JP2019182050A - ブレーキ制御装置及びブレーキ制御方法 - Google Patents

ブレーキ制御装置及びブレーキ制御方法 Download PDF

Info

Publication number
JP2019182050A
JP2019182050A JP2018072198A JP2018072198A JP2019182050A JP 2019182050 A JP2019182050 A JP 2019182050A JP 2018072198 A JP2018072198 A JP 2018072198A JP 2018072198 A JP2018072198 A JP 2018072198A JP 2019182050 A JP2019182050 A JP 2019182050A
Authority
JP
Japan
Prior art keywords
yaw rate
magnitude
vehicle
difference
intervention threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018072198A
Other languages
English (en)
Other versions
JP6966972B2 (ja
Inventor
大介 野間
Daisuke Noma
大介 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2018072198A priority Critical patent/JP6966972B2/ja
Publication of JP2019182050A publication Critical patent/JP2019182050A/ja
Application granted granted Critical
Publication of JP6966972B2 publication Critical patent/JP6966972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

【課題】 より早期にふらつきを検知し、車両挙動の安定性を向上可能なブレーキ制御装置を提供すること。【解決手段】 ECU(40)は、車両に発生している実ヨーレイトrと、操舵角θに基づき演算されたモデルヨーレイトr*と、の差であるヨーレイト差Δrを演算し、実ヨーレイトrに基づきヨー角加速度r'を演算し、ヨーレイト差Δrの大きさ|Δr|が所定の介入閾値A以上であり、かつヨー角加速度r'の大きさ|r'|が所定の介入閾値B以上である場合、ヨーレイト差Δrの大きさ|Δr|を小さくする向きに車両の左右輪に制動力差を発生させる指令を液圧ユニット(30)へ出力する。【選択図】 図1

Description

本発明は、車両のブレーキ制御装置及びブレーキ制御方法に関する。
従来、車両挙動の乱れ(ふらつき)を抑制するために制動力を制御する装置が知られている。例えば特許文献1に記載の装置は、自車両が走行車線から逸脱しそうであると判断すると、逸脱を回避する方向のヨーモーメントを左右輪の制動力差により発生させる。
特開2006−282168号公報
しかしながら、特許文献1に記載の装置では、逸脱を回避する方向のヨーモーメントを発生させる際、既に車両の挙動がある程度発生していることから、ふらつきを十分に抑制することが困難である。本発明は、より早期にふらつきを検知し、車両挙動の安定性を向上可能なブレーキ制御装置及びブレーキ制御方法を提供することを目的とする。
上記目的を達成するため、本発明の一実施形態に係るブレーキ制御装置は、好ましくは、車両に発生している実ヨーレイトと、操舵角に基づき演算されたモデルヨーレイトと、の差であるヨーレイト差を演算し、実ヨーレイトに基づきヨー角加速度を演算し、ヨーレイト差の大きさが所定の第1介入閾値以上であり、かつヨー角加速度の大きさが所定の第2介入閾値以上である場合、ヨーレイト差の大きさを小さくする向きに車両の左右輪に制動力差を発生させる指令を制動アクチュエータへ出力する。
よって、より早期にふらつきを検知し、車両挙動安定性の向上を図ることができる。
第1実施形態のブレーキシステムの構成を示す。 第1実施形態のふらつき抑制制御のブロック線図である。 第1実施形態のふらつき抑制制御のフローチャートである。 第1実施形態のふらつき抑制制御を説明するためのタイムチャートである。 第1実施形態の非制動状態におけるふらつき抑制制御を説明するための模式図である。 第1実施形態の制動状態におけるふらつき抑制制御を説明するための模式図である。 第2実施形態のブレーキシステムの構成を示す。
以下、本発明を実施するための形態を、図面に基づき説明する。
〔第1実施形態〕
まず、本実施形態における車両のブレーキシステム1の全体の構成について、図1を用いて説明する。ブレーキシステム1は、ハイブリッド自動車や電気自動車等の車両に適用可能である。なお、エンジン自動車に適用してもよい。車両は複数(4つ)の車輪を備える。複数の車輪は、左前輪10L、右前輪10R、左後輪11L及び右後輪11Rを有する。ブレーキシステム1は、ブレーキペダル201、入力ロッド202、リザーバタンク203、マスタシリンダ204、液圧ユニット(H/U)30、ストロークシミュレータ205、ブレーキ制御装置(ECU)40、及びストロークセンサ500を有する。
ブレーキペダル201は、車両の運転者のブレーキ操作が入力されるブレーキ操作部材であり、入力ロッド202を介してマスタシリンダ204に接続される。ストロークセンサ500は、ブレーキペダル201の回転角度を検出する。この回転角度は、ブレーキペダル201のストローク(ペダルストローク)に相当する。ペダルストロークは、運転者によるブレーキペダル201の操作量(ブレーキ操作量)に相当する。
リザーバタンク203は、ブレーキ液(作動液)を貯留する。リザーバタンク203は、マスタシリンダ204に設置されており、マスタシリンダ204にブレーキ液を補給可能である。マスタシリンダ204は、ブレーキ操作に応じてブレーキ液の圧力(マスタシリンダ圧)を内部に発生する。マスタシリンダ204は、ブレーキ管207を介して各輪10,11のホイルシリンダ(ブレーキシリンダ)206に接続される。ブレーキシステム1の液圧系統はP系統とS系統の2系統を有しており、ブレーキ管207は所謂X配管である。P系統のブレーキ管207Pには、左前輪10Lのホイルシリンダ206と右後輪11Rのホイルシリンダ206が接続され、S系統のブレーキ管207Sには、右前輪10Rのホイルシリンダ206と左後輪11Lのホイルシリンダ206が接続される。ホイルシリンダ206は、液圧式キャリパであり、ブレーキ管207を介して供給される液圧により、ピストン(制動部材)を推進する。これによりブレーキパッドをブレーキロータに押し付け、車輪10,11に摩擦制動力を付与する。
液圧ユニット30は、液圧を用いて車輪10,11に対し制動力を付与可能である。液圧ユニット30は、ブレーキ管207の途中にある。液圧ユニット30は、ブレーキ管208を介してリザーバタンク203に接続される。液圧ユニット30のハウジングは、その内部に複数の液路を有し、複数の弁、ポンプ、及び複数の液圧センサ50を収容する。各弁は、液路の開閉を制御可能である。弁のいくつかはソレノイドバルブであり、ソレノイド303により駆動される。ポンプは、例えばプランジャポンプであり、液路にブレーキ液を吐出して液圧を供給可能である。ポンプは、モータ(電動機)302により駆動される。モータ302は、例えばブラシ付きDCモータである。複数の液路は液圧回路を形成する。液圧ユニット30は、ポンプ及び弁を作動させることで、各車輪10,11のホイルシリンダ206に任意の液圧を供給可能であると共に、各車輪10,11の上記液圧を互いに独立して制御可能である。例えば、ポンプと調整弁を作動させて元圧を発生させ、この状態で各ホイルシリンダ206に対応する増圧弁と減圧弁の開閉を制御することで、互いに異なる液圧を各ホイルシリンダ206に供給可能である。
複数の液圧センサ50は、系統圧センサ及びマスタシリンダ圧センサを有する。系統圧センサは、P系統の車輪10L,11Rのホイルシリンダ206に連通する液路の圧力を検出可能なセンサと、S系統の車輪10R,11Lのホイルシリンダ206に連通する液路の圧力を検出可能なセンサとを有する。マスタシリンダ圧センサは、マスタシリンダ204の圧力室に連通する液路の圧力(マスタシリンダ圧)を検出可能である。マスタシリンダ圧は、ブレーキペダル201を踏む力(ペダル踏力)に相当する。ペダル踏力はブレーキ操作量に相当する。
ブレーキ制御装置ECU40は、液圧ユニット30のハウジングに設置され、液圧ユニット30を制御可能である。液圧ユニット30はECU40に対するアクチュエータ(制動アクチュエータ)として機能する。ECU40は、各種演算処理を実行するCPU、各種制御プログラムを格納するROM、データ格納やプログラム実行のためのワークエリアとして利用されるRAM、エンジン停止時にも記憶内容を保持できるバックアップRAM等の不揮発性メモリ、各種駆動回路、入出力インターフェース回路、各種センサ等から入力されたアナログ信号をデジタル信号に変換して取り込むためのA/Dコンバータ、及び計時用のタイマ等を有しており、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータである。駆動回路は、ソレノイド駆動回路とモータ駆動回路を有する。インターフェース回路は、ストロークセンサ500や液圧センサ50その他のセンサからの信号や、他のECUからの信号の入力を受ける。ECU40は、入力される信号に基づき、モータ302及びソレノイド303を制御することで、各車輪10,11のホイルシリンダ206に供給する液圧を制御可能である。
ストロークシミュレータ205は、液圧ユニット30のハウジングに設置され、マスタシリンダ204の圧力室に連通可能である。ストロークシミュレータ205は、マスタシリンダ204の圧力室から流出するブレーキ液を収容することで作動し、ブレーキ操作の反力を発生可能である。ECU40は、例えば、マスタシリンダ204とホイルシリンダ206との連通を遮断した状態で、ストロークシミュレータ205をマスタシリンダ204の圧力室に連通させることにより、ブレーキ操作に応じた反力を発生させる。
液圧ユニット30は、ECU40の故障時やモータ302等の故障時など、液圧制御を実行できないとき、液圧回路におけるマスタシリンダ204の側とホイルシリンダ206の側とを連通させる。これにより、マスタシリンダ圧が各ホイルシリンダ206に供給されうるため、ブレーキ操作により各車輪に制動力を付与可能である。
ECU40には、車両における複数のセンサ(検出装置)が接続されている。これら複数のセンサは、車輪速センサ52、加速度センサ53、ヨーレイトセンサ54及び舵角センサを有する。車輪速センサ52は、各車輪10,11に配置され、各車輪10L,10R,11L,11Rの回転角速度(車輪速)を検出する。加速度センサ53は、車両の縦(前後)方向の加速度(前後加速度Gx)及び横(左右)方向の加速度(横加速度Gy)を検出する。ここで加速度は減速度も含む。ヨーレイトセンサ54は、車両のヨーレイトを検出する。センサ53,54は複合センサ(一体型センサ)55として一体化されている。舵角センサは、運転者によるステアリングホイール(ハンドル)の操作量である操舵角θを検出する。
ECU40は、車載の通信網(CAN)610を介して、車両全体の走行状態を制御する統合コントローラ43(例えば自動ブレーキ制御等を司る先進運転支援システムADASのECU)と通信可能に接続される。ECU40は、ECU43から、舵角センサの信号(操舵角情報)や自動ブレーキ指令を取得可能である。ECU40は、上記取得した信号に基づき、液圧ユニット30を制御可能である。ECU40は、各車輪10,11の制動力制御を実行することで、各種のブレーキ制御を実行可能である。ブレーキ制御は、通常ブレーキ制御、アンチロックブレーキ制御(ABS)、トラクション制御、車両の運動制御のためのブレーキ制御、回生協調ブレーキ制御、自動ブレーキ制御等を含む。
通常ブレーキ制御は、ブレーキ操作量と運転者の要求する車両減速度との間の所望の特性を実現するような制動力を発生させる。ABSは、制動による車輪のロックを抑制するためのブレーキ制御である。推定した車体速に対し、ある車輪の車輪速(車輪速センサ52の信号)が著しく低下した場合、当該車輪がロックしたと判定し、当該車輪の制動力を減少させる。車体速は、4輪10L,10R,11L,11Rの車輪速センサ52の信号の平均値を算出したり、これらの信号のうち最大値を選択したりすることによって推定可能である。トラクション制御は、車輪の駆動スリップを抑制するためのブレーキ制御であり、駆動輪の制動力を増加させる。車両の運動制御は、車両挙動安定化制御を含む。車両挙動安定化制御は、横滑り防止制御(ESC)及びふらつき抑制制御を含む。ESCは、車両の旋回時、現在の車両の速度・加減速度や操舵角(舵角センサの信号)から期待される車両のヨーレイト(モデルヨーレイトr*)に対して、車両に発生している実際のヨーレイト(実ヨーレイトr)が著しく乖離した場合、実ヨーレイトrをモデルヨーレイトr*に近づけるために、車両の左右輪に制動力差を発生させて車両のヨーモーメントMを発生させる。上記の車両の速度VSPとして、車輪速センサ52や車速センサからの信号を用いることができる。車両の加減速度として、ストロークセンサ500等からのブレーキ操作量の信号やアクセルペダルの操作量の信号を用いることができる。実ヨーレイトrとして、ヨーレイトセンサ54からの信号を用いることができる。ふらつき抑制制御は、車両の直進時や旋回時、横風や路面の凹凸・轍等により生じる車両挙動の乱れ(外乱による車両のヨーモーメント)を抑制するため、ESCと同様、左右輪の制動力を変化させる。具体的には、モデルヨーレイトr*に対して実ヨーレイトrが一定程度乖離した場合、車両の左右輪に制動力差を発生させることで、実ヨーレイトrとモデルヨーレイトr*との差(ヨーレイト差Δr)が小さくなる向きにヨーモーメント(修正ヨーモーメント)を生じさせる。回生協調ブレーキ制御は、回生制動力との和が、運転者の要求する車両減速度を充足するような制動力を発生させる。自動ブレーキ制御は、先行車追従(車間維持)や衝突防止等の機能実現に必要なブレーキ制御である。
以下、ふらつき抑制制御を実現するための構成について説明する。図2は、ECU40におけるふらつき抑制制御の主要な機能ブロックを表す。図2に示すように、状態推定判断部401は、直進状態判断部401A、ヨーレイト差演算部401B及びヨー角加速度演算部401Cを有する。直進状態判断部401Aは、加速度センサ53からの信号(横加速度Gy)及び操舵角センサからの信号(操舵角θ)に基づき、車両が直進状態であるか否かを判断する。具体的には、横加速度Gyが所定値以下であり(十分に小さく)、操舵角θも所定値以下である(十分に小さい)場合には、車両が直進走行を行っていると判断する。この条件を満たさない場合は旋回走行を行っていると判断する。ヨーレイト差演算部401Bは、操舵角センサからの信号(操舵角θ)及びヨーレイトセンサ54からの信号(実ヨーレイトr)に基づき、ヨーレイト差Δrを演算する。具体的には、操舵角θ(及び車速VSP等)に基づきモデルヨーレイトr*を演算し、モデルヨーレイトr*と実ヨーレイトrとの差をヨーレイト差Δrとして算出する。ヨー角加速度演算部401Cは、ヨーレイトセンサ54からの信号(実ヨーレイトr)に基づき、車両に発生している実際のヨー角加速度r'を演算する。具体的には、複数の周期でサンプリングした実ヨーレイト(ヨー角速度)rの差分(時間変化率)をヨー角加速度r'として算出する。
制御実行判断部402は、車両挙動状態判断部402A及び制動力増減判断部402Bを有する。車両挙動状態判断部402Aは、ふらつき抑制制御を実行して修正ヨーモーメントを発生させるべき車両挙動状態であるか否か、言換えるとふらつき抑制制御の介入(開始)及び終了を、直進状態判断部401A、ヨーレイト差演算部401B及びヨー角加速度演算部401Cからの信号に基づき判断する。具体的には、直進状態であるか否か、及び、ヨーレイト差Δrやヨー角加速度r'が所定の閾値以上であるか否か等により、ふらつき抑制制御の介入及び終了を判断する。制動力増減判断部402Bは、車両が制動状態であるか否かに応じて、左右輪に制動力差を発生させるために所定車輪の制動力を増加させるか又は減少させるかを判断する。具体的には、ストロークセンサ500からの信号(ペダルストローク)又はブレーキスイッチからの信号に基づき、車両が制動状態であるか否かを判断する。非制動状態であると判断すると、所定車輪の制動力の増加を許可する。制動状態であると判断すると、所定車輪の制動力の増加だけでなく減少を許可する。
目標ヨーモーメント演算部403は、制御実行判断部402(制動力増減判断部402B)の判断結果に基づき、修正ヨーモーメントの目標値(目標ヨーモーメントM*)を演算する。例えばヨーレイト差Δrをゼロとすることが可能な、ヨーレイト差Δrの大きさ|Δr|に応じた(|Δr|が大きいほど絶対値が大きくなる)値の目標ヨーモーメントM*を算出する。なお、ヨーレイト差Δrに代え、又はΔrと共に、ヨー角加速度r'を目標ヨーモーメントM*の算出に用いてもよく、r'の大きさに応じた値のM*を演算してもよい。
ECU40は、目標ヨーモーメントM*を実現する左右輪の制動力差を演算する。このように演算される左右輪の制動力差は、ヨーレイト差Δrの大きさ|Δr|を小さくする向きのヨーモーメント(修正ヨーモーメント)を発生する。ECU40は、左右輪の上記制動力差を発生するために必要な所定車輪のホイルシリンダ圧増減量の指令を、液圧ユニット30へ出力する。ECU40は、非制動状態と判断したときは、左右後輪11L,11Rの一方(左右後輪11L,11Rのうち外乱による車両のヨーモーメントの方向にある後輪。言換えると、外乱による車両の旋回の外側後輪)に制動力を発生させるよう、当該後輪のホイルシリンダ圧指令値を出力する。制動状態と判断したときは、左右後輪11L,11Rの他方(左右後輪11L,11Rのうち外乱による車両のヨーモーメントと反対方向にある後輪。言換えると、外乱による車両の旋回の内側後輪)の制動力を減少させるよう、当該後輪のホイルシリンダ圧の減圧指令値を出力する。
図3は、ふらつき抑制制御の介入(開始)の手順を示すフローチャートである。この手順は所定の周期で繰り返し実行される。ステップS1では、状態推定判断部401(直進状態判断部401A)が、車両が直進状態であるか否かを判断する。制御実行判断部402(車両挙動状態判断部402A)は、上記判断に基づき、車両が直進状態であればステップS2へ移行し、直進状態でなければ(旋回状態であれば)今回の周期を終了する。ステップS2では、状態推定判断部401(ヨーレイト差演算部401B及びヨー角加速度演算部401C)が、ヨーレイト差Δr及びヨー角加速度r'を演算する。その後、ステップS3へ移行する。ステップS3では、制御実行判断部402(車両挙動状態判断部402A)が、条件1:「ヨーレイト差Δrの大きさ|Δr|が増加中である」、及び条件2:「ヨーレイト差Δrの大きさ|Δr|が所定の介入閾値A以上であり、かつヨー角加速度r'の大きさ|r'|が所定の介入閾値B以上である」が、共に満たされるか否かを判断する。条件1,2が共に満たされればステップS5へ移行し、条件1,2の少なくとも一方が満たされなければ(例えば、|Δr|の大きさが減少中であれば、又は、|r'|がBを下回れば)ステップS4へ移行する。ステップS4では、制御実行判断部402(車両挙動状態判断部402A)が、条件3:「ヨーレイト差Δrの大きさ|Δr|が所定の介入閾値C以上である」か否かを判断する。条件3が満たされればステップS5へ移行し、満たされなければ今回の周期を終了する。介入閾値Cは介入閾値Aより大きい。ステップS5では、制御実行判断部402(制動力増減判断部402B)が、車両が制動状態であるか否かを判断する。制動状態であればステップS6へ移行し、非制動状態であればステップS7へ移行する。ステップS6では、制御実行判断部402(制動力増減判断部402B)が、制動力の増加及び減少を許可する。その後、ステップS8へ移行する。ステップS7では、制御実行判断部402(制動力増減判断部402B)が、制動力の増加(のみ)を許可する。その後、ステップS8へ移行する。ステップS8では、目標ヨーモーメント演算部403が、目標ヨーモーメントM*を演算する。その後、今回の周期を終了する。
次に、ふらつき抑制制御の終了の手順を説明する。ECU40は、上記のように、増加中のヨーレイト差Δrの大きさ|Δr|が介入閾値A以上であり、かつヨー角加速度r'の大きさ|r'|が介入閾値B以上である(ステップS3で肯定判断する)場合に、左右輪の制動力差を発生するため指令を液圧ユニット30へ出力する(ふらつき抑制制御を開始する)。この状態で(ふらつき抑制制御を開始した後)、|r'|が終了閾値B'を下回るか否かを判断し、|r'|がB'を下回ると、上記指令の出力を止める(ふらつき抑制制御を終了する)。終了閾値B'は介入閾値Bより小さい。このようにステップS3→S5の流れを含む、ふらつき抑制制御の実行有無の判断を、以下、「r'判断」という。また、ECU40は、上記のように、ヨーレイト差Δrの大きさ|Δr|が増加しないか、又はヨー角加速度r'の大きさ|r'|が介入閾値Bを下回り(ステップS3で否定判断し)、かつ|Δr|が介入閾値C以上である(ステップS4で肯定判断する)場合に、上記指令を出力する(ふらつき抑制制御を開始する)。この状態で(ふらつき抑制制御を開始した後)、|Δr|が終了閾値C'を下回るか否かを判断し、|Δr|がC'を下回ると、上記指令の出力を止める(ふらつき抑制制御を終了する)。終了閾値C'は、介入閾値Cより小さく、介入閾値Aより大きい。このようにステップS3→S4→S5の流れを含む、ふらつき抑制制御の実行有無の判断を、以下、「Δr判断」という。
次に、作用効果を説明する。図4〜6は、ふらつき抑制制御を説明するための図である。図4は、ヨーレイト差Δr及びヨー角加速度r'の時間変化と共に、制動状態や各判断の時間変化を示す。図5,6は、直進状態において外乱によりふらつきが発生した車両を上方から見た模式図である。図5は非制動状態、図6は制動状態を示す。各図で、タイヤが発生する制動力を矢印で表す。図6で、各タイヤが発生する制動力の大きさを矢印の大きさで表す。
図4の例で、車両は直進状態であるものとする。車両は、時刻t101〜t200では非制動状態であり、時刻t200〜では制動状態である。時刻t101で、外乱により、ヨーレイト差Δrがゼロから正方向(例えば車両を上方から見たとき進行方向に対し時計回り)に増加し始める。Δrの変化に応じてヨー角加速度r'もゼロから変化する。時刻t102で、ヨー角加速度r'の大きさ|r'|が介入閾値B以上となる。このとき、ヨーレイト差Δrの大きさ|Δr|が増加中であり、介入閾値A以上である。以後、時刻t104まで、|r'|が終了閾値B'以上である。よって、時刻t102〜t104で、r'判断により、ふらつき制御を実行すると判断される。時刻t103で、ヨー角加速度r'の大きさ|r'|が介入閾値Bを下回る。このとき、ヨーレイト差Δrの大きさ|Δr|が介入閾値C以上である。以後、時刻t105まで、|Δr|が終了閾値C'以上である。よって、時刻t103〜t105で、Δr判断により、ふらつき制御を実行すると判断される。時刻t102〜t105のふらつき制御では、非制動状態であるため、制動力を増加させる(発生させる)。図5に示すように、左右後輪11L,11Rのうち外乱によるヨーモーメントの方向(時計回り方向)にある左後輪11L(外乱による旋回の外側後輪)に制動力を発生させる。これにより、外乱によるヨーモーメントと反対方向(外乱によるヨーモーメントを打ち消す方向である反時計回り)に修正ヨーモーメントが生じるため、ヨーレイト差Δrの大きさ|Δr|は小さくなる。すなわち、車両挙動の乱れ(ふらつき)が抑制される。
時刻t106で、外乱により、ヨーレイト差Δrがゼロから負方向(例えば車両を上方から見たとき進行方向に対し反時計回り)に増加し始める。Δrの変化に応じてヨー角加速度r'も変化する。時刻t107で、ヨーレイト差Δrの大きさ|Δr|が介入閾値A以上となる。このとき、ヨー角加速度r'の大きさ|r'|が介入閾値B以上である。以後、時刻t109まで、|r'|が終了閾値B'以上である。よって、時刻t107〜t109で、r'判断により、ふらつき制御を実行すると判断される。時刻t108で、ヨー角加速度r'の大きさ|r'|が介入閾値Bを下回る。このとき、ヨーレイト差Δrの大きさ|Δr|が介入閾値C以上である。以後、時刻t110まで、|Δr|が終了閾値C'以上である。よって、時刻t108〜t110で、Δr判断により、ふらつき制御を実行すると判断される。時刻t107〜t110のふらつき制御でも、非制動状態であるため、制動力を増加する(発生させる)。上の例に従えば、左右後輪11L,11Rのうち外乱によるヨーモーメントの方向(反時計回り方向)にある右後輪11R(外乱による旋回の外側後輪)に制動力を発生させる。これにより、外乱によるヨーモーメントと反対方向(外乱によるヨーモーメントを打ち消す方向である時計回り)に修正ヨーモーメントが生じる。時刻t111で、ヨーレイト差Δr及びヨー角加速度r'がゼロに収束する。
時刻t201〜t211も、それぞれ時刻t101〜t111と同様である。時刻t202〜t205, t207〜t210のふらつき制御では、制動状態であるため、(既に発生している)制動力を減少させる。例えば時刻t202〜t205で、図6に示すように、左右後輪11L,11Rのうち外乱によるヨーモーメントと反対方向にある(反時計回り方向)にある右後輪11R(外乱による旋回の内側後輪)の制動力を減少させる。これにより、外乱によるヨーモーメントと反対方向(外乱によるヨーモーメントを打ち消す方向である反時計回り)に修正ヨーモーメントが生じるため、ヨーレイト差Δrの大きさ|Δr|は小さくなる。すなわち、車両挙動の乱れ(ふらつき)が抑制される。
このように、ECU40は、ヨーレイト差Δr及びヨー角加速度r'に基づき、車両挙動の乱れ(外乱による車両のヨーモーメント)を検知する。ヨー角加速度r'を参照することで、より早い段階でのふらつきの検知が可能となり、ふらつきをより小さいものに抑制して、車両挙動の安定性を向上できる。
従来、自車両が走行車線から逸脱しそうになることを判断すると、逸脱を回避する方向のヨーモーメントを左右輪の制動力差により発生させる技術が知られている。この技術では、車両の横変位やヨーレイト等により逸脱を判断する。しかし、逸脱を回避する方向のヨーモーメントを発生させる際、既に車両の挙動がある程度発生していることから、ふらつきを十分に抑制することが困難である。また、車両挙動の修正のためには比較的大きな制動力や長い制御時間が必要となる。よって、運転者に違和感を与えるおそれがある。これに対し、本実施形態のECU40は、ヨー角加速度r'に基づきふらつきを検知する。よって、より早期にふらつきを検知し、ふらつきが大きくなる前に修正ヨーモーメントを発生させることができるため、ふらつきを最小限に抑制することが可能である。また、車両挙動の修正のために必要な制動力が小さくて済み、制御時間も短くて済む。よって、運転者に違和感を与えるおそれも少ない。
なお、ヨー角加速度r'ではなく単純にヨーレイト差Δrに基づきふらつきを検知する構成とし、Δrの介入閾値を小さく設定すれば、早い段階でのふらつきの検知が可能であるとも考えられる。しかし、この場合、実際にふらつきが大きくなるおそれが少ない走行状態でも不必要に制御が介入したり、微妙な舵角ズレが発生したときに高頻度に制御が介入・終了を繰り返したりするリスクがある。言換えると、このようなリスクを回避するために、車両に比較的大きなふらつきが発生した段階でこれを検知するようにすると、ふらつきを早期に検知できないおそれがある。これに対し、本実施形態のECU40は、ヨー角加速度r'に基づきふらつきを検知する。ヨー角加速度r'は実ヨーレイトrの変化速度である。よって、ある時点でr'の大きさ|r'|が大きければ、その時点より後にヨーレイト差Δrの大きさ|Δr|が増加することを予測できる。したがって、r'に基づきふらつきを検知することで、実際にふらつきが大きくなるおそれがある走行状態に限り、制御を介入させることができる。また、介入閾値を小さく設定する必要がないため、高頻度に制御が介入・終了を繰り返すことを抑制できる。言換えると、これらの不都合を回避しつつ、ふらつきを早期に検知できる。
ここで、ヨーレイト差Δrの大きさ|Δr|が減少中であっても、ふらつき抑制制御を実行すると判断してもよい。本実施形態では、|Δr|が増加中のとき(「条件1」)、ECU40がふらつき抑制制御を実行すると判断する。よって、ヨー角加速度r'の大きさ|r'|が大きければ、それより後に|Δr|が増加することを、より確実に予測できる。
具体的には、ヨー角加速度r'の大きさ|r'|が所定の介入閾値B以上であれば、その時点より後にヨーレイト差Δrの大きさ|Δr|が増加し、有意な(言い換えると抑制したほうがよい)大きさのふらつきが発生すると予測できるため、ECU40はふらつき抑制制御を実行すると判断する。なお、r'判断によるふらつき抑制制御の介入閾値Bと終了閾値B'とが同じでもよい。本実施形態では、BとB'が異なる(B'がBより小さい)。よって、|r'|がB付近に滞留する場合でも、判断がハンチングする(オン・オフを繰り返す)ことを抑制し、高頻度に制御が介入・終了を繰り返すリスクを抑制できる。B,B'は、予め設定された値に限らず、(路面状態等の車両外部の状況を含む)走行状態に応じて設定される値(他のパラメータに応じて変化する値)でもよい。また、上記ハンチングを抑制するため、ふらつき抑制制御の介入時には介入閾値以上になると即座に制御を実行する一方、終了時には終了閾値を下回ってから所定の遅れ時間が経過してから制御を終了してもよい。
なお、r'判断で、ヨー角加速度r'の大きさ|r'|の大小のみによりふらつき抑制制御の実行を判断してもよい。本実施形態では、|r'|が介入閾値B以上であることに加え、ヨーレイト差Δrの大きさ|Δr|が所定の介入閾値A以上であるとき(「条件2」)、ECU40がふらつき抑制制御を実行すると判断する。|Δr|がA以上であれば、実際に所定のふらつき(Δr)が発生していると判断できる。よって、|Δr|がA以上であるという条件を加重することで、制御の高頻度な介入を抑制できる。この条件と、|r'|がB以上であるという条件とが組み合わさることで、Aは、上記有意な大きさのふらつきを判断するために必要な値よりも小さな値(実際にΔrが生じていることを示す値)で済む。なお、Aは、Bと同様、予め設定された値に限らず、走行状態に応じて設定される値でもよい。
なお、r'判断のみによりふらつき抑制制御の実行を判断してもよい。本実施形態では、ECU40は、r'判断に加え、Δr判断によっても、ふらつき抑制制御の実行を判断する。Δr判断では、ヨーレイト差Δrの大きさ|Δr|のみに基づき実行を判断する。具体的には、ヨー角加速度r'の大きさ|r'|がBを下回っていても(又は|Δr|が減少中であっても)、|Δr|が所定の介入閾値C以上であれば(「条件3」)、既に有意な(言い換えると抑制したほうがよい)大きさのふらつきが発生していると判断できるため、ECU40はふらつき抑制制御を実行すると判断する。Cは、上記有意な大きさのふらつきを判断するために必要な値(Aより大きい値)である。このようにr'判断にΔr判断を組み合わせることで、より広範囲な状況でふらつき抑制制御が実行されるため、ふらつきをより効果的に抑制することができる。なお、Δr判断によるふらつき抑制制御の介入閾値Cと終了閾値C'とが同じでもよい。本実施形態では、CとC'が異なる(C'がCより小さい)。よって、|Δr|がC付近に滞留する場合でも、判断がハンチングすることを抑制し、高頻度に制御が介入・終了を繰り返すリスクを抑制できる。C,C'は、A,Bと同様、予め設定された値に限らず、走行状態に応じて設定される値でもよい。
ECU40は、非制動状態と判断したときは、左右後輪11L,11Rの一方(左右後輪11L,11Rのうち外乱による車両のヨーモーメントの方向にある後輪。言換えると、外乱による車両の旋回の外側後輪)に制動力を発生させる。これにより、修正ヨーモーメントを発生する左右輪の制動力差が生じるため、ヨーレイト差Δrの大きさ|Δr|を小さくし、ふらつきを抑制できる。なお、左右後輪11L,11Rの上記一方に代えて、又は左右後輪11L,11Rの上記一方と共に、左右前輪10L,10Rの一方(左右前輪10L,10Rのうち外乱による車両のヨーモーメントと反対方向にある前輪。言換えると、外乱による車両の旋回の外側前輪)に制動力を発生させてもよい。
ECU40は、制動状態と判断したときは、左右後輪11L,11Rの他方(左右後輪11L,11Rのうち外乱による車両のヨーモーメントと反対方向にある後輪。言換えると、外乱による車両の旋回の内側後輪)の制動力を減少させる。これにより、修正ヨーモーメントを発生する左右輪の制動力差が生じるため、|Δr|を小さくし、ふらつきを抑制できる。上記後輪11の制動力の減少は、全車輪10,11の合計制動力の減少を招くが、例えば運転者が更に制動力を必要と感じた場合は、ブレーキペダル201を踏み込むことで更なる制動力を発生できる。ECU43から要求された制動力に対しては、所望の減速度を達成するように制動力を増大させることで対応できる。よって、運転者に違和感を与えることはない。(上記後輪11の制動力の減少中に、運転者が更にブレーキペダル201を踏み込んだ場合には、全車輪の制動力(ホイルシリンダ圧)が増加する。よって、通常の運転者のブレーキ操作に伴う減速度の増加の関係を維持しつつ、ふらつきを抑制できる。)また、上記後輪11の制動力を減少することで左右輪の制動力差を生じさせる場合、液圧ユニット30のポンプを作動させることなく外乱によるヨーモーメントを抑制できる。よって、ポンプ作動頻度を下げ、液圧ユニット30の耐久性の低下を抑制できる。また、ポンプの作動音が生じないため、運転者に違和感を与えることもない。なお、左右後輪11L,11Rの上記他方の制動力を減少させる代わりに、又は減少させると共に、左右後輪11L,11Rの上記一方の制動力を増加させてもよい。また、後輪11の制御に代えて、又は後輪11の制御と共に、前輪10の制動力を後輪11と同様に制御してもよい。例えば、左右後輪11L,11Rの上記他方に代えて、又は左右後輪11L,11Rの上記他方と共に、左右前輪10L,10Rの他方(左右前輪10L,10Rのうち外乱による車両のヨーモーメントの方向にある前輪。言換えると、外乱による車両の旋回の内側前輪)の制動力を減少させてもよいし、左右前輪10L,10Rの上記一方の制動力を増加させてもよい。さらに、最初に左右輪(前輪10又は後輪11)の上記他方の制動力を減少させ、この制動力がゼロとなった場合、|Δr|が大きい等により(ふらつきを抑制するため発生すべき)左右輪の制動力差がまだ不足するとき、この不足する分だけ、左右輪の上記一方の制動力を増加させてもよい。例えば、左右後輪11L,11Rの上記他方の制動力を減少させ、上記不足分だけ、左右前輪10L,10Rの上記一方(制動力を減少させた後輪の対角輪)の制動力を増加させてもよい。これにより、外乱による大きなヨーモーメントが発生した場合であっても、ふらつきを抑制できる。
なお、ふらつき抑制制御の介入時には、予め設定された一定量の制動力を発生又は増加若しくは減少させ(一定量のホイルシリンダ圧の増加量又は減少量を指令し)、その後、ヨーレイト差Δrに応じた大きさの制動力(ホイルシリンダ圧)を発生等させてもよい。これにより、応答性を確保しつつ、ふらつきの収束性を高めることができる。また、車速VSPが所定車速以下(低車速)の場合はふらつき抑制制御を禁止してもよい。また、ふらつき抑制制御は、摩擦円の内側、すなわち(減速側で)μ−S特性が線形となる領域において実施することが好ましい。ここで、摩擦円とは、タイヤのスリップ率Sに対するグリップ力(路面摩擦係数μ)の関係において、グリップ力が最大となる限界値(以下、グリップ限界と記載する。)を円で表す特性図である。
また、外乱による車両の運動状態の変化(ふらつき)を迅速かつ精度よく特定することを目的として、車両の各車輪に歪みゲージを設置し、車両に作用する横力を歪みゲージにより直接的に検知することも考えられる。しかし、歪みゲージを設けることでコスト高になるおそれがある。また、路面摩擦係数μ(グリップ限界)を正確に検出できていなければ、横力の大きさが車両挙動にどの程度寄与するかを判断するのは困難である。よって、ふらつきを十分に抑制できるとは限らない。これに対し、本実施形態では、ヨー角加速度r'等の、ヨーレイトrに相関するパラメータに基づき、外乱によるふらつきを検知する。このように、車両挙動をより直接的に(路面摩擦係数μのいかんに関わらず)反映するパラメータを用いることで、ふらつきをより効果的に抑制できる。また、車両に通常備えられるヨーレイトセンサ54を用いることで、コストの増大を抑制することができる。
なお、車両が直進状態であるとき、操舵角θは実質的にゼロであり、モデルヨーレイトr*も実質的にゼロである。よって、モデルヨーレイトr*と実ヨーレイトrとの差であるヨーレイト差Δrは、実質的に実ヨーレイトrと等しい。よって、r'判断やΔr判断において、|Δr|に代えて、実ヨーレイトrの大きさ|r|を用いてもよい。例えば、ふらつき抑制制御の介入時には、(図3のステップS3,S4で)|Δr|に代えて、|r|が所定の介入閾値A,C以上であるかを判断してもよい。(Δr判断による)制御の終了時も同様である。この場合、ECU40は、例えば実ヨーレイトrをゼロとすることが可能な、|r|に応じた(|r|が大きいほど絶対値が大きくなる)値の目標ヨーモーメントM*を算出し、|r|を小さくする向きに左右輪の制動力差を発生させる指令を出力してもよい。なお、操舵角θが実質的にゼロである状態とは、ステアリングホイールが中立位置にある状態のほか、この中立位置から数度の範囲内でステアリングホイールが操作されている状態を含む。これらの状態では、車両が直進走行しているとみなせるからである。本実施形態では、r'判断やΔr判断においてヨーレイト差Δrを用いることで、運転者によるステアリングホイールの操作(操舵操作)に相関した(操舵操作を考慮した)車両のふらつきを検知できる。
以上、車両が直進状態のときを例にとって作用効果を説明してきたが、ふらつき抑制制御の実行場面は、直進状態に限らない。(運転者の操舵操作による)車両の旋回状態であっても上記作用効果を得ることが可能である。すなわち、ふらつき抑制制御を、直進走行時に実行することで直進安定性を向上でき、旋回走行時に実行することで旋回安定性を向上できる。例えば、図3のステップS1を省略することで、旋回状態でもふらつき抑制制御を実行するようにしてもよい。この場合、r'判断において、ヨー角加速度r'の大きさ|r'|に代えて、ヨーレイト差Δrの変化(時間変化ないし変化率)の大きさを用いてもよい。例えば、ふらつき抑制制御の介入時には、(図3のステップS2で)|r'|に代えてΔrの変化の大きさを算出し、(ステップS3で)Δrの変化の大きさが所定の介入閾値B以上であるか否かを判断してもよい。(r'判断による)制御の終了時も同様である。このようにr'判断においてΔrの変化の大きさを用いることで、運転者によるステアリングホイールの操作(操舵操作)に相関した(操舵操作を考慮した)車両のふらつきを検知できる。本実施形態では、r'判断において|r'|を用いることで、旋回状態における車両のふらつきを簡便に検知できる。すなわち、旋回走行中に運転者が違和感を感じるのは、特に、操舵角θの変化が少ないときの車両のふらつきである。θの変化が少ないとき、モデルヨーレイトr*の変化は実質的にゼロであり、(モデルヨーレイトr*と実ヨーレイトrとの差である)ヨーレイト差Δrの変化は、実質的に実ヨーレイトrの変化r'と等しい。よって、ヨーレイト差Δrの変化の大きさでなく、|r'|を用いても、問題となりうるふらつきを十分に抑制することができる。
以上説明したように、本実施形態のブレーキ制御装置(ECU)40は以下に列挙する効果を奏する。
(1) 車両に発生している実ヨーレイトrと、操舵角θに基づき演算されたモデルヨーレイトr*と、の差であるヨーレイト差Δrを演算し、
実ヨーレイトrに基づきヨー角加速度r'を演算し、
ヨーレイト差Δrの大きさ|Δr|が所定の介入閾値A(第1介入閾値)以上であり、かつヨー角加速度r'の大きさ|r'|が所定の介入閾値B(第2介入閾値)以上である場合、ヨーレイト差Δrの大きさ|Δr|を小さくする向きに車両の左右輪に制動力差を発生させる指令を液圧ユニット30(制動アクチュエータ)へ出力する。
言換えると、
(6) 車両に発生している実ヨーレイトrと、操舵角θに基づき演算したモデルヨーレイトr*と、の差であるヨーレイト差Δrを演算し、
実ヨーレイトrに基づきヨー角加速度r'を演算し、
ヨーレイト差Δrの大きさ|Δr|が所定の介入閾値A(第1介入閾値)以上であり、かつヨー角加速度r'の大きさ|r'|が所定の介入閾値B(第2介入閾値)以上である場合、ヨーレイト差Δrの大きさ|Δr|を小さくするように車両の左右輪に制動力差を発生させる。
よって、車両挙動の乱れを早期に検知し、車両挙動の安定性を向上することができる。
(2) ヨー角加速度r'の大きさ|r'|が介入閾値B(第2介入閾値)を下回り、かつ、ヨーレイト差Δrの大きさ|Δr|が、介入閾値Aより大きい所定の介入閾値C(第3介入閾値)以上である場合、上記指令を液圧ユニット30(制動アクチュエータ)へ出力する。
例えば、|r'|が小さくても|Δr|が大きい場合は、車両挙動の乱れが大きいため、車両に修正ヨーモーメントを発生させる必要がある。よって、上記条件成立の場合も左右輪に制動力差をつけることで車両挙動の乱れを抑制することができる。
(3) ヨー角加速度r'の大きさ|r'|が介入閾値B(第2介入閾値)を下回り、かつヨーレイト差Δrの大きさ|Δr|が介入閾値C(第3介入閾値)以上である場合に、上記指令を出力した状態で、ヨーレイト差Δrの大きさ|Δr|が、介入閾値Cより小さく介入閾値Aより大きい所定の終了閾値C'(第1終了閾値)を下回ると、上記指令の出力を止める。
よって、Δr判断のハンチングを抑制することができる。
(4) ヨーレイト差Δrの大きさ|Δr|が介入閾値A(第1介入閾値)以上であり、かつヨー角加速度r'の大きさ|r'|が介入閾値B(第2介入閾値)以上である場合に、上記指令を出力した状態で、ヨー角加速度r'の大きさ|r'|が、介入閾値Bより小さい終了閾値B'(第2終了閾値)を下回ると、上記指令の出力を止める。
よって、r'判断のハンチングを抑制することができる。
(5) 車両に発生している実ヨーレイトrを検出し、
実ヨーレイトrに基づきヨー角加速度r'を演算し、
車両が直進状態であると判断した場合、実ヨーレイトrの大きさ|r|が所定の介入閾値A(第1介入閾値)以上であり、かつヨー角加速度r'の大きさ|r'|が所定の介入閾値B(第2介入閾値)以上であるとき、実ヨーレイトrの大きさ|r|を小さくする向きに車両の左右輪に制動力差を発生させる指令を液圧ユニット30(制動アクチュエータ)へ出力する。
言換えると、
(7) 車両に発生している実際のヨーレイトr及びヨー角加速度r'を検出し、
車両の直進時、実ヨーレイトrの大きさ|r|が所定の介入閾値A(第1介入閾値)以上であり、かつヨー角加速度r'の大きさ|r'|が所定の介入閾値B(第2介入閾値)以上である場合、実ヨーレイトrの大きさ|r|を小さくするように車両の左右輪に制動力差を発生させる。
よって、車両直進時に、車両挙動の乱れを早期に検知し、車両挙動の安定性を向上することができる。
〔第2実施形態〕
本実施形態のブレーキシステム1は、図7に示すように、前輪10の側のブレーキ装置20(前輪ブレーキ装置)及び後輪11の側のブレーキ装置21(後輪ブレーキ装置)を有する。前輪ブレーキ装置20は、第1実施形態のブレーキシステム1と同様の構成であり、左右前輪10L,10Rのホイルシリンダ206に接続され、両前輪10のホイルシリンダ圧を互いに独立に制御可能である。前輪ブレーキ装置20はフロントECU40を有する。
後輪ブレーキ装置21は、電動ブレーキ装置210、リヤECU41、及びパーキングブレーキスイッチ56を有する。電動ブレーキ装置210は、左右後輪11L,11Rにそれぞれ配置され、両後輪11の制動力を互いに独立に制御可能である。電動ブレーキ装置210は、電動ブレーキ機構31及びサブECU42を有する。電動ブレーキ機構31は、電動キャリパであり、モータ(電動機)311、ピストン(制動部材)、ソレノイド315、ラッチ機構及び複数のセンサ51を有する。モータ311は、減速機及び回転直動変換機構を介してピストンを推進させる。ピストンはブレーキパッドをブレーキロータに押し付け、後輪11に摩擦制動力を付与可能である。ピストンを推進させる力を、以下、ピストン推力という。ラッチ機構は、モータ311が例えば非通電状態であっても、モータ311のロータに係合することで、ピストン推力を保持可能である。ソレノイド315は、ラッチ機構を駆動可能であり、ラッチ機構と共に、パーキングブレーキ機構として機能する。複数のセンサ51は、例えば、ピストンの位置を検出する位置センサ511、モータ311の電流を検出する電流センサ512、及び、ピストン推力を検出する推力センサ513を有する。各後輪11L,11Rの電動ブレーキ機構31は、互いに独立に、モータ311を作動させることでピストン推力を発生可能であると共に、ラッチ機構を作動させることでピストン推力を保持可能である。サブECU42は、各電動ブレーキ機構31に設置される。リヤECU41とサブECU42は、専用の通信線(信号線)612を介して、互いに通信可能に接続される。
フロントECU40には、液圧センサ50、加速度センサ53及びヨーレイトセンサ54が接続される。リヤECU41には、ストロークセンサ500、車輪速センサ52及びパーキングブレーキスイッチ56が接続される。フロントECU40とリヤECU41は、専用の通信線(信号線)611を介して、互いに通信可能に接続される。また、フロントECU40とリヤECU41は、CAN610を介してECU43と通信可能に接続され、舵角センサの信号(操舵角情報)や自動ブレーキ指令をECU43から取得可能である。フロントECU40及びリヤECU41は、上記センサ等から取得した信号に基づき、それぞれ液圧ユニット30及び電動ブレーキ機構31を制御可能であり、全体としてブレーキ制御装置として機能する。フロントECU40は、前輪10の制動力を制御するための液圧ブレーキ制御装置として機能する。リヤECU41及びサブECU42は、後輪11の制動力を制御するための電動ブレーキ制御装置として機能する。電動ブレーキ機構31はECU41,42に対するアクチュエータ(制動アクチュエータ)として機能する。すなわち、サブECU42は、リヤECU41やセンサ51等からの信号に基づき、(当該サブECU42が設置された電動ブレーキ機構31の)モータ311及びソレノイド315を制御する。これにより、(当該電動ブレーキ機構31の)ピストン推力及びラッチ機構の作動を制御可能である。例えば、サブECU42は、リヤECU41から入力される後輪11の制動力指令に応じて、モータ311に電力を供給する。これにより、後輪11の実制動力を制動力指令に近づけるようなピストン推力が発生する。このように、ECU40〜42は、それぞれ前輪10と後輪11の制動力制御を実行することで、各種のブレーキ制御を実行可能である。
次に作用効果を説明する。本実施形態のブレーキシステム1では、前輪ブレーキ装置20(液圧ユニット30)よりも後輪ブレーキ装置21(電動ブレーキ機構31)のほうが、制御の応答性や精度が高く、静粛性(音振性能)も高い。よって、ふらつき抑制制御において、後輪11の制動力を優先的に制御するようにすれば、ふらつきをより迅速・正確に抑制可能であり、また制御介入時に運転者に違和感を与えるおそれが少ない。摩擦円内の常用域で制御介入しても運転者に与える違和感を極小とすることができる。その他、第1実施形態と同様の作用効果を得ることができる。なお、前輪10の側に電動ブレーキ機構31を設けてもよく、この場合も、ふらつき抑制制御において、前輪10の制動力を優先的に制御するようにすれば、上記作用効果が得られる。
〔他の実施形態〕
以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、ECU40〜42の具体的な構成は実施形態に限らない。
10 前輪
11 後輪
30 液圧ユニット(制動アクチュエータ)
40 ブレーキ制御装置

Claims (7)

  1. 車両に発生している実ヨーレイトと、操舵角に基づき演算されたモデルヨーレイトと、の差であるヨーレイト差を演算し、
    前記実ヨーレイトに基づきヨー角加速度を演算し、
    前記ヨーレイト差の大きさが所定の第1介入閾値以上であり、かつ前記ヨー角加速度の大きさが所定の第2介入閾値以上である場合、前記ヨーレイト差の大きさを小さくする向きに前記車両の左右輪に制動力差を発生させる指令を制動アクチュエータへ出力する
    ブレーキ制御装置。
  2. 請求項1に記載のブレーキ制御装置において、
    前記ヨー角加速度の大きさが前記第2介入閾値を下回り、かつ、前記ヨーレイト差の大きさが、前記第1介入閾値より大きい所定の第3介入閾値以上である場合、前記指令を前記制動アクチュエータへ出力するブレーキ制御装置。
  3. 請求項2に記載のブレーキ制御装置において、
    前記ヨー角加速度の大きさが前記第2介入閾値を下回り、かつ前記ヨーレイト差の大きさが前記第3介入閾値以上である場合に、前記指令を出力した状態で、前記ヨーレイト差の大きさが、前記第3介入閾値より小さく前記第1介入閾値より大きい所定の第1終了閾値を下回ると、前記指令の出力を止めるブレーキ制御装置。
  4. 請求項1ないし3のいずれかに記載のブレーキ制御装置において、
    前記ヨーレイト差の大きさが前記第1介入閾値以上であり、かつ前記ヨー角加速度の大きさが前記第2介入閾値以上である場合に、前記指令を出力した状態で、前記ヨー角加速度の大きさが、前記第2介入閾値より小さい第2終了閾値を下回ると、前記指令の出力を止めるブレーキ制御装置。
  5. 車両に発生している実ヨーレイトを検出し、
    前記実ヨーレイトに基づきヨー角加速度を演算し、
    前記車両が直進状態であると判断した場合、前記実ヨーレイトの大きさが所定の第1介入閾値以上であり、かつ前記ヨー角加速度の大きさが所定の第2介入閾値以上であるとき、前記実ヨーレイトの大きさを小さくする向きに前記車両の左右輪に制動力差を発生させる指令を制動アクチュエータへ出力する
    ブレーキ制御装置。
  6. 制御装置が、
    車両に発生している実ヨーレイトと、操舵角に基づき演算したモデルヨーレイトと、の差であるヨーレイト差を演算し、
    前記実ヨーレイトに基づきヨー角加速度を演算し、
    前記ヨーレイト差の大きさが所定の第1介入閾値以上であり、かつ前記ヨー角加速度の大きさが所定の第2介入閾値以上である場合、前記ヨーレイト差の大きさを小さくするように前記車両の左右輪に制動力差を発生させる
    ブレーキ制御方法。
  7. 制御装置が、
    車両に発生している実際のヨーレイト及びヨー角加速度を検出し、
    前記車両の直進時、前記実ヨーレイトの大きさが所定の第1介入閾値以上であり、かつ前記ヨー角加速度の大きさが所定の第2介入閾値以上である場合、前記実ヨーレイトの大きさを小さくするように前記車両の左右輪に制動力差を発生させる
    ブレーキ制御方法。
JP2018072198A 2018-04-04 2018-04-04 ブレーキ制御装置及びブレーキ制御方法 Active JP6966972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072198A JP6966972B2 (ja) 2018-04-04 2018-04-04 ブレーキ制御装置及びブレーキ制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072198A JP6966972B2 (ja) 2018-04-04 2018-04-04 ブレーキ制御装置及びブレーキ制御方法

Publications (2)

Publication Number Publication Date
JP2019182050A true JP2019182050A (ja) 2019-10-24
JP6966972B2 JP6966972B2 (ja) 2021-11-17

Family

ID=68338340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072198A Active JP6966972B2 (ja) 2018-04-04 2018-04-04 ブレーキ制御装置及びブレーキ制御方法

Country Status (1)

Country Link
JP (1) JP6966972B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107202A (ja) * 2019-12-27 2021-07-29 株式会社クボタ 作業車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107202A (ja) * 2019-12-27 2021-07-29 株式会社クボタ 作業車両
JP7258743B2 (ja) 2019-12-27 2023-04-17 株式会社クボタ 作業車両

Also Published As

Publication number Publication date
JP6966972B2 (ja) 2021-11-17

Similar Documents

Publication Publication Date Title
JP4882302B2 (ja) 駐車支援制御装置および駐車支援制御システム
JP3189610B2 (ja) 車両挙動制御装置
JP4985373B2 (ja) 車両の運動制御装置
US8924116B2 (en) Motion control apparatus for vehicle
JP2005343399A (ja) 車両用旋回走行制御装置
JP2017109664A (ja) 制動力制御装置
JP2600876B2 (ja) 車両の旋回制御装置
JP4415915B2 (ja) 車両の制御装置
US8249790B2 (en) Vehicle behavior control device
JP4604926B2 (ja) 車両のトラクション制御装置、及び車両のトラクション制御方法
JP6966972B2 (ja) ブレーキ制御装置及びブレーキ制御方法
JP6318795B2 (ja) 車両用旋回走行制御装置、車両用旋回走行制御方法
JP4821554B2 (ja) 車両の制動制御装置、及び車両の制動制御方法
WO2021145391A1 (ja) 制動制御装置
JP7069626B2 (ja) 牽引車両の運動制御装置
JP5446685B2 (ja) 車両の運動制御装置
JP2008044416A (ja) 車両の制動制御装置、及び車両の制動制御方法
JP6453103B2 (ja) 車両運動制御装置
JP7099028B2 (ja) 車両の走行路判定装置
JP5200657B2 (ja) 車両挙動制御装置
JP5135059B2 (ja) 車両の運動制御装置、及び車両の運動制御方法
JP3839920B2 (ja) 車両姿勢制御装置
JPH04193632A (ja) 車両制御装置
KR101316584B1 (ko) 차량 브레이크 시스템 및 그 제어 방법
JP5983303B2 (ja) 車両運動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6966972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150