JP2011129222A - 磁気ヘッド・スライダ及び磁気ディスク・ドライブ - Google Patents

磁気ヘッド・スライダ及び磁気ディスク・ドライブ Download PDF

Info

Publication number
JP2011129222A
JP2011129222A JP2009288714A JP2009288714A JP2011129222A JP 2011129222 A JP2011129222 A JP 2011129222A JP 2009288714 A JP2009288714 A JP 2009288714A JP 2009288714 A JP2009288714 A JP 2009288714A JP 2011129222 A JP2011129222 A JP 2011129222A
Authority
JP
Japan
Prior art keywords
thin film
film resistance
resistance heater
magnetic
heater element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009288714A
Other languages
English (en)
Inventor
Toshiya Shiramatsu
利也 白松
Masayuki Kurita
昌幸 栗田
Hidekazu Kodaira
英一 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2009288714A priority Critical patent/JP2011129222A/ja
Priority to US12/973,301 priority patent/US8767338B2/en
Publication of JP2011129222A publication Critical patent/JP2011129222A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6011Control of flying height
    • G11B5/6064Control of flying height using air pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

【課題】接触センサ素子を有する磁気ヘッド・スライダにおいて、記録素子、再生素子、そして、接触センサ素子の全ての素子の浮上量を効果的に低減する。
【解決手段】本発明の一実施形態では、磁気ヘッド・スライダ1は、記録素子2と再生素子3とに加え、接触センサ素子を有する。さらに、磁気ヘッド・スライダ1は、第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子4とを有する。第1薄膜抵抗ヒータ素子は、磁気抵抗効果素子及び記録磁極よりも、浮上面から遠い位置に形成されている。第2薄膜抵抗ヒータ素子は、前記第1薄膜抵抗ヒータ素子よりも下層にあり、前記第1ヒータ素子よりも前記浮上面及び前記磁気抵抗効果素子に近くにある。薄膜抵抗接触センサ素子は、第2薄膜抵抗ヒータ素子よりも上層に形成されており、第2ヒータ素子よりも前記浮上面に近い。
【選択図】図7

Description

本発明は、磁気ディスク・ドライブの高記録密度化を実現するための磁気ヘッド・スライダ及びその磁気ヘッド・スライダを搭載した磁気ディスク・ドライブに関する。
磁気ディスク・ドライブは、回転する磁気ディスクと、磁気ヘッド・スライダと、磁気ヘッド・スライダを保持し、回転駆動することで磁気ヘッド・スライダを磁気ディスクの半径方向に移動して位置決めするアクチュエータとを有する。磁気ヘッド・スライダは、スライダと、その上に形成され、記録再生素子を含む磁気ヘッド素子部とを有する。アクチュエータに保持される磁気ヘッド・スライダが、磁気ディスク上を相対的に飛行して、磁気ディスク上に記録された磁気情報を読み書きする。
磁気ヘッド・スライダは空気潤滑軸受として空気のくさび膜効果によって浮上し、磁気ディスクとは直接には固体接触しないように設計されている。磁気ディスク・ドライブの高記録密度化と、それによる装置の大容量化あるいは小型化を実現するためには、磁気ヘッド・スライダと磁気ディスクの距離、すなわち浮上量を縮め、記録密度を上げることが有効である。
近年、磁気ヘッド素子部内部に形成された薄膜抵抗体からなる加熱装置(ヒータ素子)によってその磁気ヘッド・スライダの浮上量を調整する、浮上量調整型スライダが実用化されている(例えば、特許文献1参照)。これにより、磁気ヘッド・スライダ個体毎に浮上量を縮めることができ、また、使用環境に応じて磁気ヘッド・スライダの浮上量を調整することができる。浮上量調整型スライダは、磁気ヘッド・スライダと磁気ディスクの接触は防ぎつつ記録再生素子の浮上量を縮めることを実現する。
特開2008−112545
浮上量調整機能を利用して磁気ヘッド・スライダと磁気ディスクとの接触を検知することで、浮上量の個体差を知ることができる。磁気ヘッド・スライダと磁気ディスクの接触を感度よく検知するためには、磁気ヘッド・スライダ内部における磁気ディスクとの接触点近くに、接触による摩擦熱を感知する薄膜抵抗体からなる接触センサ素子を組み込みことが有効である。この接触センサ素子により、高感度に接触検知を行うことができる。
磁気ヘッド・スライダ内部に組み込まれた接触センサ素子を有効に利用するためには、接触センサ素子の位置が、常に磁気ヘッド・スライダの最下点近くであることが重要である。しかし、磁気ヘッド・スライダにおいては、磁気ヘッド素子部の温度に変化があると、記録素子および再生素子の近傍が熱変形する。このように、磁気ヘッド素子部(磁気ヘッド・スライダ)の最下点は、その使用状況によって、変化しうる。
磁気ヘッド素子部の温度変化による熱変形には二種類あり、一つは、記録電流による熱膨張である。具体的には、記録電流がコイルに流れると、電磁誘導によって磁極で渦電流損が発生し、発熱(鉄損)が起きる。さらに、記録電流によって、コイルが発熱する(銅損)。これら発熱の和が、磁気ヘッド素子部の記録再生素子近辺を加熱し、熱膨張させることにより、ナノ・メートルオーダの熱突出が起きる。
もう一つは、環境温度の上昇によって起こる熱膨張である。記録再生素子近辺の磁気シールドや磁極の金属材料や樹脂材料と、それ以外の部分のセラミックス材料との間には、線膨張係数の相違が存在する。この線膨張係数差が原因で、環境温度の上昇によって、ナノ・メートルオーダの局所的な熱突出が起こる。
さらに、磁気ヘッド・スライダ(磁気ヘッド素子部)の最下点は、浮上面を形成する際にできる記録再生素子部近傍の浮上面の加工段差形状の個体差にも、大きく影響される。このため、磁気ヘッド・スライダ毎に、その最下点が異なる可能性がある。
上述のように、使用環境や磁気ヘッド・スライダ毎に磁気ヘッド・スライダの最下点が異なる場合、接触センサ素子が磁気ヘッド・スライダの最下点から離れた場所に位置する状況が起こり、接触センサ素子が磁気ヘッド・スライダと磁気ディスクの接触を感度良く検知できない可能性がある。
また、近年の磁気ヘッド・スライダは、記録特性が重要視されている。そのため、ヒータ素子による浮上量調整時には、記録素子が最下点の近くとなり、記録素子位置の磁気スペーシング(浮上量)を極力小さくすることが求められている。しかし、浮上量調整用のヒータ素子を、記録素子を最下点にすることを優先して設計すると、再生素子位置の浮上量が大きくなり、再生素子位置の磁気スペーシング(浮上量)が大きくなってしまう難点がある。現状では、一つの浮上量調整用ヒータ素子で、記録素子と再生素子の両方を磁気ヘッド・スライダの最下点近くにすることは困難である。
したがって、記録素子、再生素子、そして、接触センサ素子の全てを磁気ヘッド・スライダの最下点近くにすることができる技術が望まれる。
本発明の一態様は、スライダ基板と、前記スライダ基板上の磁気ヘッド素子積層体と、を有する磁気ヘッド・スライダである、前記磁気ヘッド素子積層体は、磁気抵抗効果素子と、前記磁気抵抗効果素子よりも上層に形成されている記録磁極と、磁気抵抗効果素子及び前記記録磁極よりも浮上面から遠い位置に形成されている第1薄膜抵抗ヒータ素子と、前記第1薄膜抵抗ヒータ素子よりも下層にあり前記第1ヒータ素子よりも前記浮上面及び前記磁気抵抗効果素子に近い第2薄膜抵抗ヒータ素子と、前記第2薄膜抵抗ヒータ素子よりも上層に形成されており前記第2ヒータ素子よりも前記浮上面に近い薄膜抵抗接触センサ素子とを有する。この構成により、記録磁極、磁気抵抗効果素子、そして、接触センサ素子と磁気ディスクとの距離を効果的に低減することができる。
好ましい構成において、前記第2薄膜抵抗ヒータ素子は、前記磁気抵抗効果素子よりも下層に形成されている。これにより、第2薄膜抵抗ヒータ素子からの熱により磁気抵抗効果素子を効率的に膨張させることができる。
前記第1薄膜抵抗ヒータ素子は、前記磁気抵抗効果素子と前記記録磁極との間の層に形成されていることが好ましい。これにより、第1薄膜抵抗ヒータ素子により記録磁極を効率的に膨張させることができる共に、磁気抵抗効果素子にも適切に第1薄膜抵抗ヒータ素子からの熱を与えることができる。
好ましい構成において、前記薄膜抵抗接触センサ素子は、積層方向において、前記第1薄膜抵抗ヒータ素子よりも前記記録磁極に近い位置にある。これにより、記録磁極と共に薄膜抵抗接触センサ素子の浮上量を小さくすることができ、高感度に接触を感知することができる。
前記薄膜抵抗接触センサ素子は、前記第1及び第2薄膜抵抗ヒータ素子よりも小さいことが好ましい。これにより、薄膜抵抗接触センサ素子が高感度に接触を感知することができる。さらに、前記第2薄膜抵抗ヒータ素子は、前記第1薄膜抵抗ヒータ素子よりも小さいことが好ましい。この第2薄膜抵抗ヒータ素子により、磁気抵抗効果素子を含む部分の局所的な熱膨張をより適切に引き起こすことができる。
好ましい構成において、前記第1及び第2薄膜抵抗ヒータ素子のグランドは共通である。これにより、浮上量制御を適切に行いつつ、磁気ヘッド・スライダの端子数を低減することができる。
好ましい構成において、前記薄膜抵抗接触センサ素子の入出力線は、前記第1及び第2薄膜抵抗ヒータ素子から独立である。これにより、薄膜抵抗接触センサ素子の感度の低下を防ぐことができる。
本発明の他の態様の磁気ディスク・ドライブは、磁気ディスクにアクセスする磁気ヘッド・スライダと、前記磁気ディスク上で浮上する前記磁気ヘッド・スライダを支持し、前記磁気ディスク上で前記磁気ヘッド・スライダを移動するヘッド移動機構と、前記磁気ヘッド・スライダに電力を供給する電力供給回路と、前記電力供給回路を制御するコントローラを有する。前記磁気ヘッド・スライダは、スライダ基板とそのスライダ基板上に形成されている磁気ヘッド素子積層体とを有する。前記磁気ヘッド素子積層体は、磁気抵抗効果素子と、前記磁気抵抗効果素子よりも上層に形成されている記録磁極と、磁気抵抗効果素子及び前記記録磁極よりも、浮上面から遠い位置に形成されている第1薄膜抵抗ヒータ素子と、前記第1薄膜抵抗ヒータ素子よりも下層にあり、前記第1ヒータ素子よりも前記浮上面に近い、第2薄膜抵抗ヒータ素子と、前記第2薄膜抵抗ヒータ素子よりも上層に形成されており、前記第2ヒータ素子よりも前記浮上面に近い、薄膜抵抗接触センサ素子を有する。前記コントローラは、前記電力供給回路により、前記前記第2ヒータ素子に前記第1ヒータ素子よりも小さい電力を供給する。これにより、記録磁極、磁気抵抗効果素子、そして、接触センサ素子と磁気ディスクとの距離を効果的に低減することができる。
本発明によれば、接触センサ素子を有する磁気ヘッド・スライダにおいて、磁気記録素子、磁気再生素子、そして、接触センサ素子の浮上量を効果的に低減することができる。
本実施形態おいて、磁気ディスク・ドライブの構成を示す平面図である。 本発明の実施形態における、磁気ヘッド・スライダの斜視図である。 図2のA−A線断面図である。 本発明の実施形態における第1のヒータ素子構造を示す断面図である。 本発明の実施形態における第2のヒータ素子構造を示す断面図である。 本発明の実施形態における接触センサ素子構造を示す断面図である。 本発明の実施形態におけるヒータ素による浮上面突出形状を示す図である。 本発明の実施形態に係る磁気ヘッド・スライダにおいて、9端子の配線構造を示す図である。 本発明の実施形態に係る磁気ヘッド・スライダにおいて、8端子の配線構造を示す図である。 本発明の実施形態に係る磁気ヘッド・スライダにおいて、7端子の配線構造を示す図である。 本発明の実施形態において、二つのヒータ素子を並列接続した場合の8端子の配線構造を示す図である。 本発明の実施形態において、二つのヒータ素子を直列接続した場合の8端子の配線構造を示す図である。 本発明の実施形態において、二つのヒータ素子を並列接続した場合の7端子の配線構造を示す図である。 本発明の実施形態において、二つのヒータ素子を直列接続した場合の7端子の配線構造を示す図である。 本発明の実施形態において、二つのヒータ素子を並列接続した場合の6端子の配線構造を示す図である。 本発明の実施形態において、二つのヒータ素子を直列接続した場合の6端子の配線構造を示す図である。
以下に、本発明を適用可能な実施の形態を説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略及び簡略化がなされている。又、各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略されている。以下においては、磁気ディスク・ドライブの一例であるハードディスク・ドライブ(HDD)を例として、本発明の実施形態を説明する。
本実施形態に係るHDD100の概略構成を図1に示す。HDD100は、筐体102を有し、筐体102にはスピンドル・モータ104、軸受けユニット110、そしてVCM磁気回路116が取り付けられている。スピンドル・モータ104には、磁気ディスク106が固定され、磁気ディスク106はスピンドル・モータ104によって回転駆動される。軸受けユニット110には、ヘッド・アーム112とVCMコイルが支持され、VCMコイルはVCM磁気回路116の磁界中に置かれる。
ヘッド・アーム112の先にはサスペンション118が取り付けられ、サスペンション118は、磁気ヘッド・スライダ1を支持している。サスペンション118と磁気ヘッド・スライダ1とのアセンブリを、ヘッド・ジンバル・アセンブリと呼ぶ。サスペンション118、ヘッド・アーム112、軸受けユニット110そしてVCMコイルが、アクチュエータ160を構成している。アクチュエータ160は、磁気ヘッド・スライダ1の移動機構の一例である。アクチュエータ160と磁気ヘッド・スライダ1とのアセンブリを、ヘッド・スタック・アセンブリと呼ぶ。
アクチュエータ160は、軸受けユニット110において回動し、磁気ヘッド・スライダ1を磁気ディスク106の半径方向に移動させる。磁気ヘッド・スライダ1は、サスペンション118によって磁気ディスク面への押し付け荷重を与えられ、10nm程度あるいは10nm以下の浮上量で磁気ディスク106上を浮上する。
磁気ヘッド・スライダ1は回動するアクチュエータ160によって磁気ディスク106の半径方向に移動し(シーク動作)、磁気ディスク106に対してアクセスする。アクセスは、記録と再生の上位概念である。アクチュエータ160は、HDD100の停止時あるいは読み書き命令が一定時間無い時に、磁気ディスク106上からランプ122に待避する。そのとき、磁気ヘッド・スライダ1は、磁気ディスク106の外側に位置する。上記HDD100は、ランプ・ロード・アンロード方式のHDDであるが、磁気ヘッド・スライダ1が磁気ディスク106の特定の領域で待機する、コンタクト・スタート・ストップ方式のHDDに本発明を適用することができる。
筐体102外側に固定された回路基板上に、各回路が実装されている。モータ・ドライバ・ユニット522は、HDC523からの制御データに従って、スピンドル・104とVCM磁気回路116を駆動する。ヘッドICであるアーム・エレクトロニクス(AE)513はICであって、好ましくは、筐体102内に配置されている。AE513は、HDC523からの制御データに従って複数のヘッド・スライダ1の中から磁気ディスク106にアクセス(リードもしくはライト)するヘッド・スライダ1を選択し、リード/ライト信号の増幅を行う。
また、AE513は、HDC523からの制御データに従って選択したヘッド・スライダ12のヒータ素子へ電力を供給し、その電力量を調整する電力供給調整回路として機能する。また、AE513は、接触センサ素子を使用して、ヘッド・スライダ1と磁気ディスク106との間の接触をモニタし、接触を検知する接触検知機能を有している。接触センサが接触を検知すると、AE513がそれをHDC523に通知する。
RWチャネル521は、リード処理において、AE513から供給されたリード信号からデータを抽出し、デコード処理を行う。デコード処理されたデータは、HDC523に供給される。また、ライト処理において、HDC523から供給されたライト・データをコード変調し、さらに、コード変調されたデータをライト信号に変換してAE513に供給する。
コントローラであるHDC523は、MPUとハードウェア論理回路とで構成されている。HDC523は、リード/ライト処理制御、コマンド実行順序の管理、サーボ信号を使用したヘッド・ポジショニング制御(サーボ制御)、ホストとの間のインターフェイス制御、ディフェクト管理、エラー対応処理など、データ処理に関する必要な処理及びHDD100の全体制御を実行する。HDC523は、AE513の制御レジスタに制御データを格納することでAE513を制御する。RAM524は、HDC523のファームウェアの他、ユーザ・データを一時的に格納するセクタ・バッファとして機能する。
図2は、図1における磁気ヘッド・スライダ1の構造を模式的に示す図である。磁気ヘッド・スライダ1は、アルミナとチタンカーバイドの焼結体(以下、アルチックと略す)に代表されるセラミック材料のスライダ基板1aと、薄膜磁気ヘッド部分1bとから成る。薄膜磁気ヘッド部分1bは、スライダ基板1aの素子形成面(薄膜形成面)上に薄膜プロセスで形成された磁気ヘッド素子積層体である。薄膜磁気ヘッド部分1bは、磁気記録素子2、磁気再生素子3、2つの薄膜抵抗ヒータ素子(図3の薄膜抵抗ヒータ素子4、40を参照)、接触センサ素子(図3の接触センサ素子41を参照)、および、絶縁体の保護膜(図3の保護膜16を参照)などから成る。
磁気ヘッド・スライダ1は、例えばフェムトと呼ばれる磁気ヘッド・スライダ1では、長さ0.85mm、幅0.7mm、厚さ0.23mmのほぼ直方体形状をしており、浮上面9、空気流入端面12、空気流出端面14、両側の側面、背面の計6面から構成される。浮上面9にはイオン・ミリングやエッチングなどのプロセスによって微細な段差(ステップ軸受け)が設けられており、磁気ディスクと対向して空気圧力を発生し、背面に負荷される荷重を支える空気軸受けの役目を果たしている。
浮上面9には前記のように段差が設けられ、実質的に平行な3種類の面に分類される。最もディスクに近い浮上パッド5a、5b、5c、浮上パッド5より約100nm乃至200nm深いステップ軸受け面である浅溝面7a、7b、浮上パッド5より約1μm深くなっている深溝面8の3種類である。磁気ディスクが回転することで生じる空気流が、ステップ軸受けである浅溝面7bから浮上パッド5b、5cへ進入する際に、先すぼまりの流路によって圧縮され、正の空気圧力が生じる。一方、浮上パッド5b、5c及び浅溝面7bから深溝面8へ空気流が進入する際には、流路の拡大によって負の空気圧力が生じる。なお、図2においては段差及び溝の深さを強調して示してある。
磁気ヘッド・スライダ1は空気流入端12側の浮上量が、空気流出端14側の浮上量より大きくなるような姿勢で浮上するように設計されている。従って流出端近傍の浮上パッド(以下、素子設置面という)5aがディスクに最も接近する。流出端近傍では、素子設置面5aが周囲の浅溝面7a、深溝面8に対して突出しているので、スライダ・ピッチ姿勢およびロール姿勢が一定限度を超えて傾かない限り、素子設置面5aが最も磁気106ディスクに近づくことになる。
磁気記録素子2および磁気再生素子3は、素子設置面5aの薄膜ヘッド部分1b内に形成されている。サスペンション118から押し付けられる荷重と、浮上面9で生じる正負の空気圧力とがうまくバランスし、磁気記録素子2および磁気再生素子3からディスクまでの距離を10nm程度あるいはそれ以下の適切な値に保つよう、浮上面9の形状が設計されている。浮上面9で最も磁気ディスク106と接触する可能性の高い素子設置面5aには、ディスクとの短時間かつ軽微な接触が起こっても摩耗しないよう、また記録素子2および再生素子3の腐食を防ぐため、厚さ数nmの炭素保護膜が形成されている。
なお、上述の磁気ヘッド・スライダ1は、浮上面9が実質的に平行な高さ(深さ)が異なる3種類の面(パッド面、浅溝面、深溝面)から形成される2段ステップ軸受けのスライダであるが、4種類以上の平行な面から形成される3段以上のステップ軸受けのスライダであっても良い。
図2に示した磁気ヘッド・スライダ1の、記録再生素子2、3が形成された薄膜磁気ヘッド部分1bの断面拡大図(A−A線断面図)を図3に示す。薄膜磁気ヘッド部分1bは、アルチック基板1a上に、メッキ、スパッタリング、研磨などの薄膜プロセスを用いて形成される。アルチック基板1a上に、最下層から順に各層が形成される。したがって、一つの層に対して、アルチック基板1aに近い層は下層であり、アルチック基板1aから遠い層は上層である。上述のように、薄膜磁気ヘッド部分1bは、空気流出端14に形成されている。従って、下層側が空気流入側(リーディング側)であり、上層側が空気流出側(トレーリング側)である。
薄膜磁気ヘッド部分1bは、磁界の変化を検出する磁気抵抗型の磁気再生素子3、磁気情報を記録するインダクティブ型の磁気記録素子2、その周囲の保護膜16を有する。磁気記録素子2は、磁気再生素子3よりも上層に形成されている。つまり、磁気再生素子3は、磁気記録素子2よりも、アルチック基板1aに近い位置にある。さらに、磁気記録素子2の最下層が磁気再生素子3の最上層よりも上層側にある。保護膜16は、一般に、アルミナ(Al)である。
以下において、素子とアルチック基板1aとの距離は、その素子の積層方向における中心位置からアルチック基板1aまでの距離で定義する。なお、図3に示す磁気記録素子2は、垂直磁気記録素子であるが、本発明を、面内記録素子を有する磁気ヘッド・スライダに適用することができる。磁気記録素子2の一部の素子と磁気再生素子3の一部の素子とが共通でもよい。共通部品は、双方の素子の一部である。
磁気再生素子3は、下層から上層に向かって積層されている、下部磁気シールド32、磁気抵抗効果素子34、そして、上部磁気シールド36を有している。本構成例においては、磁気再生素子3は、これら3つの素子から構成されている。磁気再生素子3は、磁気ディスク106からの磁界により変化する磁気抵抗効果素子34の抵抗値をセンスすることで、磁気ディスク106上の磁気情報を読み出す。磁気抵抗効果素子34の積層構造として様々なものが知られているが、本発明はいずれの構造の磁気抵抗効果素子及びいずれの構造の再生素子を有する磁気ヘッド・スライダにも適用することができる。
下部磁気シールド32、磁気抵抗効果素子34、そして、上部磁気シールド36のそれぞれは、保護膜16の浮上面9まで達している。磁気データの読み出しにおいては、磁気抵抗効果素子34の磁気スペーシングを小さくすることが重要である。そのため、磁気抵抗効果素子34は保護膜16の浮上面9まで達している(浮上面9から露出している)ことが好ましい。本明細書において、素子の磁気スペーシングは、その素子の浮上面側の端面から、磁気ディスク106の磁気記録層の表面までの距離である。素子の浮上面9からの距離は、その素子の浮上方向における中心から浮上面9までの距離である。
磁気抵抗効果素子34へのノイズ混入を防ぐため、磁気シールド32、36の浮上方向における寸法は、図3の好ましい構成例のように、磁気抵抗効果素子34よりも大きいことが好ましい。この構成において、磁気シールド32、36の浮上面9からの距離は、磁気抵抗効果素子34よりも大きい。
磁気記録素子2は、下層から上層に向かって積層されている、下部磁極23、ライト・コイル24、記録磁極である主磁極25、そして上部磁極22を有している。上記順序は、各素子の最下面の順序に従っている。本構成例においては、記録素子2は、これらの構成要素からなる。本発明は、他のコイル構造や磁気磁極形状を有する記録素子が実装された磁気ヘッド・スライダに適用することができる。
本例においては、下部磁極23は、磁気再生素子3の上部磁気シールド36よりも上層に形成されている。主磁極25は、下部磁極23よりも上層に形成されており、積層方向において主磁極25を挟むように、ライト・コイル24が形成されている。主磁極25は上部磁極22と結合している。磁気データの記録においては、主磁極25の磁気スペーシングを小さくすることが重要である。
そのため、主磁極25は保護膜16の浮上面9まで達している(露出している)ことが好ましい。磁気記録素子2は、ライト・コイル24を流れる電流により、主磁極25から磁界を発生させて、磁気ディスク106の磁気記録層に磁気データを記録する。主磁極25からの記録磁界は、磁気ディスク106の磁気記録層を通り、下部磁極23に戻る。
薄膜磁気ヘッド部分1bは、さらに、接触センサ素子41を有している。接触センサ素子41は薄膜抵抗体からなり、接触による摩擦熱を感知する。AE513はその抵抗変化をモニタすることで、磁気ヘッド・スライダ1と磁気ディスク106との接触を検知する。保護膜16は、磁気記録素子2、磁気再生素子3、薄膜抵抗ヒータ素子4、40そして接触センサ素子41の全体を覆い、これらを互いに絶縁している。
ヘッド・ディスク接触を高感度に検知するため、接触センサ素子41は、保護膜16の浮上面9にできるだけ近い位置に形成されていることが好ましい。好ましい本構成において、接触センサ素子41(のディスク側端)は浮上面9に達している(浮上面9から露出している)。また、接触センサ素子41は、再生素子3の磁気抵抗効果素子34よりも、
主磁極25に近い位置に形成されていることが好ましい。現在のHDD設計においては、磁気ヘッド・スライダ1における記録特性の改善がより重要であるからである。
そのため、接触センサ素子41は主磁極25近傍において、できるだけ主磁極25の近くに位置していることが好ましい。図3に例示する好ましい構成において、接触センサ素子41は、主磁極25のすぐ下層にあり、積層方向において、下層のライト・コイル24と主磁極25との間にある。
さらに、薄膜磁気ヘッド部分1bは、二つの浮上量調整用ヒータ素子を有している4、40。二つのヒータ素子4、40はそれぞれ薄膜抵抗体からなり、一つは第1薄膜抵抗ヒータ素子4であり、もう一つは第2薄膜抵抗ヒータ素子40である。薄膜抵抗ヒータ素子4、40からの熱により薄膜磁気ヘッド部分1bの一部が膨張、突出し、薄膜磁気ヘッド部分1b内の素子と磁気ディスク106との間の距離(磁気スペーシング)を小さくすることができる。
また、薄膜磁気ヘッド部分1bが二つの浮上量調整用ヒータ素子4、40を有することで、薄膜磁気ヘッド部分1bの適切な浮上面プロファイルを得ることができる。なお、本発明は、三つ以上の浮上量調整用ヒータ素子を有する磁気ヘッド・スライダにも適用することができる。構成及び制御のシンプリシティの点からは、実装される浮上量調整用ヒータ素子は二つであることが好ましい。
好ましい構成において、第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40とは、浮上量調整において異なる役割を担う。第1薄膜抵抗ヒータ素子4は、磁気記録素子2(主磁極25)および磁気再生素子3(磁気抵抗効果素子34)の両方のための浮上量調整用ヒータ素子として機能する。第2薄膜抵抗ヒータ素子40は、主に、磁気再生素子3(磁気抵抗効果素子)のための浮上量調整用ヒータ素子として機能する。第2薄膜抵抗ヒータ素子40は、その機能のため、主磁極25よりも磁気抵抗効果素子34に近い位置に形成されている。
磁気再生素子3は磁気記録素子2よりも下層に形成されており、アルチック基板1aにより近い位置に形成されている。アルチック基板1aの膨張率は、薄膜磁気ヘッド部分1bよりも小さい。また、アルチック基板1aの放熱性は薄膜磁気ヘッド部分1bよりも良く、熱が拡散する。そのため、ヒータ素子からの熱による膨張量は、アルチック基板1aに近い磁気再生素子3が、アルチック基板1aから遠い磁気記録素子2よりも小さくなりやすい。そのため、第1薄膜抵抗ヒータ素子4に加えて、第2薄膜抵抗ヒータ素子40を設けることで、より確実に磁気再生素子3(磁気抵抗効果素子34)を最下点近くに位置させることができる。
上述のように、第1薄膜抵抗ヒータ素子4は、磁気記録素子2と磁気再生素子3の双方をその熱により突出させる。第1薄膜抵抗ヒータ素子4は、磁気抵抗効果素子34及び主磁極25よりも浮上面9から遠い位置にある。ヒータ素子4からの熱は浮上面9から放熱されるため、上記位置に第1薄膜抵抗ヒータ素子4を形成することで、効果的に磁気抵抗効果素子34及び主磁極25の突出量を制御することができる。
また、磁気記録素子2は、主に第1薄膜抵抗ヒータ素子4からの熱で突出するため、第1薄膜抵抗ヒータ素子4によるストロークは、典型的に、第2薄膜抵抗ヒータ素子40によるストロークよりも大きなストロークが要求される。第1薄膜抵抗ヒータ素子4は磁気記録素子2および磁気再生素子3の両方のための大ストローク浮上量調整用ヒータ素子であり、第1薄膜抵抗ヒータ素子4の発熱量は、第2薄膜抵抗ヒータ素子40の発熱量よりも大きい。
第1薄膜抵抗ヒータ素子4が、磁気抵抗効果素子34及び主磁極25よりも浮上面9から後退した位置に形成されていることで、磁気抵抗効果素子34の第1薄膜抵抗ヒータ素子4からの直接熱による劣化を避けることができる。上述のように、浮上面9からの素子の距離は、素子の中心位置(浮上面の法線方向における中心位置)を基準として定義される。
さらに、図3に例示するように、第1薄膜抵抗ヒータ素子4は、積層方向において、磁気抵抗効果素子34と主磁極25との間に位置していることが好ましい。ヒータ素子の熱による熱膨張は、一般に、ヒータ素子の下層側よりも上層側が大きい。磁気抵抗効果素子34と主磁極25との間にある第1薄膜抵抗ヒータ素子4は、磁気記録素子2を効果的に突出させることができると共に、再生素子3にも適切な熱を与えることができる。
第2薄膜抵抗ヒータ素子40は、上述のように、再生素子3の突出制御を主な機能とするヒータ素子である。したがって、第2薄膜抵抗ヒータ素子40は、第1薄膜抵抗ヒータ素子4よりも下層に位置し、第1薄膜抵抗ヒータ素子4より磁気抵抗効果素子34に近い位置にある。また、第2薄膜抵抗ヒータ素子40は、第1薄膜抵抗ヒータ素子4よりも浮上面9の近い位置にある。これにより、効果的に、再生素子3の局所的な膨張を実現することができる。
図3に例示するように、好ましくは、第2薄膜抵抗ヒータ素子40は、磁気抵抗効果素子34よりも下層に形成されており、さらに、磁気シールド32(磁気再生素子3)よりも下層に形成されていることが好ましい。第2薄膜抵抗ヒータ素子40により、その上層側部分の膨張率が下層側よりも大きいため、スライダ基板1aと下部磁気シールド32との間にある第2薄膜抵抗ヒータ素子40からの熱により、効率的に磁気再生素子3(磁気抵抗効果素子34)を磁気ディスク106に近づけることができる。
第2薄膜抵抗ヒータ素子40は、主に、磁気再生素子3の局所的な熱膨張を目的とする浮上量調整用ヒータ素子である。熱膨張の対象範囲を、第1薄膜抵抗ヒータ素子4よりも小さくするため、第2薄膜抵抗ヒータ素子40のサイズは第1薄膜抵抗ヒータ素子4のサイズよりも小さいことが好ましい。好ましくは、第2薄膜抵抗ヒータ素子40の面積は、第1薄膜抵抗ヒータ素子4の面積の1/2以下である。小型の薄膜抵抗ヒータ素子40を磁気再生素子3の近くに配置することで、磁気再生素子3の突出を正確に制御することができる。
浮上面9のプロファイル制御は、第1薄膜抵抗ヒータ素子4により大きな熱膨張(ストローク)を起こし、第2薄膜抵抗ヒータ素子40により局所的な小さい熱膨張(ストローク)を起こすことが好ましい。HDC523は、AE513を制御することで、第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40とに電力を供給する。浮上量制御においては、HDC523は、AE513により、第1薄膜抵抗ヒータ素子4に対して、第2薄膜抵抗ヒータ素子40よりも大きな電力を与える。このような二つの薄膜抵抗ヒータ素子4、40により、主磁極25及び磁気抵抗効果素子34の双方を、最下点近くに位置させることができる。
接触センサ素子41は、磁気ヘッド1と磁気ディスク106との接触を感知するためのセンサ素子である。そのため、典型的には、接触センサ素子41は、第2薄膜抵抗ヒータ素子40よりも小さい薄膜抵抗で構成される。好ましくは、接触センサ素子41の面積は第2薄膜抵抗ヒータ素子40の面積1/2以下である。これにより、接触センサ素子41の接触感知感度を上げることができる。上述のように、接触センサ素子41は浮上面9近くに設けられることが重要であり、第2薄膜抵抗ヒータ素子40より浮上面9の近くに設けられる。接触センサ素子41は、主磁極25の近くに配置することが重要であり、好ましくは、第1薄膜抵抗ヒータ素子4よりも、積層方向において、主磁極25に近い層に形成される。
以下において、第1薄膜抵抗ヒータ素子4、第2薄膜抵抗ヒータ素子40、そして接触センサ素子41の好ましい構造の例を説明する。これらは構造例であって、本発明はこれらに限定されない。図4に、第1薄膜抵抗ヒータ素子4を、流出端側から見た図(図3のB−B断面図)を示す。図4の構成例において、浮上量調整用第1薄膜抵抗ヒータ素子4は、材質がニッケルクロム(NiCr)、厚さが約0.1μm、幅が約2μmの薄膜抵抗体の細線で形成されている。
細線は、奥行きL1が約15μm、幅W1が約15μmの領域で蛇行している。細線の間隙は、アルミナ(Al)で埋めてある。抵抗値は約100Ωである。第1薄膜抵抗ヒータ素子4の浮上面9からの距離は、D1で示されている。この構成における第1薄膜抵抗ヒータ素子4の面積はW1×L1で表わされ、その面積が大きいほど広い範囲に熱を与えることができる。
図5に、第2薄膜抵抗ヒータ素子40を、流出端側から見た図(図3のC−C断面図)を示す。この構成例において、第2薄膜抵抗ヒータ素子40は第1薄膜抵抗ヒータ素子4と同じ材料で形成した薄膜抵抗体である。第2薄膜抵抗ヒータ素子40は、材質がニッケルクロム(NiCr)、厚さが約0.1μm、幅が約1μmの細線で構成されている。細線は、奥行L2が約5μm、幅W2が約5μmの領域で蛇行し、その抵抗値は約20から100Ωである。
第2薄膜抵抗ヒータ素子40の浮上面9からの距離は、D2で示されている。この構成における第2薄膜抵抗ヒータ素子40の面積はW2×L2で表わされる。なお、第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40とは、例示した形状と異なる形状を有していてもよい。例えば、一方もしくは双方は、蛇行していない細い直線状のヒータ素子であってもよい。
図6に、接触センサ素子41を、流出端側から見た図(図3のE−E断面図)を示す。本構成例において、接触センサ素子41は、第2薄膜抵抗ヒータ素子40の面積よりも小さい面積を有するように、ニッケル鉄(NiFe)などの材料で形成した薄膜抵抗体である。その厚さが約0.03μm、幅W3が約1μm、奥行きL3が約0.1μmのサイズである。抵抗値は約30から200Ωである。接触センサ素子41の浮上面9からの距離は、D3で示されている。その面積は、W3×L3で表わされる。
図7を参照して上述の第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40による薄膜磁気ヘッド部分1bの熱突出を詳細に説明する。図7は、図3と同様に、図2に示した磁気ヘッド・スライダ1のA−A切断線における断面図であり、記録再生素子3が形成されている薄膜磁気ヘッド部分1bの断面拡大図である。図3と異なり、図7は、二つのヒータ素子4、40からの熱により膨張している薄膜磁気ヘッド部分1b(及びスライダ基板1aの一部)の断面形状を模式的に示している。
磁気記録素子2、磁気再生素子3の両方に対する浮上量調整用の第1薄膜抵抗ヒータ素子4による熱突出形状50は、第1薄膜抵抗ヒータ素子4の薄膜形成面上の面積が大きくその熱が磁気記録素子2および磁気再生素子3全体に伝わる。このため、磁気記録素子2および磁気再生素子3に全体に広がるような突出形状であり、第1薄膜抵抗ヒータ素子4による突出のピークは磁気記録素子2の近傍(好ましくは主磁極25)になる。
それに対し、磁気再生素子3用の第2薄膜抵抗ヒータ素子40による突出形状は、第2薄膜抵抗ヒータ素子40が第1薄膜抵抗ヒータ素子4よりも小さく、浮上面に近い位置に形成されている。そのため、第2薄膜抵抗ヒータ素子40からの熱が伝わる範囲が磁気再生素子3の周辺のみであり、第2薄膜抵抗ヒータ素子40による熱突出は磁気再生素子3の周辺に限定される。
そのため、第1薄膜抵抗ヒータ素子4によって、磁気記録素子3周辺(好ましくは主磁極25)が最下点になり、このとき、第1薄膜抵抗ヒータ素子4によって磁気再生素子3の周辺もある程度最下点に近い状態になっている。第1薄膜抵抗ヒータ素子4に電力を加えた状態で、第2薄膜抵抗ヒータ素子40にも電力を加えることにより、磁気再生素子3の周辺(好ましくは磁気抵抗効果素子34)も記録素子2と同等レベルまで最下点に近づけることが可能である。
また、三つの薄膜抵抗体の中で最も小さく、最も浮上面近くに形成されている接触センサ素子41は、薄膜積層方向に関して、磁気記録素子2の主磁極25近傍に形成されているため、第1薄膜抵抗ヒータ素子4によって主磁極25が最下点になればそれと同時に接触センサ素子41も最下点に近い状態になるため、磁気ヘッド・スライダ1と磁気ディスク106の接触を感度良く検知することができる。
3種類の薄膜抵抗体を制御するためには、通常は3系統6配線が必要であり、磁気ヘッド・スライダ1の素子形成面の保護膜16上に形成する端子数を、現状の6端子から10端子に増加する必要がある。端子数が多くなると、空気流出端面14上への実装が困難になる。
図8は第1薄膜抵抗ヒータ素子4のグランド線42と第2薄膜抵抗ヒータ素子40のグランド線44とを接続して1つのグランド線に集約した配線構造を、流出端側から見た図である。接触センサ素子41用の二つのリード線は、薄膜抵抗ヒータ素子のリード線とは別であり、独立している。図8の例においては、接触センサ素子41につながる一つのリード線43はグランド線である。接触センサ素子41の信号はディファレンシャル伝送してもよい。
磁気記録素子2、磁気再生素子3及び第1薄膜抵抗ヒータ素子4、第2薄膜抵抗ヒータ素子40、接触センサ素子41のリード線を外部に電気的に接続するために、空気流出端面14上に磁気記録素子用端子60、磁気再生素子用端子62、第1薄膜抵抗ヒータ素子4用端子64、第2薄膜抵抗ヒータ素子40用端子66、接触センサ素子用端子67、75、およびヒータ素子用グランド端子68が形成されている。このように、ヒータ素子用のグランド線を共有化することで、端子数を低減できる。グランド線を共通化しても、他方の線を独立にして個別の信号を与えることで、二つのヒータ素子4、40を独立に制御することができる。また、接触センサ素子41の入出力線(2本のリード線)をヒータ素子の入出力線から独立させることで、より正確な接触検知を行なうことができる。
図9は第1薄膜抵抗ヒータ素子4のグランド線42、第2薄膜抵抗ヒータ素子40のグランド線44、そして接触センサ素子41用のグラント線43を接続して1つのグランド線に集約し、8端子とした配線構造を流出端側から見た図である。磁気記録素子2、磁気再生素子3、第1薄膜抵抗ヒータ素子4、第2薄膜抵抗ヒータ素子40、そして、接触センサ素子41のリード線を外部に電気的に接続するために、空気流出端面14上に磁気記録素子用端子60、磁気再生素子用端子62、第1薄膜抵抗ヒータ素子4用端子64、第2薄膜抵抗ヒータ素子40用端子66、接触センサ素子用端子67およびグランド端子68が形成されている。このように、グランド線を共有化することで、3種類の薄膜抵抗体を制御する場合でも、2個の端子増加で済ますことができる。
図10の示す配線構造は、図8の構造と同様に、第1薄膜抵抗ヒータ素子4のグランド線42、第2薄膜抵抗ヒータ素子40のグランド線44、そして、接触センサ素子用のグランド線43を接続して1つのグランド線に集約する。さらに、本配線構造は、共有化したグランド線をグランドに接続されているアルチック基板1bに接続して、アルチック基板1bを介してグランドに接続する。これにより、第1薄膜抵抗ヒータ素子4、第2薄膜抵抗ヒータ素子40、そして接触センサ素子41用のグランド端子68を省略する。これによれば、現状の6端子よりもひとつ端子が増えるだけの7端子の配線構造が可能となる。
また、第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40とを並列もしくは直列に接続し、浮上量調整用の回路を一系統にすれば、図11、図12に示すように、接触センサ素子41のための2端子67、68、磁気記録素子用の2端子60、そして磁気再生素子用の2端子62の、合計8端子とすることができる。図11において第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40とは並列に接続され、図12においてそれらは直列に接続されている。このような構成においては、二つのヒータ素子からの発熱量比が所望の値となるように、それらの抵抗値を設計する。この点は、以下の構成において同様である。
さらに、図13、14に示すように、浮上量調整用(第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40)のグランドと接触センサ素子41のグランドとを共通化することで、7端子の配線構造を構成することができる。図13において第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40とは並列に接続され、図14においてそれらは直列に接続されている。
あるいは、図15、16に示すように、浮上量調整用(第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40)のグランドと接触センサ素子41のグランドと共通化し、さらに、その共通化した線をアルチックのスライダ基板1aを介してグランドに接続することで、さらに端子数を少なくすることができる。この配線構造の端子数は、現状と同じの6端子である。図15において第1薄膜抵抗ヒータ素子4と第2薄膜抵抗ヒータ素子40とは並列に接続され、図16においてそれらは直列に接続されている。
上記実施例では、厚さ0.23mmのフェムトスライダを例に説明したが、スライダの厚みが0.1mmにまで薄くなった場合でも、一辺80μm程度の大きさの端子であれば、8端子をスライダの流出端面に形成することは可能である。
以上の説明は、本発明の実施形態を説明するものであり、本発明が上記の実施形態に限定されるものではない。当業者であれば、上記の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。例えば、本発明をHDDと異なる磁気ディスク・ドライブに適用することができる。磁気ヘッド・スライダを移動する移動機構は、上記アクチュエータに限定されず、直線状にヘッド・スライダを移動する機構のように他の構造の移動機構を使用することができる。
1…磁気ヘッド・スライダ、1a…スライダ基板、1b…薄膜磁気ヘッド部分
2…記録素子、3…再生素子、4…第1薄膜抵抗ヒータ素子
5a…浮上パッド(素子設置面)、5b、5c…浮上パッド
7a、7b…浅溝面、8…深溝面、9…浮上面、12…空気流入端面
14…空気流出端面、16…保護膜、22…上部磁極、23…下部磁極
24…ライト・コイル、32…下部磁気シールド膜、34…磁気抵抗効果素子
36…上部磁気シールド膜、40…第2薄膜抵抗ヒータ素子
41…薄膜抵抗接触センサ素子、42…第1薄膜抵抗ヒータ素子用グランド配線
43…接触センサ素子用グランド配線、44…第2薄膜抵抗ヒータ素子用グランド配線
50…薄膜抵抗ヒータ素子による突出形状
52…再生素子用の薄膜抵抗ヒータ素子による突出形状、60…記録素子用端子
62…再生素子用端子、64…薄膜抵抗ヒータ素子用端子
66…再生素子用薄膜抵抗ヒータ素子用端子、67…接触センサ素子用端子
68…薄膜抵抗ヒータ素子用グランド端子、69…薄膜抵抗ヒータ素子用端子
70…薄膜抵抗ヒータ素子用グランド端子、100…ハードディスク・ドライブ
102…ベース、104…スピンドル・モータ、106…磁気ディスク
110…軸受けユニット、112…ヘッド・アーム、116…VCM磁気回路
118…サスペンション、122…ランプ、160…アクチュエータ
513…アーム・エレクトロニクス、521…リード・ライト・チャネル
522…モータ・ドライバ・ユニット、523…ハードディスク・コントローラ
524…RAM

Claims (15)

  1. スライダ基板と、前記スライダ基板上の磁気ヘッド素子積層体と、を有する磁気ヘッド・スライダであって、前記磁気ヘッド素子積層体は、
    磁気抵抗効果素子と、
    前記磁気抵抗効果素子よりも上層に形成されている記録磁極と、
    磁気抵抗効果素子及び前記記録磁極よりも、浮上面から遠い位置に形成されている第1薄膜抵抗ヒータ素子と、
    前記第1薄膜抵抗ヒータ素子よりも下層にあり、前記第1ヒータ素子よりも前記浮上面及び前記磁気抵抗効果素子に近い、第2薄膜抵抗ヒータ素子と、
    前記第2薄膜抵抗ヒータ素子よりも上層に形成されており、前記第2ヒータ素子よりも前記浮上面に近い、薄膜抵抗接触センサ素子と、
    を有する、磁気ヘッド・スライダ。
  2. 前記第2薄膜抵抗ヒータ素子は、前記磁気抵抗効果素子よりも下層に形成されている、
    請求項1に記載の磁気ヘッド・スライダ。
  3. 前記第1薄膜抵抗ヒータ素子は、前記磁気抵抗効果素子と前記記録磁極との間の層に形成されている、
    請求項1に記載の磁気ヘッド・スライダ。
  4. 前記薄膜抵抗接触センサ素子は、積層方向において、前記第1薄膜抵抗ヒータ素子よりも前記記録磁極に近い位置にある、
    請求項1に記載の磁気ヘッド・スライダ。
  5. 前記薄膜抵抗接触センサ素子は、前記第1及び第2薄膜抵抗ヒータ素子よりも小さい、
    請求項1に記載の磁気ヘッド・スライダ。
  6. 前記第2薄膜抵抗ヒータ素子は、前記第1薄膜抵抗ヒータ素子よりも小さい、
    請求項5に記載の磁気ヘッド・スライダ。
  7. 前記第1及び第2薄膜抵抗ヒータ素子のグランドは共通である、
    請求項1に記載の磁気ヘッド・スライダ。
  8. 前記薄膜抵抗接触センサ素子の入出力線は、前記第1及び第2薄膜抵抗ヒータ素子から独立である、
    請求項7に記載の磁気ヘッド・スライダ。
  9. 磁気ディスクにアクセスする磁気ヘッド・スライダと、
    前記磁気ディスク上で浮上する前記磁気ヘッド・スライダを支持し、前記磁気ディスク上で前記磁気ヘッド・スライダを移動する、ヘッド移動機構と、
    前記磁気ヘッド・スライダに電力を供給する、電力供給回路と、
    前記電力供給回路を制御する、コントローラと、を有し、
    前記磁気ヘッド・スライダは、スライダ基板とそのスライダ基板上に形成されている磁気ヘッド素子積層体とを有し、
    前記磁気ヘッド素子積層体は、
    磁気抵抗効果素子と、
    前記磁気抵抗効果素子よりも上層に形成されている記録磁極と、
    磁気抵抗効果素子及び前記記録磁極よりも、浮上面から遠い位置に形成されている第1薄膜抵抗ヒータ素子と、
    前記第1薄膜抵抗ヒータ素子よりも下層にあり、前記第1ヒータ素子よりも前記浮上面に近い、第2薄膜抵抗ヒータ素子と、
    前記第2薄膜抵抗ヒータ素子よりも上層に形成されており、前記第2ヒータ素子よりも前記浮上面に近い、薄膜抵抗接触センサ素子と、を有し、
    前記コントローラは、前記電力供給回路により、前記前記第2ヒータ素子に前記第1ヒータ素子よりも小さい電力を供給する、
    磁気ディスク・ドライブ。
  10. 前記第2薄膜抵抗ヒータ素子は、前記磁気抵抗効果素子よりも下層に形成されている、
    請求項9に記載の磁気ディスク・ドライブ。
  11. 前記第1薄膜抵抗ヒータ素子は、前記磁気抵抗効果素子と前記記録磁極との間の層に形成されている、
    請求項9に記載の磁気ディスク・ドライブ。
  12. 前記薄膜抵抗接触センサ素子は、積層方向において、前記第1薄膜抵抗ヒータ素子よりも前記記録磁極に近い位置にある、
    請求項9に記載の磁気ディスク・ドライブ。
  13. 前記薄膜抵抗接触センサ素子は、前記第1及び第2薄膜抵抗ヒータ素子よりも小さい、
    請求項9に記載の磁気ディスク・ドライブ。
  14. 前記第2薄膜抵抗ヒータ素子は、前記第1薄膜抵抗ヒータ素子よりも小さい、
    請求項13に記載の磁気ヘッド・スライダ。
  15. 前記第1及び第2薄膜抵抗ヒータ素子のグランドは共通である、
    請求項9に記載の磁気ディスク・ドライブ。
JP2009288714A 2009-12-21 2009-12-21 磁気ヘッド・スライダ及び磁気ディスク・ドライブ Pending JP2011129222A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009288714A JP2011129222A (ja) 2009-12-21 2009-12-21 磁気ヘッド・スライダ及び磁気ディスク・ドライブ
US12/973,301 US8767338B2 (en) 2009-12-21 2010-12-20 Magnetic head slider and magnetic disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288714A JP2011129222A (ja) 2009-12-21 2009-12-21 磁気ヘッド・スライダ及び磁気ディスク・ドライブ

Publications (1)

Publication Number Publication Date
JP2011129222A true JP2011129222A (ja) 2011-06-30

Family

ID=44150711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288714A Pending JP2011129222A (ja) 2009-12-21 2009-12-21 磁気ヘッド・スライダ及び磁気ディスク・ドライブ

Country Status (2)

Country Link
US (1) US8767338B2 (ja)
JP (1) JP2011129222A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711508B2 (en) * 2010-11-17 2014-04-29 HGST Netherlands B.V. Contact detection between a disk and magnetic head
US8854764B2 (en) * 2011-09-30 2014-10-07 HGST Netherlands B.V. Multiple-sense thermo-resistive sensor for contact detection of read-write heads
US8879189B2 (en) * 2012-01-25 2014-11-04 HGST Netherlands B.V. Magnetic head slider having shared heater and contact sensor terminal pads
US8929016B2 (en) * 2012-04-26 2015-01-06 Seagate Technology Llc Heater assembly and method of heating
US9564163B2 (en) 2015-04-03 2017-02-07 Western Digital Technologies, Inc. Implementing dual partially independent thermal flyheight control (TFC) for hard disk drives
US9842614B2 (en) * 2016-03-01 2017-12-12 Seagate Technology Llc Heater design for fly height control
US10366715B1 (en) * 2017-02-22 2019-07-30 Seagate Technology Llc Slider with heat sink between read transducer and substrate
US11830530B1 (en) * 2022-01-11 2023-11-28 Seagate Technology Llc Skew-independent close-point transducers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013931A (ja) * 2002-06-03 2004-01-15 Hitachi Ltd 磁気記録装置および磁気ヘッド
JP2007207307A (ja) * 2006-01-31 2007-08-16 Fujitsu Ltd 浮上ヘッドスライダおよび記録媒体駆動装置
JP2008016158A (ja) * 2006-07-07 2008-01-24 Tdk Corp ヘッドスライダおよびグライドハイト検査装置
JP2008077751A (ja) * 2006-09-21 2008-04-03 Tdk Corp 磁気ディスク検査用のヘッドスライダ及びグライドハイト検査装置
JP2008165950A (ja) * 2007-01-05 2008-07-17 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドスライダ、ヘッドジンバルアセンブリ及び磁気ディスク装置
JP2009252343A (ja) * 2008-04-02 2009-10-29 Headway Technologies Inc 再生記録磁気ヘッド、ならびに多層ダイナミックフライヒータ構造体およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351115A (ja) 2005-06-16 2006-12-28 Tdk Corp 抵抗発熱体を備えた薄膜磁気ヘッド
US7808746B2 (en) * 2005-08-11 2010-10-05 Seagate Technology Llc Method and apparatus for active control of spacing between a head and a storage medium
US7770438B2 (en) 2006-07-07 2010-08-10 Tdk Corporation Head slider, glide height checking apparatus, and glide height checking method
JP2008016157A (ja) 2006-07-07 2008-01-24 Tdk Corp ヘッドスライダ、グライドハイト検査装置およびグライドハイト検査方法
JP2008112545A (ja) 2006-10-31 2008-05-15 Fujitsu Ltd ヘッドスライダ支持機構の製造方法、ヘッドスライダおよび記憶装置
US8054583B2 (en) * 2008-06-30 2011-11-08 Headway Technologies, Inc. Ta/W film as heating device for dynamic fly height adjustment
JP2010129157A (ja) * 2008-11-29 2010-06-10 Hitachi Global Storage Technologies Netherlands Bv ディスク・ドライブ、ヘッド・スライダ及びディスク・ドライブにおける記録再生素子のクリアランス制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013931A (ja) * 2002-06-03 2004-01-15 Hitachi Ltd 磁気記録装置および磁気ヘッド
JP2007207307A (ja) * 2006-01-31 2007-08-16 Fujitsu Ltd 浮上ヘッドスライダおよび記録媒体駆動装置
JP2008016158A (ja) * 2006-07-07 2008-01-24 Tdk Corp ヘッドスライダおよびグライドハイト検査装置
JP2008077751A (ja) * 2006-09-21 2008-04-03 Tdk Corp 磁気ディスク検査用のヘッドスライダ及びグライドハイト検査装置
JP2008165950A (ja) * 2007-01-05 2008-07-17 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドスライダ、ヘッドジンバルアセンブリ及び磁気ディスク装置
JP2009252343A (ja) * 2008-04-02 2009-10-29 Headway Technologies Inc 再生記録磁気ヘッド、ならびに多層ダイナミックフライヒータ構造体およびその製造方法

Also Published As

Publication number Publication date
US8767338B2 (en) 2014-07-01
US20110149430A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP4072469B2 (ja) 磁気ヘッドスライダおよび磁気ディスク装置
JP2011129222A (ja) 磁気ヘッド・スライダ及び磁気ディスク・ドライブ
US7911738B2 (en) Magnetic head slider with resistive heating film meandering in stacking direction
JP5134310B2 (ja) 磁気ヘッドスライダ
US8335053B2 (en) Integrated touch-down pad and touch-down sensor
JP4750584B2 (ja) 磁気ヘッドスライダ
JP2007207307A (ja) 浮上ヘッドスライダおよび記録媒体駆動装置
JP2005276284A (ja) 磁気ディスク装置およびそれに用いる磁気ヘッドスライダ
US7733606B2 (en) Thin film magnetic head with thermal flying height control pads located at both ends of all pads series on slider side plane
US20100226044A1 (en) Head slider and storage medium driving device
JP2008226439A (ja) 記録/再生ヘッドおよびその製造方法
US8717711B2 (en) Low clearance magnetic head having a contact detection sensor
US8144429B2 (en) Magnetic head slider with diffusion stop films each of which is disposed between the associated terminal portion and lead portion or between the associated lead portion and seed film
US20080198510A1 (en) Head slider and storage medium drive
JP2006053973A (ja) 磁気ヘッド・スライダおよび磁気ディスク装置
JP2007287190A (ja) 薄膜磁気ヘッド
US9324351B2 (en) Contact pad for recording heads
US20090103208A1 (en) Magnetic head
JP2007280502A (ja) 磁気ヘッドスライダ
JP4704947B2 (ja) 薄膜磁気ヘッド
JP2008165950A (ja) 磁気ヘッドスライダ、ヘッドジンバルアセンブリ及び磁気ディスク装置
JP5117204B2 (ja) ヘッドスライダ、ハードディスクドライブ及びヘッドスライダの浮上高さの制御方法
US11562766B1 (en) Thermally assisted magnetic head, head gimbal assembly and hard disk drive
JP2007323761A (ja) 熱膨張率及びヤング率が規定されたコイル絶縁層を備えた薄膜磁気ヘッド
US11594247B1 (en) Slider air bearing designs with higher pressure and higher thermal flying height (TFC) efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708