JP2012500464A - 基板の表面をパターニングするためにプラズマ放電を起こすデバイス - Google Patents

基板の表面をパターニングするためにプラズマ放電を起こすデバイス Download PDF

Info

Publication number
JP2012500464A
JP2012500464A JP2011523756A JP2011523756A JP2012500464A JP 2012500464 A JP2012500464 A JP 2012500464A JP 2011523756 A JP2011523756 A JP 2011523756A JP 2011523756 A JP2011523756 A JP 2011523756A JP 2012500464 A JP2012500464 A JP 2012500464A
Authority
JP
Japan
Prior art keywords
electrode
high voltage
electrodes
substrate
discharge portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011523756A
Other languages
English (en)
Other versions
JP5801195B2 (ja
Inventor
パウルス・ペトルス・マリア・ブロム
フィリップ・ロジング
アルクイン・アルフォンス・エリザベート・ステーヴェンス
ラウレンティア・ヨハンナ・フエイブレフトス
エディー・ボス
Original Assignee
ヴィジョン・ダイナミックス・ホールディング・ベスローテン・ヴェンノーツハップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴィジョン・ダイナミックス・ホールディング・ベスローテン・ヴェンノーツハップ filed Critical ヴィジョン・ダイナミックス・ホールディング・ベスローテン・ヴェンノーツハップ
Publication of JP2012500464A publication Critical patent/JP2012500464A/ja
Application granted granted Critical
Publication of JP5801195B2 publication Critical patent/JP5801195B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2475Generating plasma using acoustic pressure discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2475Generating plasma using acoustic pressure discharges
    • H05H1/2481Generating plasma using acoustic pressure discharges the plasma being activated using piezoelectric actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1066Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by spraying with powders, by using a nozzle, e.g. an ink jet system, by fusing a previously coated powder, e.g. with a laser
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

基板の表面をパターニングするためにプラズマ放電を起こすデバイスは、第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極と、第1および第2の電極間に高電圧差を発生させる高電圧源と、第1の電極を基板に対して位置決めする位置決め手段とを含み、位置決め手段は、第1の放電部分と第2の放電部分との間の距離が高電圧差のプラズマ放電を助長するのに十分に小さい第1の位置、および第1の放電部分と第2の放電部分との間の距離が高電圧差のプラズマ放電を防止するのに十分に大きい第2の位置に、第1の電極を第2の電極に対して選択的に位置決めするように構成される。

Description

本発明は、基板の表面をパターニングするためにプラズマ放電を起こすデバイスに関し、特に、第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極と、第1および第2の電極間に高電圧差を発生させる高電圧源と、第1の電極を基板に対して位置決めする位置決め手段とを含む、そのようなデバイスに関する。
表面を処理するのにプラズマを使用することができ、プラズマの使用によって、エッチング、材料を基板上に堆積すること、ならびに/または、基板表面の特性を疎水性から親水性に変更すること、および原子の化学的付加などの基板表面の特性を変更することが可能であることは、周知である。たとえば、原子の化学的付加は、プラスチック基板を金属化するプロセスにおいて使用することができる(たとえばM.Charbonnier et al. in Journal of Applied Electrochemistry 31、57(2001)を参照)。このプロセスにおいて、プラズマは、その上に金属層を成長させることができる、パラジウムの付加に適したプラスチックの表面を形成する。他の多くの金属化方法と比較して、この方法は、低融点を有するプラスチックに必要な温度を低く維持することができるという利点を有する。したがって、RFIDタグおよびOLEDのようなプラスチック電子要素の製造には、プラズマ処理が有効である可能性がある。
これらの適用例において、プラズマによって表面上に直接パターニングされた構造を形成することによって、電子要素の製造ステップ数は減少する。さらに、従来のマスキング/エッチング方法と比較して、(堆積およびそれに続く金属層のエッチングのために)金属の無駄がなく、環境負荷を低減する。ラボオンチップのような他の適用例においても、プラズマによる直接パターニングは、有効である。
プラズマによって表面を直接パターニングする既知のデバイスは、独国特許第10322696号明細書およびSurface & Coatings Technology 200、676(2005)に記載されている。これらのデバイスは、パターンを形成するのにマスクを使用する。これは、大量生産には良い方法である可能性があるが、マスクを形成するのは、極めて高価であり、時間がかるので、マスクなしの方法が、より少量の生産には好ましい。
プラズマによって表面を直接パターニングする別のデバイスは、米国特許第4,911,075号明細書によって既知である。このデバイスは、基板表面上に、高熱スパーク区域、およびスパーク区域を取り囲む円形領域内のコロナ区域を形成するために、正確に位置決めされる高電圧スパーク放電電極を利用する。放電電極は、表面全域を走査されるが、高電圧パルスは、デジタル画像と一致して正確に位置決めされ、かつ画定されるスパーク/コロナ放電を起こすのに、正確に制御される電圧および電流プロファイルを有する。このデバイスは、物理的なマスクを使用しないが、複雑な高電圧パルスの正確な制御が必要であるという欠点を有する。さらに、このデバイスは、基板の裏側に対向電極を使用するので、薄い基板しか使用することができない。さらに、スパーク放電は、堆積、エッチング、および親水化(hydrophilation)のいくつかのプロセスには望ましくない可能性がある。
独国特許第10322696号明細書 米国特許第4,911,075号明細書 国際公開第2008/004858号
M.Charbonnier et al. in Journal of Applied Electrochemistry 31、57(2001) Surface & Coatings Technology 200、676(2005)
本発明の目的は、基板のマスクなし直接パターニングに適した、プラズマ放電を起こすデバイスを提供することである。好ましくは、このデバイスは、基板を迅速にパターニングすることができ、ならびに/または、厚い基板および薄い基板などの広い範囲の基板に適した、簡単な制御、長い電極寿命を有するべきである。
さらに、概略的には、本発明の目的は、第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極と、第1および第2の電極間に高電圧差を発生させる高電圧源と、好ましくは第1の電極を基板に対して位置決めする位置決め手段とを含む、基板の表面をパターニングするためにプラズマ放電を起こす改良型デバイスを提供することである。
本発明の第1の態様によると、位置決め手段は、第1の放電部分と第2の放電部分との間の距離が高電圧差のプラズマ放電を助長するのに十分に小さい第1の位置、および第1の放電部分と第2の放電部分との間の距離が高電圧差のプラズマ放電を防止するのに十分に大きい第2の位置に、第1の電極を第2の電極に対して選択的に位置決めするように構成される。位置決め手段は、第1の電極を第2の電極に向かう方向およびそれから遠ざかる方向に運動させるように構成されることが好ましい。
これは、位置決め手段を使用して、第1の電極を第1または第2の位置にそれぞれ配置することによって、プラズマをオンまたはオフに切り替えることができるという利点を提供する。ゆえに、電極に対する高電圧供給の制御は、必要ではない。
一実施形態において、第2の電極は、ドラムとして設計され、ドラムと第1の電極との間に平板状の基板をドラムの外部表面上に配置することができ、位置決め手段は、第1の電極を外部表面に垂直な方向に運動させるように構成される。ゆえに、プラスチック箔などの平板状の電気絶縁基板をパターニングすることができる。
別の実施形態において、位置決め手段は、第2の電極を第1の電極と同期して位置決めするようにさらに構成される。これは、たとえば書込ヘッドとしての第1および第2の電極を共に基板の表面に沿って走査し、ゆえに表面に沿ってプラズマを走査することができるという利点を提供する。さらに、第1および第2の電極を同期させて、たとえば並列で走査することによって、基板の裏側に電極は必要がなく、したがって、厚い基板、不規則形状の基板、および/または3次元基板などの非平板状の基板も走査することができるという利点を提供する。
位置決め手段は、第1の電極を基板の表面に沿って位置決めするようにさらに構成されるのが好ましい。したがって、位置決め手段は、プラズマをオンまたはオフに切り替えるのに加え、基板の表面に沿って、第1の電極、ゆえにプラズマを走査するのに使用することもできる。位置決め手段は、第1の電極を第2の電極に向かう方向およびそれから遠ざかる方向に運動させる第1のアクチュエータ、第1の電極を基板の表面に沿って第1の方向に運動させる第2のアクチュエータ、ならびに第1の電極を基板の表面に沿って第2の方向に運動させる第3のアクチュエータなどの個別のアクチュエータを含むことができることが理解されよう。
デバイスは、ハウジングをさらに含むのが好ましく、第1の電極は、ハウジングによって少なくとも部分的に取り囲まれ、第1の電極は、ハウジングに対して運動することができる。ハウジングは、電気絶縁することができる。したがって、第1の電極は、ハウジングによって保護することができる。たとえば、第1の電極は、第2の位置にあるとき、ハウジング内にほぼ十分に後退し、第1の位置にあるとき、ハウジングから部分的に突き出ることが可能である。したがって、第1の電極を、埃、破片、またはプラズマの反応生成物から保護することができる。
高電圧源は、第1および第2の電極間の高電圧差を調整するように構成されるのが好ましい。ゆえに、たとえば点火されるとき、プラズマの空間的広がりを調整することが可能である。したがって、オンのときにプラズマによって影響を受ける基板の領域の「ドットサイズ」を調整することができる。したがって、プラズマを使用して基板上にパターンを「印刷する」ドットサイズを決定することができる。
一実施形態において、デバイスは、複数の第1の電極を含む。これらの第1の電極は、基板の表面に沿って同時に位置決めされるように、たとえば印刷ヘッド内に並列に配置することができる。
位置決め手段は、それぞれの第1の電極を第2の電極に対して個別に位置決めするように構成されるのが好ましい。したがって、複数の第1の電極のそれぞれの第1の電極は、個別に位置決めされ、プラズマを点火または消去することができる。
デバイスは、複数の第2の電極を含むことも可能である。位置決め手段は、それぞれの第1の電極を1つまたは複数の第2の電極に対して個別に位置決めするように構成されるのが好ましい。
特定の実施形態では、第1の電極は、高電圧源に導電接続する、ドットプリンタの印刷ヘッドの運動可能なペンによって形成される。
本発明の第2の態様によると、位置決め手段は、第2の電極を第1の電極と同期して位置決めするようにさらに構成され、位置決め手段は、第1の電極を第2の電極に対して位置決めするように構成される必要はない。これは、たとえば書込ヘッドとしての第1および第2の電極を共に基板の表面に沿って走査し、ゆえに表面に沿ってプラズマを走査することができるという利点も提供する。さらに、第1および第2の電極を同期させて、たとえば並列で走査することによって、基板の裏側に電極は必要がなく、したがって、厚い基板、不規則形状の基板、および/または3次元基板も走査することができるという利点を提供する。
本発明の第3の態様によると、基板の表面をパターニングするためにプラズマ放電を起こすデバイスは、複数の第1の電極および複数の第2の電極と、複数の第1の電極の選択された第1の電極と複数の第2の電極の選択された第2の電極との間に高電圧差を発生させるように構成される高電圧源とを含む。ここで、デバイスは、第1および/または第2の電極を位置決めする位置決め手段を含む必要はない。したがって、複数の第1の電極および複数の第2の電極は、関連する第1および第2の電極間に高電圧差をもたらすことによって、基板の表面の選択された部分を処理することができる。デバイスは、高電圧差を選択された第1および第2の電極に継続的に印加することによって、選択された全ての部分を一挙に処理することができる。第1および第2の電極は、並列に配置されるのが好ましい。第1および第2の電極は、点在するのが好ましい。任意選択で、第1および第2の電極は、少なくとも基板の近傍にあり、電気絶縁するセラミックなどのハウジング内に完全に含まれる。
本発明は、さらに、第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極を提供するステップと、第1および第2の電極間に高電圧差を発生させるステップと、第1の放電部分と第2の放電部分との間の距離が高電圧差のプラズマ放電を助長するのに十分に小さい第1の位置に、第1の電極を第2の電極に対して位置決めすることによってプラズマ放電を選択的に起こすステップと、第1の放電部分と第2の放電部分との間の距離が高電圧差のプラズマ放電を防止するのに十分に大きい第2の位置に、第1の電極を第2の電極に対して位置決めすることによってプラズマ放電を選択的に消去するステップとを含む、プラズマ放電を使用して基板の表面をパターニングする方法に関する。
この方法は、プラズマ放電によって表面を選択的にエッチングするステップ、プラズマ放電によって材料を表面上に選択的に堆積するステップ、および/または、プラズマ放電によって表面の特性を疎水性から親水性に変更するなど、表面の特性を選択的に変更するステップをさらに含むことが好ましい。
本発明によるデバイスは、プラスチック物体、たとえばプラスチックシートなどの電気絶縁基板の表面を処理するために使用することができる。本発明によるデバイスは、半導体基板または導体基板の表面を処理するために使用することもできる。(半)導体基板を使用するとき、第1および/または第2の電極は、上述の電気絶縁材料でコーティングするなど、保護されるのが好ましい。導電基板を、第2の電極として使用することもできることが理解されよう。
本発明によるデバイスは、様々な基板の表面を処理するときの使用に適していることがわかった。さらに、本発明は、((O)LEDデバイス、RFIDタグ、もしくは太陽電池デバイスなどの)メソスケール電子デバイス、(MEMSデバイス、マイクロレンズ、もしくは多焦点レンズなどの)メソスケール3次元構造体、ラボオンチップ、バイオチップ、印刷可能プラスチック物体、または基板由来のオフセット印刷プレートを製造する方法に関し、この方法は、本発明によるプラズマ放電を起こすデバイスによって基板を処理するステップを含む。
さらに、本発明は、本発明によるプラズマ放電を起こすデバイスを製造する方法に関し、この方法は、従来のドットプリンタを提供するステップと、高電圧差を発生させるために高電圧源を提供するステップと、ドットプリンタの印刷ヘッドの少なくとも1つの印刷ペンを高電圧源に導電接続するステップと、任意選択でドットプリンタの印刷ドラムの表面を高電圧源に導電接続するステップとを含む。ゆえに、少なくとも1つの印刷ペンは、プラズマを生成する電極を形成する。
本発明は、添付の図面を参照して限定されない例により説明される。
本発明によるデバイスの第1の実施形態の概略図である。 本発明によるデバイスの第2の実施形態の概略図である。 本発明によるデバイスの第3の実施形態の概略図である。 本発明によるデバイスの第4の実施形態の概略図である。 本発明によるデバイスの第4の実施形態の概略図である。 本発明によるデバイスの第5の実施形態の概略図である。 本発明によるデバイスの第6の実施形態の概略図である。
図1は、本発明による、基板の表面をパターニングするためにプラズマ放電を起こすデバイス1の第1の実施形態の概略図を示す。
この例において、デバイス1は、複数の第1の電極2.i(i=1、2、3、…)を含む。この例において、第1の電極2.iは、長尺のペンとして設計される。デバイス1は、第2の電極4をさらに含む。この例において、第2の電極は、板状である。第1および第2の電極2.i、4は、それぞれ、高電圧源10の端子6、8に電気的に導通接続している。高電圧源10は、第1の電極2.iと第2の電極4との間に高電圧差を発生させるように構成される。この例において、第1の電極2.iは、さらに、12において接地される。第1の電極は、たとえばイオンまたは電子のいずれが基板上に衝突するのかを所望するかによって、第2の電極に対して負またはその逆に帯電することができることが理解されよう。この例において、高電圧差は、DC電圧差を含む。その代わりに、またはそれに加えて、高電圧差は、AC電圧差(たとえば無線周波数(RF))、パルス電圧差などを含むことができる。
この例において、処理される基板14は、第1の電極2.iと第2の電極4との間の、この例では第2の電極4の上部上に配置される。この例の第2の電極4は、対向電極とも呼ばれる。
図1において、デバイス1は、ハウジング16をさらに含む。ハウジング16は、それぞれの中に1つの第1の電極2.iが収容される、複数の孔18.iを含む。それぞれの第1の電極2.iは、その対応する孔18.i内に摺動可能に収容される。この例において、デバイス1は、第1の電極2.iのそれぞれを、その対応する孔18.i内で個別に運動させるように構成される位置決め手段を含む。位置決め手段は、リニアモータ、ラックアンドピニオン、圧電アクチュエータ、電磁ソレノイド、または同様のものなどの電気モータを含むことができる。
これまで説明したデバイス1は、以下の方法で作動することができる。
第1に、基板14が、第2の電極4と第1の電極2.iとの間に配置される。第1および第2の電極間に、高電圧差が設定され、維持される。
基板14の表面20をプラズマによって選択的に処理しようとするとき、表面20を処理しようとする位置が、決定される。表面上の決定位置に最も近接する第1の電極2.iが、選択される。この例では、第1の電極2.3が、選択される。
最初に、全ての第1の電極2.iは、図1の第1の電極2.1、2.2、2.4、2.5、および2.6において示すように、後退位置にあることができる。この後退位置において、第1の電極2.iの先端(放電部分)と第2の電極4との間の距離は、高電圧差のプラズマ放電を防止するのに十分なほど大きい。つまり、後退位置にある第1の電極2.iと第2の電極4との間の電界強度は、電気絶縁破壊を防止するのに十分なほど低い。
位置決め手段は、選択された第1の電極2.3を第2の電極4に向かって延伸位置まで運動させる(図1を参照)。この延伸位置において、選択された第1の電極2.3の先端(放電部分)と第2の電極4との間の距離は、高電圧差のプラズマ放電を助長するのに十分なほど小さい。つまり、延伸位置にある第1の電極と第2の電極4との間の電界強度は、プラズマ放電の開始を助長するのに十分なほど低い。図1では、プラズマは、22で示される。
第1および第2の電極間の電界が基板を貫通するので、図1によるデバイスは、プラスチック箔などの平板状の基板に適している。
第1の電極を後退させることができるという事実は、プラズマを生成する第1の電極に近接する第1の電極の侵食をより低減することができるという利点をもたらし、それは、プラズマが後退した第1の電極に到達しないからである。この効果は、特にハウジング16がプラズマの近傍に電気絶縁底部を備えるとき、(図1に示すように)第1の電極をハウジング内に完全に後退させることによって改善される。これは、図2および3に示すデバイスの第1および第2の電極にも当てはまる。しかし、電極をハウジング16によって取り囲むことは、厳密には必要でないことが理解されよう。ハウジングは、電極を案内する、ほぼ開放型の構造を含むこともできる。
第1の電極と第2の電極との間の距離を操作することによって、プラズマの強度を操作することができる。
第1の電極と基板の表面との間の距離を制御することができるので、曲面および/または3次元の物体の処理を(場合により、平坦ではないが基板の形状に従う第2の電極と組み合わせて)実施可能にすることができる。
図2は、本発明によるデバイス1の第2の実施形態の概略図を示す。この例において、複数の第1の電極2.iおよび複数の第2の電極4.j(j=1、2、3、…)は、並列に配置される。この例において、第1および第2の電極の両方は、それらのそれぞれの孔18.k(k=1、2、3、…)内に摺動可能に収容される。
図2に示すデバイス1は、以下の方法で作動することができる。
基板14は、第1および第2の電極、2.i、4.jの近傍に配置される。第1および第2の電極間に、高電圧差が設定され、維持される。
基板14の表面20をプラズマによって選択的に処理しようとするとき、表面20を処理しようとする位置が、決定される。表面上の決定位置に最も近接する第1の電極2.iおよび第2の電極4.jが、選択される。この例では、第1の電極2.2および第2の電極4.2が、選択される。
最初に、全ての第1の電極2.iおよび全ての第2の電極4.jは、図2の電極2.1、2.3、4.1、および4.3について示すように、後退位置にあることができる。この後退位置において、第1の電極2.iの先端(放電部分)と第2の電極4.jの先端(放電部分)との間の距離は、高電圧差のプラズマ放電を防止するのに十分なほど大きい。つまり、後退位置にある第1の電極2.iと後退位置にある第2の電極4.jとの間の電界強度は、電気絶縁破壊を防止するのに十分なほど低い。
位置決め手段は、選択された第1の電極2.2および選択された第2の電極4.2を延伸位置に向かって運動させる(図2を参照)。この延伸位置において、選択された第1の電極2.2の先端と選択された第2の電極4.2の先端との間の距離は、高電圧差のプラズマ放電を助長するのに十分なほど小さい。つまり、延伸位置にある第1の電極と延伸位置にある第2の電極との間の電界強度は、プラズマ放電の開始を助長するのに十分なほど低い。
図2の例において、第1および第2の電極の両方は、基板14の同じ側に配置されるので、厚い基板、不規則形状の基板、および/または3次元基板などの非平板状の基板もプラズマ22によって処理することができる。
以下により詳細に示すように、位置決め手段は、第1の電極2.iを基板の表面に沿って位置決めするようにさらに構成することができる。したがって、図1および図2に示す電極を含むハウジング16を、基板14の表面20に沿って走査することができる。ゆえに、表面20の領域をプラズマ22に選択的に当てることが可能である。本明細書では、電極を含むハウジング16が、インク付着の代わりに、プラズマ処理用の「印刷ヘッド」として機能することを理解することができる。
図3は、本発明の第2の態様による、デバイス1の実施形態の概略図を示す。図3に示すデバイスは、図2に示すデバイスに極めて類似している。1つの相違点は、図3に示すデバイス1では、電極2.iおよび4.jが、それぞれのスイッチ24.k(k=1、2、3、…)を介して高電圧源10に接続されることである。
図3に示すデバイス1は、以下の方法で作動することができる。
基板14は、第1および第2の電極、2.i、4.jの近傍に配置される。高電圧差が設定される。
基板14の表面20をプラズマによって選択的に処理しようとするとき、表面20を処理しようとする位置が、決定される。表面上の決定位置に最も近接する第1の電極2.iおよび第2の電極4.jが、選択される。この例では、第1の電極2.2および第2の電極4.2が、選択される。
最初に、全ての第1の電極2.iおよび全ての第2の電極4.jは、高電圧源10との接続を切ることができ、したがって、プラズマ放電は起こらない。選択された第1の電極2.2および選択された第2の電極4.2は、それぞれ、スイッチ24.3および24.4を介して高電圧源10に接続される。選択された第1の電極2.2の先端と選択された第2の電極4.2の先端との間の距離は、高電圧差のプラズマ放電を助長するのに十分なほど小さくなるように選択される。つまり、第1の電極と第2の電極との間の電界強度は、プラズマ放電の開始を助長するのに十分なほど低い。
スイッチ24.kは、高電圧源10の一部分を形成することができる。ゆえに、高電圧源10は、第1のモードでプラズマ放電を助長するために高電圧差を電極2.iおよび4.jで選択的に発生させ、第2のモードでプラズマ放電を防止するために低電圧差またはゼロ電圧差を電極2.i、4.jで発生させるように構成される。
図3の例において、第1および第2の電極の両方は、基板14の同じ側に配置されるので、厚い基板、不規則形状の基板、および/または3次元基板などの非平板状の基板もプラズマ22によって処理することができる。
図3の例において、第1および第2の電極の両方は、高電圧源に選択的に接続される。全ての第1の電極2.iまたは全ての第2の電極4.jなどの電極のいくつかは、高電圧源に常時接続することもできることが理解されよう。
図3に示すデバイス1の電極を含むハウジング16を、図1および2において説明したように、基板14の表面20に沿って走査することができることが理解されよう。
図3の例において、ハウジング16には、電極2.i、4.jと放電空間34との間に障壁を形成する電気絶縁部17.kが設けられる。電気絶縁部17.kは、電極2.i、4.jがプラズマ22に直接接触することを防止する。ゆえに、電極は、侵食から効率的に保護される。電気絶縁部17.kは、電極間の高電圧差がプラズマ放電を可能にするのに十分となるように設計される。電気絶縁部17.kは、図1、2、4a、4b、または5において説明するデバイス1にも適用することができることが理解されよう。電気絶縁部は、ハウジングの一部分、またはコーティングなどの、電極の個別の被覆とすることができる。
図1〜3に示すデバイスの全てにおいて、電極を含むハウジングは、印刷ヘッドのように、基板14に沿って運動することができる。
図4aの例において、第2の電極4は、ドラム26と第1の電極2.iとの間に平板状の基板14をその外部表面20上に配置することができるドラム26として設計される。この例において、電極を含むハウジング16は、図1において説明したように設計される。基板14は、ドラム形状の第2の電極4によって搬送されるが、運動可能な第1の電極2.iを含むハウジング16は、図4aに示す断面に垂直な方向に運動することができる。図4bは、図4aによるデバイス1の正面図を示す。図4bにおいて、ハウジング16は、第1の電極2.iの2次元アレイを含むものとして示されることに留意されたい。ハウジング16は、第1の電極2.iの1次元アレイまたは単一の第1の電極2さえ含むこともできることが理解できよう。
図5は、本発明による、基板14のマスクなし直接パターニングに適した、プラズマ放電を起こすデバイス1の別の実施形態を示す。この例において、デバイス1は、特に、3次元基板14の表面20をパターニングするように構成される。
この例において、電極2.i、4.jは、図1および2で説明したように、基板14に向かう方向およびそれから遠ざかる方向に個別に運動することができる。この例において、それぞれの電極2.i、4.jには、その電極に対して装着固定される電気絶縁部28.kが設けられる。ゆえに、電極2.i、4.jは、侵食から十分に保護される。
図5に示すデバイス1は、以下の方法で作動することができる。
基板14は、第1および第2の電極、2.i、4.jの近傍に配置される。全ての電極2.i、4.jは、それぞれの電極が基板14の表面20に接触するまで、基板14に向かって位置決めされる。次に、全ての電極2.i、4.jは、表面20を処理するためにプラズマ22を生成するのに適した所定の距離だけ表面20から遠ざかる。ここで、電極は、表面20の輪郭に「従う」。図5は、電極の1次元アレイを示すが、3次元基板の表面20の表面領域の処理を可能にするのには、電極2.i、4.jの2次元アレイが好ましい。
高電圧差が設定される。基板14の表面20をプラズマによって選択的に処理しようとするとき、表面20を処理しようとする位置が、決定される。表面上の決定位置に最も近接する第1の電極2.iおよび第2の電極4.jが、選択される。この例では、第1の電極2.2および第2の電極4.2が、選択される。
最初に、全ての第1の電極2.iおよび全ての第2の電極4.jは、高電圧源10との接続を切ることができ、したがって、プラズマ放電は起こらない。選択された第1の電極2.2および選択された第2の電極4.2は、それぞれ、スイッチ24.3および24.4を介して高電圧源10に接続される。
図5の例では、遮蔽体30.m(m=1、2、3、…)が、電極2.i、4.j間に装着される。この例において、遮蔽体は、(電気絶縁する)箔によって形成される。遮蔽体30.mは、電極2.i、4.j間の開放空間32内にプラズマ22が入るのを防止する。さらに、遮蔽体30.mは、キャリアガスが放電空間34内に入るのを可能にするが、ガスが電極間の開放空間32に入るのを防止する。プラズマ放電を促進するように、放電空間34内のキャリアガスを選択することができることが理解されよう。キャリアガスは、アルゴンまたはヘリウムなどを含むことができる。キャリアガスが開放空間32内に存在しないことによって、高電圧差が開放空間32内でプラズマ放電を起こすことができなくなる可能性がある。これらの遮蔽体30.mは、任意選択であり、必要な場合に、図1、2、3、4a、および4bによるデバイスにも適用することができることが理解されよう。
市販のドットプリンタを、図1、2、3、または5によるデバイスを含むプラズマプリンタに容易に転換することができることを発明者らは見出した。図4aおよび4bに示したデバイスは、実際に、そのような転換ドットプリンタの一部分とすることができる。
従来のドットプリンタの転換は、以下のように行うことができる。
第1に、従来のドットプリンタが提供され、高電圧差を発生させる高電圧源が提供される。ドットプリンタの印刷ヘッドの少なくとも1つの印刷ペンが、高電圧源に導電接続する。
図1によるデバイスが所望されると、従来のドットプリンタの印刷ドラムの外部表面が、高電圧源に導電接続する。必要な場合、印刷ドラムの表面には、導電コーティングを施すことができる。
図2、3、または5によるデバイスが所望されると、印刷ヘッドの少なくとも1つの印刷ペンが、高電圧源の正端子に接続され、印刷ヘッドの少なくとも1つの他の印刷ペンが、高電圧源の負端子に接続される。
3つ以上の第1の電極2.iおよび/または第2の電極4.jが使用されるとき、それらは、1次元または2次元アレイ状に配置することができる。そのようなアレイ状の電極を互いに分離する要領の良い方法は、参照により本明細書に組み込まれている、国際公開第2008/004858号に記載されている膜を用いることである。このようにして、電極2.i、4.jは、たとえば六方充填で共に近接させて配置することができ、膜は、個々の電極を分離させる。膜が電気絶縁するとき、電極も、互いに電気絶縁される。国際公開第2008/004858号に記載されている構成およびピン運動の方法の別の利点は、電極が互いに影響を及ぼさずに個別に運動することができることである。
図6は、本発明によるデバイス1の6番目の実施形態を示す。この実施形態では、従来のインクジェット印刷ヘッド35が、プラズマ放電を起こすために転換される。この例において、インクジェット印刷ヘッドは、複数のノズル37.n(n=1、2、3、…)を含む。1ノズルにつき、2つの圧電素子36、38が、内部インク室40に隣接して配置される。この変更形態によると、圧電素子36、38は、それぞれ、高電圧源10の端子6、8に導電接続する。高電圧差が圧電素子36、38間で維持されるとき、これらの素子は、第1および第2の電極2.i、4.jとして機能する。
図6のデバイスは、以下のように作動することができる。インクの代わりに、ガス流が、矢印Gで示されるように、印刷ヘッド35内に供給される。基板14の表面20をプラズマによって選択的に処理しようとするとき、表面20を処理しようとする位置が、決定される。表面上の決定位置に最も近接するノズル37.nならびに関連の第1の電極2.iおよび第2の電極4.jが、選択される。この例では、第1の電極2.3および第2の電極4.3が、選択される。
最初に、全ての第1の電極2.iおよび全ての第2の電極4.jは、高電圧源10との接続を切ることができ、したがって、プラズマ放電は起こらない。選択された第1の電極2.3および選択された第2の電極4.3は、それぞれ、スイッチ24.5および24.6を介して高電圧源10に接続される。次に、電極間の領域内に、プラズマ22が生成される。ガス流の速度のために、プラズマ22は、ノズル37.3から基板の表面20に向かって放出される。変更されたインクジェットヘッド35を、表面20に沿って走査することができることが理解されよう。
本発明によるデバイス1を形成するのに、他の従来のインクジェットヘッドを転換することもできることが理解されよう。たとえば、第1の電極は、印刷ヘッドの圧電素子によって形成されるが、第2の電極を、ノズルを取り囲む導電ノズルプレートによって形成することが可能である。電気加熱抵抗体などの、従来のインクジェット印刷ヘッド内の別の導電構造体が、プラズマを生成する電極を形成することも可能である。
上述した基板のマスクなし直接パターニングに適した、プラズマ放電を起こすデバイスは、表面のエッチング、物質の表面上への堆積、または湿潤性などの表面の特性の変更を行うなど、プラズマを使用して基板の表面を処理するのに使用することができることが理解されよう。たとえば、湿潤性などの表面の特性の変更は、印刷目的で、印刷媒体(インクまたは半田など)に対して表面の湿潤性を局所的に変更することによって使用することができる。
以上の図1〜6において説明した、基板のマスクなし直接パターニングに適した、プラズマ放電を起こすデバイスは、(O)LEDデバイス、RFIDタグ、もしくは太陽電池デバイスなどのメソスケール電子デバイス、MEMSデバイス、マイクロレンズ、もしくは多焦点レンズなどのメソスケール3次元構造体、ラボオンチップ、バイオチップ、印刷可能プラスチック物体、または基板由来のオフセット印刷プレートを製造するのに使用することができることが理解されよう。
大気条件のもとで、プラズマ22を生成することができることが理解されよう。あるいは、低圧または高圧で、プラズマを生成することができる。たとえば、プラズマを空気中で生成することができる。プラズマは、アルゴン、酸素、アンモニア、窒素、ヘリウム、またはそれらの混合物を含むガス内で形成することもできる。たとえば気化した前駆体を、ヘキサメチルジシロキサン(HMDSO)もしくは(3−アミノプロピル)トリメトキシシラン(APTMS)などの有機珪素化合物、ヘプチルアミン、水(HO)、またはメタノール(CHOH)などのガス(混合物)に加えることもできる。
以上の記述において、本発明は、その実施形態の特定の例を参照して説明されてきた。しかし、添付の特許請求の範囲に記載される本発明のより広い技術思想および範囲から逸脱することなく、その中で、様々な変更および修正を行うことができることは明らかになろう。
いくつかの例において、ハウジング16内の電極は、針状である。しかし、他の形状も可能である。
図1の例において、第2の電極4は、板状である。他の設計形状も可能であることが理解されよう。たとえば、第2の電極は、それぞれを針状の第1の電極に対向して配置することができる複数の針状の電極を含み、基板は、第1および第2の針状の電極間に含むことが可能である。
この例において、針状の電極を、簡単な金属ロッドまたは針とすることができる。ナノ構造またはミクロ構造の電極を使用することができることが理解されよう。ナノ/ミクロ構造電極は、電界放出を増大させることができ、プラズマを小領域内に閉じ込め、これによってデバイスの分解能を向上させるように使用することができ、プラズマの特性および開始電圧に影響を及ぼす。これらのナノ/ミクロ構造電極は、たとえば、針先端のレーザ蒸着もしくは除去、針先端における専用の結晶成長によって、または針先端にカーボンナノチューブを使用することによって製造することができる。
図1、2、3、5、および6は、電極の1次元アレイを示すが、電極の2次元アレイを使用することができる。
図5に示した電気絶縁部28.kを含む電極は、他の実施形態でも使用することができることが理解されよう。
図1〜5の例において、ハウジング内の電極は、平行な電極として示され、平行に運動する。しかし、電極は、平行である必要はない。たとえば、電極は、互いにある角度でハウジング16内に取り付けることができる。第1および第2の電極が、後退位置から延伸位置まで運動したときに集光するようにハウジング内に取り付けられるとき、前記電極の放電部分間の距離を、極めて効率的に低減することができることが理解されよう。同様な結果は、電極がハウジング内の曲線状または角度付きの経路に沿って運動するときに得ることができる。
これらの例において、放電部分は、電極の先端近傍に配置される。電極の放電部分を、他の方法で、たとえば曲線状電極の曲線の近傍に配置することも可能である。
図3および5の例において、電極は、それぞれのスイッチを通して高電圧源に選択的に接続される。電子スイッチング手段、選択的増幅その他などの別のスイッチング手段も可能であることが理解されよう。スイッチは、プラズマ放電を助長することができる高電圧差と、プラズマ放電を消去することができる低電圧差との間で切り替えることも可能である。高電圧源は、たとえば、一定の電極間の電圧差を選択的に増加または減少させることによって、第1のモードでプラズマ放電を助長するために高電圧差を選択的に発生させ、第2のモードでプラズマ放電を防止するために低電圧差またはゼロ電圧差を発生させるように構成されることも可能であることが理解されよう。
しかし、他の変更形態、変形形態、および選択肢も可能である。したがって、説明、図面、および例は、限定的な意味ではなく、例示用とみなされるべきである。
特許請求の範囲において、括弧内に置かれるあらゆる参照符号は、特許請求の範囲を限定するものとみなすべきでない。用語「含む」は、特許請求の範囲に記載された特徴またはステップ以外の特徴またはステップの存在を排除しない。さらに、用語「1つ」は、「1つだけ」に限定するものとみなすべきではないが、代わりに、「少なくとも1つ」を意味するものとして使用され、複数性を排除しない。いくつかの手段が様々な請求項内に交互に記載されるという単なる事実は、利益を得るのに、これらの手段の組合せを使用することができないことを示すものではない。
1 デバイス
2.i(i=1、2、3、…) 第1の電極
4 第2の電極
4.j(j=1、2、3、…) 第2の電極
6 端子
8 端子
10 高電圧源
12 グランド
14 基板
16 ハウジング
17.k(k=1、2、3、…) 電気絶縁部
18.i(i=1、2、3、…) 孔
20 表面
22 プラズマ
24.k(k=1、2、3、…) スイッチ
26 ドラム
28.k(k=1、2、3、…) 電気絶縁部
30.m(m=1、2、3、…) 遮蔽体
32 開放空間
34 放電空間
35 インクジェット印刷ヘッド
36 圧電素子
37.n(n=1、2、3、…) ノズル
38 圧電素子
40 インク室

Claims (24)

  1. 基板の表面をパターニングするためにプラズマ放電を起こすデバイスであって、
    第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極と、
    前記第1および前記第2の電極間に高電圧差を発生させる高電圧源と、
    前記第1の電極を前記基板に対して位置決めする位置決め手段とを含み、
    前記位置決め手段は、前記第1の放電部分と前記第2の放電部分との間の距離が前記高電圧差の前記プラズマ放電を助長するのに十分に小さい第1の位置、および前記第1の放電部分と前記第2の放電部分との間の前記距離が前記高電圧差のプラズマ放電を防止するのに十分に大きい第2の位置に、前記第1の電極を前記第2の電極に対して選択的に位置決めするように構成される、デバイス。
  2. 前記位置決め手段は、前記第1の電極を前記第2の電極に向かう方向およびそれから遠ざかる方向に運動させるように構成される、請求項1に記載のデバイス。
  3. 前記第2の電極は、ドラムとして設計され、前記ドラムと前記第1の電極との間に平板状の基板を前記ドラムの外部表面上に配置することができ、前記位置決め手段は、前記第1の電極を前記外部表面に垂直な方向に運動させるように構成される、請求項1または2に記載のデバイス。
  4. 前記位置決め手段は、前記第1の電極を前記基板の前記表面に沿って位置決めするようにさらに構成される、請求項1から3のいずれか一項に記載のデバイス。
  5. ハウジングをさらに含み、前記第1の電極は、前記ハウジングによって少なくとも部分的に取り囲まれ、前記第1の電極は、前記ハウジングに対して運動することができる、請求項1から4のいずれか一項に記載のデバイス。
  6. 前記高電圧源は、前記第1および前記第2の電極間の前記高電圧差を調整するように構成される、請求項1から5のいずれか一項に記載のデバイス。
  7. 複数の第1の電極および/または複数の第2の電極を含む、請求項1から6のいずれか一項に記載のデバイス。
  8. 前記位置決め手段は、それぞれの第1の電極を前記1つまたは複数の第2の電極に対して個別に位置決めするように構成される、請求項7に記載のデバイス。
  9. 前記位置決め手段は、それぞれの第1の電極を残りの第1の電極に対して個別に位置決めするように構成される、請求項7または8に記載のデバイス。
  10. 前記第1の電極は、前記高電圧源に導電接続する、ドットプリンタの印刷ヘッドの運動可能なペンによって形成される、請求項1から9のいずれか一項に記載のデバイス。
  11. 前記第1の電極および/または前記第2の電極は、たとえば、前記放電部分におけるレーザ蒸着もしくは除去、前記放電部分における専用の結晶成長によって、または前記放電部分にカーボンナノチューブを提供することによって、ナノ構造化またはミクロ構造化される、請求項1から10のいずれか一項に記載のデバイス。
  12. 基板の表面をパターニングするためにプラズマ放電を起こすデバイスであって、
    第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極と、
    前記第1および前記第2の電極間に高電圧差を発生させる高電圧源と、
    前記第1の電極を前記基板に対して位置決めする位置決め手段とを含み、
    前記位置決め手段は、前記第2の電極を前記第1の電極と同期して位置決めするようにさらに構成される、デバイス。
  13. 前記第1および第2の電極は、機械的に結合する、請求項12に記載のデバイス。
  14. 前記高電圧源は、第1のモードで前記プラズマ放電を助長するために前記高電圧差を選択的に発生させ、第2のモードでプラズマ放電を防止するために低電圧差またはゼロ電圧差を発生させるように構成される、請求項12または13に記載のデバイス。
  15. 複数の第1の電極および複数の第2の電極を含み、前記高電圧源は、少なくとも1つの第1の電極と少なくとも1つの第2の電極との間に高電圧を選択的に印加するように構成される、請求項12から14のいずれか一項に記載のデバイス。
  16. プラズマ放電を使用して基板の表面をパターニングする方法であって、
    第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極を提供するステップと、
    前記第1および前記第2の電極間に高電圧差を発生させるステップと、
    前記第1の放電部分と前記第2の放電部分との間の距離が前記高電圧差の前記プラズマ放電を助長するのに十分に小さい第1の位置に、前記第1の電極を前記第2の電極に対して位置決めすることによって前記プラズマ放電を選択的に起こすステップと、
    前記第1の放電部分と前記第2の放電部分との間の前記距離が前記高電圧差のプラズマ放電を防止するのに十分に大きい第2の位置に、前記第1の電極を前記第2の電極に対して位置決めすることによって前記プラズマ放電を選択的に消去するステップとを含む、方法。
  17. 前記第1の電極を前記第1の位置に運動させるとき、前記第1の電極を前記第2の電極に向かう方向に運動させるステップと、前記第1の電極を前記第2の位置に運動させるとき、前記第1の電極を前記第2の電極から遠ざかる方向に運動させるステップとを含む、請求項16に記載の方法。
  18. 前記第1の電極を前記基板の前記表面に沿って走査するステップをさらに含む、請求項16または17に記載の方法。
  19. 複数の第1の電極を前記基板に対して同時に位置決めするステップと、それぞれの第1の電極を前記第2の電極に対して個別に位置決めするステップとを含む、請求項16から18のいずれか一項に記載の方法。
  20. 前記プラズマ放電によって前記表面を選択的にエッチングするステップ、前記プラズマ放電によって材料を前記表面上に選択的に堆積するステップ、および/または、前記プラズマ放電によって前記表面の特性を疎水性から親水性に変更するなど、前記表面の特性を選択的に変更するステップをさらに含む、請求項16から19のいずれか一項に記載の方法。
  21. プラズマ放電を使用して基板の表面をパターニングする方法であって、
    第1の放電部分を含む第1の電極および第2の放電部分を含む第2の電極を提供するステップと、
    前記第1の放電部分と前記第2の放電部分との間に高電圧差を発生させることによって前記プラズマ放電を起こすステップと、
    前記第1の電極および第2の電極を同期させて、前記基板の前記表面に沿って運動させるステップとを含む、方法。
  22. (O)LEDデバイス、RFIDタグ、もしくは太陽電池デバイスなどのメソスケール電子デバイス、MEMSデバイス、マイクロレンズ、もしくは多焦点レンズなどのメソスケール3次元構造体、ラボオンチップ、バイオチップ、印刷可能プラスチック物体、または基板由来のオフセット印刷プレートを製造する方法であって、請求項1から15のいずれか一項に記載の、プラズマ放電を起こすデバイスによって前記基板を処理するステップを含む、製造方法。
  23. 請求項1から15のいずれか一項に記載の、プラズマ放電を起こすデバイスを製造する方法であって、
    − 従来のドットプリンタを提供するステップと、
    − 高電圧差を発生させるために高電圧源を提供するステップと、
    − 前記ドットプリンタの印刷ヘッドの少なくとも1つの印刷ペンを前記高電圧源に導電接続するステップとを含む、製造方法。
  24. 請求項1から15のいずれか一項に記載の、プラズマ放電を起こすデバイスを製造する方法であって、
    − 従来のインクジェットプリンタを提供するステップと、
    − 高電圧差を発生させるために高電圧源を提供するステップと、
    − 前記インクジェットプリンタの印刷ヘッドの少なくとも1つの導電構造体を前記高電圧源に導電接続するステップとを含む、製造方法。
JP2011523756A 2008-08-20 2008-08-20 基板の表面をパターニングするためにプラズマ放電を起こすデバイス Expired - Fee Related JP5801195B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NL2008/050555 WO2010021539A1 (en) 2008-08-20 2008-08-20 Device for generating a plasma discharge for patterning the surface of a substrate

Publications (2)

Publication Number Publication Date
JP2012500464A true JP2012500464A (ja) 2012-01-05
JP5801195B2 JP5801195B2 (ja) 2015-10-28

Family

ID=40551526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011523756A Expired - Fee Related JP5801195B2 (ja) 2008-08-20 2008-08-20 基板の表面をパターニングするためにプラズマ放電を起こすデバイス

Country Status (5)

Country Link
US (1) US8702902B2 (ja)
EP (1) EP2324687B1 (ja)
JP (1) JP5801195B2 (ja)
CN (1) CN102204414B (ja)
WO (1) WO2010021539A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519991A (ja) * 2010-02-17 2013-05-30 ヴィジョン ダイナミックス ホールディング ベー.フェー. 基板の表面をパターニングするためのプラズマ放電を発生させる装置および方法
JP2015081375A (ja) * 2013-10-23 2015-04-27 株式会社デンソー 成膜装置、及び硬質膜被覆刃具の製造方法
JP2018533158A (ja) * 2015-08-31 2018-11-08 トタル ソシエテ アノニムTotal Sa 空間分解プラズマ処理を用いてパターン形成されたデバイスを製造する、プラズマ発生装置および方法

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318265B2 (en) * 2008-06-12 2012-11-27 General Electric Company Plasma mediated processing of non-conductive substrates
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) * 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
CN105018900A (zh) * 2015-06-05 2015-11-04 刘南林 气相打印技术与设备
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
EP3181358A1 (en) * 2015-12-15 2017-06-21 Agfa Graphics NV Processless lithographic printing plate
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US11251019B2 (en) * 2016-12-15 2022-02-15 Toyota Jidosha Kabushiki Kaisha Plasma device
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
JP6863199B2 (ja) 2017-09-25 2021-04-21 トヨタ自動車株式会社 プラズマ処理装置
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
CN109957786A (zh) * 2018-11-16 2019-07-02 黄剑鸣 一种制作hit硅电池的气相沉積装置
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
KR102584515B1 (ko) * 2020-07-06 2023-10-05 세메스 주식회사 노즐, 이를 포함하는 기판 처리 장치 및 기판 처리 방법
CN113478809B (zh) * 2021-07-06 2023-05-30 上海科技大学 微纳结构的增材制造方法
CN115449780B (zh) * 2022-08-17 2024-04-09 安徽工业大学 一种等离子体射流快速制备亲疏水微流道的装置与方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110674A (ja) * 1981-12-23 1983-07-01 Fujitsu Ltd 乾式表面処理装置
JPS61204740U (ja) * 1985-06-13 1986-12-24
JPH0489261A (ja) * 1990-08-02 1992-03-23 Nec Corp インクジエットプリンタ用ヘツド
JP2003229299A (ja) * 2002-02-06 2003-08-15 Konica Corp 大気圧プラズマ処理装置、該大気圧プラズマ処理装置を用いて製造した膜、製膜方法及び該製膜方法を用いて製造した膜
JP2004111948A (ja) * 2002-08-28 2004-04-08 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JP2004111381A (ja) * 2002-08-26 2004-04-08 Matsushita Electric Ind Co Ltd プラズマ処理装置及び方法
JP2004220935A (ja) * 2003-01-15 2004-08-05 Univ Saitama マイクロプラズマ生成装置、プラズマアレイ顕微鏡、及びマイクロプラズマ生成方法
JP2008084694A (ja) * 2006-09-27 2008-04-10 Seiko Epson Corp プラズマ処理装置
JP2009043673A (ja) * 2007-08-10 2009-02-26 Osaka Univ プラズマ処理装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1041217A (fr) 1950-08-21 1953-10-21 Procédé et appareil pour la gravure de surfaces d'impression plates ou cylindriques
GB1480081A (en) 1973-09-18 1977-07-20 Ricoh Kk Methods of producing printing masters by spark-recording
US4718340A (en) * 1982-08-09 1988-01-12 Milliken Research Corporation Printing method
DE3331216A1 (de) * 1983-08-30 1985-03-14 Castolin Gmbh, 6239 Kriftel Vorrichtung zum thermischen spritzen von auftragsschweisswerkstoffen
US4911075A (en) * 1988-08-19 1990-03-27 Presstek, Inc. Lithographic plates made by spark discharges
US5237923A (en) * 1988-08-19 1993-08-24 Presstek, Inc. Apparatus and method for imaging lithographic printing plates using spark discharges
US5163368B1 (en) 1988-08-19 1999-08-24 Presstek Inc Printing apparatus with image error correction and ink regulation control
US5161465A (en) 1988-08-19 1992-11-10 Presstek, Inc. Method of extending the useful life and enhancing performance of lithographic printing plates
US5062364A (en) * 1989-03-29 1991-11-05 Presstek, Inc. Plasma-jet imaging method
US5084125A (en) * 1989-09-12 1992-01-28 Matsushita Electric Industrial Co., Ltd. Apparatus and method for producing semiconductor substrate
WO1992005957A1 (en) 1990-09-28 1992-04-16 Presstek, Inc. Plasma-jet imaging apparatus and method
DE4039930A1 (de) * 1990-12-14 1992-06-17 Leybold Ag Vorrichtung fuer plasmabehandlung
US6109717A (en) * 1997-05-13 2000-08-29 Sarnoff Corporation Multi-element fluid delivery apparatus and methods
US6028615A (en) * 1997-05-16 2000-02-22 Sarnoff Corporation Plasma discharge emitter device and array
US7300859B2 (en) * 1999-02-01 2007-11-27 Sigma Laboratories Of Arizona, Llc Atmospheric glow discharge with concurrent coating deposition
US6629757B1 (en) * 1999-06-07 2003-10-07 Canon Kabushiki Kaisha Recording head, substrate therefor, and recording apparatus
US20020092616A1 (en) 1999-06-23 2002-07-18 Seong I. Kim Apparatus for plasma treatment using capillary electrode discharge plasma shower
WO2002036851A1 (de) 2000-11-02 2002-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zur oberflächenbehandlung elektrisch isolierender substrate
US6632323B2 (en) 2001-01-31 2003-10-14 Plasmion Corporation Method and apparatus having pin electrode for surface treatment using capillary discharge plasma
US20020148816A1 (en) 2001-04-17 2002-10-17 Jung Chang Bo Method and apparatus for fabricating printed circuit board using atmospheric pressure capillary discharge plasma shower
JP3842159B2 (ja) * 2002-03-26 2006-11-08 株式会社半導体エネルギー研究所 ドーピング装置
TW200308187A (en) * 2002-04-10 2003-12-16 Dow Corning Ireland Ltd An atmospheric pressure plasma assembly
US7465407B2 (en) * 2002-08-28 2008-12-16 Panasonic Corporation Plasma processing method and apparatus
DE10322696B3 (de) 2003-05-20 2005-01-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur plasmagestützten Behandlung von vorgebbaren Oberflächenbereichen eines Substrates
US7297892B2 (en) * 2003-08-14 2007-11-20 Rapt Industries, Inc. Systems and methods for laser-assisted plasma processing
US7655275B2 (en) * 2004-08-02 2010-02-02 Hewlett-Packard Delopment Company, L.P. Methods of controlling flow
GB0503401D0 (en) 2005-02-18 2005-03-30 Applied Multilayers Ltd Apparatus and method for the application of material layer to display devices
US7723205B2 (en) * 2005-09-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd Semiconductor device, manufacturing method thereof, liquid crystal display device, RFID tag, light emitting device, and electronic device
JP4929759B2 (ja) * 2006-03-02 2012-05-09 大日本印刷株式会社 プラズマ処理方法
DE102006011312B4 (de) 2006-03-11 2010-04-15 Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - Vorrichtung zur Plasmabehandlung unter Atmosphärendruck
NL1032111C2 (nl) 2006-07-04 2008-01-07 Univ Eindhoven Tech Pennenbedmal.
US7829815B2 (en) * 2006-09-22 2010-11-09 Taiwan Semiconductor Manufacturing Co., Ltd. Adjustable electrodes and coils for plasma density distribution control
TWI349792B (en) * 2007-05-07 2011-10-01 Ind Tech Res Inst Atmosphere plasma inkjet printing apparatus and methods for fabricating color filter using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110674A (ja) * 1981-12-23 1983-07-01 Fujitsu Ltd 乾式表面処理装置
JPS61204740U (ja) * 1985-06-13 1986-12-24
JPH0489261A (ja) * 1990-08-02 1992-03-23 Nec Corp インクジエットプリンタ用ヘツド
JP2003229299A (ja) * 2002-02-06 2003-08-15 Konica Corp 大気圧プラズマ処理装置、該大気圧プラズマ処理装置を用いて製造した膜、製膜方法及び該製膜方法を用いて製造した膜
JP2004111381A (ja) * 2002-08-26 2004-04-08 Matsushita Electric Ind Co Ltd プラズマ処理装置及び方法
JP2004111948A (ja) * 2002-08-28 2004-04-08 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JP2004220935A (ja) * 2003-01-15 2004-08-05 Univ Saitama マイクロプラズマ生成装置、プラズマアレイ顕微鏡、及びマイクロプラズマ生成方法
JP2008084694A (ja) * 2006-09-27 2008-04-10 Seiko Epson Corp プラズマ処理装置
JP2009043673A (ja) * 2007-08-10 2009-02-26 Osaka Univ プラズマ処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519991A (ja) * 2010-02-17 2013-05-30 ヴィジョン ダイナミックス ホールディング ベー.フェー. 基板の表面をパターニングするためのプラズマ放電を発生させる装置および方法
JP2015081375A (ja) * 2013-10-23 2015-04-27 株式会社デンソー 成膜装置、及び硬質膜被覆刃具の製造方法
JP2018533158A (ja) * 2015-08-31 2018-11-08 トタル ソシエテ アノニムTotal Sa 空間分解プラズマ処理を用いてパターン形成されたデバイスを製造する、プラズマ発生装置および方法

Also Published As

Publication number Publication date
US8702902B2 (en) 2014-04-22
CN102204414B (zh) 2014-10-22
US20110226728A1 (en) 2011-09-22
WO2010021539A1 (en) 2010-02-25
CN102204414A (zh) 2011-09-28
JP5801195B2 (ja) 2015-10-28
EP2324687A1 (en) 2011-05-25
EP2324687B1 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5801195B2 (ja) 基板の表面をパターニングするためにプラズマ放電を起こすデバイス
EP2537398B1 (en) Device and method for generating a plasma discharge for patterning the surface of a substrate
JP6068982B2 (ja) 層堆積方法および機器
EP2200829B1 (en) Ambient plasma treament of printer components
JP5506401B2 (ja) 磁気マスクデバイスを使用する基板プラズマ処理
KR100309080B1 (ko) 구멍또는공동패턴을갖는전기절연재료판의제조방법
JP5597551B2 (ja) 移動基材のプラズマ表面処理の装置、方法および当該方法の使用
US20110089142A1 (en) Method and apparatus for plasma surface treatment of moving substrate
Pan et al. Addressable multi-nozzle electrohydrodynamic jet printing with high consistency by multi-level voltage method
JP2005223185A (ja) 静電チャックとその製造方法
US20090214402A1 (en) Microplasma Array
US9669423B2 (en) Multi-tip spark discharge generator and method for producing nanoparticle structure using same
JP2009070899A (ja) プラズマ処理装置およびプラズマ処理方法
US11515131B2 (en) System for focused deposition of atomic vapors
JP2011076912A (ja) 表面処理装置および表面処理方法
JP2011032120A (ja) 化学気相成長装置、化学気相成長方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140418

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5801195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees