、及び/又は操舵角加速度が第2所定値以上である場合に旋回向上制御を実行するように設定されてもよい(第1所定値<第2所定値)。また、例えば判定要素に操舵角加速度を用いることで、より早く判定することができる。また、判定閾値として、所定角度範囲や所定速度範囲を用いてもよい。
 本発明は、例えば電気自動車やハイブリッド車だけでなく、回生制動力が発生しない車両(制動力が摩擦制動力である車両)にも適用可能である。また、本発明は、自動運転車両にも適用可能である。自動運転における舵角関連値は、操舵角に関する指令値(例えば制御目標値である目標ヨーレート)であってもよい。つまり、操舵角は、運転者によるステアリング操作の結果に限られない。また、制動部(アクチュエータ5)は、電動シリンダを備える構成であってもよい。また、制動力の発生は、ブレーキペダル11の操作だけに限らず、自動ブレーキ制御によるものでもよい。また、本発明は、ワンペダルを備える車両にも適用できる。本発明の配分変更制御は、何らかの制動力により減速度が発生している状態で実行できる。また、本発明は、車両が後進している際にも適用できる。また、車両の旋回とは、運転者の意図しないステアリング操作(振動)や横風による旋回も含まれる。
 また、操舵輪は後輪Wrであってもよい。この場合でも、上記同様の効果が発揮される。例えば、後輪Wrに回生制動力が付与されている状態で、旋回応答性を向上させる場合、配分変更部63は、操舵輪(後輪Wr)の回生制動力の少なくとも一部を摩擦制動力にすり替える。これにより、コンプライアンスステアにより後輪Wrの舵角が内側を向き、後輪Wrのコーナリングフォース(横力)が小さくなる。したがって、前輪Wfのコーナリングフォースに対して相対的に後輪Wrのコーナリングフォースが小さく且つ両コーナリングフォースの差が大きくなる。つまり、車両が旋回しやすくなる。このような操舵輪での回生制動力と摩擦制動力とのすり替えに関しては、前輪Wfが操舵輪である場合は旋回外輪の舵角変化の影響が大きいために旋回応答性が向上するが、後輪Wrが操舵輪である場合は後輪Wrのコーナリングフォース減少の影響が大きいために旋回応答性が向上する。その他、直進安定制御及び旋回向上制御について、後輪Wrが操舵輪である場合は、前輪Wfが操舵輪である場合と同様の理論により、同様の効果が発揮される。

Claims (8)

  1.  車両の操舵輪に第1制動力を付与する第1制動部と、
     前記車両の非操舵輪に第2制動力を付与する第2制動部と、
     目標制動力に応じて前記第1制動部及び前記第2制動部を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記操舵輪の舵角に関連する舵角関連値を取得する舵角情報取得部と、
     前記目標制動力の付与にあたり、前記舵角関連値に基づいて前記第1制動力と前記第2制動力との制動力配分を変更する配分変更制御を実行する配分変更部と、
     を備える制動制御装置。
  2.  前記第1制動部は、前記操舵輪に回生制動力及び摩擦制動力の少なくとも一方を付与可能に構成され、
     前記第2制動部は、前記非操舵輪に前記回生制動力及び前記摩擦制動力の少なくとも一方を付与可能に構成され、
     前記制御装置は、
     前記車両の旋回中における前記車両の直進安定性を向上させる場合、前記第1制動力を前記回生制動力にして前記操舵輪の前記回生制動力を増加させる、又は前記第2制動力を前記摩擦制動力にして前記非操舵輪の前記摩擦制動力を増加させる直進安定制御を実行し、
     前記車両の旋回中における前記車両の旋回応答性を向上させる場合、前記第1制動力を前記摩擦制動力にして前記操舵輪の前記摩擦制動力を増加させる、又は前記第2制動力を前記回生制動力にして前記非操舵輪の前記回生制動力を増加させる旋回向上制御を実行する請求項1に記載の制動制御装置。
  3.  前記第1制動部は、前記操舵輪に回生制動力を付与可能に構成され、
     前記第2制動部は、前記非操舵輪に前記回生制動力を付与可能に構成され、
     前記配分変更部は、前記操舵輪及び前記非操舵輪に前記回生制動力が付与されている状態において、前記車両の旋回中における前記車両の直進安定性を向上させる場合、前記配分変更制御として、前記非操舵輪の前記回生制動力を減少させ且つ前記操舵輪の前記回生制動力を増大させる直進安定制御を実行する請求項1又は2に記載の制動制御装置。
  4.  前記第1制動部は、前記操舵輪に回生制動力を付与可能に構成され、
     前記第2制動部は、前記非操舵輪に前記回生制動力を付与可能に構成され、
     前記配分変更部は、前記操舵輪及び前記非操舵輪に前記回生制動力が付与されている状態において、前記車両の旋回中における前記車両の旋回応答性を向上させる場合、前記配分変更制御として、前記操舵輪の前記回生制動力を減少させ且つ前記非操舵輪の前記回生制動力を増大させる旋回向上制御を実行する請求項1~3の何れか一項に記載の制動制御装置。
  5.  前記配分変更部は、前記第1制動力が前記操舵輪に付与されている状態において、前記車両の旋回中における前記車両の直進安定性を向上させる場合、前記配分変更制御として、前記非操舵輪の摩擦制動力を増大させ且つ前記操舵輪の前記第1制動力を減少させる直進安定制御を実行する請求項1又は2に記載の制動制御装置。
  6.  前記第1制動部は、前記操舵輪及び前記非操舵輪に回生制動力を付与可能に構成され、
     前記配分変更部は、前記第1制動力として前記回生制動力が前記操舵輪に付与されている状態において、前記車両の旋回中における前記車両の旋回応答性を向上させる場合、前記第1制動力として前記操舵輪の摩擦制動力を増大させ且つ前記操舵輪の前記回生制動力を減少させる旋回向上制御を実行する請求項5に記載の制動制御装置。
  7.  前記制御装置は、前記舵角関連値の振動を検出した場合、前記直進安定制御を実行する請求項2、3、5、及び6のうちの何れか一項に記載の制動制御装置。
  8.  前記車両のヨーレートを検出するヨーレートセンサをさらに備え、
     前記配分変更部は、前記舵角関連値である目標ヨーレートと前記ヨーレートとの差に基づいて、前記配分変更制御を実行する請求項1~7の何れか一項に記載の制動制御装置。
PCT/JP2021/001106 2020-01-17 2021-01-14 制動制御装置 WO2021145391A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180010017.3A CN115003572B (zh) 2020-01-17 2021-01-14 制动控制装置
US17/792,855 US20230025963A1 (en) 2020-01-17 2021-01-14 Braking control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020005846A JP7472498B2 (ja) 2020-01-17 2020-01-17 制動制御装置
JP2020-005846 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021145391A1 true WO2021145391A1 (ja) 2021-07-22

Family

ID=76864423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001106 WO2021145391A1 (ja) 2020-01-17 2021-01-14 制動制御装置

Country Status (4)

Country Link
US (1) US20230025963A1 (ja)
JP (1) JP7472498B2 (ja)
CN (1) CN115003572B (ja)
WO (1) WO2021145391A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023281979A1 (ja) 2021-07-07 2023-01-12

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166004A (ja) * 1998-11-25 2000-06-16 Toyota Motor Corp 車両の回生制動制御装置
JP2005145334A (ja) * 2003-11-18 2005-06-09 Fuji Heavy Ind Ltd ハイブリッド車両の駆動力制御装置
JP2005225482A (ja) * 2004-01-15 2005-08-25 Nissan Motor Co Ltd 車両の制動制御方法及び装置
JP2006246657A (ja) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd 車両の回生制動制御装置
JP2015201913A (ja) * 2014-04-04 2015-11-12 日立オートモティブシステムズ株式会社 車両制御装置及び車両制御方法
JP2016150672A (ja) * 2015-02-18 2016-08-22 本田技研工業株式会社 車両用走行制御装置
JP2018207654A (ja) * 2017-06-02 2018-12-27 日立オートモティブシステムズ株式会社 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597975B1 (en) * 1999-03-10 2003-07-22 Honda Giken Kogyo Kabushiki Kaisha Vehicle co-operative control system
JP4730065B2 (ja) * 2005-11-14 2011-07-20 株式会社アドヴィックス 車両の運動制御装置
JP5098408B2 (ja) * 2007-04-16 2012-12-12 株式会社アドヴィックス 車両用制動制御装置
CN101537828B (zh) * 2009-03-04 2011-10-19 长安大学 四轮转向汽车稳定性控制系统
JP6003534B2 (ja) * 2012-10-30 2016-10-05 日産自動車株式会社 制動力制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166004A (ja) * 1998-11-25 2000-06-16 Toyota Motor Corp 車両の回生制動制御装置
JP2005145334A (ja) * 2003-11-18 2005-06-09 Fuji Heavy Ind Ltd ハイブリッド車両の駆動力制御装置
JP2005225482A (ja) * 2004-01-15 2005-08-25 Nissan Motor Co Ltd 車両の制動制御方法及び装置
JP2006246657A (ja) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd 車両の回生制動制御装置
JP2015201913A (ja) * 2014-04-04 2015-11-12 日立オートモティブシステムズ株式会社 車両制御装置及び車両制御方法
JP2016150672A (ja) * 2015-02-18 2016-08-22 本田技研工業株式会社 車両用走行制御装置
JP2018207654A (ja) * 2017-06-02 2018-12-27 日立オートモティブシステムズ株式会社 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法

Also Published As

Publication number Publication date
US20230025963A1 (en) 2023-01-26
CN115003572A (zh) 2022-09-02
JP7472498B2 (ja) 2024-04-23
JP2021112955A (ja) 2021-08-05
CN115003572B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP3189610B2 (ja) 車両挙動制御装置
JP6073941B2 (ja) 車両用走行制御装置
US20100191423A1 (en) Vehicle rollover prevention control apparatus and vehicle rollover prevention control method
US20180029585A1 (en) Vehicle controller, vehicle, and control system
CN107697047B (zh) 用于车辆的制动控制设备
KR20120126071A (ko) 브레이킹 및 드라이빙 동작들로 드라이빙 역학에 영향을 미치는 방법 및 브레이킹 시스템
JP6672769B2 (ja) 制動力制御装置
JP5644752B2 (ja) 制動力制御装置
MX2014010751A (es) Dispositivo de control de momento de desviacion lateral para vehiculo.
JP2600876B2 (ja) 車両の旋回制御装置
WO2021145391A1 (ja) 制動制御装置
US9296373B2 (en) Vehicle turning controller
US8249790B2 (en) Vehicle behavior control device
JP2011207382A (ja) 車両運動制御装置
JP2014234029A (ja) ブレーキ制御装置
JP5446685B2 (ja) 車両の運動制御装置
JP2002137721A (ja) 車両運動制御装置
JP5200657B2 (ja) 車両挙動制御装置
JP2019182050A (ja) ブレーキ制御装置及びブレーキ制御方法
JP7103080B2 (ja) 車両制御装置
JP5966994B2 (ja) 車両用ブレーキ制御装置
JP3876487B2 (ja) 車両挙動制御装置
JP2985308B2 (ja) 車両用制動力制御装置
JP5983303B2 (ja) 車両運動制御装置
JP4172277B2 (ja) 車両用舵角制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741520

Country of ref document: EP

Kind code of ref document: A1