JP2010521395A - LiMPO4化合物の合成方法、及び、この化合物のリチウム蓄電池(storagebattery)の電極材料としての使用 - Google Patents

LiMPO4化合物の合成方法、及び、この化合物のリチウム蓄電池(storagebattery)の電極材料としての使用 Download PDF

Info

Publication number
JP2010521395A
JP2010521395A JP2009553179A JP2009553179A JP2010521395A JP 2010521395 A JP2010521395 A JP 2010521395A JP 2009553179 A JP2009553179 A JP 2009553179A JP 2009553179 A JP2009553179 A JP 2009553179A JP 2010521395 A JP2010521395 A JP 2010521395A
Authority
JP
Japan
Prior art keywords
compound
lithium
licopo
reaction
limpo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009553179A
Other languages
English (en)
Other versions
JP5389676B2 (ja
Inventor
セバスチャン、パトゥ
カロル、パガーノ
カロル、ブルボン
フレデリック、ル、クラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of JP2010521395A publication Critical patent/JP2010521395A/ja
Application granted granted Critical
Publication of JP5389676B2 publication Critical patent/JP5389676B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/377Phosphates of heavy metals of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

LiMPO化合物は、350℃以下の温度の下において、硝酸リチウムのようなリチウムの原料と、化学式XMPO,nHOで示される化合物と、の反応によって合成され、Xは、−NH、及び、−Hから選択されるラジカルを示し、及び、Mは、Coと、Niと、Mnと、から選択される遷移金属である。さらに、XMPO,nHO化合物は、2つの前躯体の間の反応の期間に現れる小片の形状である、特有な形態を有する。従って、合成されたLiMPO化合物は、有利には、リチウム蓄電池のための電極の活性材料として用いられる。

Description

本発明は、LiMPO化合物、及び、それらの誘導体(derivative)に関するものであり、Mは、コバルト、ニッケル、マンガンからなる群から選択される遷移金属(transition metal) である。本発明は、この化合物のリチウム蓄電池の電極材料としての使用と、この化合物の合成と、に関するものである。
リチウム蓄電池は、自立型電源(autonomous power source)、詳細には、携帯用機器(portable equipment)として、ニッケル−カドミニウム(Ni-Cd)、又は、金属ニッケル−水素化物(Ni-MH)電池、に対して、取って代わろうとしている。この傾向は、リチウム蓄電池のパフォーマンスが進歩し続けることによって、説明することができ、その進歩は、リチウム蓄電池に、Ni-Cd、及び、Ni-MHの電池のものと比べて、実質的に高い、質量エネルギー密度(Mass energy density)と、体積エネルギー密度(Volume energy density) と、を与えるものである。従って、Liイオンタイプである最初のリチウム蓄電池は、約85Wh/kgの質量エネルギー密度を有していたが、現在では、約200Wh/kgの質量エネルギー密度を得ることが可能となっている。比較として、Ni-MH蓄電池とNi-Cd蓄電池とは、それぞれ、質量エネルギー密度として、100Wh/kgと50Wh/kgとを有する。
現在市販されているリチウム蓄電池に用いられる活性材料(active material)は、正電極用として、LiCoO、LiNiO、酸化混合物Li(Ni,Co,Mn,Al)Oといった層状化合物(lamellar compound)、又は、LiMnの構成(composition)と近い構成を有するスピネル(spinelle)構造の化合物、である。負電極は、通常、炭素(黒鉛、コークス等)から、又は、可能であれば、LiTi12スピネルから、又は、リチウムの合金(Sn、Si等)から形成された金属から、作製される。これらの化合物の、論理的な単位質量あたりの能力(capacity)と、実験的(practical)な単位質量あたりの能力と、は、約4ボルトの金属リチウムに対しての動作電圧(operation voltage)において、LiCoOとLiNiOとは、275mAh/gと140mAh/gとであり、LiMnは、148mAh/gと120mAh/gとである。
リチウム蓄電池の出現により、様々な世代の正電極材料は、途切れることなく市場に現れている。さらに、新世代のリチウム蓄電池は、ハイブリット、又は、電気による自動車、太陽電池(photovoltaic cell)等の増加する多様な応用のために、既に発展し続けている。しかしながら、増え続けるエネルギー要求(単位質量、及び/又は、単位体積あたりの)に応じるために、さらに良好なパフォーマンスを有する活性リチウム挿入材料(active lithium insertion material)を用いることは、必要不可欠である。
ここ数年間においては、XO m-タイプのポリアニオン・エンティティ(polyanionic entity)から構成され、Xは、P、S、Mo、W等であるような、三次元構造(three-dimensional structure)材料は、リチウム蓄電池の分野では、実際に興味深いものとなっており、さらに詳細には、その構造材料は、カンラン石(olivine)構造のオルトリン酸塩(orthophosphate)であり、その化学式(general formula)は、LiMPOであって、Mは、Fe、Mn、Co、Ni、である。
化学式LiMPOで示される、4つの化合物においては、リン酸鉄リチウムLiFePOだけが、現在、実験的な要求に応えることが可能であり、それは、リン酸鉄リチウムの実験的比容量(practical specific capacity)が、例えば、170mAh/gという理論値に、近いものであるからである。それでも、この化合物は、Fe3+/Fe2+の電気化学対(electrochemical couple)が実現することに基づいて、Li/Liに対するポテンシャル(potential)3.4Vにおいて動作し、580Wh/kgの最大比質量エネルギー密度を示す。オルトリン酸マンガンと、オルトリン酸コバルトと、オルトリン酸ニッケルと、は、LiFePOと同形(isotype)であって、高いリチウムイオンの脱離/挿入(extraction/insertion)ポテンシャルを示すことで知られており、それぞれ、Li/Liに対する電圧が、4.1Vと、4.8Vと、5.1Vとである。これらの3つの化合物の理論的比容量は、LiFePOのものと、近い値である。しかしながら、これらの発展の大きな問題は、実験的な観点のおいては、満足するような実験的比容量値が得られていないこと、である。
例として、M.E.Rabanal らの“Improved electrode characteristics of olivine-LiCoPO4 processed by high energy milling”(Journal of Power Sources、160(2006)523-528)において述べられているように、リチウムは、カンラン石構造のLiCoPO化合物から可逆的に離脱することができ、その際の、リチウムの電気化学的脱離/挿入ポテンシャルは、Li/Liに対して、約4.8Vであり、且つ、この化合物の理論的比容量は、約167mAh/gである。しかしながら、この文献に述べられたLiCoPoの実験的比容量は、比較的貧弱なものであった。さらに、LiCoPOにおける、リチウムイオンの脱離/挿入の電気化学曲線は、非常に大きな分極(polarization)を示しており、その主な理由は、この材料が、電気による、及び/又は、イオンによる、電気伝導性に乏しいからである。例えば、M.E.Rabanalらの文献によると、最初の放電における比容量は、C/10の条件において、低下し(104mAh/g)、且つ、サイクルの期間に、実験的比容量の急激なロス(loss)が見られる。このLiCoPO4化合物は、高い温度での固体状態中の反応工程によって得ることができる。LiCOと、Coと、(NHHPOと、の化学量的混合物(stoichiometric mixture)は、粉砕され、350℃の空気中で12時間焼成(calcine)される。冷却後、酸化物の混合物は、ペレット形状になるように加圧され、高い温度(750℃)において、空気中で24時間、アニール(anneal)される。次いで、生成物は、粉砕され、350℃の熱処理を9時間行い、最終的に、均一で高純度なLiCoPO化合物となる。
LiCoPOの電気化学的パフォーマンスを、詳細には、電気伝導性を、改善するために、LiCoPOの粒子のサイズを減らし、及び、その粒子の表面に炭素を堆積することは、通常行われることである。従って、M.E.RaBanalらは、LiCoPOの電気伝導を改善するために、すなわち、蓄電池の分極を減らすために、30分間のミリング(milling)をして、LiCoPOの粒子のサイズを減らし、且つ、多量の炭素(0.8から20重量%)をその粒子に混ぜる、ことを提案している。
しかしながら、炭素を用いているにもかかわらず、従来の合成工程により用意したLiCoPO4の電気化学的パフォーマンスは、あまり良いものではない。例えば、Satya Kishoreらの文献“Influence of isovalent ion substitution on the electrochemical performance of LiCoPO4”(Materials Research Bulletin、40(2005)1705-1712)によれば、最初の放電において、125mAh/gであるような、LiCoPOの比容量を得ることができる。このために、非常に多量の炭素(45重量%)を用いている。しかしながら、10回の充電/放電サイクルの後には、たった60mAh/gしか出力されない。従って、炭素は、最初の放電における初期容量(initial capacity)を増加させることが可能なのであるにもかかわらず、充電/放電サイクルを数回行った後に、得られる実験的比容量は、炭素の存在によって改善されることはない。さらに、多量の炭素は、電極の、従って、蓄電池の、質量エネルギー密度と、体積エネルギー密度と、に対して、大きな不利益をもたらす。
最終的には、J.Wolfenstineらによる文献“Effect of oxygen partial pressure on the discharge capacity of LiCoPO4”(Journal of Power Sources、144(2005)226-230)において、合成されたLiCoPOの放電能力(discharge capacity)に対する効果が述べられており、この化合物は、アルゴン雰囲気中、空気中、又は、酸素中で行われた高い温度での、炭素を含む少なくとも1つの前躯体(precursor)との、固体状態での反応によって、合成される。アルゴン雰囲気中において用意したLiCoPOは、良好な電気化学的パフォーマンスを示すが、しかしながら、その値は、低いままである(最初の放電において、約100mAh/gである)。
本発明の目的は、電気化学的パフォーマンスの改善を示すような、LiMPO化合物、又は、その誘導体の1つである化合物、を得る事ができるような、合成方法を提供することであり、Mは、Coと、Niと、Mnと、有利にはコバルトと、から選択される遷移金属である。さらに詳細には、本発明の目的は、LiMPO化合物、又は、その誘導体の1つである化合物、を得る事ができるような、合成方法を提供することであり、それらの化合物は、弱い分極と、放電における高い出力比容量(output specific capacity)と、を示す。
本発明によれば、下記の請求項によって、この目的を達成することができる。
さらに詳細には、この目的は、以下の方法から達成することができ、この方法は、350℃以下の温度において、硝酸リチウムを、XMPO,nHO、又は、その誘導体の1つ、によって形成された固体状の前躯体と反応させる、少なくとも1つのステップを備え、Xは、−NHと、−Hと、から選択されるラジカルであり、nは、XMPOエンティティ(entity)と会合(associate)する水分子の数を示す。
さらに、本発明の目的は、LiMPO化合物、又は、その誘導体の1つを提供することであり、Mは、Coと、Niと、Mnと、有利にはコバルトと、からなる群から選択される遷移金属であり、この化合物は、従来技術と比べて改善された電気化学的パフォーマンスを有する。
本発明によれば、この目的は、以下の化合物から達成され、この化合物は、BET法による比表面積が、5m/g−1以上であり、小片(platelet)で形成された、ほとんど凝集(agglomerate)していない粒子からなる。
さらに、本発明の目的は、リチウム蓄電池、及び、好ましくは、Liイオンタイプのリチウム蓄電池のための電極の活性物質として、このような化合物を用いることである。
本発明にかかる特有の実施形態によって用意された化学式LiCoPOで示される化合物と、従来技術の合成方法によって用意された化学式LiCoPOで示される化合物との、X線回折ダイアグラム(X-ray diffraction diagrams)(λCuKα)を示すグラフである。 平面(a、b)のおけるLiCoPOの結晶構造を示す。 本発明にかかる特有な実施形態によって得られたLiCoPO化合物を160倍に拡大にした走査電子顕微鏡による写真。 本発明にかかる特有な実施形態によって得られたLiCoPO化合物を2840倍に拡大にした走査電子顕微鏡による写真。 LiCoPO化合物の合成で用いられる固体状前躯体NHCoPO,nHOを1211倍に拡大した走査電子顕微鏡による写真。 LiCoPO化合物の合成で用いられる固体状前躯体NHCoPO,nHOを1478倍に拡大した走査電子顕微鏡による写真。 本発明にかかる特有な実施形態によって得られたLiCoPO化合物と、従来技術によって得られたLiCoPO/C複合材料と、をそれぞれ備える、Liイオンタイプのリチウム蓄電池の、定電流モード、C/10条件、且つ、20℃の下での、充電/放電曲線を示す。 本発明にかかる特有な実施形態によって得られたLiCoPO化合物の場合において、行われたサイクル数に対しての、充電と放電とにおける、比容量の変化を示す。 本発明にかかる特有な実施形態によって得られたLiCoPO化合物を備える、リチウム蓄電池の、定電圧モード、20℃の下においての、100mV/hスキャンにおける、サイクル曲線(ポテンシャルに対する比強度(specific intensity))を示す。 本発明にかかる特有な実施形態によって得られたLiCoPO化合物を備える、リチウム蓄電池の、定電圧モード、20℃の下においての、10mV/hスキャンにおける、サイクル曲線(ポテンシャルに対する比強度)を示す。 本発明にかかる特有な実施形態によって得られたLiCoPO化合物を備える、リチウム蓄電池の、サイクリング・レジーム(cycling regime)に対する、放電における比容量の変化を示す。
本発明にかかる実施形態についての下記の説明を読むことにより、本発明はより理解され、且つ、他の利点及び特徴が、明らかにされる。下記の説明は、例示であって、本発明を限定するものではない。
特有の実施形態によれば、LiCoPO化合物は、低い温度での2つの前躯体の反応を起こすことによって、合成され、例えば、その温度は、350℃以下の温度であり、有利には、約300℃であり、例えば、300℃±10℃である。
第1の前躯体は、固体状の前躯体であって、コバルトと、PO 3−ポリアニオン・エンティティと、の両方の原料となる。化学式XCoPO,nHOで示される化合物によって、形成されている。Xは、−NHと、−Hと、から選択されるラジカル(radical)を示し、nは、XCoPOエンティティと会合する水分子の数を示している。さらに詳細には、nは、0から9の間であり、好ましくは、0から2の間である。さらに、第1の前躯体は、小片形状の特有な形態を有する。小片形状とは、平らな塊(volume)であり、例えば、1次元を示す塊であり、さらに詳細には、その厚さは、他のディメンション(dimension)よりも小さい。そのような塊の断面は、好ましくは、正方形、又は、長方形である。
第1の前躯体は、有利には、コバルトを含む第1の水溶性試薬を、リン系(phosphorus-base)の第2の水溶性試薬を含む水溶液に、加えた際の、沈殿によって得ることができる。第1の試薬は、有利には、酢酸コバルトと、シュウ酸コバルトと、硝酸コバルトと、から選択され、一方、第2の試薬は、(NHHPOと、NHPOと、から選択される。固体状の第1の前躯体は、例えば、リンを含む水溶液に、コバルトを含む水溶液を一滴ずつ(drop by drop)加えることによって、得られる。2つの水溶液の間の反応は、沈殿物(precipitate)を生成し、その沈殿物は、回収され、及び、乾燥される。乾燥は、例えば、空気中の加熱器(oven)の中で行われ、無形状(non-structural)の水を蒸発させる。第1と第2との試薬の濃度とpHとは、沈殿物の形状を制御することができる。さらに、沈殿反応は、好ましくは、周囲温度(ambient temperature)において、行われる。最終的に、沈殿物を乾燥させた後に得られる生成物の粒子のサイズは、水溶液の濃度と、反応中のpHと、を調節することで制御することができる。例えば、リンを過剰に飽和させて、沈殿物の核成長速度を増加させ、その成長を阻害することで、粒子を小さくして、LiCoPO粒子を形成するために、有利なものとする。
LiCoPO化合物を得るためには、固体状の第1の前躯体は、リチウムの原料となる第2の前躯体と反応させられ、XCoPO化合物中において、Li元素は、X元素と替わる。第2の前躯体は、硝酸リチウム(LiNO)である。第2の前躯体は、周囲温度においては、固体であり、有利には、255℃の融点を示す。従って、第1の前躯体と反応を起こしている際には、液体状であり、その温度は、例えば、350℃以下であり、好ましくは、300℃であり、このようにすることによって、硝酸リチウムと、固体状の第1の前躯体と、の反応が起きている際に、拡散しやすくなる。固体状の第1の前躯体は、例えば、るつぼの中の第2の前躯体に加えられ、350℃以下の、好ましくは、約300℃の温度において、加熱処理される。
加熱処理は、有利には、空気中において、例えば、1時間から2時間半の間である、短い時間に、行われる。または、例えば、アルゴンや窒素の存在中といった、不活性雰囲気中においても、行うことができる。
回収された、るつぼの中の固体状の残留物は、好ましくは、蒸留水によって洗浄され、及び、乾燥され、この反応によって生成された他の生成物からLiCoPO化合物は分離され、及び、精製される。乾燥は、好ましくは、空気中で行われ、その温度は、約50℃から約100℃の間である。
2つの前躯体の間の反応は、有利には、過剰なリチウムによって、行われる。さらに詳細には、この反応中に含まれる第2の前躯体の量は、LiCoPO化合物を得るために必要な化学量と比べて、過剰なリチウムを生ずるものであると見積もられるようなものである。過剰なリチウムとは、例えば、必要な化学量に対して、5から50倍のものである。
本発明による合成方法は、カンラン石構造の、しかし、詳細には、粒子形状である、LiCoPO化合物を得る事ができるが、それは、高い温度で行われた固体状態での合成方法によって得られたものと異なるものである。驚くべきことに、350℃以下の温度の下での、一方はコバルトとリンとを含み、他方はリチウムを含む、2つの前駆体の反応によって得られるLiCoPO化合物は、固体粒子の形状をしている。
−それらは、非常に薄く、又は、まったく、凝集していない、
−固体状の第1の前躯体と同じ形態を示し、例えば、小片形状であり、好ましくは、実質的に正方形又は長方形の断面を有し、側面(side)は、約数マイクロメートルのディメンションを有し、厚さは、10nmから1μmの間であり、それらは、合成条件に依存する。
さらに、この化合物は、Brunauer-Emmett-Teller(BET)法によって計測された比表面積は、5m・g−1以上であり、さらにその化合物の粒子は、有利には多孔質である。
特有な例によれば、LiCoPO化合物は、NHCoPO,nHOと、硝酸リチウム(LiNO)と、を低い温度の下で、反応させることによって生成される。さらに詳細には、この前躯体NHCoPO,nHOは、水溶液中で沈殿させることによって、合成される。第1の水溶液は、リン酸水素ジアンモニウム((NHHPO)13.206gを、蒸留水0.1Lに溶解させることによって得ることができる。従って、この第1の水溶液中のリンの濃度は、1mol/Lである。第1の水溶液は、磁力攪拌(magnetic stirring)に置かれる。次いで、0.5mol/Lのコバルト濃度を有する酢酸コバルト溶液によって生成された第2の水溶液は、一滴ずつ、第1の溶液に加えられる。第1の水溶液は、無色であるが、ピンク色の沈殿物を含む。この沈殿物を洗浄し、遠心分離し、及び、55℃、24時間の条件で乾燥することで、マゼンタ色の粉を得ることができ、分析し、この化合物が、nが実質的に1と等しい、NHCoPO,nHOであることを明らかにする。
次いで、3.7gのNHCoPO,nHOを、40.3gの硝酸リチウム(LiNO)を含む、磁器坩堝(porcelain crucible)の中に置く。坩堝は、加熱機の中に置かれると、すぐにその温度が300℃に到達する。2時間の加熱処理の後に、加熱機の加熱を止め、及び、坩堝を取り除く。固体状の残存物は、蒸留水によって十分に洗浄されることで、副生成物を、溶解し、及び、除去し、及び、得られた粉は、55℃、12時間の条件で、乾燥される。
図1に示されるように、この粉をX線回折(x-ray diffraction)によって分析する。さらに、この粉のX線回折スペクトル(曲線A)を、従来の合成方法(高温)によって得られた従来のLiCoPO化合物のもの(曲線B)と比較する。
曲線Aと曲線Bとを比較すると、上記の特有の例において得られた粉の構成は、LiCoPO化合物の構成に対応することがわかる。従来の方法に従って得られたLiCoPO化合物のように、その粉の構成は、図2の平面(a、b)に模式的に表されているような、カンラン石構造を示す。この構造は、酸素原子の六方最密充填(compact hexagonal stacking)で構成され、リチウムイオンは、図2中の円形として示され、コバルトイオンは、八面体サイト(octahedric site)の半分に配置され、一方、リンは、四面体サイト(tetrahedric site)の1/8を占める。従って、図2中に示される八面体は、6つの酸素原子と結合するコバルト(CoO)と対応し、図2中に示される四面体は、4つの酸素と結合するリン(PO)と対応する。図1に示される別々の線である曲線AとBとは、2つのLiCoPO化合物結晶を示し、この2つのLiCoPO化合物結晶は、Pnma空間群に属し、格子定数(lattice parameter)は、“a”が約10.2Å、“b”が約5.9Å、及び、“c”が約4.7Åである。
しかしながら、従来技術によって得られたLiCoPO化合物とは異なり、本発明によって得られたLiCoPO化合物は、(h00)方向を選択的に示している。詳細には、図1に示されるように、17.4°2θ°付近の回折ピーク(200)については、曲線Aは、曲線Bに比べて、相当高いピークを持っている。この選択的な(h00)方向への配向は、走査電子顕微鏡(SEM)によって得られた、図3と図4とに示される写真によって、確認することができる。実際に、合成された粒子は、ほとんど凝集しておらず、且つ、小片形状である。粒子の多くは、長方形、又は、正方形の断面を持ち、1辺(sides)は、約10マイクロメートルであり、厚さは、約100ナノメートルである。
走査電子顕微鏡による分析は、合成された前躯体NHCoPO,nHOに対しても、行った(図4及び5)。この固体状の前躯体の粒子も、小片形状であり、且つ、ほとんど凝集していない。このことは、LiCoPO粒子において見られる特有の形状は、固体状の前躯体NHCoPO,nHOに直接的に由来するものであり、且つ、低い温度で行われた熱処理によって、このような形状を得ることができるということを、証明するものである。
さらに、XCoPO,nHOからLiCoPOへの変化は、LiCoPO粒子中に一定の孔を形成することを促進することができる。実際に、多数の孔は、前躯体XCoPO,nHOが、溶融リチウム塩(molten lithium salt)のような、リチウムの原料となる前躯体と、反応を起こす際に、現れる。この孔の多くは、好ましくは、約10nmの直径を有している。
最終的に、上記の特有な例において合成されたLiCoPO化合物は、10.1m/gのBET法による比表面積を示し、及び、同様に、固体状の前躯体NHCoPO,HOは、1.0m/gである。
これらの特有の形態から、低い温度における、2つの固体状の前躯体の反応によって用意されたLiCoPO化合物は、従来技術において用いられてきたLiCoPO化合物と比べて、改善された電気化学的パフォーマンスを有する。さらに詳細には、炭素によって覆われる必要もなく、従来から合成されていたLiCoPO化合物と比べて、高い電気化学的分極を示さず、且つ、放電における高い出力比容量を示す。さらに、通常とは異なるような、低い、Liイオン蓄電池電極材料の合成温度は、過剰で無意味な粒子サイズの増加を防ぎ、且つ、多孔質を形成することを可能にする。
従って、このような化合物は、リチウム蓄電池のための電極の活性材料として、詳細には、正電極のための活性材料として、用いられることを可能にする。さらに詳細には、リチウム蓄電池の正電極は、密に分散した形状(the form of an intimate dispersion)となることができ、本発明によって合成されたLiCoPO化合物と、電気伝導性添加剤(electronic conducting additive)と、可能であれば、有機結合剤(organic binder)と、を備える。このような分散は、通常、電流コレクタ(current collector)として動作する金属膜の上に、堆積される。電気伝導性添加剤は、炭素(ファイバー、ナノチューブ、小片、球状粒子…)であることができ、良好なイオン伝導と、十分な機械的強度を提供するように構成された有機結合剤は、例えば、ポリエーテルやポリエステルといった、メタクリル酸メチル系(methyl methacrylate-base)、アクリロニトリル系(acrylonitrile-base)、フッ化ビニリデン系(vinylidene fluoride-base)、から選択される高分子によって、形成されることができる。
例として、上記の特有な例によって合成されたLiCoPO化合物を、正電極の活性物質として用いて、”ボタン電池(button cell)”形状のLiイオンタイプの蓄電池を、作製し、及び、試験した(図7から11)。従って、このような蓄電池は、以下を備える:
−電流コレクタとして動作するニッケル板(nickel disk)の上に積層された、直径16mm、厚さ130μmのリチウム板(lithium disk)によって形成された負極電極と、
−上記の例によって用意された本発明の材料(80重量%)と、カーボンブラック(10重量%)と、結合剤としての六フッ化ポリビニリデン(polyvinylidene hexafluoride)(10重量%)と、を備え、厚さ20マイクロメートルのアルミニウム電流コレクタの上に堆積される、直径14mm、厚さ25μmの板(disk)によって形成された正極電極と、
−炭酸プロピレン(propylene carbonate)と、炭酸ジメチル(dimethyl carbonate)と、が混合された溶液中のLiPF塩基(salt-base)(1mol/L)の液体電解質を吸収する、セパレータと、
上記のリチウム蓄電池の最初の充電/放電サイクルに対応する、図7中の曲線Cに示されるように、20℃、C/10の条件において、正電極材料中に存在するリチウムのほとんどは、脱離(extract)されることが可能となる。
さらに、本発明の化合物の電気化学的性質は、従来技術と比べて、有利であり、特に、分極と、放電の際の出力比容量と、についてである。
図7中において、曲線Cは、曲線Dと比較することができる。曲線Dは、リチウム蓄電池の最初の充電/放電サイクルに対応するものであり、そのリチウム蓄電池は、本発明によって合成されたLiCoPOの代わりに、650℃のアルゴン中での、自己酸化合成(self-combustion synthesis)と呼ばれる合成によって用意された、LiCoPOと、3重量%の炭素と、を含む複合材料を備える。2つの曲線CとDとを見ると、本発明により合成されたLiCoPO化合物を備えるリチウム蓄電池の、充電曲線と放電曲線との間のポテンシャルの違い、すなわち、内部分極(internal polarization)は、複合材料を備えるリチウム蓄電池のものと比べて、小さいことがわかる。
図8は、行われたサイクルの回数に対しての、蓄電池の充電時の比容量の変化(曲線E)と、放電時の比容量の変化(曲線F)と、を示す。曲線EとFとの変化(evolution)は、放電時の出力比容量が、充電時の比容量と近くなっていくことを示している。さらに、15サイクルにおいては(above 15 cycles)、充電時と放電時との比容量は、100mAh/gより大きくなる。最終的には、1サイクルの後の、充電時の比容量は、約150mAh/gであり、その値は、従来技術において知られているものよりも実質的に大きい値である。
図9は、電流−電圧サイクル(cyclic voltamperometry)の曲線を示すものであり(スキャン +/−100mV/h)、上記の特有の例にかかるリチウム蓄電池中のLiCoPO/CoPO対(couple)の良好な電気化学的可逆性を、サイクルの再現性とともに、示す。図10中に示される電流−電圧サイクルの曲線は、ゆっくりとしたスキャン(+/−10mV/h)によって行われたものであり、このサイクルは、2つの酸化反応ピークと、2つの還元反応ピークと、の存在を、はっきりと確認することを可能にし、図7中の曲線Cに見られるステップに対応するものである。従って、このステップは、Li/Liに対して4.76V、Li/Liに対して4.84V、のポテンシャルにおいて、起きたものである。
最終的には、この特有の形態と、低い温度で用意することと、によって、本発明によって合成されたLiCoPO化合物は、比較的高いサイクル条件の下であっても、高い容量を与えることができる(図11)。“C”放電条件(1時間で放電する)の下では、最初の放電において、約140mAh/gに達する(図11)。
従って、このような合成方法は、LiCoPO化合物の改善された電気化学的パフォーマンスを得ることを可能にし、それによって、Liイオン電池のようなリチウム蓄電池の電極用の活性材料として効果的に用いることを可能にする。さらに、このような方法は、使用が簡単である。また、短い期間で、すばやく、1つ、又は、複数のステップを行うことができ、空気中で実施することができるようにするためであっても、少しのエネルギーしか必要としない。
このような合成方法は、LiCoPO誘導体を合成することも可能にする。LiCoPO誘導体とは、LiCoPOタイプの主組成物を持つ化合物のことを意味し、しかしながら、不純物を含んでいることもあり、また、周期表の他の元素を添加、又は、置換していることもあり、又は、リチウム、コバルト、リン、又は、酸素のサイト(site)に欠陥(vacancy)を含む場合もある。従って、このようなLiCoPO誘導体の合成は、例えば、XCoPO,nHOタイプの化合物を主に有する化合物であって、不純物を含む場合もあり、周期表の他の元素を添加又は置換している場合もあり、X、Co、P、又は、Oのサイトに欠陥を含む場合もあるような、固体状の第1前躯体の誘導体を用いて、同じように、行われる。
さらに、このような方法は、LiCoPOの合成について制約がない。実際には、固体状の第1の前躯体XCoPO,nHO、又は、その誘導体の1つを、XMPO,nHO、又は、その誘導体の1つに、よって置換することによって、LiMPO化合物、又は、その誘導体の1つ、を合成することが可能となり、ここでのMは、NiとMnとから選択される遷移金属である。一方、前躯体LiNOを用いた方法では、LiFePOを合成することはできない。
第1遷移金属のCoと、Niと、Mnとは、実際には、合成方法と密接に結びつくことによって、カンラン石タイプの構造(LiMPO)となることが知られている。従って、LiCoPO4のための上記の合成方法は、他の遷移金属である、NiとMnとに、適用することができる。この場合、固体状の第1の前躯体XMPO,nHOは、遷移金属Mを含む第1の水溶性試薬を、リンを含む第2の水溶性試薬を含む水溶液に、加えた際に、沈殿させ、次いで、その沈殿物を、回収し、及び、乾燥させることによって、得ることができる。従って、第1の水溶性試薬は、遷移金属Mの酢酸塩(acetate of transition metal M)、遷移金属Mのシュウ酸塩(oxalate of transition metal M)、又は、遷移金属Mの硝酸塩(nitrate of transition metal M)とすることができる。さらに、LiCoPOについて考慮すると、MがNi、又は、MnであるLiMPO化合物と、その誘導体の1つである化合物とは、5m・g−1以上のBET法による比表面積を示し、且つ、それら化合物は、小片によって形成されたほとんど凝集していない粒子からなる、ものである。このような化合物は、リチウム蓄電池のための電極の活性材料として用いることができる。

Claims (14)

  1. LiMPO化合物、又は、その誘導体の1つの合成方法であって、Mは、Co、Ni、及び、Mnからなる群から選択される遷移金属であり、
    前記合成方法は、少なくとも1つのステップを備え、前記ステップは、350℃以下の温度の下においての、硝酸リチウムと、XMPO,nHO、又は、その誘導体の1つによって形成された固体状の前躯体と、の反応を含み、−Xは、−NH、及び、−Hから選択されるラジカルを示し、及び、nは、XMPOエンティティと会合する水分子の数を示す、
    ことを特徴とするLiMPO化合物、又は、その誘導体の1つの合成方法。
  2. 前記温度は、約300℃であることを特徴とする請求項1に記載の方法。
  3. 前記固体状の前躯体と前記硝酸リチウムとの間の前記反応は、空気中、又は、不活性雰囲気中、で行われることを特徴とする請求項1又は2に記載の方法。
  4. 前記固体状の前躯体と前記硝酸リチウムとの間の前記反応の期間は、1時間から2時間半の間である、ことを特徴とする請求項1から3のいずれか1つに記載の方法。
  5. 前記固体状の前躯体と前記硝酸リチウムとの間の前記反応は、過剰なリチウムを用いて行われることを特徴とする請求項1から4のいずれか1つに記載の方法。
  6. 前記固体状の前躯体と前記硝酸リチウムとの間の前記反応の後に、前記LiMPO化合物、又は、その誘導体の1つを単離する分離ステップが続く、ことを特徴とする請求項1から5のいずれか1つに記載の方法。
  7. 前記分離ステップは、約50℃から約100℃の間である温度の下において、前記固体状の前躯体と前記硝酸リチウムとの間の前記反応によって得られた生成物を、蒸留水によって洗浄し、及び、洗浄によって得られた化合物を空気によって乾燥する、ものであることを特徴とする請求項6に記載の方法。
  8. 前記固体状の前躯体は、前記遷移金属Mを含む第1の水溶性試薬を、リンを含む第2の水溶性試薬を含む水溶液に加えた際の沈殿により、及び、次いで、その沈殿物を回収し、及び、乾燥させることによって、得られる、ことを特徴とする請求項1から7のいずれか1つに記載の方法。
  9. 前記第1試薬は、前記遷移金属Mの酢酸塩と、シュウ酸塩と、硝酸塩と、から選択されることを特徴とする請求項8に記載の方法。
  10. 前記第2試薬は、(NHHPOと、NHPOと、から選択されることを特徴とする請求項8又は9に記載の方法。
  11. LiMPO化合物、又は、その誘導体の1つであって、Mは、Coと、Niと、Mnと、からなる群から選択される遷移金属であり、
    前記LiMPO化合物、又は、前記その誘導体の1つは、5m・g−1以上のBET法による比表面積を示し、且つ、小片により形成されるほとんど凝集していない粒子からなる、ことを特徴とする化合物。
  12. 前記小片は、実質的に、長方形、又は、正方形の断面を有し、且つ、その厚さが、約10nmから約1μmの間である、ことを特徴とする請求項11に記載の化合物。
  13. 前記化合物は、多孔質である、ことを特徴とする請求項11又は12に記載の化合物。
  14. 請求項11から13のいずれか1つに記載の化合物の、リチウム蓄電池のための電極の活性材料としての使用。
JP2009553179A 2007-03-14 2008-03-12 LiMPO4化合物の合成方法、及び、この化合物のリチウム蓄電池(storagebattery)の電極材料としての使用 Expired - Fee Related JP5389676B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0701847A FR2913680B1 (fr) 2007-03-14 2007-03-14 Synthese d'un compose limpo4 et utilisation comme materiau d'electrode dans un accumulateur au lithium
FR0701847 2007-03-14
PCT/FR2008/000322 WO2008132336A2 (fr) 2007-03-14 2008-03-12 Synthèse d'un composé limpo4 et utilisation comme matériau d'électrode dans un accumulateur au lithium

Publications (2)

Publication Number Publication Date
JP2010521395A true JP2010521395A (ja) 2010-06-24
JP5389676B2 JP5389676B2 (ja) 2014-01-15

Family

ID=38760353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009553179A Expired - Fee Related JP5389676B2 (ja) 2007-03-14 2008-03-12 LiMPO4化合物の合成方法、及び、この化合物のリチウム蓄電池(storagebattery)の電極材料としての使用

Country Status (6)

Country Link
US (1) US8404305B2 (ja)
EP (1) EP2134650B1 (ja)
JP (1) JP5389676B2 (ja)
CN (1) CN101675001B (ja)
FR (1) FR2913680B1 (ja)
WO (1) WO2008132336A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211114A (ja) * 2012-03-30 2013-10-10 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
JP2014071968A (ja) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
JP2016047798A (ja) * 2011-03-18 2016-04-07 株式会社半導体エネルギー研究所 リチウム含有複合酸化物
JP2016129145A (ja) * 2016-02-18 2016-07-14 住友金属鉱山株式会社 リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594006B2 (ja) * 2009-09-29 2014-09-24 Tdk株式会社 リチウムイオン二次電池用活物質の製造方法及びリチウムイオン二次電池の製造方法
FR2952367B1 (fr) 2009-11-10 2012-09-28 Commissariat Energie Atomique Synthese d'un fluorophosphate metallique et utilisation comme materiau actif d'electrode pour accumulateur
MA32521B1 (fr) * 2009-12-31 2011-08-01 Univ Mohammed V Agdal ELABORATION DE MATERIAUX CATHODIQUES MnPO4, nH2O EN FILM MINCE
US10376362B2 (en) * 2012-04-05 2019-08-13 Medtronic Vascular Galway Valve introducers with adjustable deployment mechanism and implantation depth gauge
CN103390767B (zh) * 2012-05-11 2016-01-20 清华大学 锂离子电池
JP6207923B2 (ja) 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
JP6081948B2 (ja) * 2014-03-25 2017-02-15 株式会社World Medish Technology 柔軟性ステント
DE102014118907A1 (de) * 2014-12-17 2016-06-23 Chemische Fabrik Budenheim Kg Zur Herstellung von Kathoden für Li-Ionen-Akkumulatoren geeignete Phosphatverbindungen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296367A (ja) * 2003-03-28 2004-10-21 Sumitomo Osaka Cement Co Ltd リチウム金属リン酸塩化合物微粒子およびその製造方法
WO2008018633A1 (fr) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Composé ayant une structure d'olivine, procédé de fabrication de celui-ci, matière active d'électrode positive utilisant le composé ayant une structure d'olivine et batterie à électrolyte non-acqueux
JP2009532323A (ja) * 2006-04-06 2009-09-10 ハイ パワー リチウム ソシエテ アノニム リチウム二次電池用のリチウム金属リン酸塩正極物質のナノ粒子の合成

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004413B2 (ja) * 2004-08-20 2012-08-22 日本コークス工業株式会社 燐酸アンモニウム鉄及びリチウムイオン二次電池用正極材料の製造方法、並びにリチウムイオン二次電池
DE102005015613A1 (de) * 2005-04-05 2006-10-12 Süd-Chemie AG Kristallines Ionenleitendes Nanomaterial und Verfahren zu seiner Herstellung
US7939201B2 (en) * 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
FR2890241B1 (fr) * 2005-08-25 2009-05-22 Commissariat Energie Atomique Materiau d'electrode positive haute tension de structure spinelle a base de nickel et de manganese pour accumulateurs au lithium
FR2898885B1 (fr) * 2006-03-27 2008-05-30 Commissariat Energie Atomique Compose a base de disphosphate de titane et de carbone, procede de preparation et utilisation comme materiau actif d'une electrode pour accumulateur au lithium.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296367A (ja) * 2003-03-28 2004-10-21 Sumitomo Osaka Cement Co Ltd リチウム金属リン酸塩化合物微粒子およびその製造方法
JP2009532323A (ja) * 2006-04-06 2009-09-10 ハイ パワー リチウム ソシエテ アノニム リチウム二次電池用のリチウム金属リン酸塩正極物質のナノ粒子の合成
WO2008018633A1 (fr) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Composé ayant une structure d'olivine, procédé de fabrication de celui-ci, matière active d'électrode positive utilisant le composé ayant une structure d'olivine et batterie à électrolyte non-acqueux

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047798A (ja) * 2011-03-18 2016-04-07 株式会社半導体エネルギー研究所 リチウム含有複合酸化物
US9627686B2 (en) 2011-03-18 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP2013211114A (ja) * 2012-03-30 2013-10-10 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
JP2014071968A (ja) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
JP2016129145A (ja) * 2016-02-18 2016-07-14 住友金属鉱山株式会社 リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池

Also Published As

Publication number Publication date
CN101675001B (zh) 2012-01-11
JP5389676B2 (ja) 2014-01-15
WO2008132336A3 (fr) 2009-02-12
WO2008132336A2 (fr) 2008-11-06
FR2913680A1 (fr) 2008-09-19
US8404305B2 (en) 2013-03-26
CN101675001A (zh) 2010-03-17
EP2134650B1 (fr) 2017-01-04
FR2913680B1 (fr) 2009-07-03
EP2134650A2 (fr) 2009-12-23
US20100028676A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5389676B2 (ja) LiMPO4化合物の合成方法、及び、この化合物のリチウム蓄電池(storagebattery)の電極材料としての使用
JP4361060B2 (ja) リチウム二次電池用正極活物質及びその製造方法
JP5073662B2 (ja) スピネル構造を有する、リチウムセル電池のためのニッケルおよびマンガンをベースとする高電圧正電極材料
US8404147B2 (en) Process for producing lithium iron phosphate particles and method for producing secondary cell
JP6789688B2 (ja) 置換されたリン酸金属リチウムマンガン
JP5473894B2 (ja) Liベースの電池に使用するための室温単相Li挿入/抽出材料
JP4926607B2 (ja) 電極材料の製造方法及び正極材料並びに電池
US7943112B2 (en) Methods of making lithium vanadium oxide powders and uses of the powders
JP5165515B2 (ja) リチウムイオン二次電池
JP2005530676A (ja) カーボン被覆Li含有粉末及びその製造方法
KR20100060362A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2019164961A (ja) 合金、負極活物質、負極及び非水電解質蓄電素子
JP4264513B2 (ja) 電極用複合粉末及びその製造方法
Hameed et al. Preparation of rGO-wrapped magnetite nanocomposites and their energy storage properties
WO2011065337A1 (ja) リン酸化合物の製造方法および二次電池の製造方法
US20140199595A1 (en) Method of Synthesis of a Compound LiM1-x-y-zNyQzFexPO4 and Use Thereof as Electrode Material for a Lithium Battery
JP5765780B2 (ja) リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池
WO2012060084A1 (ja) リチウムボレート系化合物およびその製造方法
JP5821801B2 (ja) 硫化物固体電解質材料の製造方法および固体電池の製造方法
KR20140082635A (ko) 리튬 인산 망간 및 이를 포함하는 복합 재료
KR101948549B1 (ko) 이차전지용 양극 활물질
KR101464369B1 (ko) 올리빈 결정 구조 리튬철인산화물 제조 방법 및 이에 의하여 제조된 내부에 탄소를 포함하고 표면이 탄소로 코팅되는 올리빈 결정 구조 리튬철인산화물
US20160197347A1 (en) LMFP Cathode Materials with Improved Electrochemical Performance
Uzunova et al. A low external temperature method for synthesis of active electrode materials for Li batteries–Part B: Synthesis of lithium iron oxides Li x Fe y O z
TW202412364A (zh) Li離子二次電池用正極活性物質及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees