JP2013143844A - スイッチング電源 - Google Patents

スイッチング電源 Download PDF

Info

Publication number
JP2013143844A
JP2013143844A JP2012003077A JP2012003077A JP2013143844A JP 2013143844 A JP2013143844 A JP 2013143844A JP 2012003077 A JP2012003077 A JP 2012003077A JP 2012003077 A JP2012003077 A JP 2012003077A JP 2013143844 A JP2013143844 A JP 2013143844A
Authority
JP
Japan
Prior art keywords
voltage
output
circuit
power supply
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012003077A
Other languages
English (en)
Other versions
JP5862312B2 (ja
Inventor
Takayoshi Nishiyama
隆芳 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012003077A priority Critical patent/JP5862312B2/ja
Publication of JP2013143844A publication Critical patent/JP2013143844A/ja
Application granted granted Critical
Publication of JP5862312B2 publication Critical patent/JP5862312B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧を簡単に生成してスイッチング部を制御する制御部に出力することができる技術を提供する。
【解決手段】主制御回路4の駆動用電源として設けられた降圧型スイッチングレギュレータ10の降圧用スイッチング素子Q1により出力されるパルス電圧Sが補正電圧出力部100に入力され、入力されたパルス電圧Sの1周期に占める降圧用スイッチング素子Q1のオン期間に応じた値の補正電圧Vc、すなわち、前記オン期間が短いほど値が小さく、前記オン期間が長いほど値が大きい補正電圧Vcを補正電圧出力部100において生成することにより、入力電圧Viが上昇するほど値が小さく、入力電圧Viが低下するほど値が大きい補正電圧Vcを補正電圧出力部100により簡単に生成してスイッチング素子Q10を制御する主制御回路4に出力することができる。
【選択図】図1

Description

本発明は、トランスの1次側に設けられたスイッチング素子の断続がフィードバック制御されることにより安定した直流電圧が負荷に供給されるスイッチング電源に関する。
図9の従来のスイッチング電源の一例に示すように、入力端子PI(+)、(−)間の直流入力電圧を一定周期によりサンプリングする電圧サンプリング回路504が設けられて、電圧サンプリング回路504によりサンプリングされた入力電圧の変動に基づいてコンバータ501のスイッチング用のパルス幅の制御が行われるスイッチング電源500が知られている(例えば、特許文献1参照)。具体的には、スイッチング電源500では、入力端子PI(+)、(−)間に入力された直流の入力電圧が、コンバータ501において、一旦スイッチングにより交流へ変換され変圧器により所定電圧に変圧された後、整流、平滑されて直流へ変換されることにより、所望の出力電圧が出力端子PO(+)、(−)間から出力される。
また、電圧検知回路502により出力電圧が検知されており、検知された出力電圧に基づいて制御回路503がコンバータ501のスイッチング用のパルス幅を制御することにより、出力電圧の安定化が図られている。このとき、スイッチング電源500では、電圧サンプリング回路504により一定周期でサンプリングされた入力電圧に基づいて、入力電圧の変化量が電圧変動検知回路505により検知されて、検知された入力電圧の変化量が制御回路503に出力される。
また、コンバータ501と出力端子PO(−)との間に出力電流を所定周期によりサンプリングする電流サンプリング回路506が挿入されている。そして、電流サンプリング回路506により所定周期でサンプリングされた出力電流に基づいて、出力電流の変化量が電流変動検知回路507により検知されて、検知された出力電流の変化量が制御回路503に出力される。そして、制御回路503により、電圧検知回路502の検出出力に応じた制御が行われると共に、電圧変動検知回路505および電流変動検知回路507の出力に基づいて出力電圧の変化が予測され、予測された出力電圧の変化を抑制するようにコンバータ501のスイッチング用のパルス幅が制御されることで、入力電圧および出力電流が変化した場合の出力電圧の変動が抑制されている。
特開平1−110057号公報(第1頁右下欄〜第2頁右下欄、第1図など)
ところで、スイッチング電源500では、入力電圧の変動が電圧変動検知回路505により検知され、出力電流の変動が電流変動検知回路507により検知されて、検知された入力電圧の変化量および出力電流の変化量に基づき出力電圧の変化が予測されることによりコンバータ501の制御が制御回路503により実行されるが、入力電圧の変動に基づいてコンバータ501を制御する際に、入力電圧の大きさに応じた補正電圧を利用することが提案されている。具体的には、入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧を制御回路503において利用することにより、入力電圧が変動することに伴う影響を低減する試みが為されている。
このように、入力電圧が大きいほど値が小さく、入力電圧が小さいほど値が大きい補正電圧を、反転増幅回路を用いて生成することが考えられるが、反転増幅回路を用いるのにオペアンプ等が必要になるため、回路構成が複雑になると共に製造コストの増大を招くという問題があった。
本発明は、上記課題に鑑みてなされたものであり、入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧を簡単に生成してスイッチング部を制御する制御部に出力することができる技術を提供することを目的とする。
上記した目的を達成するために、本発明のスイッチング電源は、直流の入力電圧を断続してトランスの1次巻線に給電するスイッチング部と、前記トランスの2次巻線の出力を整流、平滑する整流平滑部と、前記整流平滑部の出力電圧が予め設定された設定値となるように前記スイッチング部の断続をフィードバック制御する制御部とを備えるスイッチング電源において、スイッチング動作により前記入力電圧を繰り返し断続して所定周期のパルス電圧を出力する降圧用スイッチング素子と、前記降圧用スイッチング素子に直列に接続されたチョークコイルと、前記降圧用スイッチング素子と前記チョークコイルとの接続点にカソードが接続された転流用ダイオードとを有し、出力電圧が予め定められた目標値となるように前記降圧用スイッチング素子の断続をフィードバック制御する降圧型スイッチングレギュレータと、前記パルス電圧が入力され、前記パルス電圧の1周期に占める前記降圧用スイッチング素子にオン期間に応じた値の補正電圧を前記制御部に出力する補正電圧出力部とを備えることを特徴としている(請求項1)。
請求項1の発明によれば、補助的な電源としての降圧型スイッチングレギュレータの降圧用スイッチング素子により出力されるパルス電圧が補正電圧出力部に入力され、入力されたパルス電圧の1周期に占める降圧用スイッチング素子のオン期間に応じた値の補正電圧、すなわち、前記オン期間が短いほど値が小さく、前記オン期間が長いほど値が大きい補正電圧を補正電圧出力部において生成することにより、入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧を補正電圧出力部により簡単に生成してスイッチング部を制御する制御部に出力することができる。
また、前記降圧型スイッチングレギュレータの出力は、前記制御部の電源端子に接続されているとよい(請求項2)。
請求項2の発明によれば、降圧型スイッチングレギュレータの出力に、制御部の電源端子が接続されることにより、補助的な電源として設けられた降圧型スイッチングレギュレータにより制御部に電源が供給される実用的な構成のスイッチング電源を提供することができる。
また、前記補正電圧出力部は、定電圧源から所定の定電圧が入力され、前記パルス電圧に基づいて前記定電圧を断続して出力する電圧出力回路と、前記電圧出力回路の出力電圧を平均化して前記補正電圧を生成する平均化回路とを備えるとよい(請求項3)。
請求項3の発明によれば、電圧出力回路には、定電圧源から出力される所定の定電圧が入力されており、入力された前記パルス電圧に基づいて、定電圧が電圧出力回路により断続して出力される。そして、入力された定電圧が前記パルス電圧と同じデューティ比で断続された電圧出力回路の出力電圧が、平均化回路により平均化されることにより、入力電圧の上昇に伴い前記パルス電圧の前記オン期間が短くなるほど小さく、入力電圧の下降に伴い前記パルス電圧の前記オン期間が長くなるほど大きい補正電圧をパルス電圧に基づいて簡単に生成することができる。
また、前記定電圧源は、前記降圧型スイッチングレギュレータの出力であるとよい(請求項4)。
請求項4の発明によれば、定電圧源を形成するのに新たに部品を搭載することなく、部品点数の削減を図ることができ、実用的な構成のスイッチング電源を提供することができる。
また、前記電圧出力回路は、前記降圧型スイッチングレギュレータの出力と前記平均化回路との間に接続され、前記パルス電圧によりオン、オフが制御される電圧出力用スイッチング素子を備えているとよい(請求項5)。
請求項5の発明によれば、電圧出力回路は、降圧型スイッチングレギュレータの出力と平均化回路との間に接続された電圧出力用スイッチング素子のオン、オフが、入力された前記パルス電圧により制御されことにより、降圧用スイッチング素子のスイッチング動作に応じて定電圧を簡単に断続して平均化回路に出力することができる。
また、前記制御部は、前記トランスの一次側電流を電圧変換して検出する電流検出回路と、前記電流検出回路により検出された前記一次側電流の大きさに前記補正電圧を加算した値に基づいて過電流を検出する過電流検出回路とを備えているとよい(請求項6)。
請求項6の発明によれば、一次側電流を利用してスイッチング電源の負荷電流の過電流を検出する場合に、電流検出回路により検出されたトランスの一次側電流の大きさに、入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧を加算して電流検出回路により検出された値を補正することにより、入力電圧の上昇に伴い一次側電流のピーク値が高い場合には値が小さい補正電圧が加算され、入力電圧の下降に伴い一次側電流のピーク値が低い場合には値が大きい補正電圧が加算されるため、入力電圧の変動に伴う一次側電流のピーク値のばらつきが抑制された補正値を導出することができる。したがって、一次側電流のピーク値のばらつきが抑制された補正値に基づいて過電流検出回路により過電流を検出することにより、入力電圧の変動に関わらず過電流を適切に検出することができる。
また、前記制御部は、前記トランスの一次側電流を電圧変換して検出する電流検出回路と、前記電流検出回路により検出された前記一次側電流に、前記補正電圧の大きさに応じた傾きのスロープ補償を行うスロープ補償回路とを備えているとよい(請求項7)。
請求項7の発明によれば、電流検出回路により検出されたトランスの一次側電流に基づいて制御部により電流モード制御が実行されるときに、前記一次側電流は、入力電圧の上昇に伴い傾きが大きくなり、入力電圧の低下に伴い傾きが小さくなる。したがって、電流検出回路により検出された前記一次側電流に、入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧の大きさに応じた傾きのスロープ補償をスロープ補償回路により行うことで、入力電圧の上昇に伴い傾きが大きい前記一次側電流には傾きが小さいスロープ補償が行われ、入力電圧の低下に伴い傾きが小さい前記一次側電流には傾きが大きいスロープ補償が行われるので、入力電圧の変動に伴うトランスの一次側電流の傾きの変動に応じて適切な傾きのスロープ補償が行われて、制御部による電流制御モードにおけるスイッチ部のフィードバック制御を安定化することができる。
また、前記制御部は、制御端子に接続され、前記補正電圧により充電されるコンデンサの充電電圧の大きさに応じて起動時の前記スイッチ部のデューティ比を設定する設定回路を備えているとよい(請求項8)。
請求項8の発明によれば、制御部の制御端子に接続され、入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧により充電されるコンデンサの充電電圧の大きさに応じて起動時におけるスイッチ部のデューティ比が設定回路により設定される。そのため、入力電圧が高い場合に、値が小さい補正電圧により充電されるコンデンサの充電電圧の大きさは、入力電圧が低い場合に、値が大きい補正電圧により充電されるコンデンサの充電電圧の大きさと比較すると小さいため、入力電圧が高い場合に設定回路により設定されるスイッチ部のデューティ比は、入力電圧が低い場合と比べると小さくなり、入力電圧が低い場合に設定回路により設定されるスイッチ部のデューティ比は、入力電圧が高い場合と比べると大きくなる。
また、コンデンサの充電速度は、入力電圧が高い場合には相対的に補正電圧が小さいため、入力電圧が低い場合と比べると遅くなり、入力電圧が低い場合には相対的に補正電圧が高いため、入力電圧が高い場合と比べると速くなる。そこで、例えば、スイッチング電源が起動される際に、前記補正電圧により充電されて経時的に増大するコンデンサの充電電圧の大きさに応じて、スイッチ部のデューティ比が段階的に増大するように設定回路により設定されることで、入力電圧が高い場合に、スイッチング電源が安定動作するまでのスイッチ部のデューティ比の増大率を入力電圧が低い場合よりも小さく、入力電圧が低い場合に、スイッチング電源が安定動作するまでのスイッチ部のデューティ比の増大率を入力電圧が高い場合よりも大きくすることができる。
したがって、入力電圧の高低に関わらずスイッチ部のデューティ比の増大率が同一であれば、入力電圧が高いほど整流平滑部の出力電圧が予め設定された設定値となるまでの時間が早く、入力電圧が低いほど整流平滑部の出力電圧が予め設定された設定値となるまでの時間が遅いが、上記したように、デューティ比の増大率を設定することにより、入力電圧の高低に関わらず、スイッチング電圧が起動されて安定動作するまでの期間を安定化することができる。
本発明によれば、入力電圧が上昇するほど値が小さく、入力電圧が低下するほど値が大きい補正電圧を補正電圧出力部により簡単に生成できる。
本発明のスイッチング電源の第1実施形態の回路構成を示す図である。 図1のスイッチング電源が備える降圧型スイッチングレギュレータの降圧用スイッチング素子がスイッチング動作することにより出力されるパルス電圧のデューティ比と補正電圧との関係を示す図であり、(a)は入力電圧が低い場合の一例を示し、(b)は入力電圧が高い場合の一例を示す。 本発明のスイッチング電源の第2実施形態の回路構成を示す図である。 図3のスイッチング電源の動作を説明するための図である。 本発明のスイッチング電源の第3実施形態の回路構成を示す図である。 図5のスイッチング電源におけるスロープ補償を説明するための図であって、(a)は入力電圧が低い場合のスロープ補償の一例を示し、(b)は入力電圧が高い場合のスロープ補償の一例を示す図である。 本発明のスイッチング電源の第4実施形態の回路構成を示す図である。 図7のスイッチング電源におけるソフトスタートを説明するための図であって、(a)は入力電圧の高低によるSS端子電圧の時間変化を示す図であり、(b)は入力電圧の高低によるデューティ比の時間変化を示す図であり、(c)は補正電圧を用いた補正による効果を説明するための図である。 従来のスイッチング電源の一例を示す図である。
<第1実施形態>
本発明のスイッチング電源の第1実施形態について、図1および図2を参照して説明する。図1は本発明のスイッチング電源の第1実施形態の回路構成を示す図である。図2は図1のスイッチング電源が備える降圧型スイッチングレギュレータの降圧用スイッチング素子がスイッチング動作することにより出力されるパルス電圧のデューティ比と補正電圧との関係を示す図であり、(a)は入力電圧が低い場合の一例を示し、(b)は入力電圧が高い場合の一例を示す。なお、図1および後の説明で使用する図3,5,7では、説明を簡易なものとするために、本発明にかかる基本的な構成のみ図示されており、その他の構成については図示省略されている。
図1に示すように、フォワード型の絶縁型DC−DCコンバータにより構成されるスイッチング電源1は、1次巻線2aおよび2次巻線2bを有するトランス2と、トランス2の1次巻線2aに直列に接続され、入力電源(図示省略)から入力端子PI(+),PI(−)間に入力される直流の入力電圧Viを断続してトランス2の1次巻線に給電するNチャネルMOSFETにより形成されるスイッチング素子Q10(本発明の「スイッチ部」に相当)と、1次、2次巻線2a,2bの巻数比に応じて誘起されたトランス2の2次巻線2bの出力を整流、平滑して直流出力を形成して出力端子PO(+),PO(−)に出力電圧Voを出力する整流平滑部3と、整流平滑部3の出力電圧Voが予め設定された設定値となるようにスイッチング素子Q10の断続(オン、オフ)を、フィードバックされた出力電圧Voの値に基づいてフィードバック制御するPWM駆動回路が設けられた主制御回路4(本発明の「制御部」に相当)とを備えている。
入力電源から入力端子PI(+),PI(−)間に入力された入力電圧Viは、トランス2の1次側の第1巻線2aに直列に接続されたスイッチング素子Q10が主制御回路4のPWM駆動回路により生成される高周波パルス信号により高周波スイッチングされることにより断続して第1巻線2aに給電され、トランス2の2次側の第2巻線2bに第1、第2巻線2a,2bの巻数比に応じた電圧のパルス電圧が誘起される。なお、スイッチング素子Q10はNチャネル型のMOSFETであって、ドレインが第1巻線2aに接続され、ソースが入力端子P(−)側に接続され、ゲートが主制御回路4の制御端子Gに接続されている。また、トランス2の各巻線2a,2bの丸印は極性を示し、第1、第2巻線2a,2bの出力は同極性である。
また、スイッチング電源1の2次側に設けられた整流平滑部3は、トランス2の2次側の2次巻線2bに直列に接続されており、アノードが2次巻線2bに接続された整流用ダイオードD10および整流用ダイオードD10のカソードに接続された平滑用チョークコイルL10と、整流用ダイオードD10および平滑用チョークコイルL10の接続点にカソードが接続されアノードが出力端子PO(−)に接続されて2次巻線2bに並列に接続された転流用ダイオードD11と、その両端が出力端子PO(+),PO(−)に接続された平滑用コンデンサC10とを備えている。そして、整流用ダイオードD10および転流用ダイオードD11により整流回路が形成され、平滑用チョークコイルL10および平滑用コンデンサC10により平滑回路が形成される。
そして、第2巻線2bから出力されるパルス電圧が整流平滑部3により整流、平滑されることにより給電用の直流出力とされて出力電圧Voの直流電源が形成され、この直流電源が出力端子PO(+),PO(−)から給電対象装置(図示省略)に給電される。また、整流平滑部3の後段には出力電圧Voの電圧を検出する電圧検出部(図示省略)が設けられており、電圧検出部により出力電圧Voが検出され、その検出結果が、例えば、フォトカプラの発光ダイオード(発光素子)およびフォトトランジスタ(受光素子)により光信号で主制御回路4にフィードバックされる。
そして、フィードバックされた電圧検出部の検出結果に基づいて主制御回路4のPWM駆動回路によりスイッチング素子Q10のゲートに出力される高周波パルス信号が生成されることにより、電圧検出部の検出結果の電圧がフィードバック制御の予め定められた設定値になるように、スイッチング素子Q10の断続(オン、オフ)がフィードバック制御され、出力電圧Voが、例えば給電対象装置の電源電圧に制御される。なお、電圧検出部により検出された出力電圧Voを主制御回路4にフィードバックする構成は上記したフォトカプラによる例に限られるものではなく、トランス等を利用したフィードバック回路を構成するなど、電圧検出部により検出された出力電圧Voを、周知の構成を利用してどのように主制御回路4にフィードバックしてもよい。
また、スイッチング電源1は、入力電源から入力端子PI(+),PI(−)間に入力された入力電圧Viを、予め定められた目標値である出力電圧V1に降圧して、主制御回路4の電源端子に給電する降圧型スイッチングレギュレータ10と、降圧型スイッチングレギュレータ10の降圧用スイッチング素子Q1がスイッチング制御されて出力されたパルス電圧Sに基づいて、パルス電圧Sの1周期に占める降圧用スイッチング素子のオン期間に応じた値の補正電圧Vcを主制御回路4の補正電圧入力端子Cに出力する補正電圧出力部100とを備えている。
降圧型スイッチングレギュレータ10は、入力端子P(+)にドレインが接続されて、入力電源から入力端子PI(+),PI(−)間に入力された入力電圧Viを繰り返し断続して所定周期のパルス電圧Sをソースから出力するNチャネルMOSFETにより形成される降圧用スイッチング素子Q1と、降圧用スイッチング素子Q1のソースに直列に接続されたチョークコイルL1と、降圧用スイッチング素子Q1のソースにカソードが接続され入力端子PI(−)にアノードが接続された転流用ダイオードD1と、両端がそれぞれチョークコイルL1の出力側および転流用ダイオードD1のアノードに接続された出力用の平滑用コンデンサC1とを備えている。
また、降圧型スイッチングレギュレータ10は、降圧用スイッチング素子Q1のゲートに接続されて、チョークコイルL1の出力側の電圧(平滑コンデンサC1の充電電圧)が予め定められた目標値である出力電圧V1となるように、フィードバック回路FBによりフィードバックされたチョークコイルL1の出力側の電圧に基づいて、降圧用スイッチング素子Q1の断続(オン、オフ)をフィードバック制御する高周波パルス信号を生成するPWM駆動回路が設けられた補助制御回路11を備えている。そして、チョークコイルL1の出力側の出力端子P1と主制御回路4の電源端子とが接続されている。
したがって、補助制御回路11によりフィードバック制御される降圧用スイッチング素子Q1のスイッチング動作により入力電圧Viが繰り返し断続されてパルス電圧Sが出力される。出力されたパルス電圧Sにより、降圧用スイッチング素子Q1のソースに直列に接続されたチョークコイルL1を介して、コンデンサC1に対して電流が流れることにより、予め定められた目標値の出力電圧V1が出力される。具体的には、降圧用スイッチング素子Q1がオンのときにチョークコイルL1にエネルギーが蓄積され、降圧用スイッチング素子Q1がオフのときに、降圧用スイッチング素子Q1のソースとチョークコイルL1との接続点にカソードが接続された転流用ダイオードD1を電流が順方向に流れてチョークコイルL1のエネルギーが放出される。そして、チョークコイルL1を流れる電流により平滑用コンデンサC1が充電されて、予め定められた目標値の出力電圧V1が出力されることにより、主制御回路4の電源端子に駆動用の直流電圧V1が給電される。
補正電圧出力部100は、降圧型スイッチングレギュレータ10のチョークコイルL1の出力側の定電圧V1を入力とし、降圧用スイッチング素子Q1のスイッチング動作に基づいて出力される所定周期のパルス電圧Sに基づいて、降圧用スイッチング素子Q1のスイッチング動作に応じて定電圧V1を断続して出力する電圧出力回路101と、電圧出力回路101の出力電圧を平均化して補正電圧Vcを生成する平均化回路102とを備えている。
電圧出力回路101は、コレクタがプルアップ用の抵抗R4を介してチョークコイルL1の出力側に接続され、エミッタが平均化回路102に接続された、NPN型トランジスタにより形成された電圧出力用スイッチング素子Q2を備えている。また、電圧出力用スイッチング素子Q2のベースは、逆流防止用のダイオードD2および抵抗R1を介して、降圧型スイッチングレギュレータ10の降圧用スイッチング素子Q1のソースとチョークコイルL1との接続点である転流用ダイオードD1のカソードに接続されており、ベースおよびエミッタ間にはバイアス用の抵抗R2が設けられている。
したがって、電圧出力用スイッチング素子Q2のオン、オフが、ダイオードD1および抵抗R1を介してベースに入力されるパルス電圧Sにより制御されることで、電圧出力回路101は、降圧型スイッチングレギュレータ10の降圧用スイッチング素子Q1のスイッチング動作に応じて、定電圧V1および抵抗R4によりプルアップされたコレクタ電圧を断続して平均化回路102に出力する。
平均化回路102は、並列接続された抵抗R3およびコンデンサC2により形成されており、並列接続された抵抗R3およびコンデンサC2それぞれの一端が、電圧出力回路101の出力側(電圧出力用スイッチング素子Q2のエミッタ)と主制御回路4の補正電圧入力端子Cとの接続点に接続されて、抵抗R3およびコンデンサC3それぞれの他端が、入力端子PI(−)に接続されている。
したがって、パルス電圧Sに基づいて、電圧出力用スイッチング素子Q2がオンされている期間、前記コレクタ電圧を基準としてコンデンサC2が充電されることによる出力電圧の上昇と、電圧出力用スイッチング素子Q2がオフされている期間、コンデンサC2が放電することによる出力電圧の下降とが繰り返されることにより、平均化回路102は、パルス電圧Sの1周期に占める降圧用スイッチング素子Q1のオン期間に応じた値の補正電圧Vcを主制御回路4の補正電圧入力端子Cに出力する。
すなわち、図2(a)に示すように、入力電圧Viが低ければ、降圧用スイッチング素子Q1のオン期間が長くなり、平均化回路102のコンデンサC2の充電期間が長くなるので、生成される補正電圧Vcの値が大きくなる。また、図2(b)に示すように、入力電圧Viが高ければ、降圧用スイッチング素子Q1のオン期間が短くなり、平均化回路102のコンデンサC2の充電期間が短くなるため生成される補正電圧Vcの値が小さくなる。
以上のように、この実施形態によれば、トランス2の1次巻線2aに出力される直流の入力電圧Viがスイッチング素子Q10により断続されて、トランス2の1次巻線2aおよび2次巻線2bの巻数比に応じてトランス2の2次巻線2bに誘起された出力が整流平滑部3により整流、平滑されて直流出力Voが形成される。そして、整流平滑部3の出力電圧Voが予め設定された設定値となるように、スイッチング素子Q10の断続が主制御回路4によりフィードバック制御される。
また、スイッチング電源1は、主制御回路4の駆動用電源として、降圧型スイッチングレギュレータ10を備えている。そして、降圧型スイッチングレギュレータ10では、降圧用スイッチング素子Q1のスイッチング動作により入力電圧Viが繰り返し断続されて所定周期のパルス電圧Sが出力され、出力されたパルス電圧Sにより降圧用スイッチング素子Q1に直列に接続されたチョークコイルL1を介して電流が流れることにより平滑用コンデンサC1が充電されて、予め定められた目標値の出力電圧V1が出力される。
ところで、上記した降圧型スイッチングレギュレータ10では、
(出力電圧V1)=(降圧用スイッチング素子Q1のデューティ比)×(入力電圧Vi)
となるため、図2に示すように、出力電圧V1が予め定められた目標値で一定となるように、入力電圧Viが上昇するとデューティ比が小さく、すなわち、降圧用スイッチング素子Q1のオン期間が短くなり、入力電圧Viが低下するとデューティ比が大きく、すなわち、高圧用スイッチング素子Q1のオン期間が長くなるように降圧用スイッチング素子Q1の断続(オン、オフ)が補助制御回路11によりフィードバック制御されるので、降圧用スイッチング素子Q1から出力されたパルス電圧Sの1周期に占める降圧用スイッチング素子Q1のオン期間は、入力電圧Viが大きいほど短くなり、入力電圧Viが小さいほど長くなる。
したがって、主制御回路4の駆動用電源として設けられた降圧型スイッチングレギュレータ10の降圧用スイッチング素子Q1により出力されるパルス電圧Sが補正電圧出力部100に入力され、入力されたパルス電圧Sの1周期に占める降圧用スイッチング素子Q1のオン期間に応じた値の補正電圧Vc、すなわち、前記オン期間が短いほど値が小さく、前記オン期間が長いほど値が大きい補正電圧Vcを補正電圧出力部100において生成することにより、入力電圧Viが上昇するほど値が小さく、入力電圧Viが低下するほど値が大きい補正電圧Vcを補正電圧出力部100により簡単に生成してスイッチング素子Q10を制御する主制御回路4に出力することができる。
また、補正電圧Vcを生成するのに、主制御回路4の駆動用電源として設けられた降圧型スイッチングレギュレータ10の降圧用スイッチング素子Q1により出力されるパルス電圧Sを利用することにより、反転増幅回路等の複雑な回路を用いずとも、簡単な回路構成の補正電圧出力部100により補正電圧Vcを生成して出力することができるので、スイッチング電源1の製造コストの低減を図ることができる。
また、補正電圧出力部100の電圧出力回路101には、降圧型スイッチングレギュレータ10の出力から所定の定電圧V1がプルアップ用の抵抗R4を介して入力されており、入力されたパルス電圧Sに基づいて、降圧用スイッチング素子Q1のスイッチング動作に応じて、定電圧V1および抵抗R4によりプルアップされたコレクタ電圧が電圧出力回路101により断続して出力される。そして、前記コレクタ電圧がパルス電圧Sと同じデューティ比で断続された電圧出力回路101の出力電圧が、平均化回路102により平均化されることにより、入力電圧Viの上昇に伴いパルス電圧Sの前記オン期間が短くなるほど小さく、入力電圧Viの下降に伴いパルス電圧Sの前記オン期間が長くなるほど大きい補正電圧Vcをパルス電圧Sに基づいて簡単に生成することができる。
また、電圧出力回路101は、パルス電圧Sによりオン、オフが制御される電圧出力用スイッチング素子Q2により、降圧用スイッチング素子Q1のスイッチング動作に応じて、抵抗R4を介して入力される降圧型スイッチングレギュレータ10の出力である定電圧V1を簡単に断続して平均化回路に出力することができる。
また、降圧型スイッチングレギュレータ10の出力により定電圧源が形成されているため、電圧出力回路101に給電するための定電圧源を形成するのに新たに部品を搭載する必要がないので、部品点数の削減を図ることができ、実用的な構成のスイッチング電源1を提供することができる。
また、降圧型スイッチングレギュレータ10の出力に、主制御回路4の電源端子が接続されることにより、降圧型スイッチングレギュレータ10により主制御回路4に駆動用電源が供給される実用的な構成のスイッチング電源1を提供することができる。
また、補正電圧Vcを生成するのに、主制御回路4の駆動用電源として設けられた降圧型スイッチングレギュレータ10の降圧用スイッチング素子Q1により出力されるパルス電圧Sを利用することにより、補助制御回路11により制御される降圧用スイッチング素子Q1のスイッチング動作は、主制御手段4によりスイッチング素子Q10がフィードバック制御されてトランス2の1次巻線2aに流れる一次側電流Itrが変動しても、その変動の影響を受けることがないので、補正電圧出力部100は、主制御手段4によるスイッチング素子Q10の制御状態に影響を受けることなく補正電圧Vcを生成して出力することができる。
<第2実施形態>
本発明のスイッチング電源の2実施形態について、図3および図4を参照して説明する。図3は本発明のスイッチング電源の第2実施形態の回路構成を示す図である。図4は図3のスイッチング電源の動作を説明するための図である。
この実施形態が上記した第1実施形態と異なるのは、図3に示すように、主制御回路4が、スイッチング素子Q10をPWM制御によりフィードバック制御する制御ICと、トランス2の一次側電流Itrを電圧変換して検出するための抵抗R20(本発明の「電流検出回路」に相当)と、抵抗R20の端子電圧として検出された一次側電流Itrの大きさに補正電圧Vcを加算した値に基づいて過電流を検出する過電流検出回路41と、過電流検出回路41により過電流が検出されたときに、スイッチング素子Q10をオフするシャットダウン信号を制御ICに送信するシャットダウン回路42とを備えている点である。その他の構成は上記した第1実施形態と同様の構成であるため、同一符号を付すことによりその構成および動作の説明は省略する。
図3に示すように、過電流検出回路41には比較回路41aが設けられている。比較回路41aは、一次側電流Itrの大きさに比例する抵抗R20の端子電圧に分圧用の抵抗R21,R22により分圧された補正電圧Vcに比例する電圧が加算された検出電圧と、基準電圧Vthとを比較する。そして、過電流検出回路41(比較回路41a)は検出電圧が基準電圧よりも大きくなればシャットダウン回路42に過電流の検出信号を送信し、シャットダウン回路42は過電流検出回路41の検出信号に基づいて、制御ICにシャットダウン信号を送信する。制御ICは、シャットダウン回路42により出力されたシャットダウン信号に基づいてスイッチング素子Q10をオフしてトランス2の一次側電流Itrの過電流を防止する。
このように構成すると、トランス2の一次側電流Itrが抵抗R20により電圧変換されて検出されるが、スイッチング電源1の負荷電流が同じであっても、一次側電流Itrは、図4に実線で示すように、入力電圧Viの上昇に伴い電流の増加割合(傾き)が大きくなってピーク値が高くなり、入力電圧Viの低下に伴い電流の増加割合(傾き)が小さくなってピーク値が低くなる。したがって、過電流として検出される負荷電流の電流値は入力電圧Viにより異なり、入力電圧Viが低いと負荷電流が大きい場合でなければ過電流として検出されず、入力電圧Viが高いと負荷電流が小さい場合であっても過電流として検出される。
そこで、一次側電流Itrを利用してスイッチング電源1の負荷電流の過電流を検出する場合に、図4に点線で示すように、抵抗R20の端子電圧として検出されたトランス2の一次側電流Itrの大きさに、入力電圧Viが上昇するほど値が小さく、入力電圧Viが低下するほど値が大きい補正電圧Vcに比例する電圧を加算して抵抗R20の端子電圧を補正することにより、入力電圧Viの上昇に伴い一次側電流Itrのピーク値が高い場合には値が小さい補正電圧Vcが加算され、入力電圧Viの下降に伴い一次側電流Itrのピーク値が低い場合には値が大きい補正電圧Vcが加算されるため、入力電圧Vcの変動に伴う一次側電流Itrのピーク値のばらつきが抑制された補正値を導出することができる。したがって、一次側電流Itrのピーク値のばらつきが抑制された補正値と、過電流検出のしきい値である基準電圧Vthとに基づいて過電流検出回路41により過電流を検出することにより、入力電圧Viの変動に関わらず過電流を適切に検出することができる。
<第3実施形態>
本発明のスイッチング電源の3実施形態について、図5および図6を参照して説明する。図5は本発明のスイッチング電源の第3実施形態の回路構成を示す図である。図6は図5のスイッチング電源におけるスロープ補償を説明するための図であって、(a)は入力電圧が低い場合のスロープ補償の一例を示し、(b)は入力電圧が高い場合のスロープ補償の一例を示す図である。
この実施形態が上記した第1実施形態と異なるのは、図5に示すように、主制御回路4が、スイッチング素子Q10をPWM制御によりフィードバック制御する制御ICと、トランス2の一次側電流Itrを電圧変換して検出するための抵抗R20(本発明の「電流検出回路」に相当)とを備え、抵抗20の端子電圧として検出されるトランス2の一次側電流Itrが制御ICにフィードバックされることにより、主制御回路4において電流モード制御が実行されている点である。また、図5に示すように、抵抗R20の端子電圧として検出されて制御ICにフィードバックされる一次側電流Itrにスロープ補償を行うスロープ補償回路43が設けられている。その他の構成は上記した第1実施形態と同様の構成であるため、同一符号を付すことによりその構成および動作の説明は省略する。
この実施形態では、図5に示すように、抵抗R20の端子電圧として検出された一次側電流Itrおよび補正電圧出力部100により出力された補正電圧Vcがスロープ補償回路43に入力されて、抵抗R20の端子電圧として検出された一次側電流Itrに、補正電圧Vcの大きさに応じた傾きのスロープ補償が行われる。具体的には、図6(a)に示すように、入力電圧Viが低く、抵抗R20の端子電圧として検出される一次側電流Itr(実線)の傾きが小さい場合には、値の大きい補正電圧Vcが生成されてスロープ補償回路43に入力されるため、値の大きい補正電圧Vcに応じて傾きが大きいスロープ補償(点線)がスロープ補償回路43により行われる。
また、図6(b)に、入力電圧Viが高く、抵抗R20の端子電圧として検出される一次側電流Itr(実線)の傾きが大きい場合には、値の小さい補正電圧Vcが生成されてスロープ補償回路43に入力されるため、値の小さい補正電圧Vcに応じて傾きが小さいスロープ補償(点線)がスロープ補償回路43により行われる。なお、図6中のしきい値Vth1,Vth2は、それぞれ低入力電圧時、高入力電圧時において制御ICのPWM駆動回路により出力される高周波パルス信号のデューティ比を決定するためのものである。
このように構成すると、抵抗R20の端子電圧として検出されたトランス2の一次側電流Itrに基づいて制御ICにより電流モード制御が実行されるときに、一次側電流Itrは、入力電圧Viの上昇に伴い傾きが大きくなり、入力電圧Viの低下に伴い傾きが小さくなる。したがって、抵抗R20の端子電圧として検出された一次側電流Itrに、入力電圧Viが上昇するほど値が小さく、入力電圧Viが低下するほど値が大きい補正電圧Vcの大きさに応じた傾きのスロープ補償をスロープ補償回路43により行うことで、入力電圧Viの上昇に伴い傾きが大きい一次側電流Itrには傾きが小さいスロープ補償が行われ、入力電圧Viの低下に伴い傾きが小さい一次側電流Itrには傾きが大きいスロープ補償が行われるので、入力電圧Viの変動に伴うトランス2の一次側電流Itrの傾きの変動に応じて適切な傾きのスロープ補償が行われて、制御ICによる電流制御モードにおけるスイッチング素子Q10のフィードバック制御を安定化することができる。
また、入力電圧Viが低く、制御ICにフィードバックされる一次側電流Itrの傾きが小さい場合に、PWM駆動回路による制御が不安定となるサブハーモニック現象が発生し易くなるが、傾きが小さい一次側電流Itrには傾きが大きいスロープ補償が行われるので、一次側電流Itrの傾きが適切に補正されることにより、低入力電圧時に一次側電流Itrの傾きが小さい場合の制御ICによるスイッチング素子Q10のフィードバック制御を安定させることができる。
<第4実施形態>
本発明のスイッチング電源の4実施形態について、図7および図8を参照して説明する。図7は本発明のスイッチング電源の第4実施形態の回路構成を示す図である。図8は図7のスイッチング電源におけるソフトスタートを説明するための図であって、(a)は入力電圧の高低によるSS端子電圧の時間変化を示す図であり、(b)は入力電圧の高低によるデューティ比の時間変化を示す図であり、(c)は補正電圧を用いた補正による効果を説明するための図である。
この実施形態が上記した第1実施形態と異なるのは、図7に示すように、主制御回路4が、スイッチング素子Q10をPWM制御によりフィードバック制御する制御ICを備えており、制御ICには、ソフトスタート端子(SS端子)44a(本発明の「制御端子」に相当)に接続され、補正電圧Vcにより充電されるコンデンサC21の充電電圧の応じてスイッチング素子Q10の起動時のデューティ比を設定するソフトスタート回路44(本発明の「設定回路」に相当)が設けられている点である。その他の構成は上記した第1実施形態と同様の構成であるため、同一符号を付すことによりその構成および動作の説明は省略する。
この実施形態では、図7に示すように、一端が補正電圧入力端子Cに接続された抵抗R23の他端と、一端が入力端子PI(−)に接続されたコンデンサC21の他端とが接続されて、抵抗R23およびコンデンサC21が直列に接続されており、抵抗R23およびコンデンサ21の接続点とSS端子44とが接続されている。そして、抵抗R23を介して補正電圧Vcにより充電されたコンデンサC21の充電電圧がソフトスタート端子(SS端子)44aを介してソフトスタート回路44に入力されることにより、ソフトスタート回路44により、スイッチング素子Q10の起動時のデューティ比が設定される。
このように構成すると、例えばスイッチング電源1が起動される際に、コンデンサC21は、抵抗R23を介して入力される補正電圧Vcにより充電されるため、ソフトスタート端子(SS端子)44aにはランプ状に増大するコンデンサC21の充電電圧が入力される。したがって、スイッチング電源1が起動される際に、ソフトスタート端子(SS端子)44aにランプ状に入力されるコンデンサ21の充電電圧に基づいて、スイッチング素子Q10のデューティ比は、徐々に増大するようにソフトスタート回路44により設定されて、所謂、ソフトスタート処理が実行される。
このとき、制御ICのソフトスタート端子(SS端子)44aに接続され、入力電圧Viが上昇するほど値が小さく、入力電圧Viが低下するほど値が大きい補正電圧Vcにより充電されるコンデンサC21の充電電圧の大きさに応じてスイッチング素子Q1のデューティ比がソフトスタート回路44により設定される。そのため、図8(a)に示すように、入力電圧Viが高い場合に、値が小さい補正電圧Vcにより充電されるコンデンサC21の充電電圧(SS端子電圧)の大きさは、入力電圧Viが低い場合に、値が大きい補正電圧Vcにより充電されるコンデンサC21の充電電圧(SS端子電圧)の大きさと比較すると小さい。したがって、図8(b)に示すように、入力電圧Viが高い場合にソフトスタート回路44により設定されるスイッチング素子Q10のデューティ比は、入力電圧Viが低い場合と比べると小さくなり、入力電圧Viが低い場合にソフトスタート回路44により設定されるスイッチング素子Q10のデューティ比は、入力電圧Viが高い場合と比べると大きくなる。
また、コンデンサC21の充電速度は、図8(a)に示すように、入力電圧Viが高い場合には相対的に補正電圧Vcが小さいため、入力電圧Vcが低い場合と比べると遅くなり、入力電圧Viが低い場合には相対的に補正電圧Vcが高いため、入力電圧Viが高い場合と比べると速くなる。したがって、スイッチング電源1が起動される際に、図8(b)に示すように、補正電圧Vcにより充電されて経時的に増大するコンデンサC21の充電電圧(SS端子電圧)の大きさに応じて、スイッチング素子Q10のデューティ比が段階的に増大するようにソフトスタート回路44により設定されることで、入力電圧Viが高い場合に、スイッチング電源1が安定動作するまでのスイッチング素子Q10のデューティ比の増大率を入力電圧Viが低い場合よりも小さく、入力電圧Viが低い場合に、スイッチング電源1が安定動作するまでのスイッチング素子Q10のデューティ比の増大率を入力電圧Viが高い場合よりも大きくすることができる。
したがって、例えばスイッチング素子Q10のスイッチング動作のデューティ比の増大率が入力電圧の高低に関わらず同一であれば、図8(c)に破線で示すように、入力電圧Viが高いほど整流平滑部3の出力電圧Voが予め設定された設定値となるまでの時間が早く、入力電圧Viが低いほど整流平滑部3の出力電圧Voが予め設定された設定値となるまでの時間が遅くなる。しかしながら、上記したように、デューティ比の増大率を設定することにより、図8(c)に実線で示すように、入力電圧Viの高低に関わらず、スイッチング電圧が起動されて安定動作するまでの期間を安定化することができる。すなわち、スイッチング電源1が起動される際に、入力電圧Viが高いときに起動時間が短くなりすぎて出力電圧Voにオーバーシュートが発生するのを防止することができ、入力電圧Viが低いときに起動時間が長くなりすぎるのを防止することができる。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能であり、例えば、降圧用スイッチングレギュレータ10の出力電圧V1の使用目的としては上記した例に限られるものではなく、出力電圧V1をスイッチング電源1に搭載される他の電子部品等の駆動電圧として使用してもよい。また、電圧出力回路101に入力される定電圧を出力する定電圧源を別途、スイッチング電源1に搭載してもよく、他の構成の定電圧源から定電圧が入力されてもよい。
また、上記した実施形態ではフォワード型の絶縁型DC−DCコンバータによりスイッチング電源1を構成したが、スイッチング電源1の構成としては上記した例に限られるものではなく、フライバック型の絶縁型DC−DCコンバータなど、種々の方式のコンバータによりスイッチング電源を構成してもよい。また、上記した各回路の構成は一例であって、上記した例に限定されるものではなく、例えば、整流回路を同期型の整流回路で構成するなど、その趣旨を逸脱しない限りにおいてどのように構成してもよい。
また、補正電圧Vcを用いた制御方法は上記した例に限られるものではなく、特に、入力電圧Viの高低に伴い、制御特性が入力電圧Viの高低とは逆、すなわち、入力電圧Viが高くなれば小さくなり、入力電圧Viが低くなれば大きくなるように変動する制御回路の動作を補正するのに用いるとよい。
そして、本発明は、種々のスイッチング電源に適用することができる。
1 スイッチング電源
2 トランス
2a 1次巻線
2b 2次巻線
3 整流平滑部
4 主制御回路(制御部)
10 降圧型スイッチングレギュレータ
41 過電流検出回路
43 スロープ補償回路
44 ソフトスタート回路(設定回路)
44a SS端子(制御端子)
100 補正電圧出力部
101 電圧出力回路
102 平均化回路
C21 コンデンサ
Itr 一次側電流
D1 転流用ダイオード
L1 チョークコイル
Q1 降圧用スイッチング素子
Q2 電圧出力用スイッチング素子
Q10 スイッチング素子(スイッチ部)
R20 抵抗(電流検出回路)
S パルス電圧
V1 出力電圧(目標値、定電圧)
Vc 補正電圧
Vi 入力電圧
Vo 出力電圧(設定値)

Claims (8)

  1. 直流の入力電圧を断続してトランスの1次巻線に給電するスイッチング部と、
    前記トランスの2次巻線の出力を整流、平滑する整流平滑部と、
    前記整流平滑部の出力電圧が予め設定された設定値となるように前記スイッチング部の断続をフィードバック制御する制御部とを備えるスイッチング電源において、
    スイッチング動作により前記入力電圧を繰り返し断続して所定周期のパルス電圧を出力する降圧用スイッチング素子と、前記降圧用スイッチング素子に直列に接続されたチョークコイルと、前記降圧用スイッチング素子と前記チョークコイルとの接続点にカソードが接続された転流用ダイオードとを有し、出力電圧が予め定められた目標値となるように前記降圧用スイッチング素子の断続をフィードバック制御する降圧型スイッチングレギュレータと、
    前記パルス電圧が入力され、前記パルス電圧の1周期に占める前記降圧用スイッチング素子のオン期間に応じた値の補正電圧を前記制御部に出力する補正電圧出力部と
    を備えることを特徴とするスイッチング電源。
  2. 前記降圧型スイッチングレギュレータの出力は、前記制御部の電源端子に接続されていることを特徴とする請求項1に記載のスイッチング電源。
  3. 前記補正電圧出力部は、
    定電圧源から出力される所定の定電圧が入力され、前記パルス電圧に基づいて前記定電圧を断続して出力する電圧出力回路と、
    前記電圧出力回路の出力電圧を平均化して前記補正電圧を生成する平均化回路と
    を備えることを特徴とする請求項1または2に記載のスイッチング電源。
  4. 前記定電圧源は、前記降圧型スイッチングレギュレータの出力であることを特徴とする請求項3に記載のスイッチング電源。
  5. 前記電圧出力回路は、前記降圧型スイッチングレギュレータの出力と前記平均化回路との間に接続され、前記パルス電圧によりオン、オフが制御される電圧出力用スイッチング素子を備えていることを特徴とする請求項4に記載のスイッチング電源。
  6. 前記制御部は、
    前記トランスの一次側電流を電圧変換して検出する電流検出回路と、
    前記電流検出回路により検出された前記一次側電流の大きさに前記補正電圧を加算した値に基づいて過電流を検出する過電流検出回路と
    を備えることを特徴とする請求項1ないし5のいずれかに記載のスイッチング電源。
  7. 前記制御部は、
    前記トランスの一次側電流を電圧変換して検出する電流検出回路と、
    前記電流検出回路により検出された前記一次側電流に、前記補正電圧の大きさに応じた傾きのスロープ補償を行うスロープ補償回路と
    を備えることを特徴とする請求項1ないし5のいずれかに記載のスイッチング電源。
  8. 前記制御部は、
    制御端子に接続され、前記補正電圧により充電されるコンデンサの充電電圧の大きさに応じて前記スイッチ部の起動時のデューティ比を設定する設定回路を備えていることを特徴とする請求項1ないし7のいずれかに記載のスイッチング電源。
JP2012003077A 2012-01-11 2012-01-11 スイッチング電源 Active JP5862312B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003077A JP5862312B2 (ja) 2012-01-11 2012-01-11 スイッチング電源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003077A JP5862312B2 (ja) 2012-01-11 2012-01-11 スイッチング電源

Publications (2)

Publication Number Publication Date
JP2013143844A true JP2013143844A (ja) 2013-07-22
JP5862312B2 JP5862312B2 (ja) 2016-02-16

Family

ID=49040122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003077A Active JP5862312B2 (ja) 2012-01-11 2012-01-11 スイッチング電源

Country Status (1)

Country Link
JP (1) JP5862312B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077131A (ja) * 2014-10-09 2016-05-12 コーセル株式会社 スイッチング電源装置
CN111106660A (zh) * 2020-01-13 2020-05-05 深圳市助尔达电子科技有限公司 高集成控制芯片及具有它的电源电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135574A (ja) * 1995-11-06 1997-05-20 Sanyo Electric Co Ltd インバータ装置の制御回路
JP2002027740A (ja) * 2000-07-10 2002-01-25 Paloma Ind Ltd 遠隔装置の電源回路
JP2004201385A (ja) * 2002-12-17 2004-07-15 Shindengen Electric Mfg Co Ltd Dc/dcコンバータ回路
JP2006204082A (ja) * 2004-12-21 2006-08-03 Fuji Electric Device Technology Co Ltd スイッチング電源制御用半導体装置およびスイッチング電源制御用回路
JP2007336742A (ja) * 2006-06-16 2007-12-27 Fuji Electric Device Technology Co Ltd スイッチング電源装置
JP2009060701A (ja) * 2007-08-30 2009-03-19 Sanyo Electric Co Ltd スイッチングレギュレータ
JP2010206982A (ja) * 2009-03-04 2010-09-16 Nichicon Corp スイッチング電源装置
JP2010226917A (ja) * 2009-03-25 2010-10-07 Honda Motor Co Ltd スイッチング電源装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135574A (ja) * 1995-11-06 1997-05-20 Sanyo Electric Co Ltd インバータ装置の制御回路
JP2002027740A (ja) * 2000-07-10 2002-01-25 Paloma Ind Ltd 遠隔装置の電源回路
JP2004201385A (ja) * 2002-12-17 2004-07-15 Shindengen Electric Mfg Co Ltd Dc/dcコンバータ回路
JP2006204082A (ja) * 2004-12-21 2006-08-03 Fuji Electric Device Technology Co Ltd スイッチング電源制御用半導体装置およびスイッチング電源制御用回路
JP2007336742A (ja) * 2006-06-16 2007-12-27 Fuji Electric Device Technology Co Ltd スイッチング電源装置
JP2009060701A (ja) * 2007-08-30 2009-03-19 Sanyo Electric Co Ltd スイッチングレギュレータ
JP2010206982A (ja) * 2009-03-04 2010-09-16 Nichicon Corp スイッチング電源装置
JP2010226917A (ja) * 2009-03-25 2010-10-07 Honda Motor Co Ltd スイッチング電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077131A (ja) * 2014-10-09 2016-05-12 コーセル株式会社 スイッチング電源装置
CN111106660A (zh) * 2020-01-13 2020-05-05 深圳市助尔达电子科技有限公司 高集成控制芯片及具有它的电源电路

Also Published As

Publication number Publication date
JP5862312B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6631277B2 (ja) スイッチング電源装置
JP5453508B2 (ja) 効率的軽負荷動作を有する分離フライバックコンバータ
JP5513778B2 (ja) スイッチング電源回路
JP6597239B2 (ja) スイッチング電源装置
US8587966B2 (en) Switching power supply device
JP2008245514A (ja) ダイオード導通デューティ・サイクルを調節する方法及び装置
JP2010142071A (ja) 電源装置および画像形成装置
JP2006280138A (ja) Dc−dcコンバータ
JP2011015557A (ja) スイッチング電源装置およびスイッチング電源制御用半導体装置
JP5905689B2 (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
JP6569414B2 (ja) スイッチング電源装置
CN111684697A (zh) 开关电源装置的控制装置
JP2004040856A (ja) スイッチング電源装置
JP2016144237A (ja) スイッチング電源装置
JP5696692B2 (ja) スイッチング電源装置
JP6569420B2 (ja) スイッチング電源装置及びその制御方法
JP2012227075A (ja) 定電流電源装置
JP5862312B2 (ja) スイッチング電源
JP2011083049A (ja) 電圧変換装置
JP5839222B2 (ja) 定電流電源装置
JP2014112996A (ja) 軽負荷検出回路、スイッチングレギュレータとその制御方法
JP2007068248A (ja) スイッチング電源装置
JP6810150B2 (ja) スイッチング電源装置および半導体装置
JP2022178982A (ja) 電源回路、電源装置
JP2009106140A (ja) スイッチング電源回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150