JP2010182996A - 電子部品の製造方法 - Google Patents

電子部品の製造方法 Download PDF

Info

Publication number
JP2010182996A
JP2010182996A JP2009027220A JP2009027220A JP2010182996A JP 2010182996 A JP2010182996 A JP 2010182996A JP 2009027220 A JP2009027220 A JP 2009027220A JP 2009027220 A JP2009027220 A JP 2009027220A JP 2010182996 A JP2010182996 A JP 2010182996A
Authority
JP
Japan
Prior art keywords
electronic component
resin
inorganic filler
thermosetting resin
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009027220A
Other languages
English (en)
Inventor
Kuniyuki Nitta
邦之 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009027220A priority Critical patent/JP2010182996A/ja
Publication of JP2010182996A publication Critical patent/JP2010182996A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

【課題】電子部品素子が緻密な外装樹脂により被覆された、信頼性の高い電子部品を効率よく製造することが可能な電子部品の製造方法を提供する。
【解決手段】(a)熱硬化性樹脂と、(b)球状無機フィラーと不定形無機フィラーとを、球状無機フィラー55〜65重量部、不定形無機フィラー35〜45重量部の割合で配合した無機フィラーと、(c)溶剤とを含む熱硬化性樹脂ペーストに電子部品素子10を浸漬して、電子部品素子10の表面に熱硬化性樹脂ペーストを塗布し、これを乾燥させた後、加熱して硬化させることにより外装樹脂本体層11を形成するとともに、この外装樹脂本体層11の表面に、トップコート用樹脂ペースト塗布して、外装樹脂本体層11を被覆するトップコート層12を形成する。
熱硬化性樹脂ペーストとして、無機フィラーの含有量が75〜80重量%の範囲にあるものを用いる。
【選択図】図1

Description

本発明は、電子部品の製造方法に関し、詳しくは、電子部品を構成する電子部品素子が外装樹脂により被覆された構造を有する電子部品の製造方法に関する。
例えば、電子部品素子にリード端子を電気的に接続したタイプの電子部品において、電子部品素子を外的な衝撃や、環境湿度、不純物、ほこりなどの要因から保護して、信頼性を向上させるため、電子部品素子を外装樹脂で被覆することが一般的に行われている。
この外装樹脂により電子部品素子を被覆する方法としては、液状の外装用樹脂に電子部品素子を浸漬して、外装用樹脂を電子部品素子の表面に塗布し、硬化させる方法が一般的に用いられている。
具体的には、加熱して溶融させた熱可塑性樹脂に電子部品素子を浸漬し、樹脂を電子部品素子の表面に付着させて被覆層を形成した後、冷却、固化させる方法や、熱硬化性樹脂を溶剤に溶解させた樹脂ペースト中に電子部品素子を浸漬して、樹脂ペーストを電子部品素子の表面に付着させて被覆層を形成し、これを乾燥させた後、加熱して熱硬化させる方法などが一般的に用いられている。
ところで、溶融した熱可塑性樹脂への浸漬により被覆層を形成する方法の場合、樹脂をその溶融温度以上の温度に加熱する必要があるため、工程設備が大掛かりになり、ランニングコストも増大するという問題がある。
したがって、このような見地からは、熱硬化性樹脂を溶剤に溶解させた樹脂ペースト中に電子部品素子を浸漬する方法を採用することが望ましい。しかしながら、熱硬化性樹脂の樹脂ペーストを用いて電子部品素子を被覆する方法の場合にも、
(a)樹脂ペーストを電子部品素子の表面に付着させて形成した被覆層を加熱して熱硬化させる際に、熱硬化性樹脂の熱膨張・収縮による応力が電子部品素子にかかるため、電子部品素子の強度が低い場合、特性の劣化が生じる、
(b)樹脂ペーストの物性により、塗布形状が影響を受ける、
(c)樹脂が溶剤に溶解した状態で電子部品素子に塗布されることになるため、形成された外装樹脂の緻密性が不十分になりやすく、外的要因に敏感な電子部品素子には適用しにくい、
というような問題点がある。
そこで、このような問題に対応するため、外装樹脂中に無機フィラーを含有させることが行われている。そして、このような無機フィラーとして、溶融シリカのような球状のものと、破砕シリカのような不定形のものを組み合わせて用いるようにした半導体装置封止用エポキシ樹脂組成物が提案されている(特許文献1参照)。
すなわち、特許文献1には、エポキシ樹脂と、フェノール樹脂硬化剤と、硬化促進剤と、平均粒径3〜100μmの破砕状シリカ粉と、平均粒子径1〜50μmの球状シリカ粉を配合した半導体装置封止用エポキシ樹脂組成物が提案されている。
しかしながら、この半導体装置封止用エポキシ樹脂組成物のように、無機フィラーを含有させた樹脂ペーストを用いる方法の場合にも、
(1)用いられる球状の無機フィラーの割合が高すぎると、無機フィラーが密になり、浸漬塗布した後の樹脂の乾燥が不十分になりやすく、熱硬化時に残存溶剤が沸騰して気泡が発生し、外観不良などの不具合が発生する、
(2)不定形の無機フィラーの割合を増大させて乾燥性を向上させようとすると、外装樹脂の緻密性が低下して封止信頼性が低下する
というような問題点がある。
特開昭62−74924号公報
本発明は、上記課題を解決するものであり、電子部品素子が緻密な外装樹脂により被覆された、信頼性の高い電子部品を効率よく製造することを目的とする。
上記課題を解決するために、本発明の電子部品の製造方法は、
電子部品素子が外装樹脂により被覆された構造を有する電子部品の製造方法において、
(a)熱硬化性樹脂と、
(b)球状無機フィラーと不定形無機フィラーとを、球状無機フィラー55〜65重量部、不定形無機フィラー35〜45重量部の割合で配合した無機フィラーと、
(c)溶剤と
を含む熱硬化性樹脂ペーストに電子部品素子を浸漬して、電子部品素子の表面に熱硬化性樹脂ペーストを塗布する第1の工程と、
前記電子部品素子に塗布された前記熱硬化性樹脂ペーストを乾燥させる第2の工程と、 乾燥させた前記熱硬化性樹脂ペーストを加熱して硬化させることにより外装樹脂本体層を形成する第3の工程と、
硬化した前記外装樹脂本体層の表面に、溶剤に熱硬化性樹脂を溶解させたトップコート用樹脂ペーストを塗布して、前記外装樹脂本体層を被覆するトップコート層を形成する第4の工程と
を具備することを特徴としている。
また、前記熱硬化性樹脂ペーストとして、無機フィラーの含有量が75〜80重量%の範囲にあるものを用いる。
本発明の電子部品の製造方法は、(a)熱硬化性樹脂と、(b)球状無機フィラーと不定形無機フィラーとを、球状無機フィラー55〜65重量部、不定形無機フィラー35〜45重量部の割合で配合した無機フィラーと、(c)溶剤と、を含む熱硬化性樹脂ペーストに電子部品素子を浸漬して、電子部品素子の表面に熱硬化性樹脂ペーストを塗布し、これを乾燥させた後、加熱して硬化させることにより外装樹脂本体層を形成するとともに、この外装樹脂本体層の表面に、トップコート用樹脂ペーストを塗布して、外装樹脂本体層を被覆するトップコート層を形成するようにしているので、電子部品素子が緻密な外装樹脂により被覆された、封止信頼性の高い電子部品を効率よく製造することができる。
すなわち、上述のような割合で、球状無機フィラーと不定形無機フィラーを本発明に規定するような割合で含有する樹脂ペーストを用いて外装樹脂本体層を形成することにより、外装樹脂本体層に適度な緻密構造を持たせて、乾燥性を制御することが可能になり、良好な塗布形状を得ることが可能になる。
球状無機フィラーは不定形無機フィラーに比較して密充填しやすく、その比率をあげることにより内部を緻密化することが可能になる反面、無機フィラーが密に充填されすぎると溶剤の蒸発速度(乾燥速度)が低下するが、球状無機フィラーと不定形無機フィラーの割合を調整することにより溶剤の蒸発速度(乾燥速度)を制御して、外装樹脂本体の緻密性を確保しつつ、乾燥速度を実用上問題のない速度に調整することが可能になる。
そして、本発明においては、外装樹脂本体層上にトップコート層を形成するようにしており、上述の外装樹脂本体層の緻密構造により、トップコート層用の樹脂の外装樹脂本体層の内部への浸透を抑制することが可能になり、加熱・硬化工程における気泡(ブク)の発生などによる外観不良が生じることを防止することができる。
また、外装樹脂本体層が無機フィラーを含有していることから、トップコート層用の樹脂の硬化工程で生じる応力が電子部品素子に加わることを抑制、緩和することが可能になり、特性の低下を防止することができる。
また、熱硬化性樹脂ペーストとして、無機フィラーの含有量が75〜80重量%の範囲にあるものを用いることにより、さらに確実に外装樹脂本体層に適度な緻密構造を持たせることが可能になり、本発明をより実効あらしめることができる。
(a)は、本発明の一実施例にかかる電子部品の製造方法により製造された電子部品(高圧抵抗部品)を示す図であって、要部構成を示すためにトップコート層と外装樹脂本体層の一部を取り除いて示す図、(b)は(a)に示した高圧抵抗部品の側面断面図である。
以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。
この実施例1では、図1(a),(b)を参照しつつ、電子部品(高圧抵抗部品)の構成について説明を行うとともに、その製造方法について説明する。
この高圧抵抗部品Aは、アルミナからなる基板1上に配設された抵抗パターン2と、抵抗パターン2の両端と接続するように配設された一対の電極3と(図1(a)では一方側の電極3のみを示している)と、抵抗パターン2を被覆する被覆層4と、電極3と電気的に接続するように、はんだ6により電極3に接続、固定された一対の端子5とを備えている。
そして、上述のように、基板1、抵抗パターン2、電極3、被覆層4、端子5を備えてなる抵抗素子(電子部品素子)10は、外装樹脂本体層11と、外装樹脂本体層11を覆うように配設されたトップコート層12とを備えた外装樹脂20により被覆されており、端子5の下端は、外部との電気的、機械的接続を行うことができるように、露出した状態とされている。
なお、この高圧抵抗部品Aにおいて、基板1には、アルミナ基板が用いられている。また、基板1に形成された抵抗パターン2には、酸化ルテニウム系の抵抗体が用いられている。
また、電極3にはAg系導体が用いられており、電極3に接続された端子5としては、Fe系材料からなる端子本体にNiめっきを施し、さらにその上にSnめっきを施したものが用いられている。なお、はんだ6としてはSn/Ag系のはんだが用いられている
また、上記抵抗パターン2を被覆する被覆層4としては、ガラス系の材料が用いられている。
そして、この高圧抵抗部品Aにおいて、上記の外装樹脂20を構成する外装樹脂本体層11は、熱硬化性樹脂であるエポキシ系樹脂に、無機フィラーとして、球状無機フィラー(球状シリカ)と不定形無機フィラー(不定形シリカ)とを所定の割合(本発明においては、球状シリカ55〜65重量部と不定形シリカ35〜45重量部の割合)で配合した無機フィラーを添加した熱硬化性樹脂ペーストを塗布した後、加熱して硬化させることにより形成されている。
また、外装樹脂20を構成するトップコート層12は、硬化後の外装樹脂本体層11上に、熱硬化性樹脂であるエポキシ樹脂を溶剤に溶解したトップコート層用の樹脂ペーストを塗布して加熱硬化させた無色、透明の緻密な樹脂層である。
上述のように構成された電子部品(高圧抵抗部品A)は、基板1、抵抗パターン2、電極3、被覆層4、端子5を備えてなる抵抗素子(電子部品素子)10が、適度な緻密性を有する外装樹脂本体層11と、その上に形成されたトップコート層12とを備えた外装樹脂20により被覆されており、外装樹脂の塗布形状が良好で、気泡発生などの外観不良がなく、高い封止信頼性を備えている。
以下、この電子部品(高圧抵抗部品A)の製造方法について説明する。
(1)ビスフェノールA型エポキシ樹脂8重量%、シラン系カップリング剤1重量%、顔料6重量%、アセトン10重量%、無機フィラー75重量%を秤取し、プラネタリミキサを用いて120min混練することにより樹脂組成物(熱硬化性樹脂ペースト)を得た。
無機フィラーとしては、直径が18〜25μmの球状シリカ(球状無機フィラー)と、大きさが、5.6〜8.0μmの不定形シリカ(不定形無機フィラー)とを、表1に示すように、所定の比率で配合した無機フィラーを用意し、これを樹脂組成物(熱硬化性樹脂ペースト)中の含有率が70〜82重量%となるような割合で配合した。
(2)それから、各樹脂組成物(熱硬化性樹脂ペースト)に対して、樹脂組成物100重量部に対して、フェノール系硬化剤を8.3重量部の比率で混合し、得られた混合物に6mm×24mmの抵抗素子10(図1(a),(b)参照)を2回浸漬した。
(3)次に、抵抗素子10に塗布された樹脂組成物(熱硬化性樹脂ペースト)を乾燥させる。
(4)それから、樹脂組成物を塗布して乾燥させた抵抗素子を、バッチオーブンにて50℃/22分→80℃/22分一155℃/22分一170℃/22分の硬化条件にて、段階的に昇温して硬化させることにより、外装樹脂本体層11を形成する。
(5)次に、硬化した外装樹脂本体層11の表面に、溶剤に熱硬化性樹脂を溶解させたトップコート用樹脂ペースト(エポキシ樹脂ペースト)を塗布し、加熱して硬化させることにより、外装樹脂本体層11を被覆するトップコート層12を形成する。
これにより、図1(a),(b)に示すような構造を有する高圧抵抗部品A(表1の試料番号1〜13の試料)が得られる。ただし、試料番号13の試料はトップコート層を備えていない高圧抵抗部品である。
Figure 2010182996
表1の試料番号6,7の試料は、無機フィラー中の球状無機フィラーの割合が本願発明の範囲を下回る比較例の試料である。
また、試料番号11,12の試料は、無機フィラー中の球状無機フィラーの割合が本願発明の範囲を越える比較例の試料である。
また、試料番号13の試料は、上述のように、トップコート層を備えていない比較例の試料である。
(6)その後、得られた各高圧抵抗部品A(表1の試料1〜13)について、外装樹脂塗布性、外装樹脂緻密性、外装樹脂強度、発生応力、特性安定性を調べた。その結果を、表1に併せて示す。
なお、表1の外装樹脂塗布性における「液ダレ指数」は、各試料を断面研磨し、抵抗素子の断面の上端側から1mmおよび下端側から1mmの位置での抵抗素子の幅を測定し、上端側の幅に対する下端側の幅の比率を、塗布形状の評価の指標である「液ダレ指数」とした。液ダレ指数が1に近いほど、均一塗布できており、良好な塗布形状であることを示す。
また、表1の外装樹脂緻密性における「気泡発生率」は、トップコート層を形成する前の各試料を、アセトンに1分間浸漬し、溶剤置換による方法で内部に気泡が発生しているか否かを調べ、気泡の発生した試料数の全試料数(20個)に対する割合を求め、気泡発生率とした。そして、この気泡発生率の低いものを、トップコート用樹脂の浸入を阻止する能力である「対トップコート性」が良好な試料として評価した。なお、この対トップコート性は外装樹脂本体層の緻密性を評価する指標となるものである。
また、表1における外装樹脂強度は(製品頭部強度)は、端子が露出した側とは逆側の抵抗素子上端部側(頭部)の外装樹脂の機械的強度を調べたものであり、抵抗素子を昇降機の台に水平に保持し、速度0.32mm/sで上昇させながら、昇降台上部に固定した円錐形状を有する治具に素子上端部を接触させ、外装樹脂が欠けるまでの力を調べることにより評価したものである。
また、表1における発生応力(ヒートショック試験の不良発生率)は、外装樹脂の硬化時の応力が抵抗素子(電子部品素子)に加わる大きさを評価する指標となるものであり、試験槽に抵抗素子をセットし、−40℃/30min⇔105℃/30minの条件でヒートショックを20サイクルと100サイクル負荷して、試験前後の抵抗変化率が±2%以上になった場合を、特性劣化「有」とし、それ以外を特性劣化「無」としている。
また、表1の特性安定性(特性劣化の有無)は、外部からの湿気や油分などの侵入に対する特性の安定性を評価する指標となるものであり、試験槽に抵抗素子をセットし、温度60℃、湿度95%の条件で、1000時間経過後の抵抗変化率を測定することにより評価したものである。
なお、表1では、試験前後の抵抗変化率が±3%以上になった場合を特性劣化「有」とし、それ以外を「無」としている。
表1に示すように、本発明の要件を備えた試料番号1〜5、8〜10の各試料の場合、球状シリカと不定形シリカを表1に示すような割合で配合した熱硬化性樹脂ペーストを用いて外装樹脂本体層を形成するようにしているので、良好な塗布形状が得られることが確認された。これは、外装樹脂本体層に適度な緻密構造を持たせて、乾燥性を制御することができたことによるものである。
すなわち、球状シリカは不定形シリカに比較して、密充填しやすく、その比率を高くすることにより内部を緻密化することができる。一方、ディッピング工法で塗布する樹脂には塗装形状を保つために乾燥性の制御が必要であるが、球状シリカの割合が多くなりすぎると、無機フィラーが密に充填されすぎて乾燥性が低下する。そして、その場合、熱硬化性樹脂ペーストを塗布した後の乾燥過程において、自重により液ダレが生じ、形状不良の原因となる。また溶剤乾燥が不十分のまま、加熱硬化の工程が実施されると、溶剤が突沸して、外装樹脂本体層の表面に膨れを生じる。また、乾燥性が高すぎると、塗布後のレベリング性が悪化し、気泡が破れる(破泡する)ときにピンホールが残りやすくなる。
これに対し、球状シリカと不定形シリカの配合割合を本発明の範囲とすることにより、外装樹脂本体層の内部に適度な緻密構造をもたせて、乾燥性を制御することが可能になり、良好な塗布形状を得ることができるようになる。また、同時に、塗布後のレベリング性を良好に保って、ピンホールの発生などを防止することが可能になる。
さらに、外装樹脂本体層が上述のように、適度な緻密構造を備えているので、外装樹脂本体層上にトップコート層を形成する工程で、トップコート用の樹脂が外装樹脂本体層の内部に浸透することを抑制することが可能になり、気泡の発生などの表面外観の不良を抑制、防止することができる。
なお、本発明の基本的要件は備えているが、熱可塑性樹脂ペースト中の無機フィラーの含有率が80重量%を越える試料番号1の試料(無機フィラーの含有率82%)の場合、外装樹脂強度がやや低くなる傾向が認められた。これは、外装樹脂中の樹脂成分の割合が低いため、強度が低下したものと考えられる。
また、75重量%未満の試料番号5の試料(無機フィラーの含有率70%)の場合、発生応力が大きくなり、ヒートショック試験で不良が発生する傾向が認められた(20サイクルでは0%であるが、100サイクルでは25%に発生)。これは、熱膨張率の小さい無機フィラーの含有率が低く、逆に、熱膨張率の大きい樹脂の含有率が大きくなることで、ヒートショックを与えた場合に、抵抗体への応力負荷が大きくなるためである。なお、このような現象は、無機フィラーの含有率を調整する(好ましくは、樹脂ペースト中の無機フィラーの含有率を75〜80重量%とする)ことにより回避することができる。
一方、本発明の要件を備えていない試料番号6,7,11〜13の場合、表1に示すように、好ましい結果が得られないことが確認された。すなわち、無機フィラーが球状シリカを含まない試料番号6、および無機フィラー中の球状シリカの割合が50重量%と低い試料番号7の試料の場合、気泡発生率が高く、対トップコート性が悪いこと、良好な塗布形状が得られないことが確認された。
また、無機フィラー中の球状シリカの割合が70重量%と高い試料番号11の試料の場合、および球状シリカの割合が100重量%の試料番号12の場合、液ダレ指数が大きく、良好な塗布形状が得られないことが確認された。
また、トップコート層を備えていない試料番号13の試料の場合、特性の劣化が認められた。これは、トップコート層を備えていないため、外装樹脂の封止性能が不十分になったことによるものである。
上記実施例により、本発明の電子部品の製造方法を用いることにより、電子部品素子が緻密な外装樹脂により被覆され、高い信頼性を備えた電子部品を効率よく製造できることが確認された。
なお、上記実施例では高圧抵抗部品を製造する場合を例にとって説明したが、本発明は、高圧抵抗部品に限らず、電子部品を構成する電子部品素子が外装樹脂により被覆された構造を有する電子部品、例えば、抵抗ネットワーク、コンデンサネットワーク、タンタルコンデンサ、フィルムコンデンサ、セラミックコンデンサ、コイル、センサ、ICなどを製造する場合に、広く適用することが可能である。
また、上記実施例では、外装樹脂を構成する熱硬化性樹脂としてビスフェノールA型エポキシ樹脂を用いているが、本発明において、熱硬化性樹脂の種類に特に制約はなく、例えば、フェノール樹脂,ユリア樹脂,メラミン樹脂,不飽和ポリエステル樹脂,ポリウレタン,熱硬化性のポリイミド、アルキド樹脂などの、種々の熱硬化性樹脂を用いることが可能である。
また、上記実施例では、無機フィラーとして球状シリカおよび不定形シリカを用いた場合について説明したが、無機フィラーはこれに限られるものではなく、外装樹脂の特性に悪影響を与えるおそれのない種々のセラミック材料(例えば、 アルミナ、ジルコニア、チタニア、窒化アルミニウム、炭酸カルシウム、酸化亜鉛、タルク)などを用いることも可能である。
本発明は、さらにその他の点においても上記実施例に限定されるものではなく、電子部品素子の具体的な形状や構成などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
1 基板
2 抵抗パターン
3 電極
4 被覆層
5 端子
6 はんだ
10 抵抗素子(電子部品素子)
11 外装樹脂本体層
12 トップコート層
20 外装樹脂
A 高圧抵抗部品(電子部品)

Claims (2)

  1. 電子部品素子が外装樹脂により被覆された構造を有する電子部品の製造方法において、
    (a)熱硬化性樹脂と、
    (b)球状無機フィラーと不定形無機フィラーとを、球状無機フィラー55〜65重量部、不定形無機フィラー35〜45重量部の割合で配合した無機フィラーと、
    (c)溶剤と
    を含む熱硬化性樹脂ペーストに電子部品素子を浸漬して、電子部品素子の表面に熱硬化性樹脂ペーストを塗布する第1の工程と、
    前記電子部品素子に塗布された前記熱硬化性樹脂ペーストを乾燥させる第2の工程と、 乾燥させた前記熱硬化性樹脂ペーストを加熱して硬化させることにより外装樹脂本体層を形成する第3の工程と、
    硬化した前記外装樹脂本体層の表面に、溶剤に熱硬化性樹脂を溶解させたトップコート用樹脂ペーストを塗布して、前記外装樹脂本体層を被覆するトップコート層を形成する第4の工程と
    を具備することを特徴とする電子部品の製造方法。
  2. 前記熱硬化性樹脂ペーストとして、無機フィラーの含有量が75〜80重量%の範囲にあるものを用いることを特徴とする電子部品の製造方法。
JP2009027220A 2009-02-09 2009-02-09 電子部品の製造方法 Withdrawn JP2010182996A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009027220A JP2010182996A (ja) 2009-02-09 2009-02-09 電子部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027220A JP2010182996A (ja) 2009-02-09 2009-02-09 電子部品の製造方法

Publications (1)

Publication Number Publication Date
JP2010182996A true JP2010182996A (ja) 2010-08-19

Family

ID=42764297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027220A Withdrawn JP2010182996A (ja) 2009-02-09 2009-02-09 電子部品の製造方法

Country Status (1)

Country Link
JP (1) JP2010182996A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175095A1 (ja) * 2013-04-26 2014-10-30 日東電工株式会社 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法
JP2015141928A (ja) * 2014-01-27 2015-08-03 三菱電機株式会社 大電力抵抗器および車載機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175095A1 (ja) * 2013-04-26 2014-10-30 日東電工株式会社 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法
JP2014216526A (ja) * 2013-04-26 2014-11-17 日東電工株式会社 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法
JP2015141928A (ja) * 2014-01-27 2015-08-03 三菱電機株式会社 大電力抵抗器および車載機器

Similar Documents

Publication Publication Date Title
JP5246207B2 (ja) チップ型電子部品
CN105869704B (zh) 导电性浆料
JP2005325357A (ja) 末端コーティング
JP5488059B2 (ja) 導電性ペースト
TWI588237B (zh) 導電性接著劑
JP2011223030A (ja) 電気部品及びその製造方法
KR101814084B1 (ko) 세라믹 칩부품의 연성외부전극 형성용 도전성 페이스트 조성물
JP2005240020A (ja) 先端材料用のポリマーを有する組成物
JP2010182996A (ja) 電子部品の製造方法
JP6925147B2 (ja) 熱硬化型シリコーンレジンペースト組成物およびその使用
KR102181912B1 (ko) 전자 부품 및 그의 제조 방법
JP6365603B2 (ja) サーミスタ素子及びその製造方法
EP3742459A1 (en) Thermistor element and manufacturing method for same
US6943659B2 (en) Coated varistor
JP4365351B2 (ja) バンプ
CN106688054A (zh) 具有多层涂层的变阻器以及制造方法
WO2024057852A1 (ja) 電子部品
Hu et al. Preparation and effects of glass-coatings on BaTiO 3-based PTC thermistors
JP5364285B2 (ja) 電子部品および電子部品の外装膜形成方法
JPH03250505A (ja) 電気絶縁被覆塗料
CN110023446A (zh) 可缩合固化的导电有机硅粘合剂组合物
JP5282726B2 (ja) 封止用樹脂組成物、電子部品の製造方法、電子部品
WO2009152422A1 (en) Insulating paste for low temperature curing application
JP2012049189A (ja) 電子部品
JP5466983B2 (ja) 絶縁膜組成物

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501