JP2010500268A - 多孔性物品を高密度化する方法 - Google Patents

多孔性物品を高密度化する方法 Download PDF

Info

Publication number
JP2010500268A
JP2010500268A JP2009523281A JP2009523281A JP2010500268A JP 2010500268 A JP2010500268 A JP 2010500268A JP 2009523281 A JP2009523281 A JP 2009523281A JP 2009523281 A JP2009523281 A JP 2009523281A JP 2010500268 A JP2010500268 A JP 2010500268A
Authority
JP
Japan
Prior art keywords
liquid precursor
precursor
porous substrate
densification
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009523281A
Other languages
English (en)
Other versions
JP2010500268A5 (ja
Inventor
チャン,ケニー
ジマーマン,ブルース
フィリオン,アルノー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Landing Systems SAS
Original Assignee
Messier Bugatti SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messier Bugatti SA filed Critical Messier Bugatti SA
Publication of JP2010500268A publication Critical patent/JP2010500268A/ja
Publication of JP2010500268A5 publication Critical patent/JP2010500268A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/362Coil arrangements with flat coil conductors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • General Induction Heating (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glass Compositions (AREA)
  • Braking Arrangements (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Furnace Details (AREA)

Abstract

液体プレカーサーを用いる、ブレーキプレフォーム等の多孔性基材の高密度化方法であり、高密度化のために用いる液体プレカーサーを、純粋よりは低いが所望の高密度化生成物を得るには化学的になお好適な純度レベルに維持することによって「未使用」または「新しい」液体プレカーサーが消費される速度が低減される方法である。

Description

関連出願との相互参照:
本件は、米国仮出願第60/821,596(2006年8月7日出願)による優先権を主張し、その全内容を参照により本明細書に組み入れる。
発明の分野
本発明は、望ましく高い製造率で多孔性物品を高密度化する方法および装置に関し、特に、これのみには限らないが摩擦ブレーキ物品,例えば航空機ブレーキの分野に関する。
発明の背景
摩擦材料の分野において、摩擦部材(摩擦ブレーキ盤等)を製造するために多孔性材料を用いることは一般的に公知である。
このような摩擦部材の製造は、一般的に、多孔性プレフォームの構成から始まる。例えば、多くの摩擦ブレーキ用途において輪状(annular)プレフォームが用いられている。
輪状プレフォームは、幾つかの異なる公知の方法を用いて構成できる。例えば、炭素繊維布帛プライを一緒に刺して輪状プレフォームを積層材料から切り出すことができる。
また、ニアネットシェイププレフォームを、例えば、炭素繊維を織ることによって、または炭素繊維を所望の形状に編むことによって形成できる。特定の炭素繊維布帛は、螺旋形状の布帛の構築を容易にする織り方を有することが公知である。本明細書において「ニアネット(near-net)」は、最終物品の所望の形、例えば輪状ブレーキ盤に近い形状を有する形成構造を意味する。
酸化されたポリアクリロニトリル(「PAN」)繊維またはピッチ系繊維は、このタイプの用途に用いられる出発繊維の一般的な例である。続いて、これらの繊維を高温処理工程で炭化させることができる。他の従来の方式では、出発繊維は、レジンまたはピッチを用いて形成し、そして結果物を反応性ガス(窒素ガス等)で後から硬化させる。よって硬化物を次いで炭化させて半硬質プレフォームを得る。
いずれの場合も、所望の摩擦特性および機械的特性を得るために、得られる多孔性プレフォーム(特に、限定するものではないが炭素質材料によるもの)をさらに高密度化することが望ましい。
化学蒸気浸透法(「CVI」)は、これに関し、炭素/炭素複合材料を得るために広く用いられる従来技術である。CVIは、炭化水素含有ガスを用いて多孔性プレフォームに浸透させる。次いで、プレフォームの繊維構造上の炭素コーティングが残るようにCVIガスを高温で飛ばす。
従来のCVIは典型的には、所望の密度および機械的特性を有する炭素/炭素(「C/C」)構造を得るために数百時間の加工を必要とする。例として、典型的な従来のCVIプロセスとしては、例えば、約300〜500時間またはそれ以上に亘って行なわれる第1浸透サイクルが挙げられる。
しかし、従来のCVIはしばしば、プレフォームの内側部分が適切に高密度化される前にプレフォームの表面多孔が急速に閉塞する原因となる。表面多孔を「再開」させてさらに高密度化できるようにするために、中間マシニング工程が必要になる。一般的に、この中間マシニング(フライス(milling)等の公知の方法を用いる)は、炭素閉塞された孔を有するプレフォームの表面層を除去してプレフォームの開孔を露出させ、炭化水素ガスが再びプレフォーム構造に浸透できるようにする。数百のプレフォームが典型的な高密度化プロセスで高密度化されることを考慮し、中間マシニング工程は、48時間の長さで全部の従来のCVI高密度化プロセスに追加できる。
部分的に高密度化された物品の中間マシニングが完了した時点で、第2のCVIプロセスを行なってプレフォームの再開された表面多孔を生かす。この第2のCVIプロセス工程は、例えばさらに300〜500時間またはそれ以上続けることができる。これは一般的にはCVIを用いる従来の高密度化プロセスを達成する。
多孔性プレフォームを高密度化する他の方式は、ガス状の炭化水素プレカーサーに代えて液体を用いる。高密度化のこの方法は、当該分野で「膜沸騰(film boiling)」または「急速高密度化」ということもある。
膜沸騰高密度化は、一般的には、多孔性プレフォームを液体炭化水素中に浸漬することによって液体を実質的に完全にプレフォームの孔および隙間に浸透させることを含む。その後、浸漬したプレフォームを、適切に配置された電気素子(誘導コイル等)により、液体炭化水素の分解温度(典型的には1000℃以上)よりも高温に誘導加熱する。より詳細には、誘導加熱されたプレフォーム構造に接する液体炭化水素は、プレフォーム多孔の中で種々の気相種に分離する。気相種のさらなる熱分解は、多孔性材料の開放領域内の内側表面上への熱分解炭素の形成をもたらす。高密度化のための液体プレカーサーの使用は、例えば、米国特許第4 472 454,5 389 152,5 397 595,5 733 611,5 547 717,5 981 002および6 726 962号に議論されている。これらの文献の各々および全てはその全部を参照により本明細書に組み入れる。
この分野における誘導加熱の概念は一般的に公知であり、前述の文献に記載されるものが挙げられる。しかし、プレフォームを高温(少なくとも1000℃および1400℃程度)に加熱する一方、これをそのまま高度に揮発性の炭化水素液体(例えばシクロヘキサン等)中に浸漬することは、極めて重要な安全性の問題を起こす。
発明の要約
本発明は、液体プレカーサーを用いて多孔性基材を高密度化(densify)する方法に関し、ここで、使用する「新しい」または「未使用の」液体プレカーサーの体積は、高密度化に使用する液体プレカーサーを、純粋であるよりは低いが、高密度化プロセスに対してはなお化学的に好適な純度レベルに維持することにより有用に低減される。実際には、本発明は、人工的に「エージングした(aged)」(その中に存在する不純物の観点で)液体プレカーサーを用いる。
本発明は、添付の図面を参照してさらにより明瞭に理解されよう。
図1は、本発明に係る液体プレカーサーを用いて高密度化を実施するための設備の概略図である。 図2は、本発明に係る多孔性物品を高密度化するための反応チャンバーの部分切断側面図である。 図3は、本発明に係る多孔性物品を高密度化するための反応チャンバーの部分切断上面図である。 図4は、主たるプレカーサー成分の濃度として定量された高密度化実施サイクルと液体プレカーサー純度との間の実験的に得られた関係を示す。 図5は、数サイクルに亘る液体プレカーサー中の不純物レベルの実験的に得られた向上を示す。 図6は、プレカーサー純度を周期的に戻したときの数サイクルに亘って算出された対比実験データを示す。 図7は、プレカーサー純度を周期的に一部戻したときの数サイクルに亘って算出された対比実験データを示す。 図8は、プレカーサー純度を周期的に一部戻したときの数サイクルに亘って算出された対比実験データを示す。
発明の詳細な説明
添付の図面を参照し、本発明の方法および装置の特徴および詳細は例示としてであって発明の限定としてではなく示される。
単に例および/または例示として、以下に多孔性プレフォーム(摩擦ブレーキディスク製造用のプレフォーム等)の言及がなされる。しかし、説明される様式で本発明は他の種類の多孔性基材の高密度化に対してより一般的に適用可能であることが明白に留意される。
液体プレカーサーを用いて高密度化を実施するための施設の非常に概略的な説明を図1に示す。システムは、新たなおよび使用されたプレカーサー液体の輸送を管理するための遠隔液体プレカーサー貯蔵場所100(例えば流体移送システム等)を含むことができる。本システムに従って使用するプレカーサー液体の1つの例は、液体炭化水素、例えばシクロヘキサン(C612)である。例えば、液体プレカーサー用の1つ以上の遠隔貯蔵タンクのタンク「所」(集合的に100で示す)を与えることができる。タンク所は、使用される液体プレカーサーを少なくとも初期に貯蔵するための1つ以上のタンクを含むこともできる。安全上の理由で、少なくともタンク所100を施設の他のものから幾らか離れたところに保つことが(適用可能な産業での要求に応じて)望ましいかまたはさらに必要である場合がある。例えば、幾つかの地域および/または国の法令では、何百フィート単位かの分離が要求される。
所望の場合、施設は、比較的少量の新しいプレカーサー液体を加工設備の近くに置くための比較的より小さい局所貯蔵タンク105を任意に含んでもよい。
施設の種々の部分を相互接続するために用いるパイプ系(ポンプ等が挙げられる)は従来のものであり、そして用いる液体プレカーサー、特に、これのみに限らないが液体炭化水素を輸送するのに適切な任意の構成および配置であることができる。流体移送系は、好ましくは、これである必要はないがコンピュータ制御される。市販で入手可能なコンピュータ制御された系(例えば、これらに限定されないが、OPTO 22社から市販で入手可能なもの)を、この型の流体移送系(外部供給元からの新しい液体プレカーサーの充填等)の監視および制御のために使用できる。
液体プレカーサーは、1つ以上の反応チャンバー(集合的に110で示す)に局所プレカーサー貯蔵タンク105から供給する。好ましくは、十分な液体プレカーサーを与えて、その中で高密度化される1種以上のプレフォーム、さらにこれに関わる誘導加熱コイルを実質的に浸漬する。
前述のように、膜沸騰プロセスは、ある程度プレフォーム多孔の内側表面上への熱分解炭素の形成の原因となる気体状種を生じさせる。プレカーサー蒸気は、可能な限り捕捉し、そしてプロセスにおける予想される再循環のために従来の凝縮器ユニット115で凝縮する。市販の冷却塔140は、凝縮器ユニット115の冷却のための適切な水温度を維持できる。
なおも残っている流出ガスを好ましくは公知の構造の熱酸化器120に運び、流出ガス中の残存炭化水素を燃焼除去する。
設備内の要素の既知の配置に従って、そして適切な所望の寸法の考慮に従って、構成された金属バスバー30によって、パワー供給器125からのパワーを誘導コイル25に移送する。バスバーは、銅から形成でき、例えば、そして好ましくは、これに限らないが水冷却ネットワーク50で水冷却できる(図2参照)。
各パワー供給器125は、遠隔PIDループ制御能力を有してもよく、そしてコンピュータ制御端末から監視および制御してもよい。公知の方法による高密度化プロセスのパワー密度制御、電圧制御、電流制御、周波数制御、および/または温度制御もまた予定の配置の範囲内である。
図2は、(例えば)2つの多孔性プレフォームをその中で加工するために構成および配置された反応チャンバー110を示す。反応チャンバー110は、加工すべき各プレフォーム35に対応する2つの誘導加熱コイルセット25を有する。誘導コイルセット25は、好ましくは、適切な位置に、例えば電気的に非伝導性のガラス複合体材料45から形成される非反応性の熱安定性支持体(「G−10」として当該分野で公知のもの等)を用いてマウントする。これは例えば液体炭化水素環境に耐えることができる。誘導加熱コイル25は、好ましくは水冷却されたパンケーキスパイラルコイルであり、そして銅金属から形成できる。この理由で、誘導コイル25用に水冷却系専用の熱交換器135(図1参照)を付与することが望ましい。使用において、高密度化されるプレフォーム(または摩耗ブレーキ)35を、誘導コイル25による直接結合によって加熱する。
コイル/反応器チャンバー110の充填および抜取りの例において、上部カバーパネル15は、チャンバー110をシールするための従来のロック機構を備える。各反応器チャンバー110(用意されるだけの量の)は、一般的な液体プレカーサー供給ライン接続20、ならびに、凝縮器115および熱酸化器120に操作可能に接続された一般的な排出ライン10を備える。
各反応器チャンバー110は、望ましくは、コンピュータ制御系から充填、排水、および監視できる。高密度化プロセスからの排出液体プレカーサー蒸気は、凝縮し、そして反応器チャンバー110に戻して供給し、一方、次いで、残存流出ガスを熱酸化器120に運んで燃焼させる。
揮発性液体炭化水素は本発明で用いる液体プレカーサーの特定の例であるため、窒素(N2)ガス供給系(図示せず)を与え、例えばパイプ系を洗い流し、そして系中のボイドを(酸素含有空気に代えて)不活性ガスで概略的に満たして、燃焼の危険性が低減されるようにすることが望ましい(しかし必須ではない)。特定の例において、遠隔および局所の両者の液体プレカーサー貯蔵タンクにおける空の空間は、若干の連続的に供給される過圧の窒素(または他の従来公知の不活性)ガスで維持することによって、潜在的に危険な揮発性蒸気の蓄積を回避するようにする。排出される窒素ガスと混合する炭化水素種は、熱酸化器120に送り、これによりガスが外部に排出される前に炭化水素を燃焼除去できるようにする。
また、システムは「湿潤」プロセスを用いるため、系中に乾燥オーブン130を与えて高密度化されたプレフォームを乾燥除去して高密度化を続けることが有用である。このような乾燥オーブン130からの排出物は、結果物の流出ガス中に同伴される重いおよび軽い芳香族化合物を処理するために好ましくは熱酸化器120にも接続する。乾燥中のオーブン内の揮発性ガスの存在に鑑み、安全性の考慮から、内部の爆発の場合の故障に対して構造的に耐えるオーブン構造を用いることが有用である。プロセス制御を単純化するために、乾燥プロセスは例えばコンピュータ制御できる。
Figure 2010500268
表1は、エージングしたC612および高密度化プロセスによって生成する主要な不純物の分析を与える。この検討では、専用のパワーカーブを用いて炭化したプレフォームで3つの反応器内での8回の高密度化サイクルを実施した。特に、対象物は、新しいまたは「未使用」の液体プレカーサー(比較的コスト高の可能性がある)の使用を低減して製造の間に使用されるプレカーサーを補充したものである。
8回連続実施による16のエージングされたC612試料を回収して分析に送った。目的は個々の混入物ピーク値をC612と関連付けることであった。試料は各高密度化サイクルの前後で回収してAおよびBとした。
8回目のサイクルの終了時のC612%濃度はなお94%超であった。主要な生成不純物のピークはベンゼン、ナフタレン、トルエン、スチレン、シクロヘキセン、シクロペンタジエン、およびインデンであった。7種の測定された不純物のうち6種は8サイクルを通じて安定で概略増加傾向に従っていた。エージング検討によりなされたガスクロマトグラフィ(GC)分析は、全ての主要な混入物およびシクロヘキサンの濃度は極めて予測通りであることを示す。全ての不純物のピークは、1つのサイクルから次のサイクルへ相次いで繰り返される。
液体プレカーサーを種々の不純物でドープすることによってエージングした液体プレカーサーのシミュレーションもまた考慮する。このようにして、液体プレカーサーの耐用期間を有益に延ばすこと、および/または高度に純粋な(したがって比較的高価な)液体プレカーサーの必要性を低減することが可能であろう。一方、言い換えれば、(高度に純粋なプレカーサーで置き換える前に)「最小」レベルのプレカーサー純度(該最小よりも高い純度レベルでプレカーサーを使用できるような)を特定できる。一方、プレカーサー純度のより低い許容可能なレベルを特定して、意図する高密度化プロセスがそのより低い純度のプレカーサーを継続して使用できるようにすることができる。いずれの方法でも、高純度プレカーサー液体の使用は望ましく低減される。
エージングした液体プレカーサーは、数プロセスサイクル後の高度に純粋な液体プレカーサーの漸進的な「劣化」を近似するために液体プレカーサーを上記の種々の不純物でドープすることによってシミュレートした。モデルを開発して種々のサイクルでのシクロヘキサン濃度を予測した。前記した8回の連続実施による実験データに基づいて外挿した。図4は、予測したシクロヘキサン濃度 対 連続プロセス実施数を示す。算出したシクロヘキサン濃度は約40回の実施後に定常状態に実質的に到達することに注目される。これは主に、高密度化サイクルの前に新しいシクロヘキサンがプロセスタンクに添加されることによる。
Figure 2010500268
9種の化学物質をAlfa Aesarから購入してシクロヘキサンプレカーサーをドープした。表2は、ドープのために用いた化学物質についての情報を与える。購入した化学物質の純度は99.6%〜80%の範囲であった。
表2は、90%シクロヘキサン濃度を得るために用いた個々の化学物質の量を与える。モデルをシミュレートするために90%シクロヘキサン濃度を初期混合に用いたが、安全上の理由からシクロペンタジエンは混合では用いなかった。このゲル様物質は空気中で極めて燃えやすいからである。しかし試験の効果は僅かであると考えられる。初期90%混合を用いて6回の連続高密度化サイクルを行なった。各サイクルの前後で液体プレカーサーの試料を回収してGC分析に送った。
Figure 2010500268
6回の連続サイクルによる12のエージングしたプレカーサーの全部をガスクロマトグラフィ分析のために実験室に送った。エージングしたプレカーサー試料は、高密度化サイクル前後で500ガロンタンクから回収した。表3は、シミュレーションした90%混合プレカーサーについてのGC分析を与える。表3において、全化学物質から記録される濃度は、シクロペンタジエン(これはその空気中での高い可燃性により実際には使用しなかった)を除いて90%混合物において用いた質量%に密接に従うことが観察された。しかし、実際の試料からのシクロペンタジエンの省略が試験に与える全体的な影響は僅かと考えられる。
Figure 2010500268
表4は、6回の連続サイクル、または12のプレカーサー試料による主要な混入物の上昇を示す。純度は一般的に90.3%で開始させ、6回の高密度化サイクルの後88.4%で終了させた。ほとんどの場合において混入物は定常状態に到達した。またはベンゼンを除いてゆっくり下降した(例えば、表4中のシクロペンタジエン、シクロヘキセン、トルエン、エチルベンゼン、フェニルアセチレン、スチレン、インデン、ナフタレン、メチルナフタレン、アセナフタレン、およびフルオレンを参照のこと)。これは、シクロヘキサン(C612)からベンゼン(C66)への化学的分解の継続が、より低いC612濃度レベルで最も継続しやすいことを示す(例えば図5中のベンゼン濃度を参照のこと)。
実際、幾つかの方法を用いてプレカーサーを管理することができる。これらのうち幾つかを以下で説明する。
幾つかの連続サイクルは同じ液体プレカーサー浴で実施でき、続いて貯蔵タンク全体を新しいシクロヘキサンで周期的に置換した。そのようにして、シクロヘキサン濃度は未使用シクロヘキサン濃度と連続サイクル実施数に応じた低い濃度との間で変動する。図6は、貯蔵タンクが8サイクル毎に排水される場合を示す。
プレカーサーを管理する他の方法は、貯蔵タンク内の液体プレカーサーの一部のみを周期的に置換することである。この考え方は濃度のばらつきを低減させることによって、このプレカーサーから堆積する熱分解炭素のより良好な制御を可能にする(マイクロ構造、熱的−機械的特性または摩擦特性)。これに関し、図7は、貯蔵タンクの半分を4実施毎に未使用シクロヘキサンで置換することによってシクロヘキサン濃度が理論的にどのように影響されるかを示す。
これらの2つの方法に従い、貯蔵タンクは全部が排水されることはない。図6および7にそれぞれ対応する方式に従って複数の実施を行ない、そして用いたシクロヘキサン試料をガスクロマトグラフィで分析した。表5aおよび5bは、それぞれこれらの分析の結果を与える。
Figure 2010500268
Figure 2010500268
実験データによって、算出が、シクロヘキサン濃度 対 実施数(図8を参照のこと)を予測する正確な方法であることが確認される。図7および8が、シクロヘキサン分解の(その一般的カーブという観点での)予想される速度をさらに確認する8サイクル実験データも示すことが注目される。
さらに、分析は、全化学成分の濃度が幾つかの実施の後で実質的に定常で維持されることを示す。
発明の例証および説明の目的で特定の具体的な例を参照して本発明を以上で説明してきたが、本発明は単にそれらの例の具体的な詳細の参照によって限定されるものではないことを理解すべきである。より具体的には、特許請求の範囲において規定する発明の範囲から逸脱することなく好ましい態様における変更および改良をなすことができることを当業者は容易に解釈するであろう。

Claims (17)

  1. 反応チャンバー内で液体プレカーサー中に多孔性基材を浸漬することによって液体プレカーサーを多孔性基材中の孔隙に浸透させること;および
    多孔性基材を高密度化するために、浸漬された多孔性基材を、液体プレカーサーを熱分解させて分解生成物を該基材の孔隙内に堆積させるのに十分な温度に誘導的に加熱すること;
    を含み、
    液体プレカーサーの化学的純度レベルを、化学的に純粋であるよりは低く、そして所望の物理的特性を有する分解生成物を得るには十分に化学的に純粋であるように制御する、
    多孔性基材の高密度化方法。
  2. 液体プレカーサーが炭化水素を含む、請求項1に記載の方法。
  3. 分解生成物が炭素を含む、請求項1に記載の方法。
  4. 炭化水素が、シクロペンタン、シクロヘキセン、1−ヘキセン、ガソリン、トルエン、メチルシクロヘキサン、n−ヘキサン、灯油、水素脱硫灯油、ベンゼン、およびこれらの組合せからなる群から選択される、請求項2に記載の方法。
  5. 液体プレカーサーの化学的純度レベルを、約80〜約99.9%の間に制御する、請求項1に記載の方法。
  6. 液体プレカーサー中に不純物が存在し、不純物が、シクロペンタジエン、ヘキサン、メチルシクロペンタン、ベンゼン、シクロヘキセン、ヘプタン、メチルシクロヘキサン、トルエン、エチルベンゼン、フェニルアセチレン、スチレン、ノナン、インデン、ナフタレン、メチルナフタレン、アセナフタレン、およびフッ素のうち1種以上を含む、請求項5に記載の方法。
  7. 液体プレカーサーの化学的純度を、インライン蒸留プロセスを用いて制御する、請求項1〜6のいずれかに記載の方法。
  8. 液体プレカーサーの化学的純度を、約95%±5%の範囲内に制御する、請求項7に記載の方法。
  9. 化学的に純粋な液体プレカーサーの量を、1つ以上の前高密度化サイクルにおける使用を示す1種以上の不純物を含むエージングした液体プレカーサーの量と混合することによって、液体プレカーサーの化学的純度を約90%±5%の範囲内に制御する、請求項7に記載の方法。
  10. 液体プレカーサーがオルガノシランを含む、請求項1に記載の方法。
  11. オルガノシランが、メチルトリクロロシラン、ジメチルジクロロシラン、メチルジクロロシラン、およびトリス−n−メチルアミノシランからなる群から選択される、請求項10に記載の方法。
  12. 分解生成物が、炭化珪素および窒化珪素を含む、請求項10に記載の方法。
  13. 液体プレカーサーが、オルガノシランと炭化水素との混合物である、請求項1に記載の方法。
  14. 分解生成物が、炭素/炭化珪素または炭素/窒化珪素のいずれかである、請求項12に記載の方法。
  15. 反応チャンバー;
    反応チャンバー内に配置される少なくとも1つの誘導コイル加熱アセンブリ;
    液体プレカーサー消費を監視するための流体レベル表示器;
    高密度化プロセスの間に液体プレカーサーを添加するための手段;
    反応チャンバーを不活性ガスでパージするための手段;
    反応チャンバーに接続され、そして反応チャンバー内のプレカーサー蒸気を凝縮させ、そして凝縮されたプレカーサーを反応容器に戻すように構成および配列された蒸気回収系;
    蒸気回収系および熱酸化器にパージするための手段に接続する排出系;ならびに
    高密度化の間、反応器圧力を約760Torr〜約780Torrの間に維持するための加圧手段;
    を含む、液体マトリクスプレカーサーを用いて多孔性プレフォームを高密度化するための反応器。
  16. 浸漬された多孔性基材を誘導的に加熱することが、
    誘導加熱のための初期周波数およびパワーレベルを設定し、初期周波数およびパワーレベルが、多孔性基材の幾何学的中心領域に位置する孔隙内で優先的に液体プレカーサー蒸気を熱分解させるように多孔性基材の幾何学的中心領域で十分な熱を蓄積するのに効果的であるようにすること;
    多孔性基材の他の部分を同時に高密度化することなく多孔性基材の幾何学的中心領域を高密度化するのに十分な初期周波数で誘導加熱するための初期パワーレベルを供給すること;
    多孔性基材の幾何学的中心領域を後高密度化し、さらに、多孔性基材の内側領域を半径方向にて多孔性基材の幾何学的中心領域から外側に向かって徐々に高密度化するように、供給されるパワーレベルおよび周波数を調整すること;ならびに
    高密度化プロセスの終了時にパワーレベルをゼロに下降させること
    を含む、請求項1に記載の方法。
  17. 高密度化後に行なう熱処理をさらに含み、該熱処理が:
    液体プレカーサーを完全に反応チャンバーから排水すること;
    反応チャンバーを不活性ガスでパージすること;
    約760Torr〜約780Torrの圧力を維持しながら、高密度化された多孔性基材を、不活性ガス雰囲気中、温度約1600〜約2400℃の間で誘導的に加熱すること;および
    誘導加熱をゼロに下降させて熱処理を完了させること
    を含む、請求項1に記載の方法。
JP2009523281A 2006-08-07 2007-08-07 多孔性物品を高密度化する方法 Pending JP2010500268A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82159606P 2006-08-07 2006-08-07
PCT/EP2007/058193 WO2008017676A2 (en) 2006-08-07 2007-08-07 Method for densification of porous articles

Publications (2)

Publication Number Publication Date
JP2010500268A true JP2010500268A (ja) 2010-01-07
JP2010500268A5 JP2010500268A5 (ja) 2010-08-19

Family

ID=38654780

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009523282A Expired - Fee Related JP5357024B2 (ja) 2006-08-07 2007-08-07 孔質材緻密化装置
JP2009523283A Expired - Fee Related JP5215306B2 (ja) 2006-08-07 2007-08-07 1つまたは複数の多孔性物品の緻密化のための電力制御
JP2009523281A Pending JP2010500268A (ja) 2006-08-07 2007-08-07 多孔性物品を高密度化する方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2009523282A Expired - Fee Related JP5357024B2 (ja) 2006-08-07 2007-08-07 孔質材緻密化装置
JP2009523283A Expired - Fee Related JP5215306B2 (ja) 2006-08-07 2007-08-07 1つまたは複数の多孔性物品の緻密化のための電力制御

Country Status (11)

Country Link
US (3) US20100297360A1 (ja)
EP (3) EP2050311B1 (ja)
JP (3) JP5357024B2 (ja)
KR (3) KR20090040458A (ja)
CN (5) CN102752889B (ja)
BR (3) BRPI0716037A2 (ja)
CA (3) CA2658615A1 (ja)
MX (3) MX2009001415A (ja)
RU (3) RU2431629C2 (ja)
TW (3) TW200826745A (ja)
WO (3) WO2008017677A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086999A (ja) * 2011-10-14 2013-05-13 Ihi Aerospace Co Ltd 多孔質構造体の高密度化方法及び高密度化装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163339B2 (en) 2007-09-17 2012-04-24 Messier-Bugatti-Dowty Edge densification for film boiling process
US8281907B2 (en) * 2007-12-03 2012-10-09 Honeywell International Inc. Brake assembly having multi-piece core and replaceable friction surfaces
CA2699620A1 (en) * 2009-04-25 2010-10-25 Messier-Bugatti Apparatus and method of densifying porous articles
CN101734940B (zh) * 2009-11-20 2012-07-25 中南大学 基于压差法快速cvi涂层的炭纸性能改善方法和装置
CN102560436B (zh) * 2010-12-13 2014-07-16 北京北方微电子基地设备工艺研究中心有限责任公司 一种气相沉积设备
US8668810B1 (en) * 2013-01-17 2014-03-11 Amass Energy LLC Device and methods for processing carbon based materials
US10011535B2 (en) * 2014-09-02 2018-07-03 Honeywell International Inc. Sacrificial fibers to create channels in a composite material
CA2989426C (en) * 2015-06-16 2022-04-12 De Luca Oven Technologies, Llc A high-wattage power appliance system
JP6807388B2 (ja) * 2016-07-06 2021-01-06 株式会社Ihi ケイ素化合物材料の製造方法およびケイ素化合物材料製造装置
CA2974387A1 (en) * 2016-08-30 2018-02-28 Rolls-Royce Corporation Swirled flow chemical vapor deposition
US10935524B2 (en) * 2017-07-27 2021-03-02 CEM Corporation, Lucidity Division Gas chromatograph device with inductively heated column and method of use thereof
FR3072674B1 (fr) * 2017-10-19 2019-11-08 Safran Landing Systems Procede de fabrication d'une piece de friction en materiau composite
US10683572B2 (en) 2018-10-15 2020-06-16 Goodrich Corporation Silane recirculation for rapid carbon/silicon carbide or silicon carbide/silicon carbide ceramic matrix composites
CN112824871B (zh) * 2019-11-20 2022-11-15 中国南方电网有限责任公司超高压输电公司贵阳局 基于瞬变电磁视电阻率成像技术的接地网缺陷诊断方法
CN112774511B (zh) * 2021-01-12 2023-07-18 中铁十四局集团大盾构工程有限公司 一种土体物料温控密闭搅拌装置及方法
FR3138140B1 (fr) * 2022-07-22 2024-07-19 Safran Ceram procédé de préparation d’un matériau composite à matrice carbone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218278A (ja) * 1992-10-09 1994-08-09 Avco Corp 多孔質ビレットを稠密化するための方法及び装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735075A (en) * 1956-02-14 thomason
US2459971A (en) * 1945-08-30 1949-01-25 Induction Heating Corp Inductor for high-frequency induction heating apparatus
US3790735A (en) * 1971-10-06 1974-02-05 Environment One Corp Inductive heated bake oven
US3755644A (en) * 1972-06-27 1973-08-28 Growth Int Inc High frequency induction heating apparatus
US4339303A (en) * 1981-01-12 1982-07-13 Kollmorgen Technologies Corporation Radiation stress relieving of sulfone polymer articles
FR2516914B1 (fr) * 1981-11-26 1986-03-14 Commissariat Energie Atomique Procede de densification d'une structure poreuse
US4613816A (en) * 1984-04-03 1986-09-23 Geo-Sensors Corporation Cryogenic magnetic probe having new substrate
JPS60243996A (ja) * 1984-05-18 1985-12-03 三洋電機株式会社 誘導加熱コイルの製造方法
KR900008073B1 (ko) * 1985-12-07 1990-10-31 스미도모덴기고오교오 가부시기가이샤 코일 및 그 제조방법
CA1266094A (en) * 1986-01-17 1990-02-20 Patrick Earl Burke Induction heating and melting systems having improved induction coils
JPH0621197Y2 (ja) * 1987-07-06 1994-06-01 高周波熱錬株式会社 周回溝付きロ−ル表面加熱用コイル
GB8902090D0 (en) * 1989-01-31 1989-03-22 Metal Box Plc Electro-magnetic induction heating apparatus
US5165049A (en) * 1990-04-02 1992-11-17 Inductotherm Corp. Phase difference control circuit for induction furnace power supply
JP3182212B2 (ja) * 1991-05-21 2001-07-03 アブコウ・コーポレイション 高密度化多孔質ビレットを製造する方法及び多孔質予備成形体の高密度化方法
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
TW301522U (en) * 1994-06-21 1997-03-21 Toshiba Mitsubishi Elec Inc Induction heater apparatus
US5468357A (en) * 1994-12-27 1995-11-21 Hughes Missile Systems Company Densification of porous articles by plasma enhanced chemical vapor infiltration
DE69631800T2 (de) * 1996-06-28 2005-03-17 Messier-Bugatti Verfahren zur instandhaltung von bremsen
EP0835853A1 (fr) * 1996-10-14 1998-04-15 Societe Europeenne De Propulsion Elément de friction en matériau composite carbone/carbone-carbure de silicium et procédé pour sa fabrication
FR2760741B1 (fr) * 1997-03-13 1999-05-28 Europ Propulsion Procede de densification d'une structure poreuse faisant intervenir un precurseur original et dispositif associe
US5981002A (en) * 1998-02-09 1999-11-09 Textron Systems Corporation Method for densifying the edges and surfaces of a preform using a liquid precursor
JP2000014831A (ja) * 1998-06-26 2000-01-18 Bridgestone Sports Co Ltd ゴルフボールのバリ研磨方法
US6121592A (en) 1998-11-05 2000-09-19 Inductotherm Corp. Induction heating device and process for the controlled heating of a non-electrically conductive material
CN1134795C (zh) * 1998-11-13 2004-01-14 佳邦科技股份有限公司 高频应用薄膜线圈元件及其制造方法
US6726962B1 (en) * 1998-12-18 2004-04-27 Messier-Bugatti Inc. Method for forming composite articles
JP3300759B2 (ja) * 1999-02-05 2002-07-08 三菱重工業株式会社 圧延ロールヒートクラウン形状制御用誘導加熱装置
AU2001230947A1 (en) 2000-01-13 2001-07-24 Electric Power Research Institute Inc. Apparatus and method for inductive heating
CN1174445C (zh) * 2000-07-18 2004-11-03 佳叶科技有限公司 蚀刻式单层及积层片状电感的制造方法
FI109958B (fi) * 2000-12-27 2002-10-31 Metso Paper Automation Oy Jäähdytetty induktiokuumennuskäämi
JP2004014892A (ja) * 2002-06-10 2004-01-15 Daiichi Kiden:Kk 高温加熱装置
US20040253377A1 (en) * 2002-10-24 2004-12-16 Bok Lowell D. Batch and continuous CVI densification furnace
JP3827314B2 (ja) * 2003-03-17 2006-09-27 Tdk株式会社 インダクティブデバイスの製造方法
CN100522358C (zh) * 2004-10-29 2009-08-05 中国石油化工股份有限公司 甲苯选择性歧化制对二甲苯的催化剂

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218278A (ja) * 1992-10-09 1994-08-09 Avco Corp 多孔質ビレットを稠密化するための方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086999A (ja) * 2011-10-14 2013-05-13 Ihi Aerospace Co Ltd 多孔質構造体の高密度化方法及び高密度化装置

Also Published As

Publication number Publication date
US20100156005A1 (en) 2010-06-24
RU2009107003A (ru) 2010-09-20
KR101492648B1 (ko) 2015-02-12
JP5357024B2 (ja) 2013-12-04
WO2008017676A2 (en) 2008-02-14
RU2009107006A (ru) 2010-09-20
RU2431629C2 (ru) 2011-10-20
BRPI0716037A2 (pt) 2013-09-24
EP2051952B1 (en) 2012-12-26
RU2410851C2 (ru) 2011-01-27
KR101478846B1 (ko) 2015-01-02
RU2009107004A (ru) 2010-09-20
CA2660200A1 (en) 2008-02-14
EP2049453A2 (en) 2009-04-22
KR20090039822A (ko) 2009-04-22
US8568838B2 (en) 2013-10-29
WO2008017677A3 (en) 2008-04-10
JP5215306B2 (ja) 2013-06-19
RU2431628C2 (ru) 2011-10-20
KR20090040371A (ko) 2009-04-23
CN102752889B (zh) 2015-06-17
TW200826746A (en) 2008-06-16
US20100297360A1 (en) 2010-11-25
CA2658615A1 (en) 2008-02-14
CN101528637A (zh) 2009-09-09
US20100230402A1 (en) 2010-09-16
WO2008017676A3 (en) 2008-05-15
WO2008017678A2 (en) 2008-02-14
WO2008017677A2 (en) 2008-02-14
JP2010500707A (ja) 2010-01-07
TW200826745A (en) 2008-06-16
MX2009001416A (es) 2009-05-11
CN102815970A (zh) 2012-12-12
KR20090040458A (ko) 2009-04-24
MX2009001415A (es) 2009-04-08
TW200812934A (en) 2008-03-16
CN102752889A (zh) 2012-10-24
JP2010500269A (ja) 2010-01-07
CN101502168A (zh) 2009-08-05
CA2660203A1 (en) 2008-02-14
BRPI0716039A2 (pt) 2015-06-23
CN101522590A (zh) 2009-09-02
EP2050311A2 (en) 2009-04-22
CN101528637B (zh) 2012-11-28
BRPI0716038A2 (pt) 2016-02-16
WO2008017678A3 (en) 2008-05-22
EP2051952A2 (en) 2009-04-29
MX2009001417A (es) 2009-04-08
EP2050311B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP2010500268A (ja) 多孔性物品を高密度化する方法
JP5674527B2 (ja) 高温ガスとの接触に適した装置
CN109354506B (zh) 一种高温抗氧化碳陶复合材料及其制备方法
JP2010500268A5 (ja)
US6858302B2 (en) Composite articles
US8003026B2 (en) Pitch-only densification of carbon-carbon composite materials
EP2093453A1 (en) CVI followed by coal tar pitch densification by VPI
JPH11209115A (ja) 高純度c/cコンポジットおよびその製造方法
US5989504A (en) Chemical process employing corrosion resistant composites
JPH01167210A (ja) 炭素質フェルト加工品並びにその製造方法
JP4386577B2 (ja) 部分的に緻密化した炭素予備成形体
Serre et al. Study of the silicon carbide matrix elaboration by film boiling process
US6068925A (en) Corrosion resistant composites useful in chemical reactors
JPH0848509A (ja) 炭素質多孔体の製造方法
JP2014133919A (ja) 熱分解炭素被覆部材
Golecki et al. Rapid densification of carbon‐carbon by thermal‐gradient chemical vapor infiltration
Golecki Industrial carbon chemical vapor infiltration (CVI) processes
Istomina et al. Fabrication of Carbon–Silicon Carbide Core–Shell Composite Fibers
JPH11116359A (ja) 炭素−炭化ホウ素複合材及びその製造方法並びにその複合材を用いた核融合炉測定器用の保護部材
Delhaes Chemical vapor infiltration processes of carbon materials
CN114514062A (zh) 用于对加载有pah的油进行处理的方法
CN117015461A (zh) 用于对浸渍的坯料进行干燥的方法和相关的制造方法、系统和组件
AU2003262110B2 (en) Composite foam, articles, and methods of formation
Pruett Carbon Matrices

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120511

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205