JP2016077131A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2016077131A
JP2016077131A JP2014207882A JP2014207882A JP2016077131A JP 2016077131 A JP2016077131 A JP 2016077131A JP 2014207882 A JP2014207882 A JP 2014207882A JP 2014207882 A JP2014207882 A JP 2014207882A JP 2016077131 A JP2016077131 A JP 2016077131A
Authority
JP
Japan
Prior art keywords
voltage
resistor
current
power supply
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014207882A
Other languages
English (en)
Other versions
JP6174542B2 (ja
Inventor
将志 上田
Masashi Ueda
将志 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosel Co Ltd
Original Assignee
Cosel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosel Co Ltd filed Critical Cosel Co Ltd
Priority to JP2014207882A priority Critical patent/JP6174542B2/ja
Publication of JP2016077131A publication Critical patent/JP2016077131A/ja
Application granted granted Critical
Publication of JP6174542B2 publication Critical patent/JP6174542B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】過電流垂下特性の垂下点及びスソ引き量を容易に制御することができるシンプルな過電流保護回路を備えた安全性の高いスイッチング電源装置を提供する
【解決手段】過電流保護回路34は、電流検出電圧Vdを発生する電流検出抵抗28と、電流制限信号生成回路36とで構成される。電流制限信号生成回路36は、第一〜第4の抵抗38(1)〜38(4)、平滑コンデンサ42、第一、第二のトランジスタ40(1),40(2)、及び補助スイッチング素子44で構成される。第一、第三の抵抗38(1),38(3)の一端に、各々第一、第三の直流電圧Vr1,Vr3が供給される。補助スイッチング素子44は、主スイッチング素子12と同位相でオンオフする。電流制限用の基準値Vth(oc)は、第二の抵抗38(2)と平滑コンデンサ42の各電圧Va,Vbにより設定され、電流検出電圧Vdが基準値Vth(oc)を超えると第二のトランジスタ40(2)がオンし、主スイッチング素子12をオフさせる
【選択図】図1

Description

本発明は、過電流保護回路を備えたスイッチング電源装置に関する。
スイッチング電源装置は、多くの場合、出力電流が一定以上に増加して危険な状態になるのを回避するため、過電流保護回路が設けられている。過電流保護の方式は複数あるが、従来から広く使用されている方式として、主スイッチング素子に流れるスイッチング電流のピーク値を一定以下に制限するパルス・バイ・パルス方式がある。
従来、パルス・バイ・パルス方式の過電流保護回路を備えたスイッチング電源装置として、図12に示すスイッチング電源装置10があった。スイッチング電源装置10は、シングルエンディッドフォワード型の電源であり、主スイッチング素子12がオンオフすることによって入力電圧Viを断続し、この断続電圧をトランス14の入力巻線14aに入力し、これを変圧した交流電圧を出力巻線14bから出力する。そして、出力巻線14bから出力された交流電圧を整流回路16で整流し、その整流電圧を平滑回路18(出力平滑インダクタ18a、出力平滑コンデンサ18b)によって平滑し、外部接続された負荷20に出力電圧Vo及び出力電流Ioを供給する。
出力電圧Voを目標の値に保持するため、誤差増幅回路22が出力電圧Voと目標値との差を増幅した出力電圧制御信号V(vol)を出力し、駆動パルス生成回路24が出力電圧制御信号V(vol)を所定のスイッチング周波数Fswでパルス幅変調し、主スイッチング素子12をオンオフ駆動する駆動パルスVgを生成する。つまり、駆動パルスVgによって主スイッチング素子12のオン時比率Donを可変調整し、出力電圧Voを制御する。
出力電圧Voとオン時比率Donとの関係は、概略、式(1)のように表される。同様に、出力電圧Voとオフ時比率Doffとの関係は、式(2)のように表される。
Figure 2016077131
Figure 2016077131
ここで、Naは入力巻線14aの巻数、Nbは出力巻線14bの巻数である。したがって、駆動パルス生成回路24は、出力電圧Voを目標の値に保持するため、入力電圧Viが低い時はオン時比率Donを相対的に大きくし(オフ時比率Doffを相対的に小さくし)、入力電圧Viが高い時はオン時比率Donを相対的に小さくする(オフ時比率Doffを相対的に大きくする)。
過電流保護回路26は、電流検出抵抗28と電流制限信号生成回路30とで構成されている。電流検出抵抗28は、主スイッチング素子12に流れるスイッチング電流Idの流路に挿入され、スイッチング電流Idに比例した電流検出電圧Vdを発生する。電流制限信号生成回路30は、比較器30aで電流検出電圧Vdと電流制限用の基準値Vth(oc)とを比較し、電流検出電圧Vdのピーク値が基準値Vth(oc)を超えた時にローレベルに反転する電流制限信号V(cur)を送信し、主スイッチング素子12を強制的にオフさせる。基準値Vth(oc)は、図14(a)に示すように、入力電圧Viや出力電圧Voによらず一定の値である。
駆動パルス生成回路24の機能は、例えば図13に示すように、発振器、スイッチ、比較器、NANDゲート、RSフリップフロップ等を組み合わせて構成された駆動パルス生成回路24aにより実現することができる。この駆動パルス生成回路24aの構成は、後述する特許文献1に記載されている駆動パルス生成回路と同じであり、同様の動作を行う。
スイッチング電源装置10の過電流垂下特性は、図14(b)のように表される。出力電流Ioが定格値100%を超えると過電流状態となり、さらに出力電流Ioが増加して所定の値に達すると過電流保護回路26が動作し、出力電流Ioが制限されると共に出力電圧Voが低下する。ここで問題になるのは、出力電流Ioが制限される範囲ΔI(oc)である。
過電流垂下特性は、安定的に逆L字状に垂下し、出力電流Ioが制限される範囲ΔI(oc)が小さいことが好ましい。しかし、スイッチング電源装置10の場合、出力電圧Voが低下し始める出力電流Ioの値(以下、垂下点と称す。)が入力電圧Viによって変動する性質がある。また、出力電圧Voがゼロに近づくと、出力電流Ioが垂下点からさらに増大し、しかも、増大する量(以下、スソ引き量と称す。)が入力電圧Viによって異なってくるという性質がある。そのため、図14(b)のように、範囲ΔI(oc)が大きくなってしまう。
垂下点が入力電圧Viによって変動する主原因は、平滑回路10の出力平滑インダクタ18aに流れるリップル電流である。電流検出電圧Vdには、出力電流Ioに比例する成分である電圧V(Io)に、上記のリップル電流の成分である電圧Vripが重畳し、電圧Vripは、一般に入力電圧Viが低い時(Vi=V(L)の時)よりも高い時(Vi=V(H)の時)の方が大きくなるので、図15(a),(b)に示すように、出力電流Ioが同じ状態で、前者の方が電流検出電圧Vdのピーク値が低くなる。したがって、図14(b)に示すように、入力電圧Viが低い時ほど垂下点が高くなってしまう。
スソ引きが発生する主原因は、電流検出電圧Vdが電流制限の基準値Vth(oc)を超えてから主スイッチング素子12がオフしてスイッチング電流Idが遮断されるまでの遅延時間Td(例えば、比較器30aの出力がローレベルに反転する遅れ時間の等)によるものである。遅延時間Tdが存在すると出力電流Ioを制限しにくくなり、特にオン時比率Donが小さい時ほど、遅延時間Tdの影響が顕著になる。例えば、式(1)から分かるように、出力電圧Voが低い時ほどオン時比率Donが小さくなるので、出力電圧Voがゼロに近づくほど遅延時間Tdの影響が顕著になって、出力電流Ioを制限しにくくなる。また、図16(a),(b)に示すように、オン時比率Donは、入力電圧Viが低い時(Vi=V(L)の時)よりも高い時(Vi=V(H)の時)の方が小さいので、特に入力電圧Viが高い時の方が遅延時間Tdの影響が大きく現れ、出力電流Ioを制限しにくくなる。したがって、図14(b)に示すように、入力電圧Viが高い時ほどスソ引き量が多くなってしまう。
このように、従来のスイッチング電源装置10は、過電流垂下特性における垂下点やスソ引き量が入力電圧Viによって大きく変動するので、出力電流Ioが制限される範囲ΔI(oc)が大きくなるという問題があった。
近年、この問題を解決するための技術が複数提案されている。例えば、特許文献1に開示されているように、電流制限用の基準値Vth(oc)を、出力電圧Voに比例した電圧と、入力電圧Viに応じて変化する電圧によって補正する回路を備えたスイッチング電源装置があった。出力電圧Voに比例する電圧は、トランスに設けた補助巻線の発生電圧を平均化することによって取得している。
また、特許文献2に開示されているように、電流制限用のVth(oc)を、Vo・(1-Don)の値に比例した誤差信号により補正するスイッチング電源装置があった。
特開2010−124614号公報 特開2002−305873号公報
特許文献1のスイッチング電源装置は、過電流垂下特性の垂下点とスソ引き量の両方の補正が可能であるが、設計の自由度が低いため補正量の微調整が難しく、特に入力電圧Viの範囲が広い電源装置を設計する場合、補正量を最適化するのに苦労する。また、トランスに補助巻線を設ける構成のため、トランスの小型化が妨げられるという問題があった。
また、特許文献2のスイッチング電源装置は、上述した平滑回路18の出力平滑インダクタ18aに流れるリップル電流の影響をキャンセルする動作を行うので、過電流垂下特性の垂下点の補正は可能であるが、スソ引き量の補正はできないものである。なぜなら、Vo・(1-Don)=Vo・Doffに比例した誤差信号により補正するため、出力電圧Voがゼロに近くなると補正量がほぼゼロになり、スソ引き量を制御することができないからである。
本発明は、上記背景技術に鑑みて成されたものであり、過電流垂下特性の垂下点及びスソ引き量を容易に制御することができるシンプルな過電流保護回路を備え、安全性の高いスイッチング電源装置を提供することを目的とする。
本発明は、所定のスイッチング周波数でパルス幅変調された駆動パルスを出力する駆動パルス生成回路と、前記駆動パルスによってオンオフ駆動され、入力電圧を断続することによって交流電圧を発生させる主スイッチング素子と、前記交流電圧を整流した整流電圧を出力する整流回路と、前記整流電圧をインダクタ及びコンデンサで平滑し、外部接続された負荷に出力電圧及び出力電流を供給する平滑回路と、前記主スイッチング素子に流れるスイッチング電流の流路に挿入され、前記スイッチング電流に比例した電流検出電圧を発生する電流検出抵抗と、前記電流検出電圧のピーク値が電流制限用の基準値を超えると、前記駆動パルス生成回路に電流制限信号を送信し、前記主スイッチング素子を強制的にオフさせる電流制限信号生成回路とを備えたスイッチング電源装置であって、
前記電流検出抵抗は、一端が制御用グランドに接続され、他端に負の電流検出電圧が発生するように設けられ、
前記電流制限信号生成回路は、一端に第一の直流電圧が供給される第一の抵抗と、一端が前記第一の抵抗の他端に接続された第二の抵抗と、コレクタが前記第二の抵抗の他端に接続され、ベースが前記第一及び第二の抵抗の中点に接続されたNPN型のトランジスタである第一のトランジスタと、一端が前記第一のトランジスタのエミッタに接続され、他端が前記制御用グランドに接続された平滑コンデンサと、一端に第二の直流電圧が供給される第三の抵抗と、一端が前記第三の抵抗の他端に接続され、他端が前記平滑コンデンサの一端に接続された第四の抵抗と、前記第三及び第四の抵抗の中点と前記制御用グランドとの間に接続され、前記主スイッチング素子と同位相でオンオフする補助スイッチング素子と、ベースが前記第一のトランジスタのコレクタに接続され、エミッタが前記電流検出抵抗の他端に接続され、コレクタから前記電流制限信号を出力するNPN型のトランジスタである第二のトランジスタとを備え、
前記電流制限用の基準値は、前記第二の抵抗の発生電圧と、前記平滑コンデンサの発生電圧により設定され、前記電流検出電圧が前記電流制限用の基準値を超えると、前記第二のトランジスタがオンして前記電流制限信号がローレベルになり、前記電流制限信号がローレベルになると、前記駆動パルス生成回路は、前記駆動パルスを速やかに反転させ、前記主スイッチング素子をオフさせるスイッチング電源装置である。
前記第三の抵抗の一端に供給される第二の直流電圧は、前記入力電圧又はこれに略比例した電圧とする構成にしてもよい。前記第一の抵抗の一端に供給される前記第一の直流電圧は、前記入力電圧が高くなると、その変化量に応じて高くなる構成にしてもよい。また、一端に第三の直流電圧が供給され、他端が前記平滑コンデンサの一端に接続された第五の抵抗を備え、前記第三の直流電圧は、前記入力電圧が高くなると、その変化量に応じて高くなる構成にしてもよい。
前記主スイッチング素子及び前記補助スイッチン素子はNチャネルのMOS型FETであり、共に前記駆動パルスによってオンオフ駆動され、前記第四の抵抗と直列の位置に、前記第四の抵抗を通じて前記平滑コンデンサを充電する向きに配したダイオードが挿入され、前記平滑コンデンサと並列の位置に、前記平滑コンデンサを放電する第六の抵抗が設けられている構成にしてもよい。
前記第一の直流電圧を生成する第一の電圧生成回路を有し、前記第一の電圧生成回路は、装置内部の温度を検出し、この検出温度に基づいて前記第一の直流電圧を補正することにより、前記第一のトランジスタの特性の温度変動によって前記電流制限用の基準値が変動するのをキャンセルする構成にしてもよい。あるいは、前記第一の直流電圧を生成する第一の電圧生成回路を有し、前記第一の電圧生成回路は、装置内部の温度を検出し、検出温度が温度制限用の基準値を超えると、前記第一の直流電圧を小さい値に切り替えて前記出力電圧及び出力電流をダウンさせる構成にしてもよい。
本発明のスイッチング電源装置によれば、過電流保護回路の電流制限用の基準値を、オフ時比率Doffや入力電圧Viに基づいて補正することによって、過電流垂下特性の垂下点及びスソ引き量を効果的に制御することができ、安全性の高い過電流垂下特性を実現することができる。しかも、電流制限信号生成回路は、独特な回路構成により設計の自由度が非常に高く、補正量を微調整する手段が多いので、入力電圧Viの範囲が広い電源装置を設計する場合でも、補正量の最適化を容易に行うことができる。
本発明のスイッチング電源装置の第一の実施形態を示す回路図である。 第一の実施形態のスイッチング電源装置に設定された電流制限用の基準値の特性を示すグラフ(a)、過電流垂下特性を示すグラフ(b)である。 本発明のスイッチング電源装置の第二の実施形態を示す回路図である。 第二の実施形態のスイッチング電源装置設定された電流制限用の基準値の特性を示すグラフ(a)、過電流垂下特性を示すグラフ(b)である。 本発明のスイッチング電源装置の第三の実施形態を示す回路図である。 第一の直流電圧生成回路が出力する第一の直流電圧の特性を示すグラフである。 第三の実施形態のスイッチング電源装置に設定された電流制限用の基準値の特性を示すグラフ(a)、過電流垂下特性を示すグラフ(b)である。 本発明のスイッチング電源装置の第四の実施形態を示す回路図である。 第三の直流電圧生成回路が出力する第三の直流電圧の特性を示すグラフである。 第四の実施形態のスイッチング電源装置に設定された電流制限用の基準値の特性を示すグラフ(a)、過電流垂下特性を示すグラフ(b)である。 第一の直流電圧生成回路の一変形例が出力する第一の直流電圧の特性を示すグラフ(a)、他の変形例が出力する第一の直流電圧の特性を示すグラフ(b)である。 従来のスイッチング電源装置を示す回路図である。 駆動パルス生成回路の内部構成の一例を示す回路図である 従来のスイッチング電源装置における電流制限用の基準値の特性を示すグラフ(a)、過電流垂下特性を示すグラフ(b)である。 出力平滑インダクタのリップル電流の影響を示す電流検出電圧の波形(a),(b)である。 主スイッチング素子がオフするまでの遅延時間の影響を示す電流検出電圧の波形(a),(b)である。
以下、本発明のスイッチング電源装置の第一の実施形態について、図1、図2に基づいて説明する。ここで、上述の従来のスイッチング電源装置10と同様の構成は、同一の符号を付して説明を省略する。
第一の実施形態のスイッチング電源装置32は、スイッチング電源装置10と同様に、パルス・バイ・パルス方式の過電流保護の機能を備えたシングルエンディッドフォワード型の電源であり、図12に示す従来の過電流保護回路26に代えて、新規な過電流保護回路34が設けられている。
過電流保護回路34は、電流検出抵抗28と電流制限信号生成回路36とで構成されている。電流検出抵抗28は、主スイッチング素子12に流れるスイッチング電流Idの流路に挿入され、一端が制御用グランド34gに接続され、他端にスイッチング電流Idに比例した負の電流検出電圧Vdを発生する。
電流制限信号生成回路36は、電流検出電圧Vdのピーク値が負方向に増加して電流制限用の基準値Vth(oc)を超えると、駆動パルス生成回路24に電流制限信号V(cur)を送信し、主スイッチング素子12を強制的にオフさせる働きをする回路である。
電流制限信号生成回路36は、一端に第一の直流電圧Vr1が供給される第一の抵抗38(1)が設けられ、第一の抵抗38(1)の他端に第二の抵抗38(2)の一端が接続されている。第二の抵抗38(2)の他端には、NPN型のトランジスタである第一のトランジスタ40(1)のコレクタが接続され、第一のトランジスタ40(1)のベースが前記第一及び第二の抵抗の中点に接続されている。第一のトランジスタ40(1)のエミッタには、平滑コンデンサ42の一端が接続され、平滑コンデンサ42の他端が制御用グランド34gに接続されている。
また、一端に第二の直流電圧Vr2が供給される第三の抵抗38(3)が設けられ、第三の抵抗38(3)の他端に第四の抵抗38(4)の一端に接続されている。第四の抵抗38(4)の他端は、平滑コンデンサ42の他端に接続されている。第三及び第四の抵抗38(3),38(4)の中点には、NチャネルのMOS型FETである補助スイッチング素子44のドレインが接続され、補助スイッチング素子44のソースが制御用グランド34gに接続され、ゲートが主スイッチング素子12のゲートに接続されている。補助スイッチング素子44は、駆動パルスVgによって駆動され、主スイッチング素子12と同位相でオンオフする。
さらに、第一のトランジスタ40(1)のコレクタには、NPN型のトランジスタである第二のトランジスタ40(2)のベースが接続され、第二のトランジスタ40(2)のエミッタが電流検出抵抗28の他端(負の電流検出電圧Vdが発生する側)に接続され、コレクタから駆動パルス生成回路24に向けて電流制限信号V(cur)を出力する。
スイッチング電源装置32の場合、第一及び第二の直流電圧Vr1,Vr2は固定電圧であり、電源の動作中に変化しない。
平滑コンデンサ42は、補助スイッチング素子44がオフの期間に、第二の直流電圧Vr2から第三及び第四の抵抗38(3),38(4)を通じて充電され、オンの期間に、第四の抵抗38(4)及び補助スイッチング素子44を通じて放電される。つまり、補助スイッチング素子44が第二の直流電圧Vr2をオフ時比率Doffでチョップし、平滑コンデンサ42で平滑する動作が行われるので、平滑コンデンサ42に発生する電圧Vaは、概略、式(3)のように表すことができる。
Figure 2016077131
式(3)から分かるように、電圧Vaはオフ時比率Doffが大きいときに相対的に高くなる。また、式(1)〜(3)から分かるように、電圧Vaは、入力電圧Viが高いときや、出力電圧Voが低下したときに、相対的に高くなる。
第二の抵抗38(2)に発生する電圧Vbは、第一及び第二のトランジスタ40(1),40(2)の電流増幅率が十分大きいとすると、概略、式(4)のように表される。
Figure 2016077131
ここで、R38(1),R38(2)は、それぞれ第一及び第二の抵抗38(1),38(2)の抵抗値であり、Vbeは、第一のトランジスタ40(1)のベースエミッタ間電圧である。電圧Vbは、式(4)から分かるように、例えば「Vr1>>Vb+Vbe」のように設定すれば、ほぼ電圧Vr1値により決定される。
第二のトランジスタ40(2)は、電流検出電圧Vdが負方向に増加し、そのピーク値が電圧Vbから電圧Vaを差し引いた値を超えるとオンし、コレクタから出力される電流制限信号V(cur)がローレベルになり、駆動パルス生成回路24が駆動パルスVgを速やかに反転させ、主スイッチング素子12をオフさせる。したがって、電流制限用の基準値Vth(oc)は、式(5)のように表される。
Figure 2016077131
基準値Vth(oc)に対する電圧Vaと電圧Vbの各寄与率は、第一及び第二の直流電圧Vr1,Vr2や各部の定数設定により、自由に変更することができる。
スイッチング電源装置32の電流制限用の基準値Vth(oc)は、電流制限信号生成回路36により、図2(a)のように設定されている。ここでは、電圧Vbはほぼ一定の値(第一の直流電圧Vr1により決定される値)であるが、出力電圧Voが低くなると電圧Vaが高くなり、出力電圧Voが低くなると基準値Vth(oc)が相対的に低くなる。
スイッチング電源装置32の過電流垂下特性は、この基準値Vth(oc)の特性により、図2(b)のように改善される。つまり、図14(b)との相対的な比較において、出力電圧Voが低くなったときのスソ引き量が小さくなり、出力電流Ioが制限される範囲ΔI(oc)が小さくなる。ただ、電流制限信号生成回路36の構成上、出力電圧Voが高いときの基準値Vth(oc)が、入力電圧Viが低いときの方が高くなるため、入力電圧Viの高低による垂下点の差が従来よりも若干大きくなってしまう点に留意すべきである。しかしながら、スソ引き点が補正されることにより、範囲ΔI(oc)が大幅に小さくなっているため、全体として安全性が向上していると言える。
以上説明したように、第一の実施形態のスイッチング電源装置32によれば、電流制限用の基準値Vth(oc)をオフ時比率Doffに基づいて補正するので、スソ引き量を効果的に制御することができ、安全性の高い過電流垂下特性を実現することができる。
次に、本発明のスイッチング電源装置の第二の実施形態について、図3、図4に基づいて説明する。ここで、上記のスイッチング電源装置10,32と同様の構成は、同一の符号を付して説明を省略する。第二の実施形態のスイッチング電源装置46は、スイッチング電源装置32とほぼ同様の構成であるが、異なるのは、電流制限信号生成回路36の構成の一部を変更した電流制限信号生成回路48が設けられている点である。
電流制限信号生成回路48は、第三の抵抗38(1)の一端が入力電圧Viのラインに接続され、第二の直流電圧Vr2として入力電圧Viが供給される構成になっている。つまり、平滑コンデンサ42は、補助スイッチング素子44がオフの期間、入力電圧Viから第三及び第四の抵抗38(3),38(4)を通じて充電される。
スイッチング電源装置46の電流制限用の基準値Vth(oc)は、電流制限信号生成回路48により、図4(a)のように設定されている。電圧Vbは、ほぼ一定の値(第一の直流電圧Vr1により決定される値)であるが、出力電圧Voが低くなると電圧Vaが高くなり、出力電圧Voが低くなると基準値Vth(oc)が相対的に低くなる。これは図2(a)と同じであるが、電流制限信号生成回路48は、第二の直流電圧Vr2が入力電圧Viなので、出力電圧Voに対する電圧Vaの傾きがより一層大きくなり、出力電圧Voに対する基準値Vth(oc)の傾きが、図2(a)よりも大きくなる。
スイッチング電源装置46の過電流垂下特性は、この基準値Vth(oc)の特性により、図4(b)のように改善される。つまり、図2(b)との相対的な比較において、出力電圧Voが低くなったときのスソ引き量がより小さくなり、出力電流Ioが制限される範囲ΔI(oc)がより小さくなっている。ただ、電流制限信号生成回路48の構成上、入力電圧Viの高低による基準値Vth(oc)の差が一層大きくなるため、入力電圧Viの高低による垂下点の差がスイッチング電源装置32よりも大きくなってしまう点に留意すべきである。しかしながら、スソ引き量が補正されることにより、範囲ΔI(oc)が一層小さくなっているため、全体として安全性が向上していると言える。
以上説明したように、第二の実施形態のスイッチング電源装置46によれば、上記のスイッチング電源装置32と同様の作用効果が得られ、さらに、スソ引き量をより効果的に制御することが可能になり、安全性の高い過電流垂下特性を実現することができる。
なお、電圧Vaが高くなり過ぎると式(4),(5)が成立しなくなるので、平滑コンデンサ42の両端に抵抗を接続し、式(4),(5)が成立する範囲で電圧Vaが変化するようにしてもよい。あるいは、回路中に、入力電圧Viに比例して変化する低い電圧が発生している箇所がある場合、その電圧を第二の直流電圧Vr2として使用してもよい。
次に、本発明のスイッチング電源装置の第三の実施形態について、図5〜図7に基づいて説明する。ここで、上記のスイッチング電源装置10,32,46と同様の構成は、同一の符号を付して説明を省略する。第三の実施形態のスイッチング電源装置50は、スイッチング電源装置46とほぼ同様の構成であるが、異なるのは、電流制限信号生成回路48の構成の一部を変更した電流制限信号生成回路52が設けられている点である。
電流制限信号生成回路52は、第一の抵抗38(1)に第一の直流電圧Vr1を供給する第一の直流電圧生成回路54が設けられている。そして、第一の直流電圧生成回路54は、入力電圧Viを検出し、図6に示すように、入力電圧Viが高くなるとその変化量に応じて第一の直流電圧Vr1を高くする。第一の直流電圧生成回路54は、例えば汎用のデジタルプロセッサ(マイコン)を用いて構成することができ、図示しない入出力電圧検出手段から取得した信号を受け、あらかじめ設定された条件に従って第一の直流電圧Vr1を変化させる。
スイッチング電源装置50の電流制限用の基準値Vth(oc)は、電流制限信号生成回路52により、図7(a)のように設定されている。ここでは、入力電圧Viに応じて第一の直流電圧Vr1が変化することにより、入力電圧Viが高くなると電圧Vbが高くなるので、図4(a)と比較すると、入力電圧Viの高低による基準値Vth(oc)の差が小さくなっている。出力電圧Voに対する基準値Vth(oc)の傾きはほぼ同じである。
スイッチング電源装置50の過電流垂下特性は、この基準値Vth(oc)の特性により、図7(b)のように改善される。つまり、図4(b)との相対的な比較において、入力電圧Viが高い時と低い時の垂下点の差が小さくなり、出力電流Ioが制限される範囲ΔI(oc)が小さくなっているので、スイッチング電源装置46よりも安全性が向上していると言える。
以上説明したように、第三の実施形態のスイッチング電源装置50によれば、上記のスイッチング電源装置46と同様の作用効果が得られ、さらに、垂下点を効果的に制御することが可能になり、安全性の高い過電流垂下特性を実現することができる。
次に、本発明のスイッチング電源装置の第四の実施形態について、図8〜図10に基づいて説明する。ここで、上記のスイッチング電源装置10,32,46,50と同様の構成は、同一の符号を付して説明を省略する。第四の実施形態のスイッチング電源装置56は、スイッチング電源装置50とほぼ同様の構成であるが、異なるのは、電流制限信号生成回路52の構成の一部を変更した電流制限信号生成回路58が設けられている点である。
電流制限信号生成回路58は、一端に第三の直流電圧Vr3が供給され、他端が平滑コンデンサ42の一端に接続された第五の抵抗38(5)と、第三の直流電圧Vr3を生成する第三の直流電圧生成回路60とが設けられている。第三の直流電圧生成回路60は、入力電圧Viを検出し、図9に示すように、入力電圧Viが高くなるとその変化量に応じて第三の直流電圧Vr3を高くする。第三の直流電圧Vr3は、入力電圧Viよりも低い値である。第三の直流電圧生成回路60は、例えば汎用のデジタルプロセッサ(マイコン)を用いて構成することができ、図示しない入出力電圧検出手段から取得した信号を受け、あらかじめ設定された条件に従って第三の直流電圧Vr1を変化させる。
また、電流制限信号生成回路58は、第四の抵抗38(4)と直列の位置に、第四の抵抗38(4)を通じて前記平滑コンデンサを充電する向き配したダイオード62が挿入され、平滑コンデンサ42と並列の位置に、平滑コンデンサ42を放電する第六の抵抗38(6)が設けられている。ダイオード62は、補助スイッチング素子44のドレインソース間に存在する寄生コンデンサの影響を小さくするための素子であり、これにより、オン時比率Donが非常に小さくなったときでも式(3)を成立させやすくなり、第三、第四及び第五の抵抗38(3),38(4),38(5)を大きな抵抗値にして損失を小さくすることができる。また、ダイオード62を設けた場合、新たに平滑コンデンサ42の放電経路が必要になるので、第六の抵抗38(6)が設けられている。
スイッチング電源装置56の電流制限用の基準値Vth(oc)は、電流制限信号生成回路58により、図10(a)のように設定されている。ここでは、入力電圧Viに応じて第三の直流電圧Vr3が変化することにより、出力電圧Voに対する電圧Vaの傾きが入力電圧Viごとに微妙に調整され、図7(a)との相対的な比較において、出力電圧Voが高いときに入力電圧Viの高低による基準値Vth(oc)の差が大きくなり、出力電圧Voが低い時ときに入力電圧Viが高いときの基準値Vth(oc)がより低くなっている。
スイッチング電源装置56の過電流垂下特性は、この基準値Vth(oc)の特性により、図10(b)のように改善される。つまり、図7(b)との相対的な比較において、入力電圧Viが高い時と低い時の垂下点の差を小さくなり、また、入力電圧Viが高い時のスソ引き量が小さくなり、その結果、出力電流Ioが制限される範囲ΔI(oc)がより小さくなっており、スイッチング電源装置50よりも安全性が向上していると言える。
以上説明したように、第四の実施形態のスイッチング電源装置56によれば、上記のスイッチング電源装置50と同様の作用効果が得られ、さらに、垂下点及びスソ引き量を効果的に制御することが可能になり、安全性の高い過電流垂下特性を実現することができる。
次に、第一の直流電圧生成回路54の変形例について説明する。第一の直流電圧生成回路54は、汎用のデジタルプロセッサ(マイコン)を用いて構成すれば、様々なアプリケーションが可能であり、入出力電圧検出手段から取得した信号に基づいて第一の直流電圧Vr1を変化させる機能に加え、温度検出手段から取得した信号に基づいて第一の直流電圧Vr1を変化させる機能も容易に付加することができる。
第一の直流電圧生成回路54の一変形例である第一の直流電圧生成回路54aは、装置内部の温度(例えば、特定の回路素子の温度、回路基板の温度、又は放熱器の温度)を検出し、この検出温度に基づいて第一の直流電圧Vr1を補正することにより、第一のトランジスタ40(1)の特性の温度変動によって電流制限用の基準値Vth(oc)が変動するのをキャンセルする。第一のトランジスタ40(1)の特性とは、例えば、ベースエミッタ間電圧Vbeや電流増幅率である。
上記の式(4)から分かるように、ベースエミッタ間電圧Vbeが温度によって変動すると、電圧Vbが変動し、その結果、基準値Vth(oc)が変化して過電流垂下特性が好ましくない形になるおそれがある。また、式(4)は電流増幅率が十分大きい場合に成立する式であり、電流増幅率が温度によって変動して小さくなると、電圧Vbが変動し、その結果、基準値Vth(oc)が変化して過電流垂下特性が好ましくない形になるおそれがある。しかし、図11(a)に示すように、検出温度に応じて第一の直流電圧Vr1を補正し、基準値Vth(oc)が変化するのをキャンセルすることで、環境温度によらず常に良好な過電流垂下特性を得ることができる。
第一の直流電圧生成回路54の他の変形例である第一の直流電圧生成回路54bは、装置内部の温度を検出し、検出温度が温度制限用の基準値を超えると、第一の直流電圧Vrを小さい値に切り替えて出力電圧Vo及び出力電流Ioをダウンさせる。この動作により、過電流保護だけでなく、過熱保護も容易に実現することができる。
なお、本発明のスイッチング電源装置は、上記実施形態に限定されるものではない。例えば、上記のスイッチング電源装置32,46,50,56に設定されている電流制限用の基準値Vth(oc)の特性は、必ずしも図2(a),図4(a),図7(a),図10(a)と同じ特性である必要はなく、電源回路の特徴に合わせて変更することができる。例えば、出力平滑インダクタ18aのL値が比較的大きい場合、出力平滑インダクタ18aのリップル電流が小さく、入力電圧Viの高低による垂下点の変動がさほど問題にならないので、過電流垂下特性の垂下点を制御するための基準値Vth(oc)の補正量は、相対的に小さくなるように変更すればよい。また、例えば、スイッチング周波数が比較的低い場合、過電流を検出してからスイッチング電流Idが遮断されるまでの遅延時間の影響が小さく、スソ引き量がさほど問題にならないので、スソ引き量を制御するための基準値Vth(oc)の補正量は、相対的に小さくなるように変更すればよい。
また、上記のスイッチング電源装置32,46,50,56の各過電流垂下特性(図2(b),図4(b),図7(b),図10(b))は、装置ごとの動作の違い及び作用効果の違いを強調するため、意図的にデフォルメしてある。したがって、「出力平滑インダクタ18aのL値が比較的大きい」、「スイッチング周波数Fswが比較低い」、「スイッチング電流Idが遮断されるまでの遅延時間Tdが短い」、又は「入力電圧Viの上限と下限の差が比較的小さい」等の条件が合えば、構成が最もシンプルなスイッチング電源装置32でも、図7(b)、図10(b)のような良好な過電流垂下特性を実現することができる。同様に、構成が最も複雑なスイッチング電源装置56の第一の直流電圧Vr1を固定電圧に変更しても(構成を簡単化しても)、図10(b)のような良好な過電流垂下特性を実現することができる。
電流制限信号制限回路58の「第四の抵抗38(4)と直列にダイオード62を挿入し、平滑コンデンサ42と並列に第六の抵抗38(6)を設ける」という構成は、他の電流制限信号制限回路36,48,52にも適用することができ、同様の作用効果を得ることができる。
また、本発明は、整流回路が出力する整流電圧をLCフィルタ型の平滑回路で平滑する型式の電源に適用することができ、上記のシングルエンディッドフォワード型以外に、例えば、ハーフブリッジ型、フルブリッジ型、プッシュプル型、カスケードフォワード型、降圧チョッパ型等にも適用することができる。
10,32,46,50,56 スイッチング電源装置
12 主スイッチング素子
16 整流回路
18 平滑回路
18a 出力平滑インダクタ
18b 出力平滑コンデンサ
24,24a 駆動パルス生成回路
28 電流検出抵抗
34 過電流保護回路
34g 制御用グランド
36,48,52,58 電流制限信号生成回路
38(1)〜38(6) 第一〜第六の抵抗
40(1),40(2) 第一、第二のトランジスタ
42 平滑コンデンサ
44 補助スイッチング素子
54,54a,54b 第一の直流電圧生成回路
60 第三の直流電圧生成回路
62 ダイオード
Don オン時比率
Doff オフ時比率
Id スイッチング電流
Io 出力電流
Va 平滑コンデンサの電圧
Vb 第二の抵抗の電圧
V(cur) 電流制限信号
Vd 電流検出電圧
Vg 駆動パルス
Vi 入力電圧
Vo 出力電圧
Vr1〜Vr3 第一〜第三の直流電圧
Vth(oc) 電流制限用の基準値

Claims (7)

  1. 所定のスイッチング周波数でパルス幅変調された駆動パルスを出力する駆動パルス生成回路と、前記駆動パルスによってオンオフ駆動され、入力電圧を断続することによって交流電圧を発生させる主スイッチング素子と、前記交流電圧を整流した整流電圧を出力する整流回路と、前記整流電圧をインダクタ及びコンデンサで平滑し、外部接続された負荷に出力電圧及び出力電流を供給する平滑回路と、前記主スイッチング素子に流れるスイッチング電流の流路に挿入され、前記スイッチング電流に比例した電流検出電圧を発生する電流検出抵抗と、前記電流検出電圧のピーク値が電流制限用の基準値を超えると、前記駆動パルス生成回路に電流制限信号を送信し、前記主スイッチング素子を強制的にオフさせる電流制限信号生成回路とを備えたスイッチング電源装置において、
    前記電流検出抵抗は、一端が制御用グランドに接続され、他端に負の電流検出電圧が発生するように設けられ、
    前記電流制限信号生成回路は、一端に第一の直流電圧が供給される第一の抵抗と、一端が前記第一の抵抗の他端に接続された第二の抵抗と、コレクタが前記第二の抵抗の他端に接続され、ベースが前記第一及び第二の抵抗の中点に接続されたNPN型のトランジスタである第一のトランジスタと、一端が前記第一のトランジスタのエミッタに接続され、他端が前記制御用グランドに接続された平滑コンデンサと、一端に第二の直流電圧が供給される第三の抵抗と、一端が前記第三の抵抗の他端に接続され、他端が前記平滑コンデンサの一端に接続された第四の抵抗と、前記第三及び第四の抵抗の中点と前記制御用グランドとの間に接続され、前記主スイッチング素子と同位相でオンオフする補助スイッチング素子と、ベースが前記第一のトランジスタのコレクタに接続され、エミッタが前記電流検出抵抗の他端に接続され、コレクタから前記電流制限信号を出力するNPN型のトランジスタである第二のトランジスタとを備え、
    前記電流制限用の基準値は、前記第二の抵抗の発生電圧と、前記平滑コンデンサの発生電圧により設定され、前記電流検出電圧が前記電流制限用の基準値を超えると、前記第二のトランジスタがオンして前記電流制限信号がローレベルになり、前記電流制限信号がローレベルになると、前記駆動パルス生成回路は、前記駆動パルスを速やかに反転させ、前記主スイッチング素子をオフさせることを特徴とするスイッチング電源装置。
  2. 前記第三の抵抗の一端に供給される第二の直流電圧は、前記入力電圧又はこれに略比例した電圧である請求項1記載のスイッチング電源装置。
  3. 前記第一の抵抗の一端に供給される前記第一の直流電圧は、前記入力電圧が高くなると、その変化量に応じて高くなる請求項2記載のスイッチング電源装置。
  4. 一端に第三の直流電圧が供給され、他端が前記平滑コンデンサの一端に接続された第五の抵抗を備え、
    前記第三の直流電圧は、前記入力電圧が高くなると、その変化量に応じて高くなる請求項2又は3記載のスイッチング電源装置。
  5. 前記主スイッチング素子及び前記補助スイッチン素子はNチャネルのMOS型FETであり、共に前記駆動パルスによってオンオフ駆動され、
    前記第四の抵抗と直列の位置に、前記第四の抵抗を通じて前記平滑コンデンサを充電する向きに配したダイオードが挿入され、前記平滑コンデンサと並列の位置に、前記平滑コンデンサを放電する第六の抵抗が設けられている請求項1乃至4のいずれか記載のスイッチング電源装置。
  6. 前記第一の直流電圧を生成する第一の電圧生成回路を有し、前記第一の電圧生成回路は、装置内部の温度を検出し、この検出温度に基づいて前記第一の直流電圧を補正することにより、前記第一のトランジスタの特性の温度変動によって前記電流制限用の基準値が変動するのをキャンセルする請求項1乃至5のいずれか記載のスイッチング電源装置。
  7. 前記第一の直流電圧を生成する第一の電圧生成回路を有し、前記第一の電圧生成回路は、装置内部の温度を検出し、検出温度が温度制限用の基準値を超えると、前記第一の直流電圧を小さい値に切り替えて前記出力電圧及び出力電流をダウンさせる請求項1乃至5のいずれか記載のスイッチング電源装置。
JP2014207882A 2014-10-09 2014-10-09 スイッチング電源装置 Active JP6174542B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207882A JP6174542B2 (ja) 2014-10-09 2014-10-09 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207882A JP6174542B2 (ja) 2014-10-09 2014-10-09 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2016077131A true JP2016077131A (ja) 2016-05-12
JP6174542B2 JP6174542B2 (ja) 2017-08-02

Family

ID=55950119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207882A Active JP6174542B2 (ja) 2014-10-09 2014-10-09 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP6174542B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136105A (ja) * 2007-11-30 2009-06-18 Cosel Co Ltd スイッチング電源装置及びその初期設定方法
JP2009261100A (ja) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp スイッチング電源の過電流保護回路
JP2010124614A (ja) * 2008-11-20 2010-06-03 Cosel Co Ltd スイッチング電源装置
JP2013143844A (ja) * 2012-01-11 2013-07-22 Murata Mfg Co Ltd スイッチング電源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136105A (ja) * 2007-11-30 2009-06-18 Cosel Co Ltd スイッチング電源装置及びその初期設定方法
JP2009261100A (ja) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp スイッチング電源の過電流保護回路
JP2010124614A (ja) * 2008-11-20 2010-06-03 Cosel Co Ltd スイッチング電源装置
JP2013143844A (ja) * 2012-01-11 2013-07-22 Murata Mfg Co Ltd スイッチング電源

Also Published As

Publication number Publication date
JP6174542B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
US9812856B2 (en) Modulation mode control circuit, switch control circuit including the modulation mode control circuit and power supply device including the switch control circuit
US9716426B2 (en) Switching power supply circuit
US8742693B2 (en) Switching power supply circuit, semiconductor device, and LED lighting device
US9602012B2 (en) Apparatus and method for controlling switching power supply
US8085007B2 (en) Switching power supply circuit
US20160087528A1 (en) Smps with adaptive cot control and method thereof
US20120313433A1 (en) Switching power supply apparatus
US8830699B2 (en) Control circuit of switching power supply system and switching power supply system
US9510417B2 (en) LED drive method and LED drive device
US10090767B2 (en) Switching power supply device having a pulse width holder
JP6778267B2 (ja) スイッチング電源装置および半導体装置
US10170906B2 (en) Semiconductor device for power supply control
JP6443088B2 (ja) スイッチング電源装置
JP2011166941A (ja) スイッチング電源装置
JP5282067B2 (ja) 力率改善回路およびその起動動作制御方法
US9748850B2 (en) Switching power-supply with switching frequency correction
JP5032447B2 (ja) スイッチング電源装置
JP6174542B2 (ja) スイッチング電源装置
JP6479607B2 (ja) 直流安定化電源装置
JP6810150B2 (ja) スイッチング電源装置および半導体装置
JP6280782B2 (ja) スイッチング電源装置
JP5974733B2 (ja) スイッチング電源装置
JP4387244B2 (ja) スイッチング電源装置
JP2012050168A (ja) スイッチング電源回路
JP5782779B2 (ja) 整流回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250