JP2013131538A - 配線板、配線板の製造方法 - Google Patents

配線板、配線板の製造方法 Download PDF

Info

Publication number
JP2013131538A
JP2013131538A JP2011278379A JP2011278379A JP2013131538A JP 2013131538 A JP2013131538 A JP 2013131538A JP 2011278379 A JP2011278379 A JP 2011278379A JP 2011278379 A JP2011278379 A JP 2011278379A JP 2013131538 A JP2013131538 A JP 2013131538A
Authority
JP
Japan
Prior art keywords
wiring pattern
insulating layer
wiring
layer
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011278379A
Other languages
English (en)
Inventor
Kenji Sasaoka
賢司 笹岡
Yoichi Tawara
洋一 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011278379A priority Critical patent/JP2013131538A/ja
Publication of JP2013131538A publication Critical patent/JP2013131538A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

【課題】部品を高密度に実装させる一方、電力系の回路の適用にも融通性を高くすること。
【解決手段】第1の絶縁層と;この下面上に位置する第1の配線パターンと;第1の絶縁層の上面上に、第1の絶縁層の厚み方向に沈み込むことなく位置する第2の配線パターンと;第1の絶縁層を貫通して位置する第1の層間接続体と;を有する第1の積層部と、第1の積層部と同様の構成の第2の積層部と、第1の積層部の第2の配線パターンが位置する側と、第2の積層部の第3の配線パターンが位置する側との間に位置して第1、第2の積層部を接着、一体化している第3の絶縁層と、第3の絶縁層を貫通し第2、第3の配線パターンの面間に挟設された第3の層間接続体と、を具備し、第2の積層部の第3、第4の配線パターンのうちのもっとも薄い配線パターンが、第1の積層部の第1、第2の配線パターンのうちのもっとも厚い配線パターンよりも厚い。
【選択図】図1

Description

本発明は、部品を実装するための配線板およびその製造方法に係り、特に、電力仕様の異なる部品を混在して実装させる形態に好適な配線板およびその製造方法に関する。
配線板は、部品が実装されることにより種々の回路を実現する基盤要素として広範に利用されている。ひとつの方向として、配線パターンおよび縦方向(板厚み方向)導電体を高密度に配置し、さらに配線層を多層化するなどして、部品を高密度に実装させる技術が進展している。部品として半導体パッケージであれば、BGA、CSP、QFP、QFNなどの表面実装型パッケージが存在するが、その端子ピッチは0.2mm程度まで狭小化が進んでいる。表面実装型の受動素子部品でも、0402(0.4mm×0.2mm)型のように非常に小型のものが使用されてきている。部品や端子ピッチの微細化は、上記のように配線板の側の対応が前提になる。信号処理用途ではこのような進展が著しい。
一方、電源回路のような電力系の用途では、必要な電力を供給する仕様に応じて、配線板として別の対応が必要である。すなわち、典型的には電流密度の制限から、配線パターンなどの微細化はおのずと限られる。したがって、信号処理用途に適合するように仕様化された配線板をそのまま電源回路をも含む用途に用いた場合には、目的にかなうような電源回路を効率的に実現できないという事情も生じている。
特開2001−64359号公報
本発明は、上記の事情を考慮してなされたもので、部品を高密度に実装させる対応を有する一方、同時に電力系の回路の適用にも高い融通性を有する配線板およびその製造方法を提供することを目的とする。
上記の課題を解決するため、本発明の一態様である配線板は、下面と該下面に対向する上面とを有する第1の絶縁層と;該第1の絶縁層の前記下面上に位置する第1の配線パターンと;該第1の絶縁層の前記上面上に、該第1の絶縁層の厚み方向に沈み込むことなく位置する第2の配線パターンと;前記第1の配線パターンと前記第2の配線パターンとを電気的に導通させるように前記第1の絶縁層を貫通して位置する第1の層間接続体と;を有する第1の積層部と、下面と該下面に対向する上面とを有する第2の絶縁層と;該第2の絶縁層の前記下面上に、該第2の絶縁層の厚み方向に沈み込むことなく位置する第3の配線パターンと;該第2の絶縁層の前記上面上に位置する第4の配線パターンと;前記第3の配線パターンと前記第4の配線パターンとを電気的に導通させるように前記第2の絶縁層を貫通して位置する第2の層間接続体と;を有する第2の積層部と、前記第1の積層部の前記第2の配線パターンが位置する側と、前記第2の積層部の前記第3の配線パターンが位置する側との間に位置して前記第1の積層部と前記第2の積層部とを接着、一体化している第3の絶縁層と、前記第3の絶縁層を貫通して前記第2の配線パターンの面と前記第3の配線パターンの面とに接して挟設された第3の層間接続体と、を具備し、前記第2の積層部の前記第3、第4の配線パターンのうちのもっとも薄い配線パターンが、前記第1の積層部の前記第1、第2の配線パターンのうちのもっとも厚い配線パターンよりも厚い配線パターンであることを特徴とする。
すなわち、この配線板は、下から、第1の積層部、第3の絶縁層、第2の積層部の積層構造になっていて、第1、第2の積層部は、それぞれ、少なくとも両面配線板の構成要素を備えている。そして、第1、第2の積層部は、第3の絶縁層を貫通して設けられた第3の層間接続体により互いに電気的に連絡している。このような構成において、第2の積層部の第3、第4の配線パターンのうちのもっとも薄い配線パターンが、第1の積層部の第1、第2の配線パターンのうちのもっとも厚い配線パターンよりも厚い配線パターンになっている。
したがって、部品を高密度に実装できるように第1の積層部を構成してこれを例えば信号処理用途に適用できる一方、第2の積層部は電力系の回路に適用しても第3、第4の配線パターンに流す電流を許容電流密度に収めることが容易である。換言すれば、配線板の厚み方向下側および下側に実装される部品により例えば信号処理回路を構成し、配線板の厚み方向上側および上側に実装される部品により電力系の回路を構成することが容易にできる。
また、別の態様である配線板の製造方法は、下面と該下面に対向する上面とを有する第1の絶縁層と;該第1の絶縁層の前記下面上に位置する第1の配線パターンと;該第1の絶縁層の前記上面上に、該第1の絶縁層の厚み方向に沈み込むことなく位置する第2の配線パターンと;前記第1の配線パターンと前記第2の配線パターンとを電気的に導通させるように前記第1の絶縁層を貫通して位置する第1の層間接続体と;を有する第1の積層部材を形成する工程と、下面と該下面に対向する上面とを有する第2の絶縁層と;該第2の絶縁層の前記下面上に、該第2の絶縁層の厚み方向に沈み込むことなく位置する第3の配線パターンと;該第2の絶縁層の前記上面上に位置する第4の配線パターンと;前記第3の配線パターンと前記第4の配線パターンとを電気的に導通させるように前記第2の絶縁層を貫通して位置する第2の層間接続体と;を有する第2の積層部材を、該第2の積層部材の前記第3、第4の配線パターンのうちのもっとも薄い配線パターンを、前記第1の積層部材の前記第1、第2の配線パターンのうちのもっとも厚い配線パターンよりも厚く設定することを条件として、形成する工程と、前記第1の積層部材の前記第2の配線パターンが位置する側と、前記第2の積層部材の前記第3の配線パターンが位置する側との間に第3の絶縁層を位置させて、該第3の絶縁層を貫通して設けられた層間絶縁体が前記第2の配線パターンの面と前記第3の配線パターンの面との間に挟設されるように、前記第1の積層部材と前記第2の積層部材とを接着、一体化する工程とを具備することを特徴とする。
この製造方法は、上記の配線板を製造するためのひとつの方法である。
本発明によれば、部品を高密度に実装させる対応を有する一方、同時に電力系の回路の適用にも高い融通性を有する配線板およびその製造方法を提供することができる。
本発明の一実施形態である配線板の構成を模式的に示す断面図。 図1に示した配線板を製造するための一工程を模式的に示す態様図。 図2に示した工程の後になされる、図1に示した配線板の製造するための別の一工程を模式的に示す態様図。 別の実施形態である配線板の構成を模式的に示す断面図。 図4に示した配線板を製造するための一工程を模式的に示す態様図。 さらに別の実施形態である配線板の構成を模式的に示す断面図。 図6に示した配線板を製造するための一工程を模式的に示す態様図。 図7に示した工程の後になされる、図6に示した配線板の製造するための別の一工程を模式的に示す態様図。
本発明の実施形態として、前記第1の層間接続体が、導電性組成物でできた、前記第1の絶縁層の厚み方向に見て径が変化している形状の接続体であり、前記第2の層間接続体が、前記第3の配線パターンと電気導通して該第3の配線パターンから、前記第4の配線パターンの面に電気導通するように延設されたビアホール内めっきビアであるか、または、前記第4の配線パターンと電気導通して該第4の配線パターンから、前記第3の配線パターンの面に電気導通するように延設されたビアホール内めっきビアである、とすることができる。
これは、第1、第2の層間接続体の構成を、それらに求められる典型的な仕様に応じて選択したものである。すなわち、第1の積層部の層間接続体である第1の層間接続体は、例えば信号処理などの回路用として用いられるので、高密度に設けることが可能な、第1の絶縁層の厚み方向に見て径が変化している形状を有する導電性組成物の接続体としている。また、第2の積層部の層間接続体である第2の層間接続体は、例えば電力系の回路用として用いられるので、小さな断面積でも大きな許容電流密度を有するビアホール内めっきビアとしている。
また、実施態様として、前記第3の層間接続体が、導電性組成物でできた、前記第3の絶縁層の厚み方向に見て径が変化していない形状の接続体であるか、または、導電性組成物でできた、前記第2の配線パターンに接する側の径がより大径になるように前記第3の絶縁層の前記厚み方向に見て径が変化している形状の接続体である、とすることができる。これらの接続体を用いれば、第1、第2の積層部を電気的に連絡するようにこれらの第1、第2の積層部を配線板として一体化することが非常に容易である。
また、実施態様として、前記第1の積層部が、前記第1の絶縁層の前記第1の配線パターンが位置する側の面上に設けられた、配線パターンの層を多層化するための積層構造をさらに有する、とすることができる。例えば信号処理などの回路用として用いられる第1の積層部を多層配線化するものであり、これにより配線パターンのレイアウト設計の自由度が高くなる。
また、実施態様として、前記第2の積層部が、該第2の積層部が有する配線パターンの総層数が、前記第1の積層部が有する配線パターンの総層数以下であることを満たす限りにおいて、前記第2の絶縁層の前記第4の配線パターンが位置する側の面上に設けられた、配線パターンの層を多層化するための積層構造をさらに有する、とすることができる。例えば電力系の回路用として用いられる第2の積層部も多層配線化するものである。これにより第2の積層部も配線パターンのレイアウト設計の自由度が高くなる。第1の積層部が有する配線パターンの総層数以下としているのは、電力系の用途であることから、信号処理回路ほど複雑な回路構成には適用されないと考えられるためである。
また、実施態様として、前記第2の配線パターンを含む配線層または前記第3の配線パターンを含む配線層が、電磁シールド層を含む、とすることができる。これは、第1の積層部側の回路と第2の積層部側の回路との電磁誘導干渉を避けるための構成である。第1の積層部側の回路と第2の積層部側の回路とは、機能性あるいは使用周波数帯が非常に異なる回路になる可能性があることへの対応である。
以上を踏まえ、以下では本発明の実施形態を図面を参照しながら説明する。図1は、一実施形態である配線板の構成を模式的に示す断面図である。図1に示すように、この配線板は、絶縁層(板状絶縁層)11〜15、配線パターン(配線層)21〜26(=合計6層配線)、層間接続体(導電性組成物の印刷による導電性バンプ)31〜34、層間接続体(ビアホール内めっきビア)35M、はんだレジスト41、42を有する。
この配線板は、下から、第1の積層部(配線パターン21から同24までで構成される積層部)、絶縁層14、第2の積層部(配線パターン25から同26までで構成される積層部)の積層構造になっていて、第1、第2の積層部は、それぞれ、絶縁層および層間接続体を有して少なくとも両面配線板の構成になっている。そして、第1、第2の積層部は、絶縁層14を貫通して設けられた層間接続体34により互いに電気的に連絡している。このような構成において、第2の積層部が有する配線パターン25、26のうちのもっとも薄い配線パターンが、第1の積層部が有する配線パターン21〜24のうちのもっとも厚い配線パターンよりも厚い配線パターンになっている。
したがって、第1の積層部においては、部品を高密度に実装するための微細な配線パターンを構成できる。よってこれを例えば信号処理用途に適用できる一方、第2の積層部においてはこれを電力系の回路に適用しても配線パターン25、26の厚みが厚いためその流す電流を許容電流密度に収めることが容易である。すなわち、配線板の厚み方向下側および下側に実装される部品により例えば信号処理回路を構成し、配線板の厚み方向上側および上側に実装される部品により電力系の回路を構成することが容易にできる。
以下、この配線板の構成についてさらにより具体的に説明する。
配線パターン21、26は、配線板としての両主面上の配線パターンであり、その上に各種の部品が実装され得る。例えば、配線パターン21には、信号処理用の各種部品が実装され得る一方、配線パターン26には、電源回路用の各種部品が実装され得る。実装ではんだが載るべき配線層21、26のランド部分を除いて両主面上には、はんだ接続時に溶融したはんだをランド部分に留めかつその後は保護層として機能するはんだレジスト41、42が形成されている(厚さはそれぞれ例えば20μm程度)。このランド部分の表層には、耐腐食性の高いNi/Auのめっき層(不図示)を形成するようにしてもよい。
配線パターン22〜25は、それぞれ内層の配線パターンである。両面の配線パターン21、26を含めて、これらは、順に、配線パターン21と配線パターン22の間に絶縁層11が位置し、配線パターン22と配線パターン23の間に絶縁層12が位置し、配線パターン23と配線パターン24の間に絶縁層13が位置し、配線パターン24と配線パターン25との間に絶縁層14が位置し、配線パターン25と配線パターン26との間に絶縁層15が位置する、というように積層されている。配線パターン21〜24は、例えばそれぞれ厚さ18μmの金属(電解銅箔)層からなっている一方、配線パターン25、26は、それぞれ厚さ例えば30μmの金属(電解銅箔)層からなっている。
各絶縁層11〜15は、それぞれ、厚さ例えば60μmで、例えばガラスエポキシ樹脂からなるリジッドな素材である。
配線パターン21と配線パターン22とは、それらのパターンの面に接して挟設されかつ絶縁層11を貫通する層間接続体31により導通し得る。配線パターン22と配線パターン23とは、それらのパターンの面に接して挟設されかつ絶縁層12を貫通する層間接続体32により導通し得る。以下同様に、図示の上層まで配線層と層間接続体との関係が築かれ、配線パターン24と配線パターン25とが、それらのパターンの面に接して挟設されかつ絶縁層14を貫通する層間接続体34により導通し得、最後に、配線パターン25と配線パターン26とが、絶縁層15を貫通する層間接続体35Mにより導通し得るようになっている。
層間接続体31〜34は、それぞれ、導電性組成物のスクリーン印刷により形成される導電性バンプを由来とするものであり、その製造工程に依拠して軸方向(図1の図示で上下の積層方向、配線板の板厚み方向)に径が変化している。その直径は、太い側で例えば100μmである。一方、層間接続体35Mは、配線パターン25と電気導通してこの配線パターン25から、配線パターン26に電気導通するようにめっきで延設された層間接続体である。層間接続体35Mは、例えば円錐台状の形状(すなわち、図示に示すように配線板の板厚み方向に見て径が変化している形状)であり、この形状は、後述するように、その形成方法に由来している。
この実施形態について補足すると以下である。まず、層間接続体31〜34の構成、および層間接続体35Mの構成は、それらに求められる典型的な仕様に応じて選択がされている。すなわち、第1の積層部が有する層間接続体31〜33は、例えば信号処理系などの回路の一部構成となるので、高密度に設けることが可能な、絶縁層11〜13の厚み方向に見て径が変化している形状を有する導電性組成物のものを用いている。一方、第2の積層部が有する層間接続体35Mは、例えば電力系の回路の一部構成となるので、小さな断面積でも大きな許容電流を有するビアホール内めっきビアを用いている。
そして、第1、第2の積層部を電気的に接続する層間接続体34については、第1、第2の積層部を容易に一体化すると同時に電気的に連絡することができ、かつ形成も効率的に行うことができる、絶縁層14の厚み方向に見て径が変化している形状を有する導電性組成物のものを用いている。
また、第1の積層部が、4層の配線パターンの層(配線層21〜24)を有していて、これにより、例えば信号処理などの回路構成用として用いられる。第1の積層部は、4層の配線パターンの層を有することから、第2の積層部に比較して、配線パターンのレイアウト設計の自由度が高くなっている。より単純な構成としては、絶縁層13の配線パターン23が位置する側の面上に、配線パターンの層を多層化するための積層構造を設けないこと(すなわち、第1の積層部が配線層としては配線パターン23、24を有するだけの構成)もあり得る。
次に、図1に示した配線板の製造工程を図2、図3を参照して説明する。図2は、図1に示した配線板の製造するための一工程を模式的に示す態様図であり、図3は、図2に示した工程の後になされる、図1に示した配線板を製造するための別の一工程を模式的に示す態様図である。これらの図において図1中に示した構成要素と同一または同一相当のものには同一符号を付してある。
図2から説明する。図2は、換言すると、第2の積層部である、絶縁層15、配線パターン25、26、層間接続体35Mを有する構成を形成する工程のひとつを示している。まず、絶縁層15の両面に金属(電解銅箔)層25A、26Aが積層された両面銅張板を用意する。そして、図示するように、金属層25Aの露出面の側から、その必要な位置にビアホール35hを例えばレーザ加工で形成する。ビアホール35hは、配線パターン25となる金属層25Aと配線パターン26となる金属層26との層間接続が必要な位置に、金属層25A、絶縁層15を連通、貫通して金属層26Aに達するように設ける。
ビアホール35hの形成は、レーザ加工で金属層25Aおよび絶縁層15を連続して消失させるように穴加工する方法のほかに、まず、金属層25Aのみをエッチング加工で貫通させその後に、そのエッチングされた金属層25Aをマスクにその後絶縁層15をレーザ加工で消失させ穴加工するという2段階の工程とすることもできる。金属層25Aのみをエッチング加工する段階では、パターン化された、エッチング用のレジストマスクを金属層25A上に形成しておく。前者の方法は、効率的には好ましいと考えられ、後者の方法は、効率で劣るものの穴形状の制御性に優れていると考えられる。
ビアホール35hの大きさは、直径としてそのより大きい側で例えば100μm程度とすることができる。レーザ加工によるビアホール35hは、一般にその奥に至るほど多少その直径が小さい形状になる。これは、レーザ加工時のレーザスポットが、そのエネルギ密度としてスポットの縁で多少小さく出力されるためである。
図2に示すようにビアホール35hの形成後、無電解めっきおよび電解めっきの工程を行い、金属層25Aと電気導通してこの金属層25Aから、金属層26Aに電気導通するように、ビアホール内めっきビア35Mを形成する。めっきビア35Mは、少なくともビアホール35hの内壁上に形成されることが必要であるが、ビアホール35h内をほとんど充填し埋めるように形成されてもよい。このようなビアとしての形状コントロールのためには、金属層25A上に、パターン化されたレジストマスクを形成した上で上記のめっき工程を行ってもよい。ビアホール内めっきビア35Mは、その材質として、例えば銅を使用することができる
以上の工程の後、下面の金属層25Aを周知のフォトリソグラフィを利用して所定にパターニングする(またはこれに代えて上面の金属層26Aを所定にパターニングするようにしてもよい)。これにより得られる部材が図3内の上側に示された構成の部材である(なお、金属箔26Aの側をパターニングした場合には、その得られた配線パターン26の側を図示下面として配置する)。
そこで、次に、図3を参照して説明する。図3は、具体的には、図1に示した配線板を形成するための最終的な積層工程(すなわち、第1、第2の積層部となる積層部材を接着、一体化する工程)を示している。この積層工程では、図示するように、積層部材をふたつ使用する。図3内に示した下側の積層部材は公知技術により形成できるが、その方法を概略的に以下で一応説明する。
まず、各面に金属層21Aと配線パターン22とを備えた絶縁層11、および、各面に配線パターン23、24を備えた絶縁層13を、あらかじめ、次のようにして形成する。代表して前者を説明すると、金属層21A上、所定の位置に層間接続体31となる導電性バンプ(底面径例えば100μm、高さ例えば100μmの円錐状)をペースト状導電性組成物(例えば銀粒をペースト状樹脂中に多量に分散させた銀ペースト)のスクリーン印刷により形成する。印刷の後、乾燥させてこれをある程度硬化させる(説明便宜上、以下この状態の導電性バンプも「層間接続体」と表現する)。
続いて、絶縁層11とすべきFR−4のプリプレグ層を、金属層21A上にプレス機を用い積層する。この積層工程では、層間接続体31の頭部をプリプレグ層に貫通させる(頭部は多少塑性変形して層間接続体31は円錐台状になる)。次に、プリプレグ層上にさらに重ねて配線パターン22とすべき金属層を位置させ、加熱、加圧してプリプレグ層を完全に硬化させて絶縁層11とする。この加圧により、層間接続体31として、その頭部が配線パターン22に接して固定され電気導通が確立した状態になる。続いて、配線パターン22とすべき金属層を例えばフォトリソグラフィ工程により所定にパターン化し配線パターン22を得ることで、各面に金属層21Aと配線パターン22とを備えた絶縁層11が得られる。
各面に配線パターン23、24を備えた絶縁層13についてもほぼ同様であるが、最後のフォトリソグラフィ工程を配線パターン23、24とすべき両面の金属層に対して行うようにする点が異なる。
次に、金属層21A、絶縁層11、配線パターン22、層間接続体31を有する部材の配線パターン22上、所定位置に、層間接続体31と同様の要領で層間接続体32となる導電性バンプを印刷、形成する。さらに、絶縁層12とすべきFR−4のプリプレグ層を、配線パターン22上にプレス機を用い積層する。この積層工程では、層間接続体32の頭部をプリプレグ層に貫通させる。次に、プリプレグ層上にさらに重ねて、配線パターン23、24、絶縁層13、層間接続体33を有する部材(の配線パターン23の側)を位置させ、加熱、加圧してプリプレグ層を完全に硬化させてこれを絶縁層12とするように積層する。この加圧により、層間接続体32として、その頭部が配線パターン23に接して固定され電気導通が確立した状態になる。
次に、配線パターン24上、所定位置に、層間接続体31と同様の要領で層間接続体34となる導電性バンプを印刷、形成する。さらに、絶縁層14とすべきFR−4のプリプレグ層14Aを、配線パターン24上にプレス機を用い積層する。この積層工程では、層間接続体34の頭部をプリプレグ層14Aに貫通させる。以上により、図3内に示した下側の積層部材が得られる。
なお、層間接続体34の印刷、形成、およびプリプレグ層14Aの積層を、第1の積層部である図示下側の部材の側に対して行うことに代えて、第2の積層部である図示上側の部材の側(配線パターン25上)に対して行うようにしてもよい。現実の用途では、配線パターン25より配線パターン24の方がより微細なパターンになる可能性が高いので、スクリーン印刷を高精度で行える利点を考えると、前者の方が採用しやすいと考えられる。後者を採用した場合、層間接続体34の縦方向の太さの関係は図示とは逆になる。
以上説明した上側、下側ふたつの積層部材を用い、図3に示すような配置でこれらを積層するようにプレス機で加圧、加熱する。これにより、プリプレグ層14Aが厚み方向に一部は配線パターン25に応じて塑性変形しつつ完全に硬化し全体が積層、一体化する。プリプレグ層14Aの塑性変形により、プリプレグ層14Aを由来とする絶縁層14に対して、配線パターン24、25は沈み込んで位置する構成になる。逆に言うと、配線パターン24は、絶縁層13の側の厚み方向に沈み込むことなく位置し、配線パターン25は、絶縁層15の側の厚み方向に沈み込むことなく位置する。
図3に示すような積層工程では、配線パターン25とプリプレグ層14Aとの関係に基づいて、次のような利点も得られる。すなわち、配線パターン25は、配線パターン24よりも厚いため、配線パターン25の存在しない絶縁層15上を、流動したプリプレグ層14Aで埋めるためには、図3に示す積層工程においてプリプレグ層14Aをその厚み方向により縮小させるような積層が必要になる。このような積層は、結果として、層間接続体34の頭部の配線パターン25へのより確実な接触をもたらす。したがって、層間接続体34と配線パターン25との信頼性の高い接続が実現する。
なお、層間接続体34を配線パターン24と配線パターン25との面間に位置させていることに関しては、もともと以下の利点がある。すなわち、この場合、層間接続体34は、その貫通する絶縁層14の全厚(配線パターン24の厚みおよび配線パターン25の厚み分を加味した厚み)より縦方向に短いサイズである。したがって、プリプレグ層14Aが配線パターン24、25の抜けた領域を埋める関係上、層間接続体34は、その接触する配線パターンとの関係として確実性の高い接触が得られるようになっている。
図3に示す積層工程の後、上下両面の金属層21A、26Aを周知のフォトリソグラフィを利用して所定にパターニングし、続いてはんだレジスト41、42の層を形成することにより、図1に示したような配線板を得ることができる。
以上のような製造工程を有することで次のような効果もある。すなわち、図3に示す積層工程に先立ち、下側の積層部材である第1の積層部材および上側の積層部材である第2の積層部材のそれぞれで検品を行い、その合格品を積層工程に投入することで完成品としての不良率を低減できる。このような中間物での検品は、第1、第2の積層部材が中間物とは言っても通常の配線板の構成にほとんど近いものになっているため、非常に容易である。
次に、以上述べた実施形態とは別の実施形態について図4を参照して説明する。図4は、別の実施形態である配線板の構成を模式的に示す断面図であり、すでに説明した図中に示した構成要素と同一または同一相当のものには同一符号を付してある。その部位については加える事項がない限り説明を省略する。
この実施形態は、図1に示したものと比較して、層間接続体34の代わりに、これとは形状の異なる層間接続体34Lを設けた点に違いがある。層間接続体34Lは、円柱状の形状(すなわち、配線板の板厚み方向に見て径が変化していない形状)であり、この形状は、次に説明するように、その形成方法に由来している。
図5は、図4に示した配線板の製造過程の一部を模式的に示す工程図であり、上記の実施形態における図3に示した積層段階に相当する段階の工程を示している。図5において、すでに説明した図中に示した構成要素と同一または同一相当のものには同一符号を付してある。その部位については加える事項がない限り説明を省略する。
図5に示すように、この積層工程では、プリプレグ層14Aおよび層間接続体34Lを有する積層部材が、図示の下側の積層部材とは別のものとして用いられる。図示の下側の積層部材には、図3に示したものとは異なり、プリプレグ層14Aおよび層間接続体34を設けない。プリプレグ層14Aには、層間接続体34Lがこの時点より前に形成されている。
層間接続体34Lを形成するには、まず、プリプレグ層14Aの所定位置に例えばドリルで貫通孔を形成し、この貫通孔内にペースト状の導電性組成物(例えば、図1中に示した層間接続体31〜34で使用のものと同一のもの)を充填、さらに乾燥させる。
図5に示すような配置で以上の積層部材を積層するようにプレス機で加圧、加熱する。これにより、プリプレグ層14Aが厚み方向に一部は配線パターン24、25に応じて塑性変形しつつ完全に硬化し全体が積層、一体化する。プリプレグ層14Aの塑性変形により、プリプレグ層14Aを由来とする絶縁層14に対して、配線パターン24、25は沈み込んで位置する構成になる。逆に言うと、配線パターン24は、絶縁層13の側の厚み方向に沈み込むことなく位置し、配線パターン25は、絶縁層15の側の厚み方向に沈み込むことなく位置する。この点は、図3での説明と同様である。また、層間接続体34Lは、配線パターン24および配線パターン25に電気的に接続される。
図5に示す積層工程の後、上下両面の金属層21A、26Aを周知のフォトリソグラフィを利用して所定にパターニングし、続いてはんだレジスト41、42の層を形成することにより、図4に示したような配線板を得ることができる。
この実施形態では、層間接続体34Lを、層間接続体34と同程度までに高精度、高密度に形成するには考慮が必要である。その形成方法が大きく異なるためである。また、図5に示した積層工程時に、その貫通しているプリプレグ層14Aの流動により、層間接続体34Lの位置がずれやすい点での多少の難も存在する。しかしながら、プリプレグ層14Aの厚みについて自由度が高いことが利点になる。例えば、層間接続体34Lの配置密度が平面方向に大きく異なる場合であっても、プリプレグ層14Aを多少厚くしておけば、流動による絶縁層としての機能を損なうまでに余裕が生まれる。
次に、さらに別の実施形態について図6を参照して説明する。図6は、さらに別の実施形態である配線板の構成を模式的に示す断面図であり、すでに説明した図中に示した構成要素と同一または同一相当のものには同一符号を付してある。その部位については加える事項がない限り説明を省略する。
この形態は、第2の積層部に相当する部分の配線層数を、図1、図4に示したものよりも増加させた形態である。すなわち、配線パターン25から配線パターン28までで構成される第2の積層部が有する配線層の数を4層としている。これにより、第2の積層部における配線パターンのレイアウト設計の自由度が高くなっている。構成として、図1に示したものと比較して、絶縁層16、17、層間接続体36N、37M、配線パターン27、28が増加している。
また、この実施形態では、第2の積層部の配線層数が増加したことから、そのうちのもっとも第1の積層部に近い配線層である配線層25に、広いベタのパターンである電磁シールド層25Sを含ませるように設計している。これは、第1の積層部側の回路と第2の積層部側の回路との電磁誘導干渉を避けるための構成である。これにより、第1の積層部側の回路と第2の積層部側の回路とが、機能性あるいは使用周波数帯が非常に異なる回路である場合に、相互の電磁誘導干渉を防止するという利点が生まれる。電磁シールドの機能は、第1の積層部が有する配線パターン(例えばそのうちのもっとも第2の積層部に近い側の配線パターン)に担わせるようにすることもできる。
第2の積層部に相当する部分の配線層数を増加する方法は一般に種々考えられる。以下では、その一例として位置づけられる、図6に示した配線板の製造工程について図7、図8を参照して説明する。図7は、図4に示した配線板の製造するための一工程を模式的に示す態様図であり、図8は、図7に示した工程の後になされる、図6に示した配線板の製造するための別の一工程を模式的に示す態様図である。これらの図において図6中に示した構成要素と同一または同一相当のものには同一符号を付してある。
図7から説明する。図7は、より具体的に、上記説明のように合計4つの配線層を有する第2の積層部を形成するため、まず、そのコア層となる部分を形成する工程を示す。この工程では、配線パターン26とすべき金属(電解銅箔)層26A上に層間接続体であるめっきバンプ36Nを形成した部材と、絶縁層16とすべきプリプレグ層16Aと、配線パターン27とすべき金属(電解銅箔)層27A(厚さ例えば60μm)とを用意する。
金属層26A上にめっきバンプ36Nを形成した部材は、次のようにして形成できる。 まず、金属層26A上に、所定位置に除去パターンを有するめっき阻止マスク(レジスト層)を形成する。その除去パターンの形状は例えばほぼ円筒状である。次に、金属層26Aを電気供給路としてそのめっき阻止マスク側の面上に電解めっき工程を施し、除去パターン内に例えば銅のめっき層を成長させる。この成長させためっき層がめっきバンプ36Nになる。めっき層成長後、めっき阻止マスクを除去すると、金属層26A上にめっきバンプ36Nを形成した図示の部材が得られる。
続いて、絶縁層16とすべきFR−4のプリプレグ層16A(厚さ例えば60μm)を、金属層26A上にプレス機を用い積層する。この積層工程では、層間接続体36Nの頭部をプリプレグ層に貫通させる。次に、プリプレグ層16A上にさらに重ねて配線パターン27とすべき金属層27Aを位置させ、加熱、加圧してプリプレグ層16Aを完全に硬化させて絶縁層16とする。この加圧により、層間接続体36Nとして、その頭部が金属層27Aに接して固定され電気導通が確立した状態になる。
続いて、金属層26A、27Aを例えばフォトリソグラフィ工程により所定にパターン化し配線パターン26、27を得ることで、各面に配線パターン26、27を備え層間接続体36Nを有する絶縁層16が得られる(図8におけるコアの部分)。
次に図8を参照して説明する。図8は、より具体的に、上記で得られたコア層の両側に配線パターンの層を多層化する構造を形成するための工程の一部を示している。図8に示すように、この工程は、すでに示した図2における工程と類似である。
すなわち、まず、配線パターン26、27を備え層間接続体36Nを有する絶縁層16の両面に、それぞれ、絶縁層15および金属層25Aの積層、ならびに、絶縁層17および金属層28Aの積層を行っておき、その後に、層間接続体35M、37Mのためのビアホール35h、37hを形成する。絶縁層15および金属層25Aの積層は、絶縁層15とすべきプリプレグ層および金属層25Aをコア層に積層して加熱プレスし、プリプレグ層の硬化によって絶縁層15を得ることで行うことができる。絶縁層17および金属層28Aの積層についても同様である。
ビアホール35h、37hの形成については、図2におけるビアホール35hを形成する工程の説明で尽きている。図8に示すようにビアホール35h、37hの形成後、無電解めっきおよび電解めっきの工程を行い、金属層25A(28A)と電気導通してこの金属層25A(28A)から、配線パターン26(27)に電気導通するように、ビアホール内めっきビア35M(37M)を形成する。これらの点も、図2での説明と同様である。
以上の工程の後、下面の金属層25Aを周知のフォトリソグラフィを利用して所定にパターニングする。これにより得られる部材を図3内の上側に示された構成の部材の代わりに用いて積層工程を行い、以降は図3での説明と同様の工程を経ることで、図6に示したような配線板を得ることができる。
図6に示した配線板のような第2の積層部における配線層数の増加は、考え方として、第1の積層部についても適用することができる。これにより、第1の積層部において配線パターンのレイアウト設計の自由度がさらに増す。一般的な用途では、第2の積層部が有する配線パターンの総層数は、第1の積層部が有する配線パターンの総層数より多くは要求されないと考えられる。第2の積層部の側は、例えば電力系の用途に適することから、第1の積層部に適合的な信号処理回路ほど複雑な回路でないと考えられるためである。第1の積層部の配線層数をさらに増すには、例えば、図3を参照して説明した、同図中の下側の積層部材を形成する工程をさらに多重的に適用すればよい。
11,12,13,14,15,16,17…板状絶縁層、14A,16A…プリプレグ層、21,22,23,24,25,26,27,28…配線パターン(配線層)、21A,25A,26A,27A,28A…金属(電解銅箔)層、25S…電磁シールド層、31,32,33,34…層間接続体(導電性組成物の印刷による導電性バンプ)、34L…(導電性組成物の充填による導電性バンプ)、35M,37M…層間接続体(ビアホール内めっきビア)、35h,37h…ビアホール、36N…層間接続体(めっきバンプ)、41,42…はんだレジスト。

Claims (7)

  1. 下面と該下面に対向する上面とを有する第1の絶縁層と;該第1の絶縁層の前記下面上に位置する第1の配線パターンと;該第1の絶縁層の前記上面上に、該第1の絶縁層の厚み方向に沈み込むことなく位置する第2の配線パターンと;前記第1の配線パターンと前記第2の配線パターンとを電気的に導通させるように前記第1の絶縁層を貫通して位置する第1の層間接続体と;を有する第1の積層部と、
    下面と該下面に対向する上面とを有する第2の絶縁層と;該第2の絶縁層の前記下面上に、該第2の絶縁層の厚み方向に沈み込むことなく位置する第3の配線パターンと;該第2の絶縁層の前記上面上に位置する第4の配線パターンと;前記第3の配線パターンと前記第4の配線パターンとを電気的に導通させるように前記第2の絶縁層を貫通して位置する第2の層間接続体と;を有する第2の積層部と、
    前記第1の積層部の前記第2の配線パターンが位置する側と、前記第2の積層部の前記第3の配線パターンが位置する側との間に位置して前記第1の積層部と前記第2の積層部とを接着、一体化している第3の絶縁層と、
    前記第3の絶縁層を貫通して前記第2の配線パターンの面と前記第3の配線パターンの面とに接して挟設された第3の層間接続体と、を具備し、
    前記第2の積層部の前記第3、第4の配線パターンのうちのもっとも薄い配線パターンが、前記第1の積層部の前記第1、第2の配線パターンのうちのもっとも厚い配線パターンよりも厚い配線パターンであること
    を特徴とする配線板。
  2. 前記第1の層間接続体が、導電性組成物でできた、前記第1の絶縁層の厚み方向に見て径が変化している形状の接続体であり、
    前記第2の層間接続体が、前記第3の配線パターンと電気導通して該第3の配線パターンから、前記第4の配線パターンの面に電気導通するように延設されたビアホール内めっきビアであるか、または、前記第4の配線パターンと電気導通して該第4の配線パターンから、前記第3の配線パターンの面に電気導通するように延設されたビアホール内めっきビアであること
    を特徴とする請求項1記載の配線板。
  3. 前記第3の層間接続体が、導電性組成物でできた、前記第3の絶縁層の厚み方向に見て径が変化していない形状の接続体であるか、または、導電性組成物でできた、前記第2の配線パターンに接する側の径がより大径になるように前記第3の絶縁層の前記厚み方向に見て径が変化している形状の接続体であることを特徴とする請求項2記載の配線板。
  4. 前記第1の積層部が、前記第1の絶縁層の前記第1の配線パターンが位置する側の面上に設けられた、配線パターンの層を多層化するための積層構造をさらに有することを特徴とする請求項1記載の配線板。
  5. 前記第2の積層部が、該第2の積層部が有する配線パターンの総層数が、前記第1の積層部が有する配線パターンの総層数以下であることを満たす限りにおいて、前記第2の絶縁層の前記第4の配線パターンが位置する側の面上に設けられた、配線パターンの層を多層化するための積層構造をさらに有することを特徴とする請求項4記載の配線板。
  6. 前記第2の配線パターンを含む配線層または前記第3の配線パターンを含む配線層が、電磁シールド層を含むことを特徴とする請求項1記載の配線板。
  7. 下面と該下面に対向する上面とを有する第1の絶縁層と;該第1の絶縁層の前記下面上に位置する第1の配線パターンと;該第1の絶縁層の前記上面上に、該第1の絶縁層の厚み方向に沈み込むことなく位置する第2の配線パターンと;前記第1の配線パターンと前記第2の配線パターンとを電気的に導通させるように前記第1の絶縁層を貫通して位置する第1の層間接続体と;を有する第1の積層部材を形成する工程と、
    下面と該下面に対向する上面とを有する第2の絶縁層と;該第2の絶縁層の前記下面上に、該第2の絶縁層の厚み方向に沈み込むことなく位置する第3の配線パターンと;該第2の絶縁層の前記上面上に位置する第4の配線パターンと;前記第3の配線パターンと前記第4の配線パターンとを電気的に導通させるように前記第2の絶縁層を貫通して位置する第2の層間接続体と;を有する第2の積層部材を、該第2の積層部材の前記第3、第4の配線パターンのうちのもっとも薄い配線パターンを、前記第1の積層部材の前記第1、第2の配線パターンのうちのもっとも厚い配線パターンよりも厚く設定することを条件として、形成する工程と、
    前記第1の積層部材の前記第2の配線パターンが位置する側と、前記第2の積層部材の前記第3の配線パターンが位置する側との間に第3の絶縁層を位置させて、該第3の絶縁層を貫通して設けられた層間絶縁体が前記第2の配線パターンの面と前記第3の配線パターンの面との間に挟設されるように、前記第1の積層部材と前記第2の積層部材とを接着、一体化する工程と
    を具備することを特徴とする配線板の製造方法。
JP2011278379A 2011-12-20 2011-12-20 配線板、配線板の製造方法 Pending JP2013131538A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278379A JP2013131538A (ja) 2011-12-20 2011-12-20 配線板、配線板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278379A JP2013131538A (ja) 2011-12-20 2011-12-20 配線板、配線板の製造方法

Publications (1)

Publication Number Publication Date
JP2013131538A true JP2013131538A (ja) 2013-07-04

Family

ID=48908895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278379A Pending JP2013131538A (ja) 2011-12-20 2011-12-20 配線板、配線板の製造方法

Country Status (1)

Country Link
JP (1) JP2013131538A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151813A (ja) * 2000-08-28 2002-05-24 Matsushita Electric Ind Co Ltd プリント配線基板およびその製造方法
JP2006120873A (ja) * 2004-10-21 2006-05-11 Dainippon Printing Co Ltd インピーダンスコントロール配線板、インピーダンスコントロール配線板の製造方法
JP2006156482A (ja) * 2004-11-25 2006-06-15 Sony Corp 回路モジュール体及びその製造方法
JP2010515281A (ja) * 2007-01-02 2010-05-06 オルメット サーキッツ、インコーポレイテッド 並列加工された回路および充填ビアから高密度の多層プリント配線基板を作成する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151813A (ja) * 2000-08-28 2002-05-24 Matsushita Electric Ind Co Ltd プリント配線基板およびその製造方法
JP2006120873A (ja) * 2004-10-21 2006-05-11 Dainippon Printing Co Ltd インピーダンスコントロール配線板、インピーダンスコントロール配線板の製造方法
JP2006156482A (ja) * 2004-11-25 2006-06-15 Sony Corp 回路モジュール体及びその製造方法
JP2010515281A (ja) * 2007-01-02 2010-05-06 オルメット サーキッツ、インコーポレイテッド 並列加工された回路および充填ビアから高密度の多層プリント配線基板を作成する方法

Similar Documents

Publication Publication Date Title
JP5427305B1 (ja) 部品内蔵基板及びその製造方法並びに実装体
JP2009277916A (ja) 配線基板及びその製造方法並びに半導体パッケージ
JP4597631B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP2018032660A (ja) プリント配線板およびプリント配線板の製造方法
JPWO2007069427A1 (ja) 電子部品内蔵モジュールとその製造方法
JP2008124247A (ja) 部品内蔵基板及びその製造方法
JP4717316B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP4598140B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP2013102047A (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP4657870B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP4899409B2 (ja) 多層プリント配線基板及びその製造方法
JP2007295008A (ja) 電子部品内蔵配線基板の製造方法
JP2014204088A (ja) 多層配線基板およびその製造方法
JP5671857B2 (ja) 埋め込み部品具有配線板の製造方法
JP2013131538A (ja) 配線板、配線板の製造方法
JP2011151348A (ja) 積層配線基板及びその製造方法
JP5245491B2 (ja) 部品内蔵配線板の製造方法、部品内蔵配線板
JP5515210B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP6062884B2 (ja) 部品内蔵基板及びその製造方法並びに実装体
JP7216139B2 (ja) 回路基板の製造方法
JP4978709B2 (ja) 電子部品内蔵配線基板
JP2011228471A (ja) 多層基板とその製造方法
JP2010067834A (ja) 電子部品内蔵型の2層配線基板の製造方法及び電子部品内蔵型の2層配線基板
JP5949978B2 (ja) 電子部品内蔵配線基板
JP5699344B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228