RU2431628C2 - Способ уплотнения пористых изделий - Google Patents

Способ уплотнения пористых изделий Download PDF

Info

Publication number
RU2431628C2
RU2431628C2 RU2009107006/03A RU2009107006A RU2431628C2 RU 2431628 C2 RU2431628 C2 RU 2431628C2 RU 2009107006/03 A RU2009107006/03 A RU 2009107006/03A RU 2009107006 A RU2009107006 A RU 2009107006A RU 2431628 C2 RU2431628 C2 RU 2431628C2
Authority
RU
Russia
Prior art keywords
carbon fiber
starting material
fiber preform
liquid starting
liquid
Prior art date
Application number
RU2009107006/03A
Other languages
English (en)
Other versions
RU2009107006A (ru
Inventor
Кенни ЧАН (US)
Кенни ЧАН
Брюс ЦИММЕРМАН (US)
Брюс ЦИММЕРМАН
Арно ФИЙОН (US)
Арно ФИЙОН
Original Assignee
Мессье-Бугатти
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мессье-Бугатти filed Critical Мессье-Бугатти
Publication of RU2009107006A publication Critical patent/RU2009107006A/ru
Application granted granted Critical
Publication of RU2431628C2 publication Critical patent/RU2431628C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/362Coil arrangements with flat coil conductors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Induction Heating (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glass Compositions (AREA)
  • Furnace Details (AREA)
  • Braking Arrangements (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к области техники фрикционных материалов, например дисков фрикционного тормоза для летательных аппаратов. Способ уплотнения пористых субстратов, таких как тормозные заготовки из углеродного волокна, осуществляется с использованием жидкого исходного вещества, циклогексана или толуола. Заготовки из углеродного волокна погружают в жидкое исходное вещество, которое заполняет поры заготовки, и проводят индуктивный нагрев заготовки до температуры, достаточной для пиролиза жидкого исходного вещества (1600-2400°С). При этом степень химической чистоты жидкого исходного вещества составляет приблизительно от 80 до 99,6%. Технический результат изобретения - снижение потребления «свежего» или «нового» жидкого исходного вещества за счет поддержания чистоты жидкого исходного вещества, используемого для уплотнения, ниже уровня химической чистоты. 12 з.п. ф-лы, 6 табл., 8 ил.

Description

Перекрестные ссылки на родственные заявки
Настоящая заявка претендует на приоритет Предварительной патентной заявки США № 60/821596 от 7 августа 2006 г., содержание которой полностью включено в настоящее описание по ссылке.
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способу и устройству для уплотнения пористых изделий, имеющему высокую производительность, и, в частности, но не обязательно, относящемуся к области фрикционных тормозных изделий, например к тормозным устройствам для летательных аппаратов.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
В области техники фрикционных материалов известно использование пористых материалов для изготовления фрикционных деталей, например дисков фрикционного тормоза.
Изготовление таких фрикционных деталей обычно начинают с изготовления пористой заготовки (преформы). Например, для изготовления различных фрикционных тормозов используют кольцевые заготовки.
Кольцевые заготовки могут быть изготовлены несколькими известными способами. Например, несколько слоев ткани, изготовленной из углеродного волокна, могут быть сшиты друг с другом, и из полученной кипы (пачки) могут быть вырезаны кольцевые заготовки.
Кроме того, заготовки, имеющие форму, близкую к заданной, могут быть изготовлены, например, путем тканья из углеродных волокон или путем плетения углеродных волокон с получением желаемой формы. Известны некоторые типы тканей, изготовленных из углеродного волокна, переплетение которых способствует укладыванию ткани в виде спирали. В этом контексте термин «форма, близкая к заданной» означает получение структур, форма которых близка к заданной конфигурации готового изделия, например кольцевого тормозного диска.
Волокна из окисленного полиакрилонитрида (ПАН) или волокна на основе полимера (смолы) представляют собой обычные примеры исходных волокон, пригодных для изготовления изделий указанного типа. Эти волокна затем могут быть подвергнуты карбонизации посредством обработки при высокой температуре.
Другой традиционный способ включает получение исходных волокон из полимера или смолы, и полученную массу затем подвергают отверждению под действием реакционноспособного газа, например газообразного азота. Отвержденную указанным способом массу затем подвергают карбонизации, получая полутвердую заготовку.
В любом случае полученную пористую заготовку затем желательно подвергнуть дальнейшему уплотнению (в частности, но не обязательно, при помощи углеродистого материала) с целью получения желаемых фрикционных и механических свойств.
В этом отношении химическая инфильтрация газовой фазы (CVI - от англ. "chemical vapor infiltration ") является широко используемым традиционным способом получения углерод/углеродных композитных материалов. При проведении CVI, для инфильтрации (пропитывания) пористой заготовки используют углеродсодержащий газ. Затем газ, используемый в CVI, подвергают крекингу при высоких температурах, после проведения которого на волокнистой структуре заготовки остается углеродное покрытие.
Продолжительность традиционной CVI обработки для получения углерод/углеродной (С/С) структуры, имеющей желаемую плотность и механические свойства, составляет несколько сотен часов. В качестве примера можно привести традиционный CVI способ, включающий первый цикл инфильтрации, продолжительность которого, например, превышает приблизительно 300-500 часов.
Тем не менее, проведение традиционной CVI обработки часто вызывает быстрое закупоривание поверхностных пор заготовки еще до достижения достаточного уплотнения изделия. Для «повторного открытия» поверхностных пор, которое позволяет производить дальнейшее уплотнение, необходимо проведение машинной обработки. В общем случае, указанная операция машинной обработки (с использованием известного способа, например фрезеровки) позволяет удалять поверхностные слои заготовки, содержащие закупоренные углеродом поры, и открывать более глубокие поры, что позволяет повторно осуществлять инфильтрацию заготовки углеродсодержащим газом. Учитывая, что обычно одновременно производят уплотнение нескольких сотен заготовок, промежуточная операция машинной обработки может увеличить общее время проведения традиционного CVI способа почти на 48 часов.
После выполнения промежуточной операции машинной обработки частично уплотненных изделий выполняют вторую операцию CVI, в которой используют вновь открытые поры заготовок. Вторая операция CVI может занимать, например, еще 300-500 часов или более. Обычно в традиционном способе уплотнения с использованием CVI эта операция является последней.
Другой способ уплотнения пористых заготовок вместо применения газообразного углеродсодержащего исходного вещества (предшественника) включает использование жидкости. В данной области техники этот способ уплотнения иногда называют «пленочным кипением» или «быстрым уплотнением».
Уплотнение способом пленочного кипения обычно включает погружение пористой заготовки в жидкий углеводород таким образом, что жидкость, по существу, полностью заполняет поры и пустоты заготовки. После этого погруженную заготовку нагревают индуктивным способом при помощи соответствующим образом расположенных электрических элементов, например катушек индуктивности, до температуры, превышающей температуру разложения жидкого углеводорода (обычно 1000°С или выше). Более конкретно, молекулы жидкого углеводорода, находящиеся вблизи индуктивно нагреваемой структуры заготовки, диссоциируют внутри пор заготовки с образованием различных частиц, находящихся в газовой фазе. Дальнейшее термическое разложение частиц, находящихся в газовой фазе, приводит к образованию пироуглерода на внутренних поверхностях открытых участков пористого материала. Использование жидких исходных веществ для уплотнения изделий описано, например, в патентах США № 4472454, 5389152, 5397595, 5733611, 5547717, 5981002 и 6726962. Каждый из упомянутых в настоящем описании документов полностью включен в настоящее описание посредством ссылки.
В данной области техники широко известна концепция индуктивного нагрева, в том числе и описанная в вышеуказанных документах. Тем не менее, нагревание заготовки до высоких температур (по меньшей мере 1000°С и вплоть до 1400°С), в то время как указанная заготовка в буквальном смысле слова погружена в высоко летучие углеводородные жидкости (например, циклогексан), вызывает серьезные опасения с точки зрения безопасности производства.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к способу уплотнения пористых субстратов с использованием жидкого исходного вещества, в котором объем используемого «нового» или «свежего» жидкого исходного вещества подходящим образом уменьшают за счет поддержания чистоты жидкого исходного вещества, используемого для уплотнения, ниже химически чистого уровня, но, тем не менее, жидкое исходное вещество достаточно химически чисто для использования в указанном способе уплотнения. По существу, в соответствии с настоящим изобретением используют искусственно «состаренное» (из-за наличия в нем примесей) жидкое исходное вещество.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Понимание настоящего изобретения упрощается при рассмотрении прилагаемых к настоящему описанию графических материалов, в которых:
на фиг.1 схематически изображена установка для осуществления уплотнения с использованием жидкого исходного вещества, в соответствии с настоящим изобретением;
на фиг.2 и фиг.3 изображены в разрезе вид сбоку и вид сверху реакционной камеры для уплотнения пористых изделий в соответствии с настоящим изобретением;
на фиг.4 показана экспериментальная зависимость между количеством рабочих циклов уплотнения и чистотой исходного вещества, выраженной в виде концентрации основного компонента исходного вещества:
на фиг.5 показано экспериментально полученное изменение концентрации примесей в жидком исходном веществе после проведения нескольких циклов;
На Фиг.6 представлено сравнение экспериментальной и рассчитанной чистоты исходного вещества в течение нескольких циклов при периодическом восстановлении чистоты исходного вещества; и
на фиг.7 и фиг.8 представлено сравнение экспериментальной и рассчитанной чистоты исходного вещества в течение нескольких циклов при периодическом частичном восстановлении чистоты исходного вещества.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Особенности и отличительные черты способа и устройства, предлагаемых согласно настоящему изобретению, описание которых сопровождается графическими материалами, представлены исключительно для иллюстрации изобретения и никоим образом не ограничивают область его применения.
Пористые заготовки, например заготовки для изготовления дисков фрикционного тормоза, упомянуты ниже исключительно для примера и/или иллюстрации. Тем не менее, следует особо отметить, что настоящее изобретение в более общем случае относится к уплотнению пористых субстратов других типов при помощи описанного способа.
На фиг.1 схематично изображена установка для осуществления уплотнения с использованием жидкого исходного вещества. Система может включать удаленное место 100 хранения жидкого исходного вещества (включающее, например, систему транспортировки жидкости) для осуществления транспортировки нового и использованного текучего исходного вещества. Один из примеров текучего исходного вещества, применяемого согласно настоящему изобретению, представляет собой жидкий углеводород, например циклогексан (С6Н12). Например, может быть создан «резервуарный парк», состоящий из одного или более резервуаров для хранения (обозначенных совместно цифрой 100) жидкого исходного вещества. Резервуарный парк также может включать один или более резервуаров для по меньшей мере первоначального хранения жидкого исходного вещества. Для безопасности производства может быть желательно или необходимо (в зависимости от нормативных промышленных требований) содержать по меньшей мере резервуарный парк 100 на некотором расстоянии от остального производственного оборудования. Например, в соответствии с некоторыми местными и/или государственными постановлениями указанное отделяющее расстояние может составлять порядка нескольких сотен футов.
При необходимости, установка также может включать относительно небольшой локальный резервуар 105 для хранения, предназначенный для хранения относительно небольшого количества нового жидкого исходного вещества вблизи обрабатывающего оборудования.
Для соединения различных частей установки применяют традиционную систему перекачивания (включающую насосы и подобные им устройства), которая может иметь любую конструкцию и расположение, пригодное, в частности, но не единственно, для транспортировки используемого жидкого исходного вещества, например жидких углеводородов. Предпочтительно, но не обязательно, управление системой перекачивания жидкостей осуществляют через компьютер. Для мониторинга и контроля системы указанного типа для перекачивания жидкостей могут быть использованы коммерчески доступные системы компьютерного контроля (неограничивающие примеры которых представляют собой системы, поставляемые Компанией ОРТО 22), которые также включают контроль за осуществлением отгрузки нового жидкого исходного вещества из внешнего источника.
Жидкое исходное вещество из локального резервуара 105 для хранения направляют в одну или более реакционных камер (совместно обозначенных цифрой 110). Предпочтительно, направляют такое количество жидкого исходного вещества, которое достаточно для, по существу, полного погружения одной или более заготовок, которые подвергают уплотнению в указанных камерах, а также для погружения имеющихся в камере нагревательных катушек.
Как уже было упомянуто выше, при проведении способа пленочного кипения образуются газообразные частицы, которые частично вызывают образование пироуглерода на внутренних поверхностях пор заготовок. Пары исходного вещества подвергают максимально полному улавливанию и конденсации в традиционном конденсаторе 115 для возможного возвращения в обработку. Для поддержания адекватной температуры воды, необходимой для охлаждения конденсатора 115, может быть использована коммерчески доступная охлаждающая башня 140.
Остающийся отходящий газ предпочтительно направляют в камеру 120 термического окисления, имеющую известную конструкцию, для сжигания остаточных углеводородов, находящихся в отходящем газе.
Напряжение из источника 125 напряжения направляют на индукционные катушки 25 по металлическим электрическим шинам 30, изготовленным в соответствии с заданным расположением элементов в установке и в соответствии с требуемыми размерами. Электрические шины могут быть изготовлены, например, из меди, и предпочтительно, но не обязательно, имеют водное охлаждение с подачей воды из контура 50 охлаждающей воды (см. фиг.2).
Каждый источник 125 питания может быть снабжен цепью удаленного ПИД-регулятора (пропорционально интегрально-дифференциального регулятора), которая позволяет осуществлять контроль и мониторинг с контрольного терминала компьютера. Рассматриваемая установка также может включать осуществление контроля плотности потока энергии, контроля напряжения, контроля частоты и/или контроля температуры известными способами.
На фиг.2 показана реакционная камера 110, сконструированная и установленная таким образом, что позволяет одновременно обрабатывать (например) две пористые заготовки. Реакционная камера 110 включает два комплекта 25 индукционных нагревательных катушек, соответствующих каждой из обрабатываемых заготовок 35. Комплекты 25 индукционных катушек предпочтительно зафиксированы при помощи нереакционнослособных опор, изготовленных, например, из неэлектропроводного материала 45 из композитного стекла (например, известного в данной области техники материала G-10), который способен выдерживать реакционное окружение, например среду из жидкого углеводорода. Индукционные нагревательные катушки 25 предпочтительно представляют собой охлаждаемые водой плоские спиральные катушки, которые могут быть изготовлены из металлической меди. Таким образом, для охлаждения воды в систему охлаждения индукционных катушек 25 желательно включить теплообменник 135 (см. фиг.1). Во время работы камеры заготовку 35 (или истертый тормоз), подвергаемую уплотнению, нагревают при помощи непосредственного соединения с индукционной катушкой 25.
Пример устройства для загрузки и разгрузки реакционной камеры 110/камеры с катушками включает панель 15 верхней крышки, снабженную традиционным закрывающим механизмом для герметизации камеры 110. Каждая реакционная камера 110 (столько, сколько их имеется) снабжена обычным соединением 20 подающего трубопровода для жидкого исходного вещества и обычным выпускным трубопроводом 10, который подходящим образом соединен с конденсатором 115 и камерой 120 термического окисления.
Контроль, заполнение и опорожнение каждой реакционной камеры 110 может быть подходящим образом осуществлено при помощи системы компьютерного контроля. Пары жидкого исходного вещества, отходящие из оборудования для уплотнения, конденсируют и вновь направляют в реакционные камеры 110, в то время как остаточный отходящий газ затем направляют в камеру 120 термического окисления и сжигают.
Поскольку летучие жидкие углеводороды представляют собой частный пример жидкого исходного вещества, применяемого согласно настоящему изобретению, установку желательно (но не обязательно) снабжать системой подачи газообразного азота (N2) (не показана), например, для продувки системы трубопроводов и, в общем случае, для заполнения пустот системы инертным газом (вместо воздуха, содержащего кислород) с целью снижения риска возгорания. В конкретном примере, в пустых пространствах, находящихся как в удаленных, так и в локальных резервуарах для хранения жидкого исходного вещества, поддерживают небольшое, постоянно поддерживаемое избыточное давление газообразного азота (или другого известного и традиционно применяемого инертного газа), которое предотвращает потенциально опасное скопление летучих паров. Частицы углеводорода, смешанные с выпускаемым газообразным азотом, направляют в камеру 120 термического окисления, в которой происходит сжигание углеводородов перед выбросом газа в окружающую среду.
Также, поскольку система предназначена для проведения «мокрого» способа, рекомендуется снабжать ее сушильной печью 130, предназначенной для сушки уплотненных перформ после проведения уплотнения. Для обработки тяжелых и легких ароматических веществ, захваченных получаемым отходящим газом, выпускное отверстие указанной сушильной печи 130 предпочтительно также присоединяют к камере 120 термического окисления. С точки зрения безопасности полезно применять конструкцию печи, способную выдерживать взрыв в случае его возникновения из-за наличия летучих газов в печи во время сушки. Для упрощения управления способом контроль сушки также может быть осуществлен, например, при помощи компьютерной системы.
В процессе осуществления способа химическую чистоту жидкого исходного вещества можно регулировать, в частности, при помощи операции перегонки, включенной в основное производство.
Способ согласно изобретению может дополнительно включать тепловую обработку, производимую после осуществления уплотнения, причем тепловая обработка включает:
- полное извлечение жидкого исходного вещества из реакционной камеры;
- продувку реакционной камеры инертным газом;
- индукционное нагревание уплотненной заготовки из углеродного волокна в атмосфере инертного газа при температуре, составляющей приблизительно от 1600°С до 2400°С, при одновременном поддержании давления, составляющего приблизительно от 760 мм рт.ст. до 780 мм рт.ст. (приблизительно от 1,01·105 Па до 1,04·105 Па); и
- линейное снижение индукционного нагревания до нуля для завершения тепловой обработки.
Figure 00000001
В таблице 1 представлены данные состава состаренного C6H12 и основных примесей, получаемых при проведении уплотнения. В этом исследовании были проведены восемь циклов уплотнения карбонизированных заготовок в трех реакторах с использованием специализированной кривой критерия мощности. В частности, цель исследования состояла в снижении количества нового или «свежего» жидкого исходного вещества (которое может быть относительно дорогостоящим) для восполнения исходного вещества, используемого для обработки.
Для анализа были отобраны шестнадцать образцов состаренного С6Н12, полученных в восьми последовательных циклах. Цель исследования состояла в нахождении корреляции значения пика индивидуального загрязняющего вещества с составом состаренного C6H12. Образцы отбирали до и после каждого цикла уплотнения и идентифицировали как А и В.
Процентная концентрация C6H12 по окончании восьмого цикла все еще составляла приблизительно более 94%. Основные полученные пики примесей принадлежали бензолу, нафталину, толуолу, стиролу, циклогексену, циклопентадиену и индену. Количества шести из семи примесей, концентрации которых измеряли, постепенно увеличивались от цикла к циклу в течение восьми циклов. Газохроматографический анализ (ГХ) исследования старения показывает, что изменение концентраций всех примесей и циклогексана хорошо поддаются предсказанию. Пики всех примесей проявлялись в каждом из исследованных циклов.
Изобретение также относится к моделированию состаренных жидких исходных веществ путем добавления к жидкому исходному веществу различных примесей. Этот способ может позволить наилучшим образом увеличить срок службы жидкого исходного вещества и/или снизить количество используемых высокочистых (и, следовательно, относительно дорогостоящих) жидких исходных веществ. Другими словами, с одной стороны, может быть установлена «минимальная» степень чистоты исходного вещества, и для обработки может быть использовано исходное вещество, чистота которого превышает указанный минимальный уровень (до замены высокочистым исходным веществом). С другой стороны, может быть установлена более низкая приемлемая степень чистоты, и, таким образом, исходное вещество более низкой чистоты может быть использовано в рассматриваемом способе на постоянной основе. В любом случае необходимое количество используемого текучего исходного вещества высокой чистоты может быть желаемым образом снижено.
Для определения постепенного «ухудшения» качества высокочистого жидкого исходного вещества после нескольких производственных циклов были приготовлены модели нескольких состаренных жидких исходных веществ добавлением в них вышеуказанных примесей. Была разработана модель для предсказания концентраций циклогексана в различных циклах. На основании экспериментальных данных, полученных в описанных выше восьми последовательных циклах, была произведена экстраполяция данных. На фиг.4 показаны предсказанные концентрации циклогексана в зависимости от количества последовательных производственных циклов. Следует отметить, что рассчитанные концентрации циклогексана, по существу, достигают стационарного состояния приблизительно после 40 циклов, в основном потому, что в производственный резервуар перед циклом уплотнения добавляют свежий циклогексан.
Таблица 2
Расчеты для проведения периодического способа при объеме одной партии, равном 500 галлонов (приблизительно 1890 л)
Химикат % масс. Плотность % масс. × плотность кг/500 галлонов л/500 галлонов Галлоны
Циклогексан 90,00 0,779 0,701 1291,500 1657,895 438,02
Бензол 5,46 0,874 0,048 78,351 89,646 23,68
Нафталин 1,25 0,963 0,012 17,938 н/а н/а
Стирол 0,78 0,909 0,007 11,193 12,314 3,25
Циклогексен 0,51 0,810 0,004 7,319 9,035 2,39
Циклопентадиен 0,44 0,986 0,004 6,314 6,404 1,69
Толуол 0,86 0,867 0,007 12,341 14,234 3,76
Инден 0,36 0,997 0,004 5,166 5,183 1,37
Фенилацетилен 0,17 0,930 0,002 2,440 н/а н/а
Аценафталин 0,15 0,899 0,001 2,153 н/а н/а
Итого 99,98 0,790 474,16
Примечание. Вычисленная плотность для смеси составила 0,790 г/мл. Допустимая емкость резервуара составляла 480 галлонов
480 галлонов - масса загрузки: 0,790×480×3,785=1435 (кг).
Для добавления в исходный циклогексан были выбраны девять химических соединений, поставляемых Alfa Aesar. Показатели этих веществ, применяемых для добавления в исходное вещество, представлены в таблице 2. Чистота полученных химикатов составляла от 99,6% до 80%.
В таблице 2 указаны количества индивидуальных веществ, применяемых для получения концентрации циклогексана, равной 90%. В модельных экспериментах для получения исходной смеси использовали 90% концентрацию циклогексана, но в смесь по соображениям безопасности не добавляли циклопентадиен, поскольку этот гелеобразный материал чрезвычайно легко воспламеняется на воздухе. Однако, предположительно, он оказывает минимальное влияние на эксперимент. С использованием 90% исходной смеси были проведены шесть последовательных циклов уплотнения. Образцы жидкого исходного вещества отбирали до и после проведения каждого цикла и направляли на ГХ анализ.
Таблица 3
Химикат % масс. в смеси ГХ% площадь Плотность % масс. × плотность кг/500 галлонов л/500 галлонов Галлоны
Циклогексан 90,000 90,318 0,779 0,701 1291,500 1657,895 438,02
Бензол 5,460 5,255 0,874 0,048 78,351 89,646 23,68
Нафталин 1,250 1,422 0,963 0,012 17,938 н/а н/а
Стирол 0,780 0,870 0,909 0,007 11,193 12,314 3,25
Циклогексен 0,510 0,536 0,810 0,004 7,319 9,035 2,39
Циклопентадиен 0,440 0,010 0,986 0,004 6,314 6,404 1,69
Толуол 0,860 0,939 0,867 0,007 12,341 14,234 3,76
Инден 0,360 0,390 0,997 0,004 5,166 5,183 1,37
Фенилацетилен 0,170 0,204 0,930 0,002 2,440 н/а н/а
Аценафталин 0,035 0,010 0,899 0,000 0,502 н/а н/а
Итого 99,87 99,95 0,789 474,16
Для проведения газохроматографического анализа были направлены всего двенадцать состаренных исходных веществ, полученных в шести последовательных циклах. Образцы состаренных исходных веществ отбирали из резервуара емкостью 500 галлонов (приблизительно 3,78 л×500=1890 л) до и после проведения каждого цикла. Данные ГХ анализа для моделирования 90% исходной смеси представлены в таблице 3. Из таблицы 3 видно, что полученные концентрации всех химических веществ близки к значениям массовых процентных концентраций, используемых в 90% смеси, за исключением циклопентадиена, который не применяли из-за его высокой воспламеняемости на воздухе. Однако, предположительно, отсутствие циклопентадиена в используемых образцах оказывает минимальное общее влияние на эксперимент.
Figure 00000002
В таблице 4 указаны изменения концентраций освоеных загрязняющих веществ, полученные в шести последовательных циклах или двенадцати образцах исходного вещества. Исходная чистота обычно составляла 90,3%, а конечная, после шести циклов уплотнения - 88,4%. В большинстве случаев концентрации загрязняющих веществ достигали стационарного состояния или медленно понижались, за исключением бензола (см., например, концентрации циклопентадиена, циклогексена, толуола, этилбензола, фенилацетилена, стирола, индена, нафталина, метилнафталина, аценафталина и флуорена в таблице 4). Это указывает на то, что при более низких концентрациях C6H12 продолжается химическое превращение циклогексана (C6H12) в бензол (С6Н6) (см., например, концентрацию бензола на фиг.5).
На практике для проведения операций с исходным веществом могут быть применены несколько способов. Некоторые из них описаны ниже.
В одной и той же ванне, заполненной тем же жидким исходным веществом, могут быть проведены несколько последовательных циклов, после чего весь циклогексан, находящийся в резервуаре для хранения, полностью заменяют свежим циклогексаном. Таким образом, в зависимости от количества проведенных последовательных циклов концентрация циклогексана будет меняться в диапазоне от концентрации свежего циклогексана до более низкой концентрации. На фиг.6 показан случай, когда резервуар для хранения опорожняют после каждых 8 циклов.
Другой способ проведения операций с исходным веществом состоит в периодической замене лишь части жидкого исходного вещества в резервуаре для хранения. Такой подход снижает колебания концентрации и, следовательно, позволяет лучше регулировать осаждение пироуглерода из такого исходного вещества (микроструктуру, термическо-механические и фрикционные свойства). Так, на фиг.7 показано теоретическое изменение концентрации циклогексана при замене половины циклогексана в резервуаре для хранения на свежий циклогексан после проведения каждых 4 циклов.
В соответствии с указанными двумя способами резервуар для хранения никогда полностью не осушают. Проводят несколько производственных циклов в соответствии с методиками, описанными на фиг.6 и фиг.7 соответственно, и образцы используемого циклогексана анализируют при помощи газовой хроматографии. Результаты этих анализов представлены в таблицах 5а и 5b соответственно.
Figure 00000003
Figure 00000004
Экспериментальные данные подтверждают то, что расчетный способ предсказания зависимости концентрации циклогексана от количества проведенных циклов (см. фиг.8) является достаточно точным. Следует отметить, что на фиг.7 и фиг.8 представлены экспериментальные данные, которые также подтверждают ожидаемую скорость ухудшения качества циклогексана, изображенную на общей кривой.
Кроме того, анализы показывают, что концентрации всех остальных химических компонентов остаются, по существу, неизменными после проведения нескольких производственных циклов.
Несмотря на то, что настоящее изобретение было описано выше при помощи некоторых конкретных примеров, приведенных для иллюстрации и объяснения сущности изобретения, следует понимать, что изобретение не ограничено конкретными данными, приведенными в указанных примерах. Более конкретно, специалист в данной области техники должен понимать, что существуют варианты и модификации настоящего изобретения, не выходящие за пределы области применения настоящего изобретения, определенной в прилагаемой формуле изобретения.

Claims (13)

1. Способ уплотнения заготовки из углеродного волокна, включающий:
- погружение заготовки из углеродного волокна, находящейся в реакционной камере, в жидкое исходное вещество таким образом, что жидкое исходное вещество заполняет поры заготовки из углеродного волокна, причем жидкое исходное вещество содержит циклогексан или толуол; и
- индуктивный нагрев погруженной заготовки из углеродного волокна до температуры, достаточной для пиролиза жидкого исходного вещества, с образованием продукта разложения, который осаждается внутри пор заготовки из углеродного волокна, в результате чего происходит уплотнение заготовки из углеродного волокна, в котором степень химической чистоты жидкого исходного вещества регулируют таким образом, чтобы она составляла приблизительно от 80 до 99,6% для получения продукта разложения, обладающего желаемыми физическими характеристиками.
2. Способ по п.1, в котором жидкое исходное вещество включает углеводород.
3. Способ по п.1, в котором продукт разложения включает углерод.
4. Способ по п.1, в котором степень химической чистоты жидкого исходного вещества регулируют таким образом, что она составляет приблизительно от 80 до 99,6%.
5. Способ по п.4, в котором в жидком исходном веществе присутствуют примеси и при этом примеси включают одно или более из следующих веществ: циклопентадиен, гексан, метилциклопентан, бензол, циклогексен, гептан, метилциклогексан, толуол, этилбензол, фенилацетилен, стирол, нонан, инден, нафталин, метилнафталин, аценафталин и флуорен.
6. Способ по п.п.1-5, в котором химическую чистоту жидкого исходного вещества регулируют при помощи операции перегонки, включенной в основное производство.
7. Способ по п.6, в котором химическую чистоту жидкого исходного вещества регулируют таким образом, что она находится в диапазоне приблизительно 95%±5%.
8. Способ по п.6, в котором химическую чистоту жидкого исходного вещества регулируют таким образом, что она находится в диапазоне приблизительно от 85 до 99,6%, при помощи смешивания химически чистого жидкого исходного вещества с состаренным жидким исходным веществом, содержащим одну или более примесей, соответствующих проведению одного или более циклов уплотнения.
9. Способ по п.1, в котором продукт разложения включает карбид кремния и нитрид кремния.
10. Способ по п.1, в котором жидкое исходное вещество представляет собой смесь органосилана и углеводорода.
11. Способ по п.9, в котором продукт разложения представляет собой углерод/карбид кремния или углерод/нитрид кремния.
12. Способ по п.1, в котором индукционное нагревание погруженной заготовки из углеродного волокна включает:
- установку начальных значений частоты и мощности индукционного нагревания, при которых начальные значения частоты и мощности достаточны для создания эффективного количества тепла в области геометрического центра заготовки из углеродного волокна, достаточного для осуществления пиролиза паров жидкого исходного вещества, предпочтительно в порах, находящихся в области геометрического центра заготовки из углеродного волокна;
- подачу начальной мощности при начальной частоте, требуемой для индукционного нагревания, достаточного для осуществления уплотнения области геометрического центра заготовки из углеродного волокна без одновременного уплотнения других частей заготовки из углеродного волокна;
- после осуществления уплотнения области геометрического центра заготовки из углеродного волокна, установление значений подаваемой мощности и частоты таким образом, который позволяет осуществлять последовательное уплотнение внутренних областей заготовки из углеродного волокна в радиальном направлении от области геометрического центра заготовки из углеродного волокна к наружным участкам заготовки из углеродного волокна, и
- линейное снижение значения мощности до нуля и окончание процесса уплотнения.
13. Способ по п.1, дополнительно включающий тепловую обработку, производимую после осуществления уплотнения, причем тепловая обработка включает:
- полное извлечение жидкого исходного вещества из реакционной камеры;
- продувку реакционной камеры инертным газом;
- индукционное нагревание уплотненной заготовки из углеродного волокна в атмосфере инертного газа при температуре, составляющей приблизительно от 1600 до 2400°С, при одновременном поддержании давления, составляющего приблизительно от 760 до 780 мм рт.ст. (приблизительно от 1,01·105 до 1,04·105 Па): и
- линейное снижение индукционного нагревания до нуля для завершения тепловой обработки.
RU2009107006/03A 2006-08-07 2007-08-07 Способ уплотнения пористых изделий RU2431628C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82159606P 2006-08-07 2006-08-07
US60/821,596 2006-08-07

Publications (2)

Publication Number Publication Date
RU2009107006A RU2009107006A (ru) 2010-09-20
RU2431628C2 true RU2431628C2 (ru) 2011-10-20

Family

ID=38654780

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2009107003/07A RU2410851C2 (ru) 2006-08-07 2007-08-07 Установка для уплотнения пористого материала
RU2009107006/03A RU2431628C2 (ru) 2006-08-07 2007-08-07 Способ уплотнения пористых изделий
RU2009107004/03A RU2431629C2 (ru) 2006-08-07 2007-08-07 Регулирование мощности для уплотнения одного или более пористых изделий

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2009107003/07A RU2410851C2 (ru) 2006-08-07 2007-08-07 Установка для уплотнения пористого материала

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2009107004/03A RU2431629C2 (ru) 2006-08-07 2007-08-07 Регулирование мощности для уплотнения одного или более пористых изделий

Country Status (11)

Country Link
US (3) US20100297360A1 (ru)
EP (3) EP2049453A2 (ru)
JP (3) JP5357024B2 (ru)
KR (3) KR101478846B1 (ru)
CN (5) CN102752889B (ru)
BR (3) BRPI0716038A2 (ru)
CA (3) CA2658615A1 (ru)
MX (3) MX2009001417A (ru)
RU (3) RU2410851C2 (ru)
TW (3) TW200812934A (ru)
WO (3) WO2008017676A2 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163339B2 (en) 2007-09-17 2012-04-24 Messier-Bugatti-Dowty Edge densification for film boiling process
US8281907B2 (en) * 2007-12-03 2012-10-09 Honeywell International Inc. Brake assembly having multi-piece core and replaceable friction surfaces
CA2699620A1 (en) 2009-04-25 2010-10-25 Messier-Bugatti Apparatus and method of densifying porous articles
CN101734940B (zh) * 2009-11-20 2012-07-25 中南大学 基于压差法快速cvi涂层的炭纸性能改善方法和装置
CN102560436B (zh) * 2010-12-13 2014-07-16 北京北方微电子基地设备工艺研究中心有限责任公司 一种气相沉积设备
JP5836050B2 (ja) * 2011-10-14 2015-12-24 株式会社Ihiエアロスペース 多孔質構造体の高密度化方法及び高密度化装置
US8668810B1 (en) * 2013-01-17 2014-03-11 Amass Energy LLC Device and methods for processing carbon based materials
US10011535B2 (en) * 2014-09-02 2018-07-03 Honeywell International Inc. Sacrificial fibers to create channels in a composite material
WO2016205569A1 (en) * 2015-06-16 2016-12-22 De Luca Oven Technologies, Llc A high-wattage power appliance system
RU2714070C1 (ru) * 2016-07-06 2020-02-11 АйЭйчАй КОРПОРЕЙШН Способ получения кремниевого композиционного материала и устройство для получения кремниевого композиционного материала
CA2974387A1 (en) * 2016-08-30 2018-02-28 Rolls-Royce Corporation Swirled flow chemical vapor deposition
US10935524B2 (en) * 2017-07-27 2021-03-02 CEM Corporation, Lucidity Division Gas chromatograph device with inductively heated column and method of use thereof
FR3072674B1 (fr) * 2017-10-19 2019-11-08 Safran Landing Systems Procede de fabrication d'une piece de friction en materiau composite
US10683572B2 (en) 2018-10-15 2020-06-16 Goodrich Corporation Silane recirculation for rapid carbon/silicon carbide or silicon carbide/silicon carbide ceramic matrix composites
CN112824871B (zh) * 2019-11-20 2022-11-15 中国南方电网有限责任公司超高压输电公司贵阳局 基于瞬变电磁视电阻率成像技术的接地网缺陷诊断方法
CN112774511B (zh) * 2021-01-12 2023-07-18 中铁十四局集团大盾构工程有限公司 一种土体物料温控密闭搅拌装置及方法
FR3138140B1 (fr) * 2022-07-22 2024-07-19 Safran Ceram procédé de préparation d’un matériau composite à matrice carbone

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735075A (en) * 1956-02-14 thomason
US2459971A (en) * 1945-08-30 1949-01-25 Induction Heating Corp Inductor for high-frequency induction heating apparatus
US3790735A (en) * 1971-10-06 1974-02-05 Environment One Corp Inductive heated bake oven
US3755644A (en) * 1972-06-27 1973-08-28 Growth Int Inc High frequency induction heating apparatus
US4339303A (en) * 1981-01-12 1982-07-13 Kollmorgen Technologies Corporation Radiation stress relieving of sulfone polymer articles
FR2516914B1 (fr) 1981-11-26 1986-03-14 Commissariat Energie Atomique Procede de densification d'une structure poreuse
US4613816A (en) * 1984-04-03 1986-09-23 Geo-Sensors Corporation Cryogenic magnetic probe having new substrate
JPS60243996A (ja) * 1984-05-18 1985-12-03 三洋電機株式会社 誘導加熱コイルの製造方法
KR900008073B1 (ko) * 1985-12-07 1990-10-31 스미도모덴기고오교오 가부시기가이샤 코일 및 그 제조방법
CA1266094A (en) * 1986-01-17 1990-02-20 Patrick Earl Burke Induction heating and melting systems having improved induction coils
JPH0621197Y2 (ja) * 1987-07-06 1994-06-01 高周波熱錬株式会社 周回溝付きロ−ル表面加熱用コイル
GB8902090D0 (en) * 1989-01-31 1989-03-22 Metal Box Plc Electro-magnetic induction heating apparatus
US5165049A (en) * 1990-04-02 1992-11-17 Inductotherm Corp. Phase difference control circuit for induction furnace power supply
JP3182212B2 (ja) 1991-05-21 2001-07-03 アブコウ・コーポレイション 高密度化多孔質ビレットを製造する方法及び多孔質予備成形体の高密度化方法
US5389152A (en) * 1992-10-09 1995-02-14 Avco Corporation Apparatus for densification of porous billets
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
AU687541B2 (en) * 1994-06-21 1998-02-26 Kitashiba Electric Co., Ltd. Induction heater apparatus
US5468357A (en) * 1994-12-27 1995-11-21 Hughes Missile Systems Company Densification of porous articles by plasma enhanced chemical vapor infiltration
DE69631800T2 (de) * 1996-06-28 2005-03-17 Messier-Bugatti Verfahren zur instandhaltung von bremsen
EP0835853A1 (fr) * 1996-10-14 1998-04-15 Societe Europeenne De Propulsion Elément de friction en matériau composite carbone/carbone-carbure de silicium et procédé pour sa fabrication
FR2760741B1 (fr) * 1997-03-13 1999-05-28 Europ Propulsion Procede de densification d'une structure poreuse faisant intervenir un precurseur original et dispositif associe
US5981002A (en) * 1998-02-09 1999-11-09 Textron Systems Corporation Method for densifying the edges and surfaces of a preform using a liquid precursor
JP2000014831A (ja) * 1998-06-26 2000-01-18 Bridgestone Sports Co Ltd ゴルフボールのバリ研磨方法
US6121592A (en) 1998-11-05 2000-09-19 Inductotherm Corp. Induction heating device and process for the controlled heating of a non-electrically conductive material
CN1134795C (zh) * 1998-11-13 2004-01-14 佳邦科技股份有限公司 高频应用薄膜线圈元件及其制造方法
US6726962B1 (en) * 1998-12-18 2004-04-27 Messier-Bugatti Inc. Method for forming composite articles
JP3300759B2 (ja) * 1999-02-05 2002-07-08 三菱重工業株式会社 圧延ロールヒートクラウン形状制御用誘導加熱装置
WO2001052602A1 (en) 2000-01-13 2001-07-19 Electric Power Research Institute, Inc. Apparatus and method for inductive heating
CN1174445C (zh) * 2000-07-18 2004-11-03 佳叶科技有限公司 蚀刻式单层及积层片状电感的制造方法
FI109958B (fi) * 2000-12-27 2002-10-31 Metso Paper Automation Oy Jäähdytetty induktiokuumennuskäämi
JP2004014892A (ja) * 2002-06-10 2004-01-15 Daiichi Kiden:Kk 高温加熱装置
EP1452624B1 (en) * 2002-10-24 2008-06-11 Goodrich Corporation Process and apparatus for batch and continuous densification by chemical vapor infiltration (CVI)
JP3827314B2 (ja) * 2003-03-17 2006-09-27 Tdk株式会社 インダクティブデバイスの製造方法
CN100522358C (zh) * 2004-10-29 2009-08-05 中国石油化工股份有限公司 甲苯选择性歧化制对二甲苯的催化剂

Also Published As

Publication number Publication date
EP2051952A2 (en) 2009-04-29
CA2658615A1 (en) 2008-02-14
RU2009107004A (ru) 2010-09-20
RU2009107003A (ru) 2010-09-20
KR20090040371A (ko) 2009-04-23
RU2009107006A (ru) 2010-09-20
US20100297360A1 (en) 2010-11-25
US20100230402A1 (en) 2010-09-16
KR20090039822A (ko) 2009-04-22
TW200826746A (en) 2008-06-16
EP2049453A2 (en) 2009-04-22
CA2660203A1 (en) 2008-02-14
CN102752889B (zh) 2015-06-17
EP2051952B1 (en) 2012-12-26
CN101522590A (zh) 2009-09-02
US8568838B2 (en) 2013-10-29
WO2008017676A2 (en) 2008-02-14
KR101492648B1 (ko) 2015-02-12
CN102752889A (zh) 2012-10-24
CN101528637A (zh) 2009-09-09
JP5215306B2 (ja) 2013-06-19
JP2010500707A (ja) 2010-01-07
CN102815970A (zh) 2012-12-12
JP2010500268A (ja) 2010-01-07
RU2431629C2 (ru) 2011-10-20
TW200826745A (en) 2008-06-16
WO2008017678A2 (en) 2008-02-14
KR101478846B1 (ko) 2015-01-02
JP5357024B2 (ja) 2013-12-04
BRPI0716037A2 (pt) 2013-09-24
CN101502168A (zh) 2009-08-05
WO2008017678A3 (en) 2008-05-22
WO2008017677A2 (en) 2008-02-14
MX2009001417A (es) 2009-04-08
US20100156005A1 (en) 2010-06-24
RU2410851C2 (ru) 2011-01-27
JP2010500269A (ja) 2010-01-07
WO2008017676A3 (en) 2008-05-15
KR20090040458A (ko) 2009-04-24
MX2009001415A (es) 2009-04-08
TW200812934A (en) 2008-03-16
CA2660200A1 (en) 2008-02-14
BRPI0716038A2 (pt) 2016-02-16
WO2008017677A3 (en) 2008-04-10
MX2009001416A (es) 2009-05-11
EP2050311B1 (en) 2019-02-27
BRPI0716039A2 (pt) 2015-06-23
CN101528637B (zh) 2012-11-28
EP2050311A2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
RU2431628C2 (ru) Способ уплотнения пористых изделий
Li et al. Coke formation on Pt–Sn/Al 2 O 3 catalyst in propane dehydrogenation: coke characterization and kinetic study
CN1029952C (zh) 用于玻璃纤维初坯热处理的方法
CA2595498C (en) A chemical vapor infiltration method for densifying porous substrates with pyrolytic carbon
EP3874074B1 (en) Method and assembly for infiltration and rapid phase deposition of porous components
JP2022531053A (ja) シーリングされた炉
US11674219B1 (en) Method for densifying composite matertals
US6083560A (en) Process for controlled deposition profile forced flow chemical vapor infiltration
RU2158251C2 (ru) Способ химической инфильтрации из паровой фазы материала, состоящего из углерода и кремния и/или бора
CN1198777C (zh) 使用液态前体密化预型件的方法
CA2287892A1 (en) Corrosion resistant composites useful in chemical reactors
CN100509706C (zh) 部分密化碳预型件
JPH01167210A (ja) 炭素質フェルト加工品並びにその製造方法
CN1099012A (zh) 用于玻璃纤维初坯热处理的方法
CN117015461A (zh) 用于对浸渍的坯料进行干燥的方法和相关的制造方法、系统和组件
IT201800009953A1 (it) Metodo ed un assieme di infiltrazione e la deposizione rapida da fase vapore di componenti porosi
RU2272011C1 (ru) Способ получения композиционного материала
CN118591655A (zh) 用于制造复合摩擦部件的热化学处理设备和方法
Istomina et al. Fabrication of Carbon–Silicon Carbide Core–Shell Composite Fibers
JP2013049581A (ja) 耐火物の製造方法
MA53579B2 (fr) Procédé d’élaboration de charbon actif poreux renforcé d’une texture fibreuse à partir de grignons d’olive

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20130610

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130808