JP2011066075A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2011066075A
JP2011066075A JP2009213428A JP2009213428A JP2011066075A JP 2011066075 A JP2011066075 A JP 2011066075A JP 2009213428 A JP2009213428 A JP 2009213428A JP 2009213428 A JP2009213428 A JP 2009213428A JP 2011066075 A JP2011066075 A JP 2011066075A
Authority
JP
Japan
Prior art keywords
layer
band gap
gaas
undoped
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009213428A
Other languages
English (en)
Other versions
JP5631566B2 (ja
Inventor
Takehiko Kameyama
武彦 亀山
Kaoru Miyakoshi
薫 宮越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2009213428A priority Critical patent/JP5631566B2/ja
Publication of JP2011066075A publication Critical patent/JP2011066075A/ja
Application granted granted Critical
Publication of JP5631566B2 publication Critical patent/JP5631566B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】オフ特性が優れ、ゲート順方向電圧の範囲が広く、かつ、逆方向ブレークダウン電圧を高くすることができる構造の接合型FETを有する半導体装置を提供する。
【解決手段】第一のアンドープ層3上に、第一のアンドープ層3と接して、第一のアンドープ層3のバンドギャップより小さいバンドギャップを有するバンドギャップの小さい半導体層4が設けられ、その両端部と電気的に接続して一対の第一導電型コンタクト層6が設けられ、第一のアンドープ層3の下側に第二導電型コンタクト層2が設けられている。そして、一対の第一導電型コンタクト層6のそれぞれにオーミックコンタクトしてソース電極/ドレイン電極7が、また、第二導電型コンタクト層2にオーミックコンタクトしてゲート電極8がそれぞれ設けられることにより、接合型FETが構成されている。
【選択図】図1

Description

本発明は、接合型の電界効果トランジスタ(以下、単にFETともいう)を有する半導体装置に関する。さらに詳しくは、チャネル層をアンドープ層とそのアンドープ層よりもバンドギャップの小さいバンドギャップを有するバンドギャップの小さい半導体層との界面に形成することにより、オフ特性を改善し、ゲートの順方向電圧を高くすることができ、かつ、ブレークダウン電圧を高くすることができる構造の接合型FETを有する半導体装置に関する。
従来のFETは、ソース電極とドレイン電極との間にゲート電極を設ける構造になっており、ソース/ドレイン間の電流をゲートにより制御している。このようなFETで、ゲート順方向の動作範囲を広くするために、ゲートにショットキーバリアハイトの高い電極を設ける構造(MESFET)や、チャネル層と異なる導電型の半導体層を用いて接合型のFET構造にすることが知られている。MESFETでノーマリ・オフ型動作のFETを構成する場合、ゲート電圧は0Vからゲートの順方向に印加して動作をさせる。しかし、MESFET構造では、金属−半導体のショットキー接合によって、ゲート順方向電流が流れるため、ゲートの動作電圧はある一定のゲート順方向電流となる電圧Vf以下としなければならない。ここで、Vfは金属と半導体のそれぞれの材料で決まるバリアハイト(電位障壁)φB相当の電圧となる。そこで、ゲートの動作電圧の範囲を広くするためには、ゲートにはショットキーバリアハイトの高い電極材料が必要となるが、半導体材料がp型GaAsの場合には、バリアハイトの高い材料がない。
そのため、高いVfが必要な場合には、接合型のFET構造が用いられている。この接合型のpチャネルFETは、たとえば図7(a)に示されるように、GaAsからなるp型チャネル層52のチャネル領域上に、n+型GaAs層54が選択的にエピタキシャル成長され、その両側のp型チャネル層52上にエピタキシャル成長されたGaAsからなるp+型コンタクト層53が設けられ、その両側のp+型コンタクト層53上、およびn+型GaAs層54上にそれぞれオーミックコンタクトするようにソース/ドレイン電極55およびゲート電極56が設けられることにより形成されている。なお、51は、たとえばGaAsからなる半絶縁性の基板である。
図7(b)は、このような接合型FETの他の構造例を示すもので、n+型GaAs層54の選択成長をしないで、その部分のp型チャネル層52の表面にn型不純物を選択的に拡散することにより、n+型拡散領域58が形成されている点が異なるのみで、他の構成は、図7(a)と同様の構成であり、同じ部分には同じ符号を付してその説明を省略するが、図7(a)のFETと同様の特性のFETになっている。
前述のように、FETのゲート順方向の動作電圧の範囲を大きくするのに接合型FETが有効であるが、接合型FETを形成するには、ゲート電極とチャネル層との間にpn接合を形成するために、たとえばp型チャネル層52上にn+型半導体層54を選択的にエピタキシャル成長するか、またはn+型拡散領域58を選択的拡散することにより、高不純物濃度の層を形成しなければならない。しかし、とくにGaAsのような化合物半導体の場合、そのエピタキシャル成長の温度は600℃程度であり、選択的成長や選択的拡散の温度は、この成長温度よりも低くないと、すでにエピタキシャル成長してある半導体層の不純物濃度や不純物層の厚さが変動して特性が悪化するという問題があり、低温での選択成長や拡散を行う必要がある。そのため、非常に高度な技術を必要とし、量産を考慮した場合、製造工程が非常に複雑になって、高価になったり、再現性や安定性に欠けて歩留りが低下したりするという問題がある。
本願出願人は、このような問題を解決するために、チャネル層の下側にゲート電極を接続する高不純物濃度層を形成することにより、チャネル層を形成した後に高不純物濃度層を形成する必要をなくする発明を、特願2008−145346号により開示している。しかし、FETの動作範囲を広くするためには、Vfをさらに高くする必要がある。さらに、チャネル層として不純物をドープしたドープ層を用いると、オフ電流を減らすことができず、オフ特性(ゲート電圧が0のときのドレイン電流が小さいこと)を向上させることができない。
さらに、pn接合の逆方向ブレークダウン電圧を向上させるためには、前述の特願2008−145346号に示されるように、チャネル層の下にアンドープ層を挿入することも考えられ、このアンドープ層を厚くすることにより逆方向耐圧を大きくすることができるが、このアンドープ層を厚くすると、直列抵抗が増大するので、静電気が入力した場合に最短距離を流れようとするため、静電気が最短距離の部分に集中しやすく、一部への静電気の集中によりESD(静電気放電)耐圧が低下することが知られている。そのため、逆方向耐圧(ブレークダウン電圧)を向上させながら、ESD耐圧も充分に確保することができないという問題がある。
本発明は、このような問題を解決するためになされたもので、オフ特性が優れ、ゲート順方向電圧の範囲が広く、かつ、逆方向ブレークダウン電圧とESD耐圧を高くすることができる構造の接合型FETを有する半導体装置を提供することを目的とする。
本願請求項1に係る半導体装置は、第一のアンドープ層と、該第一のアンドープ層上に該第一のアンドープ層と接して設けられる、該第一のアンドープ層のバンドギャップより小さいバンドギャップを有するバンドギャップの小さい半導体層と、該バンドギャップの小さい半導体層の両端部、または該両端部と電気的に接続して該バンドギャップの小さい半導体層の上側に設けられる一対の第一導電型コンタクト層と、前記第一のアンドープ層より下側に設けられる第二導電型コンタクト層と、前記一対の第一導電型コンタクト層のそれぞれにオーミックコンタクトして設けられるソース電極およびドレイン電極と、前記第二導電型コンタクト層にオーミックコンタクトして設けられるゲート電極とを具備する接合型電界効果トランジスタを有することを特徴とする。
本願請求項2に係る発明は、前記請求項1記載の半導体装置において、バンドギャップの小さい半導体層が、第二のアンドープ層、あるいは第二のアンドープ層および第一導電型半導体層、あるいは第一導電型半導体層により形成されることを特徴とする。
本発明によれば、チャネル層をバンドギャップの大きい第一のアンドープ層とその第一のアンドープ層よりもバンドギャップの小さい半導体からなるバンドギャップの小さい半導体層との界面に形成しているため、第一のアンドープ層としてバンドギャップの大きい半導体層を用いることにより、ゲート順方向にバイアスしたときの電子の再結合電流の抑制をすることができ、高い順方向電圧特性を実現することができる。また、キャリアの供給層として、第一導電型層を用いることなく、第二のアンドープ層を第一のアンドープ層に接合させることにより、ゲート電圧を印加しない限り、アンドープ層のみで、キャリアは殆ど存在しないため、オフ電流が殆ど流れることはなく、非常にオフ特性の優れたFETが得られる。さらに、InGaP系化合物半導体(InとGaとの混晶比率が変り得る半導体を意味し、InxGa1-xP(0≦x≦1)を示す、以下同じ)のようなバンドギャップの大きい半導体層がゲート側に接続されているため、逆方向耐圧も向上させることができ、薄い層でブレークダウン耐圧を高くすることができ、かつ、高いESD耐圧を得ることができる。
さらに、本発明では、第二導電型コンタクト層をチャネル層の下側に形成しているため、チャネル層および第一導電型コンタクト層を形成した後に第二導電型のコンタクト層を形成する必要がなく、チャネル層などの特性変動を生じさせることがないと共に、製造工程が非常に簡単になる。
本発明の半導体装置の一実施形態の積層構造を示す断面説明図である。 図1の半導体積層部の具体的構成例を示す図である。 本発明による半導体装置のチャネル層形成部の例を示す説明図である。 図2に示される半導体装置でVDSが1.2Vのときの、ゲート電圧に対するドレイン電流の関係、ゲートの順方向電圧および逆方向電圧に対するゲート電流の関係を示す特性図である。 InGaP系化合物半導体層とGaAs層とに関し、それぞれの厚さに対するブレークダウン電圧の関係を示す図である。 接合幅Wに対するESD耐圧の関係を示す図である。 従来の接合型FETの例を示す断面説明図である。
つぎに、図面を参照しながら本発明の半導体装置について説明をする。本発明による半導体装置は、図1および図2にその一実施形態の断面説明図が示されるように、第一のアンドープ層3(図2に示される例ではI−InxGa1-xP層31)上に、第一のアンドープ層3と接して、第一のアンドープ層3のバンドギャップより小さいバンドギャップを有するバンドギャップの小さい半導体層4(図2に示される例では、i−GaAs層41)が設けられることにより、その界面にチャネル層3aが形成され、この両層でチャネル層形成部9が形成されている。そして、バンドギャップの小さい半導体層4の両端部、またはその両端部と電気的に接続してバンドギャップの小さい半導体層4の上側に、一対の第一導電型コンタクト層6(図2に示される例ではp+型GaAsコンタクト層61)が設けられ、第一のアンドープ層3の下側に第二導電型コンタクト層2(図2に示される例ではn+型GaAsコンタクト層21)が設けられている。そして、一対の第一導電型コンタクト層6のそれぞれにオーミックコンタクトしてソース電極/ドレイン電極7が、また、第二導電型コンタクト層2にオーミックコンタクトしてゲート電極8がそれぞれ設けられることにより、接合型FETが構成されている。
基板1は、とくに限定されないが、たとえばマイクロ波素子などに用いる場合には、電子移動度が高いため、直列抵抗が低くなり、また、電子飽和速度も高いので遮断周波数も高くなるという特性から、GaAsなどの化合物半導体を動作層として用いることが好ましく、半絶縁性のGaAs基板を用いることが好ましい。
第二導電型コンタクト層2(n+型GaAsコンタクト層21)は、たとえばシリコンが5×1018cm-3程度の不純物濃度になるようにドープされ、20〜100nm程度、たとえば100nm程度の厚さに形成され、この上に積層される半導体積層部の一部がエッチングにより除去されて、その一部領域2aの表面が露出するように形成されている。
第一のアンドープ層3は、一般的に化合物半導体の動作層として用いられるGaAsや、InaGa1-aAs(0≦a≦1)などよりもバンドギャップの大きい材料、たとえばInxGa1-xP(0≦x≦1、以下、単にInGaP系化合物半導体とも記す)、AlyGa1-yAs(0≦y≦1、以下、単にAlGaAs系化合物半導体とも記す)、GaNなどを用いることができる。これは、後述するように、この上に接合されるi−GaAs層41などの、第一のアンドープ層3よりもバンドギャップの小さい半導体層4との接合面にチャネル層3aを形成するためである。そのため、この上に積層されるバンドギャップの小さい半導体層4よりもバンドギャップが大きい半導体材料であることが必要であるが、バンドギャップは、バンドギャップの小さい半導体層4のバンドギャップに対して相対的に大きければよい。しかし、その差が大きいほうが界面でのキャリアの発生効果が大きく、また、ピンチオフ電圧を深くすることができ、さらにはブレークダウン耐圧を高くすることができる。なお、InGaP系化合物半導体では、Inの混晶比xを小さくすればバンドギャップが大きくなる。この第一のアンドープ層3は、たとえば70nm程度の厚さに形成することができる。
バンドギャップの小さい半導体層4として、図2に示される例では、第二のアンドープ層であるi−GaAs層41が第一のアンドープ層3上に接合して50nm程度の厚さに設けられている。このように、バンドギャップの大きいI−InxGa1-xP層31上にバンドギャップの小さいi−GaAs層41が設けられることにより、自然超格子や界面の分極により、i−GaAs層41とI−InxGa1-xP層31の界面に自然キャリア(ホール)を発生させ、チャネル層3aを形成している。なお、本明細書では、アンドープで半絶縁性であることを示すiをバンドギャップの小さい半導体層には小文字のiで、バンドギャップの大きい半導体層には、大文字のIで示している。
この第一のアンドープ層3であるI−InxGa1-xP層31(図2参照)と共にバンドギャップの小さい半導体層4であるi−GaAs層41(図2参照)を積層してその界面にチャネル層3aを形成するチャネル層形成部9の構成としては、バンドギャップの小さい半導体層4として、前述のi−GaAs層41に限定されるものではなく、図3に示されるように、種々の積層構造で形成することができるが、この点に関しては後述する。
第一導電型コンタクト層6(p+型GaAsコンタクト層61)は、後述するソース/ドレイン電極7をチャネル層形成部9とオーミックコンタクトさせる層で、充分に高濃度の不純物濃度、たとえば1×1019cm-3程度以上になるように、たとえばカーボンがドープされ、30nm以上、たとえば50nm程度の厚さに形成されている。このp+型GaAsコンタクト層61は、i−GaAs層41の表面上にエピタキシャル成長されたp+型GaAs層を、チャネル長とする所望の間隔を開けて両端部に残るようにエッチングすることにより、チャネル領域の両側に一対の構造で設けられている。この例では、p+型GaAs層を成長してパターニングすることにより、p+型GaAsコンタクト層61を形成したが、たとえばi−GaAs層41の両端部にカーボンなどを選択的に拡散することにより一対の第一導電型コンタクト層6を形成することもできる。
また、図1および図2に示される例では、i−GaAs層41上に直接p+型GaAsコンタクト層61が形成される例が示されているが、p+型GaAs層を選択的にエッチングする場合に、その下層のi−GaAs層41をオーバエッチングする可能性があるため、GaAs層とは異なる組成の半導体層をエッチングストッパ層として介在させることが好ましい。このエッチングストッパ層としては、たとえば前述のバンドギャップの大きい半導体層であるInGaP系化合物半導体層を用いることができる。この場合、そのエッチングストッパ層がi−GaAs層41とp+型GaAsコンタクト層61との間に介在することになるが、このような場合でも、第一導電型コンタクト層6はチャネル層形成部9と電気的に接続されていれば、ソース/ドレイン電極7と電気的に接続することができる。要は、第一導電型コンタクト層6は、チャネル層形成部9とソース/ドレイン電極7とを低抵抗で接続するためにチャネル層形成部9の両端部またはその両端部と電気的に接続するように高不純物濃度のコンタクト層としてソース/ドレイン電極7と接する部分に形成されていればよい。
なお、このようなバンドギャップの大きい半導体層によりエッチングストッパ層が設けられても、その厚さはエッチングストッパ層としては5nm程度あれば十分であり、その程度の厚さでは表面空乏層がそれより深く形成されるため、エッチングストッパ層とバンドギャップの小さい半導体層4との界面のチャネル層としては寄与しない。そのため、チャネル領域上のエッチングストッパ層をエッチングにより除去しても除去しなくても影響はない。なお、このエッチングストッパ層をp型層で形成して、チャネル領域上をエッチングにより除去することもできる。そうすることにより、p+型GaAsコンタクト層61の下の直列抵抗の問題はなくなり、エッチングストッパ層としてのみ有効に機能させることができる。
この一対のp+型GaAsコンタクト層61上に、オーミックコンタクトするような金属、たとえばTi/Pt/AuまたはPt/Ti/Pt/Auの積層構造によりソース/ドレイン電極7が形成されており、また、n+型GaAsコンタクト層2の一部領域2aの露出部に、オーミックコンタクトするような金属、たとえばAu-Ge/Ni/Auの積層構造によりゲート電極8が形成されることにより、n+型コンタクト層2とp型のチャネル層3aとによりpn接合が形成された接合型FETが形成されている。なお、ソース/ドレイン電極7とは、一対のp+型GaAsコンタクト層6の一方にソース電極が、他方にドレイン電極が形成されることを意味している。
つぎに、チャネル層形成部9の他の構成例について、図3を参照しながら説明する。すなわち、図3(a)に示されるように、I−InGaP系化合物半導体層またはI−AlGaAs系化合物半導体層からなる第一のアンドープ層32の上に、p−GaAs層42とi−GaAs層43との積層構造によりバンドギャップの小さい半導体層4が構成されている。この場合、p−GaAs層42の厚さは、たとえば30nm程度で、i−GaAs層43の厚さは、たとえば20nm程度の厚さに形成される。すなわち、両方を合せた厚さは、前述の図2に示される例のi−GaAs層41の厚さと同程度の厚さに形成されている。このようなp−GaAs層42が設けられることにより、第一のアンドープ層32との界面に発生する自然キャリア濃度とp−GaAs層42のキャリア濃度とによりキャリア濃度を大きく調整することができ、深いピンチオフ電圧を得ることができる。すなわち、第一のアンドープ層32とバンドギャップの小さい半導体層4との界面のチャネル層3aでのキャリア濃度には限界があるため、キャリアを一定値以上に増やすことができず、ピンチオフ電圧を一定値以上に深くすることができない。このような場合でも、p−GaAs層42が介在されることにより、キャリアが増えることになり、ピンチオフ電圧を深くすることができる。
この場合、このp−GaAs層42は、キャリアがドープされているため、ゲート電圧が0の場合でもキャリアが存在し、オフ電流(ゲート電圧が0のときのソース・ドレイン間電流)が若干流れ、オフ特性は低下する。しかし、このp−GaAs層42は、従来のp−GaAs層のみをチャネル層とする場合に比べて、i−GaAs層43の厚さ分少なくした厚さで、前述の例の厚さに形成すれば、従来の60%程度の厚さに形成することができるため、その分オフ電流も少なくすることができる。そのため、それほどオフ特性が低下することはない。しかも、必要となるキャリアの濃度、すなわちピンチオフ電圧の特性に応じて、このp−GaAs層42の厚さを設定することができ、p−GaAs層42の厚さを薄くすればより一層オフ特性も向上させることができる。要するに、ピンチオフ電圧およびオフ特性などの要求される特性に応じて、p−GaAs層42の挿入およびその厚さを設定することができる。
また、図3(b)に(a)と同様のチャネル層形成部9の図が示されるように、p−GaAs層42をi−GaAs層43の上層に形成することもできる。このような構成にすると、p−GaAs層42は半導体積層部の殆ど表面側になるため、表面空乏層が形成され、p−GaAs層42によるチャネル層が圧縮され、図3(a)に示される構造と同じ厚さでp−GaAs層42が形成されてもピンチオフ電圧を浅くすることができ、オフ特性を向上させることができる。すなわち、所望の特性に応じて、いずれの構造でも採用することができる。この例も、p−GaAs層42の厚さが30nmで、i−GaAs層43の厚さが20nmで形成されているが、前述の例と同様に、その比率を所望の特性に応じて変更することができる。
さらに、図3(c)に示される構造は、バンドギャップの小さい半導体層4がp−GaAs層44のみで形成されている例である。この場合、p−GaAs層44は、たとえば50nm程度の厚さに形成される。このような構造にしても、バンドギャップの大きい第一のアンドープ層32とバンドギャップの小さいp−GaAs層44とが接合しているため、その界面にキャリアが発生し、その界面にチャネル層3aが形成されると共に、p−GaAs層44自身もチャネル層として寄与することができる。そのため、順方向電圧の範囲を広げることができ、FETとしての動作範囲を広げることができる。しかし、この場合はp−GaAs層43もチャネル層を構成しているため、ゲート電圧が0のときでもキャリアがチャネル層3aに存在し、オフ電流が流れやすくオフ特性は劣化する。しかし、たとえばキャリア濃度を1×1017〜4×1017cm-3程度に抑制するか、その厚さを薄くすることなどにより、オフ特性を改善することもできる。
以上の例は、第一のアンドープ層32とバンドギャップの小さい半導体層4とのシングルヘテロ接合の例であったが、たとえば図3(d)に示されるように、このバンドギャップの小さい半導体層4であるi−GaAs層41の上面側に、さらにバンドギャップの小さい半導体層4よりもバンドギャップの大きい第三のアンドープ層5が形成されることにより、ダブルヘテロ接合構造でチャネル層形成部9が構成されている。この第三のアンドープ層5としては、前述の第一のアンドープ層32と同じ材料のものを使用することができるが、異なるバンドギャップの半導体層でも構わない。したがって、前述と同様に、InxGa1-xP(0≦x≦1)、AlyGa1-yAs(0≦y≦1)、GaNなどを用いることができるが、そのxやyの値は第一のアンドープ層32と異なる組成の半導体層でも構わない。このような構造にすることにより、バンドギャップの大きいアンドープ層32、5とバンドギャップの小さい半導体層4との接合が2か所に形成されることになり、界面による二層のチャネル層3a、5aを形成することができる。その結果、ピンチオフ電圧が深くなり、順方向電圧の範囲を広くすることができる。
この場合、前述のように、第三のアンドープ層5は、半導体積層構造の表面側になるため、表面空乏層が形成され、表面空乏層がi−GaAs層41との界面に達しないように第三のアンドープ層5を厚く形成する必要があり、20〜60nm程度、たとえば50nm程度の厚さに形成する必要がある。このようなバンドギャップの大きい第三のアンドープ層5が形成されれば、この上に形成される第一導電型コンタクト層6をパターニングするエッチングの際にエッチングストッパ層としてそのまま利用することができるが、第三のアンドープ層5を厚い層として形成すると、FETの直列抵抗が増大するため、他の特性との兼ね合いで採用することができる。
図3(e)および(f)に示される例は、前述の図3(a)および(b)に示される例と同様に、バンドギャップの小さい半導体層4をp−GaAs層42とi−GaAs層43とで構成すると共に、図3(d)と同様に、ダブルヘテロ接合構造にした例である。すなわち、第三のアンドープ層5を50nm程度の厚さに形成すれば、バンドギャップの小さい半導体層4の両側にチャネル層3a、5aを形成することができ、p−GaAs層42が設けられることによる効果は、前述の図3(a)および(b)に示される例と同様である。
また、図3(g)に示される例は、図3(c)に示される例と同様に、バンドギャップの小さい半導体層4をp−GaAs層44で構成すると共に、図3(d)と同様に、ダブルへテロ接合構造にした例で、この例でもダブルのチャネル層3a、5aを形成することができ、かつ、図3(c)と同様に、バンドギャップの小さい半導体層4をp−GaAs層43のみで形成することができ、製造工程を簡単化することができ、前述の図3(c)および図3(d)に示される構造の両方の特徴を併せもっている。
図2に示される構造で製造したpチャネルのFETで、ソース・ドレイン間電圧(VDS)が1.2Vのときのゲート電圧(VGS)[−V]に対するドレイン電流(IDS)[−A]の関係、ゲート電圧(VGS)[−V]に対するゲート電流(IG)[−A]の順方向特性およびゲート電圧(VGS)[V]に対するゲート電流(IGS)[A]の逆方向特性を、それぞれ図4に示す。なお、図2に示される構造はpチャネルであるため、ゲート電圧の順方向電圧は負になる。そのため、図4(a)および(b)では、順方向電圧が負になり、VGSを[−V]、電流を[−A]で示してある。図4(a)から明らかなように、同じピンチオフ電圧(IDSが1×10-5A程度のときの電圧)でも、ゲート電圧が0のときの電流は、本発明のアンドープタイプでは、ドープタイプの場合よりも一桁程度少ないことが分る。これは、オフ特性が優れていることを示している。また、図4(b)から明らかなように、I−InGaP系化合物半導体層ではゲート順方向時に電子の再結合電流が発生し難くなり、たとえばゲート電流が1×10-5Aまで許容できるとすると、i−GaAs層に比べてI−InGaP系化合物半導体の方が高Vfを実現できることを示している。さらに、図4(c)に示される逆方向のVG−IG特性からも明らかなように、I−InGaP系化合物半導体層の方が、i−GaAs層よりも、ブレークダウン電圧が高く、また、図5から明らかなように、薄膜でも遥かに高いブレークダウン電圧を実現できることが分る。
さらに、I−InGaP系化合物半導体層と同じ厚さ(100nm)にしたGaAs(1)層と、InGaP系化合物半導体層と同じブレークダウン電圧になる厚さ(150nm)にしたGaAs(2)層のESD耐圧(V)を、保護素子の接合幅W(μm)に対して比較した結果が図6に示してある。図6から明らかなように、GaAs(2)層は接合幅Wを大きくするほど急激にESD耐圧が低下する。これは、半絶縁層が厚くなると、直列抵抗が増大するため、静電気が入力した場合、最短距離の部分に静電気が集中するため、破壊しやすくなるものと考えられる。これに対して、同じブレークダウン電圧では、InGaP系化合物半導体層は、薄くてよいため、そのような電界集中の問題も発生せず、ESD耐圧も高く維持することができることを示している。なお、同じ厚さにしたGaAs(1)層で比較すれば、InGaP系化合物半導体層よりもGaAs層の方がESD耐圧は良好であることを示している。なお、図6でMMはマシンモデル(Machine Model)を示している。
以上のように、本発明によれば、チャネル層をバンドギャップの大きい半導体層とそれよりもバンドギャップの小さい半導体層とを積層し、その界面にチャネル層を形成しているため、FETの動作範囲(ゲートの順方向電圧の範囲)を大きくすることができ、しかも、アンドープ層のみでバンドギャップの大きい層と小さい層との接合を形成すれば、オフ時にはキャリアが存在せず、非常にオフ特性の優れたFETが得られる。また、ピンチオフ特性などの他の特性との兼ね合いで、オフ特性を完全にオフ状態にしないで、キャリアを増やすこともでき、所望の特性に応じたFETを得ることがきる。さらに、チャネル層と異なる導電型の半導体層をチャネル層の下側に形成し、その導電型層にゲート電極を形成して接合型FETのpn接合を形成しているため、チャネル層と反対の導電型層を選択的エピタキシャル成長または選択的拡散により形成する必要がなく、非常に簡単な製造工程で接合型FETを作り込むことができる。
1 基板
2 第二導電型コンタクト層
2a 一部領域
3 第一のアンドープ層
3a チャネル層
4 バンドギャップの小さい半導体層
41 第二のアンドープ層(i−GaAs層)
5 第三のアンドープ層
5a チャネル層
6 第一導電型コンタクト層
7 ソース/ドレイン電極
8 ゲート電極
9 チャネル層形成部

Claims (2)

  1. 第一のアンドープ層と、該第一のアンドープ層上に該第一のアンドープ層と接して設けられる、該第一のアンドープ層のバンドギャップより小さいバンドギャップを有するバンドギャップの小さい半導体層と、該バンドギャップの小さい半導体層の両端部、または該両端部と電気的に接続して該バンドギャップの小さい半導体層の上側に設けられる一対の第一導電型コンタクト層と、前記第一のアンドープ層より下側に設けられる第二導電型コンタクト層と、前記一対の第一導電型コンタクト層のそれぞれにオーミックコンタクトして設けられるソース電極およびドレイン電極と、前記第二導電型コンタクト層にオーミックコンタクトして設けられるゲート電極とを具備する接合型電界効果トランジスタを有することを特徴とする半導体装置。
  2. 請求項1記載の半導体装置において、前記バンドギャップの小さい半導体層が、第二のアンドープ層、あるいは第二のアンドープ層および第一導電型半導体層の積層構造、あるいは第一導電型半導体層により形成されていることを特徴とする半導体装置。
JP2009213428A 2009-09-15 2009-09-15 半導体装置 Active JP5631566B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213428A JP5631566B2 (ja) 2009-09-15 2009-09-15 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213428A JP5631566B2 (ja) 2009-09-15 2009-09-15 半導体装置

Publications (2)

Publication Number Publication Date
JP2011066075A true JP2011066075A (ja) 2011-03-31
JP5631566B2 JP5631566B2 (ja) 2014-11-26

Family

ID=43952055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213428A Active JP5631566B2 (ja) 2009-09-15 2009-09-15 半導体装置

Country Status (1)

Country Link
JP (1) JP5631566B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239605A (ja) * 2012-05-16 2013-11-28 Sony Corp 半導体装置、及び半導体装置の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364963A (ja) * 1989-08-03 1991-03-20 Honda Motor Co Ltd 半導体装置
JPH05259192A (ja) * 1992-03-13 1993-10-08 Toshiba Corp ヘテロ接合型電界効果トランジスタおよびその製造方法
JPH06168960A (ja) * 1992-11-30 1994-06-14 Fujitsu Ltd Iii−v族化合物半導体装置
JP2000323498A (ja) * 1999-05-07 2000-11-24 Nec Corp 半導体装置及びその製造方法
JP2001177111A (ja) * 1999-12-21 2001-06-29 Sumitomo Electric Ind Ltd 横型接合型電界効果トランジスタ
JP2003151995A (ja) * 2001-11-16 2003-05-23 Sumitomo Electric Ind Ltd 接合型電界効果トランジスタおよびその製造方法
JP2008282836A (ja) * 2007-05-08 2008-11-20 Matsushita Electric Ind Co Ltd 半導体レーザ装置及び窒化物半導体装置の製造方法
JP2009188215A (ja) * 2008-02-06 2009-08-20 Toyoda Gosei Co Ltd オーミック電極形成方法、電界効果トランジスタの製造方法、および電界効果トランジスタ
JP2009295651A (ja) * 2008-06-03 2009-12-17 New Japan Radio Co Ltd 半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364963A (ja) * 1989-08-03 1991-03-20 Honda Motor Co Ltd 半導体装置
JPH05259192A (ja) * 1992-03-13 1993-10-08 Toshiba Corp ヘテロ接合型電界効果トランジスタおよびその製造方法
JPH06168960A (ja) * 1992-11-30 1994-06-14 Fujitsu Ltd Iii−v族化合物半導体装置
JP2000323498A (ja) * 1999-05-07 2000-11-24 Nec Corp 半導体装置及びその製造方法
JP2001177111A (ja) * 1999-12-21 2001-06-29 Sumitomo Electric Ind Ltd 横型接合型電界効果トランジスタ
JP2003151995A (ja) * 2001-11-16 2003-05-23 Sumitomo Electric Ind Ltd 接合型電界効果トランジスタおよびその製造方法
JP2008282836A (ja) * 2007-05-08 2008-11-20 Matsushita Electric Ind Co Ltd 半導体レーザ装置及び窒化物半導体装置の製造方法
JP2009188215A (ja) * 2008-02-06 2009-08-20 Toyoda Gosei Co Ltd オーミック電極形成方法、電界効果トランジスタの製造方法、および電界効果トランジスタ
JP2009295651A (ja) * 2008-06-03 2009-12-17 New Japan Radio Co Ltd 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239605A (ja) * 2012-05-16 2013-11-28 Sony Corp 半導体装置、及び半導体装置の製造方法

Also Published As

Publication number Publication date
JP5631566B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5468768B2 (ja) 電界効果トランジスタ及びその製造方法
JP4531071B2 (ja) 化合物半導体装置
US6548333B2 (en) Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
JP5589850B2 (ja) 半導体装置及びその製造方法
US8716756B2 (en) Semiconductor device
US9190506B2 (en) Field-effect transistor
WO2009110254A1 (ja) 電界効果トランジスタ及びその製造方法
JP2012156332A (ja) 半導体素子
US9437724B2 (en) Semiconductor device and method of manufacturing the semiconductor device
JP2010199597A (ja) 化合物半導体装置の製造方法
JP2016134564A (ja) 半導体装置
JP2015070151A (ja) 半導体装置とその製造方法
TW201401485A (zh) 半導體裝置、其製造方法,保護元件及其製造方法
JP2011066464A (ja) 電界効果トランジスタ
JP2013179376A (ja) 半導体装置
JP2013239735A (ja) 電界効果トランジスタ
JP5631566B2 (ja) 半導体装置
JP2015056413A (ja) 窒化物半導体装置
JP2011082552A (ja) 化合物半導体積層構造
JP2016134565A (ja) 半導体装置
JP2006269824A (ja) 半導体装置およびその製造方法
JP2005197495A (ja) 静電保護素子及びその製造方法、並びに半導体装置及びその製造方法
US8076188B2 (en) Method of manufacturing a semiconductor device
JP2016134563A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5631566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250