WO2014175095A1 - 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法 - Google Patents

熱硬化性封止樹脂シート及び電子部品パッケージの製造方法 Download PDF

Info

Publication number
WO2014175095A1
WO2014175095A1 PCT/JP2014/060619 JP2014060619W WO2014175095A1 WO 2014175095 A1 WO2014175095 A1 WO 2014175095A1 JP 2014060619 W JP2014060619 W JP 2014060619W WO 2014175095 A1 WO2014175095 A1 WO 2014175095A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
sealing resin
thermosetting
heat treatment
package
Prior art date
Application number
PCT/JP2014/060619
Other languages
English (en)
French (fr)
Inventor
祐作 清水
豊田 英志
松村 健
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51791674&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014175095(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020157025361A priority Critical patent/KR20160002718A/ko
Publication of WO2014175095A1 publication Critical patent/WO2014175095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a thermosetting sealing resin sheet and a method for manufacturing an electronic component package.
  • PoP package-on-package
  • structure 3D mounting technology
  • the substrate when a high-temperature treatment such as solder reflow is performed in the manufacturing process of the PoP structure, the substrate may be warped due to the stress generated by the difference in linear expansion coefficient between the members constituting the PoP structure. As the entire package becomes thinner, such a warp tends to become more prominent in a situation where the mounting substrate constituting the package is also made thinner. When the mounting substrate is warped, stress is concentrated particularly on the bump connection portion, and connection failure may occur.
  • Patent Document 1 Technology to prevent warping of the mounting board by interposing a resin base material for stress relaxation between the upper and lower packages, particularly from the viewpoint of suppressing the difference in coefficient of linear expansion between the mounting board and the bump Has been proposed.
  • the substrate may be warped due to the effect of thermosetting shrinkage of the sealing resin.
  • the PoP structure causes not only the effect of thermosetting shrinkage of the sealing resin in each package, but also the difference in thermosetting shrinkage between the upper package and the lower package, The difference in stress between the two causes warpage of the substrate, peeling of the sealing resin, cracks, and the like. Such an event is likely to occur when the multi-layer stacking of packages is performed without curing the sealing resin of each package, and finally the thermosetting process is performed collectively.
  • the PoP structure is affected not only by the difference in linear expansion coefficient or thermosetting shrinkage in each package, but also by the difference in linear expansion coefficient or thermosetting shrinkage between the upper and lower packages. Therefore, it becomes difficult to maintain or improve the reliability of the entire PoP structure.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a thermosetting encapsulating resin sheet capable of producing an electronic package having excellent reliability and a method for producing an electronic component package using the same. There is to do.
  • thermosetting sealing resin sheet of the present invention is Containing an inorganic filler in a content of 70 wt% to 80 wt%, A thermosetting encapsulating resin sheet in which the amount of surface warpage in the following heat treatment 1 and heat treatment 2 is from ⁇ 0.6 mm to 0.1 mm, respectively.
  • Heat treatment 1 The thermosetting encapsulating resin sheet is placed on a 50 mm square 0.32 mm thick printed circuit board on which a 35 mm square and 0.2 mm thick silicon chip is mounted via a 25 ⁇ m thick die bond film. Bonding is performed so that the total thickness after bonding is 0.75 mm, heat treatment is performed at 150 ° C. for 1 hour to form a sealed body, and then the film is allowed to stand at 25 ° C. for 1 hour.
  • Heat treatment 2 The sealed body that has undergone the heat treatment 1 is put into a 240 ° C. atmosphere.
  • thermosetting encapsulating resin sheet (hereinafter also simply referred to as “encapsulating resin sheet”) has a high content of 70 wt% or more and 80 wt% or less of an inorganic filler having a lower linear expansion coefficient than the resin component. Since it contains in quantity, the linear expansion coefficient of the whole sealing resin sheet after a thermosetting process can be reduced. As a result, the linear expansion coefficient difference can be reduced even for a substrate having a low linear expansion coefficient such as a glass epoxy substrate, and the warpage of the substrate or the peeling or cracking of the sealing resin due to the linear expansion coefficient difference. Etc. (hereinafter, these defects caused by the difference in linear expansion coefficient are also referred to as “substrate warp or the like”).
  • the sealing resin sheet content of the resin component which affects the heat shrink in the case of a thermosetting process is reduced with the high content inorganic filler.
  • the amount of surface warpage after the predetermined heat treatments 1 and 2 are both suppressed to ⁇ 0.6 mm or more and 0.1 mm or less. The influence on the substrate can be sufficiently suppressed.
  • the reliability of the entire PonP structure with respect to the high-temperature treatment can be improved even when a high-temperature treatment such as a sealing treatment or subsequent solder reflow is performed.
  • the sealing resin sheet after the heat treatment is warped so as to be depressed toward the substrate side (see FIG. 4B), and when the sign of the surface warp amount is minus, the sealing is performed.
  • the resin sheet is warped so as to swell to the opposite side of the substrate (see FIG. 4C).
  • the method for measuring the amount of surface warpage is as described in the examples.
  • the content of the inorganic filler is less than 70% by weight, warpage during solder reflow increases and there is a risk of defects such as solder cracks.
  • the content of the inorganic filler exceeds 80% by weight, the warping of the molded body becomes large at the resin sealing stage, which may cause problems such as conveyance failure and dicing failure.
  • the linear expansion coefficient after heat treatment at 150 ° C. for 1 hour is preferably 15 ppm / K or more and 30 ppm / K or less at the glass transition temperature or lower.
  • the inorganic filler is preferably silica particles from the viewpoint of controlling the linear expansion coefficient.
  • the inorganic filler preferably has an average particle size of 0.1 ⁇ m or more and 35 ⁇ m or less.
  • thermosetting sealing resin sheet a laminated body having a total thickness of 0.75 mm or less by laminating the thermosetting sealing resin sheet on the mounting substrate so as to cover the electronic component; and the thermosetting sealing resin
  • the manufacturing method of the electronic component package including the sealing process of thermosetting the sheet is also included.
  • the sealing resin sheet is used, even if the total thickness of one package is reduced to 0.75 mm or less, high reliability in which the warpage of the substrate is suppressed.
  • the electronic component package can be manufactured.
  • the sealing step after laminating a plurality of laminates obtained by repeating the preparation step and the laminate formation step in multiple stages. Thereby, a highly reliable PonP structure can be efficiently manufactured.
  • thermosetting sealing resin sheet which concerns on one Embodiment of this invention.
  • electronic component package which concerns on one Embodiment of this invention.
  • cross-sectional schematic diagram which shows the sample for surface curvature amount measurement after the sealing process of a thermosetting resin sealing sheet.
  • top view which shows the measurement procedure of the surface curvature amount after the sealing process of a thermosetting sealing resin sheet.
  • FIG. 4B is an example of a cross-sectional view taken along line XX in FIG. 4A.
  • FIG. 4B is another example of a cross-sectional view taken along line XX in FIG. 4A.
  • thermosetting sealing resin sheet A first embodiment which is an embodiment of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, parts unnecessary for the description are omitted, and there are parts shown enlarged or reduced for easy explanation. First, after describing the thermosetting sealing resin sheet, a method for manufacturing an electronic component package using the thermosetting sealing resin sheet will be described.
  • FIG. 1 is a cross-sectional view schematically showing a thermosetting sealing resin sheet according to an embodiment of the present invention.
  • the sealing resin sheet 1 is typically provided in a state of being laminated on a support 1a such as a polyethylene terephthalate (PET) film.
  • a support 1a such as a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • the mold release process by a well-known mold release agent may be performed to the support body 1a.
  • the surface warpage amount after passing through the predetermined heat treatments 1 and 2 may be ⁇ 0.6 mm or more and 0.1 mm or less, but a preferable lower limit is ⁇ 0.5 mm or more and more preferable.
  • the lower limit is ⁇ 0.4 mm or more.
  • the preferable upper limit of the surface warp amount is 0.08 mm or less, and the more preferable upper limit is 0.05 mm or less. Since the surface warpage amount of the sealing resin sheet 1 is in the above range, the thermosetting shrinkage action at the time of resin sealing and the thermal expansion action at the time of solder reflow are suppressed, and as a result, the warpage of the substrate is suppressed. A highly reliable electronic package can be manufactured.
  • the linear expansion coefficient after heat-treating the sealing resin sheet 1 at 150 ° C. for 1 hour is not particularly limited below the glass transition temperature of the sample after the heat treatment, but the lower limit is preferably 15 ppm / K or more, and 14 ppm / K or more. More preferred.
  • the upper limit of the linear expansion coefficient is preferably 30 ppm / K or less, and more preferably 25 ppm / K or less.
  • the resin composition for forming the thermosetting sealing resin sheet is not particularly limited as long as it has the above-described characteristics and can be used for resin sealing of electronic components such as semiconductor chips.
  • the following epoxy resin compositions containing A to E components are preferred.
  • the C component may or may not be added as necessary.
  • the epoxy resin (component A) is not particularly limited.
  • Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • the content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.
  • the phenol resin (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A).
  • a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
  • phenol resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin (component A), and above all, from the viewpoint of high curing reactivity.
  • a phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the blending ratio of the epoxy resin (component A) and the phenol resin (component B) is a hydroxyl group in the phenol resin (component B) with respect to 1 equivalent of the epoxy group in the epoxy resin (component A). It is preferable to blend so that the total amount becomes 0.7 to 1.5 equivalents, more preferably 0.9 to 1.2 equivalents.
  • the elastomer (C component) used together with the epoxy resin (component A) and the phenol resin (component B) provides the epoxy resin composition with the flexibility necessary for sealing electronic components with a thermosetting sealing resin sheet.
  • the structure is not particularly limited as long as it exhibits such an action.
  • various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used.
  • thermosetting sealing resin sheet it is easy to disperse in the epoxy resin (component A), and because the reactivity with the epoxy resin (component A) is high, the heat resistance and strength of the resulting thermosetting sealing resin sheet can be improved. From the viewpoint, it is preferable to use an acrylic copolymer. These may be used alone or in combination of two or more.
  • the acrylic copolymer can be synthesized, for example, by radical polymerization of an acrylic monomer mixture having a predetermined mixing ratio by a conventional method.
  • a method for radical polymerization a solution polymerization method in which an organic solvent is used as a solvent or a suspension polymerization method in which polymerization is performed while dispersing raw material monomers in water are used.
  • polymerization initiator used in this case examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), and 2,2′-azobis-4- Methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators, peroxide polymerization initiators such as benzoyl peroxide and methyl ethyl ketone peroxide are used.
  • a dispersing agent such as polyacrylamide or polyvinyl alcohol.
  • the content of the elastomer (component C) is 1 to 15% by weight of the entire epoxy resin composition. If the content of the elastomer (C component) is less than 1% by weight, it becomes difficult to obtain the flexibility and flexibility of the sealing resin sheet 1, and further the resin sealing that suppresses the warp of the thermosetting sealing resin sheet. It will be difficult to stop. On the other hand, when the content exceeds 15% by weight, the melt viscosity of the sealing resin sheet 1 is increased and the embedding property of the electronic component is lowered, and the strength and heat resistance of the cured body of the sealing resin sheet 1 are reduced. There is a tendency to decrease.
  • the weight ratio of the elastomer (component C) to the epoxy resin (component A) is preferably set in the range of 3 to 4.7.
  • weight ratio is less than 3, it is difficult to control the fluidity of the sealing resin sheet 1, and when it exceeds 4.7, the adhesiveness of the sealing resin sheet 1 to electronic components tends to be inferior. Because.
  • the inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used.
  • silica powder is used in that the internal stress is reduced by reducing the coefficient of thermal expansion of the cured product of the epoxy resin composition, and as a result, warpage of the sealing resin sheet 1 after sealing of the electronic component can be suppressed.
  • a fused silica powder among the silica powders examples include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder.
  • the average particle diameter of the inorganic filler (component D) is not particularly limited, those having a range of 0.1 ⁇ m to 35 ⁇ m are preferable, and those having a range of 0.3 ⁇ m to 30 ⁇ m are more preferable.
  • the average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the inorganic filler (component D) is preferably 70 to 80% by weight, more preferably 72 to 78% by weight, based on the total epoxy resin composition. If the content of the inorganic filler (component D) is less than 70% by weight, warpage during solder reflow increases and the possibility of poor connection between the upper and lower packages increases. On the other hand, if the content exceeds 80% by weight, the amount of warpage when heated to 150 ° C. for 1 hour and cured and then cooled to 25 ° C. increases, and the possibility of defective conveyance and dicing failure increases.
  • the curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.
  • the content of the curing accelerator (component E) is preferably 0.1 to 5 parts by weight with respect to a total of 100 parts by weight of the epoxy resin (component A) and the phenol resin (component B).
  • a flame retardant component may be added to the epoxy resin composition.
  • various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, and complex metal hydroxide can be used.
  • the average particle diameter of the metal hydroxide is preferably 1 to 10 ⁇ m, more preferably 2 to 5 ⁇ m, from the viewpoint of ensuring appropriate fluidity when the epoxy resin composition is heated. It is.
  • the average particle size of the metal hydroxide is less than 1 ⁇ m, it becomes difficult to uniformly disperse in the epoxy resin composition, and the fluidity during heating of the epoxy resin composition tends to be insufficient.
  • the surface area per addition amount of a metal hydroxide (E component) will become small when an average particle diameter exceeds 10 micrometers, the tendency for a flame-retardant effect to fall is seen.
  • a phosphazene compound can be used in addition to the above metal hydroxide.
  • phosphazene compounds for example, SPR-100, SA-100, SP-100 (above, Otsuka Chemical Co., Ltd.), FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are commercially available. is there.
  • the phosphazene compound represented by the formula (1) or the formula (2) is preferable from the viewpoint of exhibiting a flame retardant effect even in a small amount, and the content of phosphorus element contained in these phosphanzene compounds is 12% by weight or more. Is preferred.
  • n is an integer of 3 to 25
  • R 1 and R 2 are the same or different and are selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group.
  • a monovalent organic group having (In the formula (2), n and m are each independently an integer of 3 to 25.
  • R 3 and R 5 are the same or different and are composed of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group.
  • R 4 is a divalent organic group having a functional group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. .
  • n is an integer of 3 to 25
  • R 6 and R 7 are the same or different and are hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, or a glycidyl group.
  • the cyclic phosphazene oligomer represented by the above formula (3) is commercially available, for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like.
  • the content of the phosphazene compound includes the epoxy resin (component A), phenol resin (component B), elastomer (component D), curing accelerator (component E) and phosphazene compound (other components) contained in the epoxy resin composition. It is preferably 10 to 30% by weight of the total organic component containing. That is, when the content of the phosphazene compound is less than 10% by weight of the whole organic component, the flame retardancy of the sealing resin sheet 1 is reduced and the unevenness of the adherend (for example, a substrate on which an electronic component is mounted) is followed. Tend to be reduced and voids tend to occur. When the content exceeds 30% by weight of the entire organic component, tackiness is likely to occur on the surface of the sealing resin sheet 1, and workability tends to be lowered, such as difficulty in alignment with the adherend.
  • thermosetting sealing resin sheet during molding of resin sealing from the viewpoint of the deformability of the thermosetting sealing resin sheet during molding of resin sealing, the ability to follow the unevenness of electronic parts and adherends, and the adhesion to electronic parts and adherends It is desirable to use an organic flame retardant, and a phosphazene flame retardant is particularly preferably used.
  • the epoxy resin composition can be appropriately mixed with other additives such as pigments including carbon black as necessary.
  • thermosetting sealing resin sheet A method for producing a thermosetting sealing resin sheet will be described below.
  • an epoxy resin composition is prepared by mixing the above-described components.
  • the mixing method is not particularly limited as long as each component is uniformly dispersed and mixed.
  • a varnish in which each component is dissolved or dispersed in an organic solvent or the like is applied to form a sheet.
  • a kneaded material may be prepared by directly kneading each compounding component with a kneader or the like, and the kneaded material thus obtained may be extruded to form a sheet.
  • the above components A to E and other additives as necessary are mixed as appropriate according to a conventional method, and uniformly dissolved or dispersed in an organic solvent to prepare a varnish.
  • the sealing resin sheet 1 in a B-stage state can be obtained by applying the varnish on a support such as polyester and drying it.
  • the organic solvent is not particularly limited, and various conventionally known organic solvents such as methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, and ethyl acetate can be used. These may be used alone or in combination of two or more. Usually, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 30 to 60% by weight.
  • the thickness of the sheet after drying the organic solvent is not particularly limited, but is usually preferably set to 5 to 100 ⁇ m, more preferably 20 to 70 ⁇ m, from the viewpoint of thickness uniformity and the amount of residual solvent. is there.
  • the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product.
  • the method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • the kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above.
  • the thermosetting property of the epoxy resin it is preferably 40 to 140 ° C., more preferably The temperature is 60 to 120 ° C., and the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes. Thereby, a kneaded material can be prepared.
  • B-stage sealing resin sheet 1 can be obtained by molding the kneaded material obtained by extrusion molding.
  • the encapsulating resin sheet 1 can be formed by extrusion molding in a high temperature state without cooling the kneaded material after melt-kneading.
  • Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method.
  • the extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above.
  • the thermosetting property and moldability of the epoxy resin for example, 40 to 150 ° C., preferably 50 to 140 ° C. Preferably, it is 70 to 120 ° C.
  • the sealing resin sheet 1 can be formed.
  • thermosetting sealing resin sheet obtained in this way may be used by being laminated so as to have a desired thickness if necessary. That is, the thermosetting sealing resin sheet may be used in a single layer structure, or may be used as a laminate formed by laminating two or more multilayer structures.
  • the manufacturing method of the electronic component package of the present embodiment includes a preparation step of preparing a mounting substrate on which the electronic component is mounted, and the thermosetting sealing resin sheet is laminated on the mounting substrate so as to cover the electronic component.
  • the first package that is the lower package and the second package that is the upper package are separately prepared in advance, and the procedure of finally stacking both packages is preferably employed. be able to.
  • the difference in the manufacturing procedure between the first package and the second package is mainly that the resin sealing portion (that is, the semiconductor chip and the sealing resin covering the semiconductor chip) in the first package is small compared to the second package.
  • the bumps provided on the back surface of the substrate are larger than the first package, and the other parts are almost the same. Therefore, the manufacturing procedure of the first package will be mainly described with reference to FIG. To do. In this embodiment, a mode in which a semiconductor chip is used as an electronic component will be described.
  • a mounting substrate on which a semiconductor chip as an electronic component is mounted is prepared. As shown in FIG. 2, at least one first semiconductor chip 12 is fixed on the substrate 15. The first semiconductor chip 12 is fixed to the substrate 15 via a die bond film 13. Although only one first semiconductor chip 12 is shown in FIG. 2, two, three, four, five or more first semiconductor chips 12 are provided depending on the specification of the target package. It may be fixed to the substrate 15.
  • First semiconductor chip Various chips can be used as the first semiconductor chip 12 except that the size in plan view is smaller than that of the semiconductor chip 22 mounted on the second package.
  • a kind of logic chip or processor can be preferably used.
  • the thickness of the 1st semiconductor chip 12 is not specifically limited, Usually, there are many cases of 100 micrometers or less. In addition, with the recent thinning of semiconductor packages, the first semiconductor chip 12 of 75 ⁇ m or less, and further 50 ⁇ m or less is being used.
  • the substrate 15 As the substrate 15, a conventionally known substrate such as a printed wiring board can be used. Further, an organic substrate made of glass epoxy, BT (bismaleimide-triazine), polyimide, or the like can be used. However, the present embodiment is not limited to this, and includes a circuit board that can be used by mounting a semiconductor element and electrically connecting the semiconductor element.
  • the thickness of the substrate 15 is not particularly limited, and can be appropriately selected from the range of 100 to 500 ⁇ m.
  • the substrate 15 may have a single layer structure or a multilayer structure, and a through electrode penetrating in the thickness direction may be formed.
  • electrodes are formed for electrical connection with bumps formed on the second package (not shown). Since the space for forming this electrode is provided around the resin sealing portion on the upper surface of the substrate 15, the area in plan view of the semiconductor chip 12 and the sealing resin sheet 11 is smaller than that of the second package.
  • die bond film 13 As the die bond film 13, a conventionally known die bond film for fixing a semiconductor chip can be used.
  • the thickness of the die bond film 13 may be about 5 ⁇ m to 60 ⁇ m.
  • the first semiconductor chip 12 As a method of fixing the first semiconductor chip 12 on the substrate 15, for example, after the die bond film 13 is laminated on the substrate 15, the first semiconductor chip is arranged on the die bond film 13 so that the wire bond surface is on the upper side.
  • the method of laminating 12 is mentioned.
  • the first semiconductor chip 12 with the die bond film 13 attached in advance may be disposed on the substrate 15 and stacked.
  • the die bond film 13 Since the die bond film 13 is in a semi-cured state, the die bond film 13 is thermally cured by performing heat treatment under a predetermined condition after the die bond film 13 is placed on the substrate 15, so that the first semiconductor chip 12 is mounted on the substrate. 15 is fixed.
  • the temperature at which the heat treatment is performed is preferably 100 to 200 ° C., more preferably 120 to 180 ° C.
  • the heat treatment time is preferably 0.25 to 10 hours, more preferably 0.5 to 8 hours.
  • the wire bonding step is a step of electrically connecting the tips of terminal portions (for example, inner leads) of the substrate 15 and electrode pads (not shown) on the first semiconductor chip 12 with bonding wires 14 (see FIG. 2). ).
  • bonding wire 14 for example, a gold wire, an aluminum wire, or a copper wire is used.
  • the temperature for wire bonding is 80 to 250 ° C., preferably 80 to 220 ° C.
  • the heating time is several seconds to several minutes.
  • the connection is performed by a combination of vibration energy by ultrasonic waves and crimping energy by applying pressure while being heated so as to be within the temperature range.
  • the sealing resin sheet 11 is laminated on the substrate 15 so as to cover the semiconductor chip 12.
  • the sealing resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 12 and its accompanying elements from the external environment.
  • the method for laminating the sealing resin sheet 11 is not particularly limited, and a melt-kneaded product of a resin composition for forming the sealing resin sheet is extruded and placed on the substrate 15 and pressed.
  • a method for forming and laminating the sealing resin sheet 11 at once, or a resin composition for forming the sealing resin sheet 11 is applied onto the release treatment sheet, and the coating film is dried and sealed.
  • a method of transferring the sealing resin sheet 11 onto the substrate 15 after forming the stop resin sheet 11 is exemplified.
  • the sealing resin sheet 11 by employing the sealing resin sheet 11, the semiconductor chip 12 can be embedded simply by sticking on the substrate 15 to the cover of the semiconductor chip 12, and the production efficiency of the package can be improved.
  • the sealing resin sheet 11 can be laminated on the substrate 15 by a known method such as hot pressing or laminator.
  • hot press conditions the temperature is, for example, 40 to 120 ° C., preferably 50 to 100 ° C.
  • the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa
  • the time is, for example, 0 3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to press under reduced pressure conditions for example, 10 to 2000 Pa).
  • the sealing resin sheet 11 is thermally cured to perform resin sealing.
  • the conditions of the thermosetting treatment of the thermosetting sealing resin sheet are preferably from 100 ° C. to 200 ° C., more preferably from 120 ° C. to 180 ° C. as the heating temperature, and preferably from 10 minutes to 180 minutes, more preferably from 30 minutes as the heating time. You may pressurize as needed for 120 minutes. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed.
  • a post-curing step of after-curing the sealing resin sheet may be performed after the sealing step.
  • the sealing resin insufficiently cured in the sealing step is completely cured.
  • the heating temperature in this step varies depending on the type of the sealing resin, but is in the range of 165 to 185 ° C., for example, and the heating time is about 0.5 to 8 hours.
  • a semiconductor package can be manufactured through a sealing process or a post-curing process.
  • bump formation Finally, a plurality of bumps 16 are formed on the surface of the substrate 15 opposite to the surface on which the semiconductor chip 12 is mounted.
  • the bumps 16 can be provided by a known method such as solder balls or solder plating.
  • the material of the bump is not particularly limited. For example, tin-lead metal material, tin-silver metal material, tin-silver-copper metal material, tin-zinc metal material, tin-zinc-bismuth metal material, etc. Solders (alloys), gold-based metal materials, copper-based metal materials, and the like.
  • the second semiconductor chip 22 mounted on the second package is not particularly limited, and for example, a memory chip can be used. Further, as shown in FIG. 2, not only one semiconductor chip 22 is mounted, but a plurality of semiconductor chips may be stacked in multiple stages. After the semiconductor chip 22 is fixed to the substrate 25 via the die bond film 23, the semiconductor chip 22 and the substrate 25 are electrically connected by the bonding wire 24. Next, the sealing resin sheet 21 is bonded to the substrate 25 so as to cover the semiconductor chip 22, and the sealing resin sheet 21 is subjected to thermosetting treatment to perform resin sealing. Finally, a plurality of bumps 26 are formed on the back surface of the substrate 25 (the surface opposite to the mounting surface of the semiconductor chip 22). At this time, the height of the bump 26 is made larger than the height of the resin sealing portion on the first package so as to secure a standoff (space between packages). These steps can be performed in the same manner as the first package step.
  • the stacking of the first package and the second package can be performed using a known device such as a package mounter corresponding to the PoP structure.
  • the heating temperature in the reflow process at that time is not particularly limited, but may be about 240 to 270 ° C.
  • the semiconductor chip is fixed to the substrate by a die bond film, and the electrical connection between the two is achieved by wire bonding.
  • the protruding electrode provided on the semiconductor chip is used.
  • the fixing and electrical connection between the two may be achieved by flip-chip connection. Accordingly, the second embodiment is different from the first embodiment only in the fixing mode in the fixing step, and thus the difference will be mainly described below.
  • the first semiconductor chip in the fixing step, is fixed to the substrate by flip chip connection (not shown).
  • flip-chip connection so-called face-down mounting is performed in which the circuit surface of the first semiconductor chip faces the substrate.
  • the first semiconductor chip is provided with a plurality of protruding electrodes such as bumps, and the protruding electrodes and electrodes on the substrate are connected.
  • an underfill material is filled between the substrate and the first semiconductor chip for the purpose of reducing the difference in thermal expansion coefficient between them and protecting the space between them.
  • connection method is not particularly limited, and it can be connected by a conventionally known flip chip bonder.
  • the conductive material is melted while pressing the protruding electrodes, such as bumps, formed on the first semiconductor chip in contact with the bonding conductive material (solder or the like) attached to the connection pads of the substrate. It is possible to secure electrical continuity between the first semiconductor chip and the substrate and fix the first semiconductor chip to the substrate (flip chip bonding).
  • the heating condition at the time of flip-chip connection is 240 to 300 ° C.
  • the pressing condition is 0.5 to 490 N.
  • the material for forming the bump as the protruding electrode is not particularly limited.
  • a tin-lead metal material a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material
  • solders solders (alloys) such as a tin-zinc-bismuth metal material, a gold metal material, and a copper metal material.
  • underfill material a conventionally known liquid or film-like underfill material can be used.
  • the aspect of flip chip connection is not limited to the connection by the bump as the protruding electrode described in the second embodiment, but the connection by the conductive adhesive composition or the protrusion combining the bump and the conductive adhesive composition. Connection by structure can also be employed. In the present invention, as long as face-down mounting in which the circuit surface of the first semiconductor chip is connected to face the substrate, it is referred to as flip-chip connection regardless of the connection mode such as the protruding electrode and the protruding structure. To do.
  • the conductive adhesive composition a conventionally known conductive paste obtained by mixing a thermosetting resin such as an epoxy resin with a conductive filler such as gold, silver, or copper can be used. When the conductive adhesive composition is used, the first semiconductor chip can be fixed by thermosetting at 80 to 150 ° C. for about 0.5 to 10 hours after mounting the first semiconductor chip on the substrate.
  • Example 1 Preparation of sealing resin sheet
  • the following components were blended with a mixer, melt-kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T die to prepare a sealing resin sheet A having a thickness of 200 ⁇ m.
  • Epoxy resin bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 5.6% by weight
  • Phenol resin Phenolic resin having a biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 5.9% by weight
  • Curing accelerator Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 0.2% by weight Elastomer (manufactured by Kaneka Corporation, SIBSTAR 072T) 5.0% by weight
  • Inorganic filler spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co.,
  • Example 2 Preparation of sealing resin sheet
  • the following components were blended with a mixer, melt-kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to prepare a sealing resin sheet B having a thickness of 200 ⁇ m.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 7.0% by weight
  • Phenol resin Phenolic resin having a biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 7.4% by weight
  • Curing accelerator Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 0.2% by weight
  • Elastomer manufactured by Kaneka Corporation, SIBSTAR 072T
  • Inorganic filler spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co., Ltd.,
  • Example 3 (Preparation of sealing resin sheet) The following components were blended with a mixer, melt-kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T die to prepare a sealing resin sheet C having a thickness of 200 ⁇ m.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 8.4% by weight
  • Phenol resin Phenolic resin having a biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 8.9% by weight
  • Curing accelerator Imidazole catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 0.3% by weight
  • Elastomer manufactured by Kaneka Corporation, SIBSTAR 072T
  • Inorganic filler spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co.,
  • Epoxy resin bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 3.3 wt%
  • Phenol resin Phenolic resin having a biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 3.5% by weight
  • Curing accelerator Imidazole catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 0.1% by weight
  • Elastomer manufactured by Kaneka Corporation, SIBSTAR 072T
  • Inorganic filler spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co., Ltd.,
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 11.3% by weight
  • Phenol resin Phenolic resin having a biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 11.9% by weight
  • Curing accelerator Imidazole catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 0.4% by weight
  • Elastomer manufactured by Kaneka Corporation, SIBSTAR 072T
  • Inorganic filler Spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co., Ltd.
  • the linear expansion coefficient was measured using a thermomechanical analyzer (manufactured by Rigaku Corporation: model: TMA8310). Specifically, each sealing resin sheet was heated and cured at 150 ° C. for 1 hour, and after obtaining a measurement sample from this cured product with a sample size of 25 mm long ⁇ 4.9 mm wide ⁇ 200 ⁇ m thick, The measurement sample was set in a film tensile measurement jig and measured under conditions of a tensile load of 4.9 mN and a temperature increase rate of 10 ° C./min to obtain a linear expansion coefficient.
  • a similar measurement sample is set in a film tensile measurement jig, and the tensile storage elastic modulus and loss elastic modulus in the temperature range of ⁇ 50 to 300 ° C. are set at a frequency of 1 Hz and a heating rate of 10 ° C./min.
  • the glass transition temperature (Tg) was obtained by calculating the value of tan ⁇ (G ′′ (loss elastic modulus) / G ′ (storage elastic modulus)) in the measurement.
  • the silicon chip 2 is mounted on the substrate 5 through the die bond film 3, and the entire surface of the substrate 5 is resin-sealed with the sealing resin sheet 1.
  • the semiconductor package 10 is used.
  • a die bond film was bonded to a semiconductor chip having the following specifications under the following lamination conditions.
  • ⁇ TF-BGA substrate> Manufacturer: Nippon Circuit Industry Product name: TFBGA032T (AUS5) Substrate size: 50 mm ⁇ (thickness 320 ⁇ m ( 0.32 mm)) Substrate material: BT Resin, Cu, Ni, Au, solder mask Number of pads: 225 Pad pitch: 1000 ⁇ m Drying conditions: 150 ° C. ⁇ 3 hours, then cooled to room temperature in the presence of silica gel
  • the die bond film was cured by the following heat treatment to mount the semiconductor chip on the substrate.
  • Thermosetting conditions 150 ° C x 1 hour
  • the surface of the obtained semiconductor chip mounting substrate was subjected to plasma treatment under the following conditions to perform surface modification.
  • Each of the sealing resin sheets A to E was pasted on the semiconductor chip mounting substrate after the plasma treatment by a vacuum press under the following pasting conditions. At this time, the total thickness of the substrate, the die bond film, and the sealing resin sheet (with the semiconductor chip included) was 750 ⁇ m.
  • a semiconductor package for measuring the amount of surface warpage during the heat treatment 2 was produced by putting the semiconductor package that had undergone the heat treatment 1 into an atmosphere of 240 ° C.
  • the surface shape along each diagonal line is obtained by scanning the surface twice along the two diagonal lines of the sealing resin sheet, and a total of four surface surfaces are obtained.
  • the surface warp amount W was calculated by calculating the difference between the average height of the four corners and the height of the central portion.
  • the case where the surface warpage amount of the semiconductor package was within an allowable range ( ⁇ 0.6 mm to 0.1 mm) was evaluated as “ ⁇ ”, and the case where the warpage was outside the allowable range was evaluated as “x”.
  • the upper lid of the heating chamber used for the heat treatment 2 was made of glass, and the amount of surface warpage in a 240 ° C. atmosphere was measured by laser. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

 優れた信頼性を有する電子パッケージを製造可能な熱硬化性封止樹脂シート及びこれを用いる電子部品パッケージの製造方法を提供する。本発明の熱硬化性封止樹脂シートは、無機充填剤を70重量%以上80重量%以下の含有量で含み、以下の熱処理1及び熱処理2の際の表面反り量がそれぞれ-0.6mm以上0.1mm以下である。 熱処理1:35mm角で厚さ0.2mmのシリコンチップが厚さ25μmのダイボンドフィルムを介して搭載された50mm角で厚さ0.32mmのプリント基板上に、前記熱硬化性封止樹脂シートを貼り合わせ後の総厚さが0.75mmとなるように貼り合わせ、150℃で1時間熱処理して封止体とした後、25℃で1時間静置する。 熱処理2:前記熱処理1を経た前記封止体をさらに240℃雰囲気下へ投入する。

Description

熱硬化性封止樹脂シート及び電子部品パッケージの製造方法
 本発明は、熱硬化性封止樹脂シート及び電子部品パッケージの製造方法に関する。
 近年、半導体装置及びそのパッケージの高機能化、薄型化、小型化がより一層求められている。電子部品の高密度集積化の一策として、半導体素子等の電子部品が基板上にて樹脂封止されたパッケージをその厚さ方向に複数段に積層させるパッケージ・オン・パッケージ(以下、「PoP」ともいう。)構造と呼ばれる3次元実装技術が開発されている。上下のパッケージは、一般的に上段のパッケージの裏面(下面)に設けられたバンプと下段のパッケージの上面に設けられた電極とにより電気的に接続されている。
 ここで、PoP構造の製造過程においてはんだリフロー等の高温処理が行われると、PoP構造を構成する各部材間の線膨張率の差により生じた応力により基板が反ることがある。パッケージ全体の薄型化に伴い、それを構成する実装基板も薄型化される状況では、このような反りの発生はより顕著となる傾向にある。実装基板に反りが生じると特にバンプ接続部に応力が集中してしまい、接続不良が生じることがある。
 上記実装基板の反りを、特に実装基板とバンプとの間の線膨張率の差の抑制の観点から、上下のパッケージ間に応力緩和のための樹脂基材を介在させることで防止しようとする技術が提案されている(特許文献1)。
特開2010-199611号公報
 他方、基板に搭載された電子部品は樹脂封止された状態にあるので、封止樹脂と基板との間の線膨張率の差に起因して応力が発生し、これが基板の反りや封止樹脂の基板からの剥離、封止樹脂のクラック等を引き起こす場合がある。PoP構造では、上段パッケージでは上面(露出面)のほぼ全面が封止樹脂で覆われるのに対し、下段パッケージの上面には、上段パッケージとのバンプ接続のための電極領域を電子部品の樹脂封止部分を避けるように周辺部に設ける必要があることから、一般的には下段パッケージの樹脂封止部分の面積は上段パッケージの樹脂封止部分と比較して小さくなることが多い。そうすると、PoP構造では各パッケージにおける封止樹脂-基板間の線膨張率差の影響だけでなく、上段パッケージと下段パッケージとの間の線膨張率差が生じてしまい、両者間の応力差によっても基板の反り、封止樹脂の剥離やクラック等が生じてしまう。このような事象は、各パッケージの封止樹脂を硬化させてからパッケージの多段積層を行う際のはんだリフロー時等に生じやすくなる。
 さらに、電子部品の樹脂封止時においても、封止樹脂の熱硬化収縮の影響により基板に反りが生じることがある。上記の線膨張率差の場合と同様、PoP構造では各パッケージにおける封止樹脂の熱硬化収縮の影響だけでなく、上段パッケージと下段パッケージとの間での熱硬化収縮の差が生じてしまい、両者間の応力差によっても基板の反りや封止樹脂の剥離、クラック等が生じてしまう。このような事象は、各パッケージの封止樹脂を硬化させることなくパッケージの多段積層を行い、最後に一括で熱硬化処理を行う際に生じやすくなる。
 以上のように、PoP構造では、各パッケージにおける線膨張率差ないし熱硬化収縮の差の影響だけでなく、上下パッケージ間での線膨張率差や熱硬化収縮の差の影響を受けることになり、PoP構造全体での信頼性の維持ないし向上が困難となる。
 本発明は、前記問題点に鑑みなされたものであり、その目的は、優れた信頼性を有する電子パッケージを製造可能な熱硬化性封止樹脂シート及びこれを用いる電子部品パッケージの製造方法を提供することにある。
 本願発明者らは、前記従来の問題点を解決すべく鋭意検討した結果、下記構成とすることにより前記目的を達成できることを見出して、本発明を完成させるに至った。
 すなわち、本発明の熱硬化性封止樹脂シートは、
 無機充填剤を70重量%以上80重量%以下の含有量で含み、
 以下の熱処理1及び熱処理2の際の表面反り量がそれぞれ-0.6mm以上0.1mm以下である熱硬化性封止樹脂シート。
 熱処理1:35mm角で厚さ0.2mmのシリコンチップが厚さ25μmのダイボンドフィルムを介して搭載された50mm角で厚さ0.32mmのプリント基板上に、前記熱硬化性封止樹脂シートを貼り合わせ後の総厚さが0.75mmとなるように貼り合わせ、150℃で1時間熱処理して封止体とした後、25℃で1時間静置する。
 熱処理2:前記熱処理1を経た前記封止体をさらに240℃雰囲気下へ投入する。
 当該熱硬化性封止樹脂シート(以下、単に「封止樹脂シート」ともいう。)は、樹脂成分と比較して線膨張率が低い無機充填剤を70重量%以上80重量%以下という高含有量で含んでいるので、熱硬化処理後の封止樹脂シート全体の線膨張率を低減することができる。これにより、ガラスエポキシ基板のように低線膨張率化された基板に対しても線膨張率差を小さくすることができ、線膨張率差に起因する基板の反りや封止樹脂の剥離ないしクラック等(以下、線膨張率差に起因するこれらの不具合を「基板の反り等」ともいう。)を防止することができる。また、当該封止樹脂シートでは、熱硬化処理の際の熱収縮に影響する樹脂成分の含有量を高含有量の無機充填剤により低減させている。その結果、当該封止樹脂シートでは、所定の熱処理1及び2を経た後の表面反り量がともに-0.6mm以上0.1mm以下に抑制されているので、封止樹脂シートの熱硬化収縮の基板への影響を十分抑制することができる。以上のように、当該封止樹脂シートによると、封止処理やその後のはんだリフロー等の高温処理が施されても、PonP構造全体での高温処理に対する信頼性を向上させることができる。なお、表面反り量の符号がプラスであると、熱処理後の封止樹脂シートが基板側に窪むように反っている状態にあり(図4B参照)、表面反り量の符号がマイナスであると封止樹脂シートが基板とは反対側に膨らむように反っている状態にある(図4C参照)。本明細書において、表面反り量の測定方法は、実施例の記載による。
 上記無機充填剤の含有量が70重量%未満であると、はんだリフロー時の反りが大きくなりはんだクラック等の不良が生じるおそれがある。一方、上記無機充填剤の含有量が80重量%を超えると、樹脂封止の段階で成型体の反りが大きくなり、搬送不良やダイシング不良等の不具合が生じる場合がある。
 当該封止樹脂シートでは、150℃で1時間熱処理した後の線膨張率がガラス転移温度以下で15ppm/K以上30ppm/K以下であることが好ましい。所定の熱処理後の熱処理物のガラス転移温度以下での線膨張率を上記範囲とすることより、封止処理後にPoP構造に対して高温処理を施しても、封止樹脂シートと、特に低線膨張率を有する基板との線膨張率差を小さくすることができ、基板の反り等を防止することができる。なお、線膨張率及びガラス転移温度の測定方法は、実施例の記載による。
 当該封止樹脂シートでは、線膨張率の制御の観点から、前記無機充填剤がシリカ粒子であることが好ましい。
 当該封止樹脂シートでは、前記無機充填剤の平均粒径が0.1μm以上35μm以下であることが好ましい。無機充填剤の平均粒径を上記範囲とすることにより、無機充填剤の良好な分散性が得られるとともに、電子部品や基板上の凹凸への追従性を確保することができる。
 本発明には、電子部品が搭載された実装基板を準備する準備工程、
 前記電子部品を覆うように前記実装基板上に当該熱硬化性封止樹脂シートを積層して総厚さ0.75mm以下の積層体を形成する積層体形成工程、及び
 前記熱硬化性封止樹脂シートを熱硬化させる封止工程
 を含む電子部品パッケージの製造方法も含まれる。
 本発明の電子部品パッケージの製造方法では、当該封止樹脂シートを用いているので、一のパッケージの総厚さを0.75mm以下まで薄型化しても基板の反り等が抑制された高信頼性の電子部品パッケージを製造することができる。
 当該製造方法では、前記準備工程及び前記積層体形成工程を繰り返して得られる複数の積層体を多段に積層した後、前記封止工程を行うことが好ましい。これにより、優れた信頼性のPonP構造を効率良く製造することができる。
本発明の一実施形態に係る熱硬化性封止樹脂シートを示す断面模式図である。 本発明の一実施形態に係る電子部品パッケージを示す断面模式図である。 熱硬化性樹脂封止シートの封止処理後の表面反り量測定用のサンプルを示す断面模式図である。 熱硬化性封止樹脂シートの封止処理後の表面反り量の測定手順を示す平面図である。 図4AのX-X線断面図の一例である。 図4AのX-X線断面図の他の一例である。
[第1実施形態]
 本発明の一実施形態である第1実施形態について、図を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。まず、熱硬化性封止樹脂シートについて説明した後、該熱硬化性封止樹脂シートを用いる電子部品パッケージの製造方法について説明する。
 <熱硬化性封止樹脂シート>
 図1は、本発明の一実施形態に係る熱硬化性封止樹脂シートを模式的に示す断面図である。封止樹脂シート1は、代表的に、ポリエチレンテレフタレート(PET)フィルム等の支持体1a上に積層された状態で提供される。なお、支持体1aには封止樹脂シート1の剥離を容易に行うために公知の離型剤による離型処理が施されていてもよい。また、長尺の支持体1a上に封止樹脂シート1を連続して形成し、これをロール状に巻き取った巻回体としてもよい。
 封止樹脂シート1では、所定の熱処理1及び2を経た後の表面反り量がともに-0.6mm以上0.1mm以下であればよいものの、好ましい下限は-0.5mm以上であり、より好ましい下限は-0.4mm以上である。一方、表面反り量の好ましい上限は0.08mm以下であり、より好ましい上限は0.05mm以下である。封止樹脂シート1の表面反り量が上記範囲となっているので、樹脂封止時の熱硬化収縮作用及びはんだリフロー時の熱膨張作用が抑制され、その結果、基板の反り等が抑制された高信頼性の電子パッケージを製造することができる。
 封止樹脂シート1を150℃で1時間熱処理した後の線膨張率は、熱処理後のサンプルのガラス転移温度以下では特に限定されないものの、その下限は15ppm/K以上が好ましく、14ppm/K以上がより好ましい。上記線膨張率の上限は30ppm/K以下であることが好ましく、25ppm/K以下がより好ましい。所定の熱処理後の熱処理物のガラス転移温度以下での線膨張率を上記範囲とすることより、封止処理後にPoP構造に対して高温処理を施しても、封止樹脂シートと、特に低線膨張率を有する基板との線膨張率差を小さくすることができ、基板の反り等を防止することができる。
 熱硬化性封止樹脂シートを形成する樹脂組成物は、上述のような特性を好適に有し、半導体チップ等の電子部品の樹脂封止に利用可能なものであれば、特に限定されないが、例えば以下のA成分からE成分を含有するエポキシ樹脂組成物が好ましいものとして挙げられる。なお、C成分は必要に応じて添加しても添加しなくてもよい。
  A成分:エポキシ樹脂
  B成分:フェノール樹脂
  C成分:エラストマー
  D成分:無機充填剤
  E成分:硬化促進剤
 (A成分)
 エポキシ樹脂(A成分)としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
 エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、中でも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。
 エポキシ樹脂(A成分)の含有量は、エポキシ樹脂組成物全体に対して1~10重量%の範囲に設定することが好ましい。
 (B成分)
 フェノール樹脂(B成分)は、エポキシ樹脂(A成分)との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂、等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
 フェノール樹脂としては、エポキシ樹脂(A成分)との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、中でも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。
 エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、硬化反応性という観点から、エポキシ樹脂(A成分)中のエポキシ基1当量に対して、フェノール樹脂(B成分)中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。
 (C成分)
 エポキシ樹脂(A成分)及びフェノール樹脂(B成分)とともに用いられるエラストマー(C成分)は、熱硬化性封止樹脂シートによる電子部品の封止に必要な可撓性をエポキシ樹脂組成物に付与するものであり、このような作用を奏するものであれば特にその構造を限定するものではない。例えば、ポリアクリル酸エステル等の各種アクリル系共重合体、スチレンアクリレート系共重合体、ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-酢酸ビニルコポリマー(EVA)、イソプレンゴム、アクリロニトリルゴム等のゴム質重合体を用いることができる。中でも、エポキシ樹脂(A成分)へ分散させやすく、またエポキシ樹脂(A成分)との反応性も高いために、得られる熱硬化性封止樹脂シートの耐熱性や強度を向上させることができるという観点から、アクリル系共重合体を用いることが好ましい。これらは単独で用いてもよいし、2種以上併せて用いてもよい。
 なお、アクリル系共重合体は、例えば、所定の混合比にしたアクリルモノマー混合物を、定法によってラジカル重合することにより合成することができる。ラジカル重合の方法としては、有機溶剤を溶媒に行う溶液重合法や、水中に原料モノマーを分散させながら重合を行う懸濁重合法が用いられる。その際に用いる重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、その他のアゾ系又はジアゾ系重合開始剤、ベンゾイルパーオキサイド及びメチルエチルケトンパーオキサイド等の過酸化物系重合開始剤等が用いられる。なお、懸濁重合の場合は、例えばポリアクリルアミド、ポリビニルアルコールのような分散剤を加えることが望ましい。
 エラストマー(C成分)の含有量は、エポキシ樹脂組成物全体の1~15重量%である。エラストマー(C成分)の含有量が1重量%未満では、封止樹脂シート1の柔軟性及び可撓性を得るのが困難となり、さらには熱硬化性封止樹脂シートの反りを抑えた樹脂封止も困難となる。逆に上記含有量が15重量%を超えると、封止樹脂シート1の溶融粘度が高くなって電子部品の埋まり込み性が低下するとともに、封止樹脂シート1の硬化体の強度及び耐熱性が低下する傾向がみられる。
 また、エラストマー(C成分)のエポキシ樹脂(A成分)に対する重量比率(C成分の重量/A成分の重量)は、3~4.7の範囲に設定することが好ましい。上記重量比率が3未満の場合は、封止樹脂シート1の流動性をコントロールすることが困難となり、4.7を超えると封止樹脂シート1の電子部品への接着性が劣る傾向がみられるためである。
 (D成分)
 無機質充填剤(D成分)は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
 中でも、エポキシ樹脂組成物の硬化体の熱線膨張係数が低減することにより内部応力を低減し、その結果、電子部品の封止後の封止樹脂シート1の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましい。
 無機充填剤(D成分)の平均粒径は特に限定されないものの、0.1μm以上35μm以下の範囲のものを用いることが好ましく、0.3μm以上30μm以下の範囲のものを用いることがより好ましい。
 なお、平均粒径は、母集団から任意に抽出される試料を用い、レーザ回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
 無機質充填剤(D成分)の含有量は、好ましくはエポキシ樹脂組成物全体の70~80重量%であればよく、より好ましくは72~78重量%である。無機質充填剤(D成分)の含有量が70重量%未満では、はんだリフロー時の反りが大きくなり上下のパッケージで接続不良が発生する可能性が高まる。一方、上記含有量が80重量%を超えると150℃で1時間加熱し硬化させた後に25℃へ冷却した際の反り量が大きくなり,搬送不良やダイシング不良が発生する可能性が高まる。
 (E成分)
 硬化促進剤(E成分)は、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されるものではないが、硬化性と保存性の観点から、トリフェニルホスフィンやテトラフェニルホスホニウムテトラフェニルボレート等の有機リン系化合物や、イミダゾール系化合物が好適に用いられる。これら硬化促進剤は、単独で用いても良いし、他の硬化促進剤と併用しても構わない。
 硬化促進剤(E成分)の含有量は、エポキシ樹脂(A成分)及びフェノール樹脂(B成分)の合計100重量部に対して0.1~5重量部であることが好ましい。
 (その他の成分)
 また、エポキシ樹脂組成物には、A成分からE成分に加えて、難燃剤成分を加えてもよい。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物等の各種金属水酸化物を用いることができる。
 金属水酸化物の平均粒径としては、エポキシ樹脂組成物を加熱した際に適当な流動性を確保するという観点から、平均粒径が1~10μmであることが好ましく、さらに好ましくは2~5μmである。金属水酸化物の平均粒径が1μm未満では、エポキシ樹脂組成物中に均一に分散させることが困難となるとともに、エポキシ樹脂組成物の加熱時における流動性が十分に得られない傾向がある。また、平均粒径が10μmを超えると、金属水酸化物(E成分)の添加量あたりの表面積が小さくなるため、難燃効果が低下する傾向がみられる。
 また、難燃剤成分としては上記金属水酸化物のほか、ホスファゼン化合物を用いることができる。ホスファゼン化合物としては、例えばSPR-100、SA-100、SP-100(以上、大塚化学株式会社)、FP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。
 少量でも難燃効果を発揮するという観点から、式(1)又は式(2)で表されるホスファゼン化合物が好ましく、これらホスファンゼン化合物に含まれるリン元素の含有率は、12重量%以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 
(式(1)中、nは3~25の整数であり、R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。)
Figure JPOXMLDOC01-appb-C000002
 
(式(2)中、n及びmは、それぞれ独立して3~25の整数である。R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する2価の有機基である。)
 また、安定性及びボイドの生成抑制という観点から、式(3)で表される環状ホスファゼンオリゴマーを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 
(式(3)中、nは3~25の整数であり、R及びRは同一又は異なって、水素、水酸基、アルキル基、アルコキシ基又はグリシジル基である。)
 上記式(3)で表される環状ホスファゼンオリゴマーは、例えばFP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。
 ホスファゼン化合物の含有量は、エポキシ樹脂組成物中に含まれるエポキシ樹脂(A成分)、フェノール樹脂(B成分)、エラストマー(D成分)、硬化促進剤(E成分)及びホスファゼン化合物(その他の成分)を含む有機成分全体の10~30重量%であることが好ましい。すなわち、ホスファゼン化合物の含有量が、有機成分全体の10重量%未満では、封止樹脂シート1の難燃性が低下するとともに、被着体(例えば、電子部品を搭載した基板等)に対する凹凸追従性が低下し、ボイドが発生する傾向がみられる。上記含有量が有機成分全体の30重量%を超えると、封止樹脂シート1の表面にタックが生じやすくなり、被着体に対する位置合わせをしにくくなる等作業性が低下する傾向がみられる。
 また、上記金属水酸化物及びホスファゼン化合物を併用し、シート封止に必要な可撓性を確保しつつ、難燃性に優れた封止樹脂シート1を得ることもできる。両者を併用することにより、金属水酸化物のみを用いた場合の十分な難燃性と、ホスファゼン化合物のみを用いた場合は、十分な可撓性を得ることができる。
 上記難燃剤のうち、樹脂封止の成型時における熱硬化性封止樹脂シートの変形性、電子部品や被着体の凹凸への追従性、電子部品や被着体への密着性の点から有機系難燃剤を用いるのが望ましく、特にホスファゼン系難燃剤が好適に用いられる。
 なお、エポキシ樹脂組成物は、上記の各成分以外に必要に応じて、カーボンブラックをはじめとする顔料等、他の添加剤を適宜配合することができる。
 (熱硬化性封止樹脂シートの作製方法)
 熱硬化性封止樹脂シートの作製方法を以下に説明する。まず、上述の各成分を混合することによりエポキシ樹脂組成物を調製する。混合方法は、各成分が均一に分散混合される方法であれば特に限定するものではない。その後、例えば、各成分を有機溶剤等に溶解又は分散したワニスを塗工してシート状に形成する。あるいは、各配合成分を直接ニーダー等で混練することにより混練物を調製し、このようにして得られた混練物を押し出してシート状に形成してもよい。
 ワニスを用いる具体的な作製手順としては、上記A~E成分及び必要に応じて他の添加剤を常法に準じて適宜混合し、有機溶剤に均一に溶解あるいは分散させ、ワニスを調製する。ついで、上記ワニスをポリエステル等の支持体上に塗布し乾燥させることによりBステージ状態の封止樹脂シート1を得ることができる。そして必要により、熱硬化性封止樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。剥離シートは封止時に剥離する。
 上記有機溶剤としては、特に限定されるものではなく従来公知の各種有機溶剤、例えばメチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。また通常、ワニスの固形分濃度が30~60重量%の範囲となるように有機溶剤を用いることが好ましい。
 有機溶剤乾燥後のシートの厚みは、特に制限されるものではないが、厚みの均一性と残存溶剤量の観点から、通常、5~100μmに設定することが好ましく、より好ましくは20~70μmである。
 一方、混練を用いる場合には、上記A~E成分及び必要に応じて他の添加剤の各成分をミキサーなど公知の方法を用いて混合し、その後、溶融混練することにより混練物を調製する。溶融混練する方法としては、特に限定されないが、例えば、ミキシングロール、加圧式ニーダー、押出機などの公知の混練機により、溶融混練する方法などが挙げられる。
 混練条件としては、温度が、上記した各成分の軟化点以上であれば特に制限されず、例えば30~150℃、エポキン樹脂の熱硬化性を考慮すると、好ましくは40~140℃、さらに好ましくは60~120℃であり、時間が、例えば1~30分間、好ましくは5~15分間である。これによって、混練物を調製することができる。
 得られる混練物を押出成形により成形することにより、Bステージ状態の封止樹脂シート1を得ることができる。具体的には、溶融混練後の混練物を冷却することなく高温状態のままで、押出成形することで、封止樹脂シート1を形成することができる。このような押出方法としては、特に制限されず、Tダイ押出法、ロール圧延法、ロール混練法、共押出法、カレンダー成形法などが挙げられる。押出温度としては、上記した各成分の軟化点以上であれば、特に制限されないが、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは、50~140℃、さらに好ましくは70~120℃である。以上により、封止樹脂シート1を形成することができる。
 このようにして得られた熱硬化性封止樹脂シートは、必要により所望の厚みとなるように積層して使用してもよい。すなわち、熱硬化性封止樹脂シートは、単層構造にて使用してもよいし、2層以上の多層構造に積層してなる積層体として使用してもよい。
 <電子部品パッケージの製造方法>
 本実施形態の電子部品パッケージの製造方法は、電子部品が搭載された実装基板を準備する準備工程、前記電子部品を覆うように前記実装基板上に上記熱硬化性封止樹脂シートを積層して総厚さ0.75mm以下の積層体を形成する積層体形成工程、及び前記熱硬化性封止樹脂シートを熱硬化させる封止工程を含む。
 図2に示すようなPonP構造とするには、下段パッケージである第1パッケージ及び上段パッケージである第2パッケージを予め別々に作製しておき、最後に両パッケージを積層する手順を好適に採用することができる。第1パッケージと第2パッケージとの作製手順の相違としては、主に、第1パッケージにおける樹脂封止部分(すなわち、半導体チップ及びこれを覆う封止樹脂)が第2パッケージと比較して小さい点、及び基板裏面に設けられるバンプが第2パッケージでは第1パッケージより大きい点が挙げられ、これ以外はほぼ共通するので、第1パッケージの作製手順を中心に、以下、図2を参照しつつ説明する。本実施形態では、電子部品として半導体チップを用いる態様を説明する。
 (第1パッケージの作製)
 準備工程では、電子部品である半導体チップが搭載された実装基板を準備する。図2に示すように、基板15上には少なくとも1つの第1半導体チップ12を固定されている。第1半導体チップ12はダイボンドフィルム13を介して基板15に固定されている。図2中では第1半導体チップ12は、1つのみ示されているものの、目的とするパッケージの仕様に応じて2つ、3つ、4つ又は5つ以上の複数の第1半導体チップ12を基板15に固定してもよい。
 (第1半導体チップ)
 第1半導体チップ12としては、第2パッケージに搭載される半導体チップ22より平面視寸法が小さくなってりいること以外は種々のチップを用いることができ、パッケージデザインに応じて、例えば半導体チップの一種であるロジックチップやプロセッサを好適に用いることができる。第1半導体チップ12の厚さは特に限定されないものの、通常100μm以下の場合が多い。また、近年の半導体パッケージの薄型化に伴い75μm以下、さらには50μm以下の第1半導体チップ12も用いられつつある。
 (基板)
 基板15としては、プリント配線基板等の従来公知の基板を使用することができる。また、ガラスエポキシ、BT(ビスマレイミド-トリアジン)、ポリイミド等からなる有機基板を使用することができる。しかし、本実施形態はこれに限定されるものではなく、半導体素子をマウントし、半導体素子と電気的に接続して使用可能な回路基板も含まれる。基板15の厚さは特に限定されず、100~500μmの範囲から適宜選択することができる。また、基板15は単層構造でも多層構造であってもよく、厚さ方向に貫通する貫通電極が形成されていてもよい。
 第1パッケージの上面には、第2パッケージに形成されたバンプとの電気的接続のために電極が形成されている(図示せず)。この電極形成のためのスペースを基板15の上面の樹脂封止部分の周囲に設けるため、半導体チップ12及び封止樹脂シート11の平面視面積は第2パッケージより小さくなっている。
 (ダイボンドフィルム)
 ダイボンドフィルム13としては、従来公知の半導体チップ固定用のダイボンドフィルムを用いることができる。ダイボンドフィルム13の厚さとしては5μmから60μm程度であればよい。
 (固定方法)
 第1半導体チップ12を基板15上に固定する方法としては、例えば基板15上にダイボンドフィルム13を積層した後、このダイボンドフィルム13上に、ワイヤーボンド面が上側となるようにして第1半導体チップ12を積層する方法が挙げられる。また、予めダイボンドフィルム13が貼り付けられた第1半導体チップ12を基板15上に配置して積層してもよい。
 ダイボンドフィルム13は半硬化状態であるので、ダイボンドフィルム13の基板15上への載置後、所定条件下での熱処理を行うことにより、ダイボンドフィルム13を熱硬化させて第1半導体チップ12を基板15上に固定させる。熱処理を行う際の温度は、100~200℃で行うのが好ましく、120℃~180℃の範囲内で行うのがより好ましい。また、熱処理時間は0.25~10時間で行うことが好ましく、0.5~8時間で行うことがより好ましい。
 (ワイヤーボンディング工程)
 ワイヤーボンディング工程は、基板15の端子部(例えばインナーリード)の先端と第1半導体チップ12上の電極パッド(図示せず)とをボンディングワイヤー14で電気的に接続する工程である(図2参照)。ボンディングワイヤー14としては、例えば金線、アルミニウム線又は銅線等が用いられる。ワイヤーボンディングを行う際の温度は、80~250℃、好ましくは80~220℃の範囲内で行われる。また、その加熱時間は数秒~数分間行われる。結線は、前記温度範囲内となるように加熱された状態で、超音波による振動エネルギーと印加加圧による圧着工ネルギーの併用により行われる。
 (積層体形成工程)
 積層体形成工程では、半導体チップ12を覆うように基板15へ封止樹脂シート11を積層する。この封止樹脂シート11は、半導体チップ12及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
 封止樹脂シート11の積層方法としては特に限定されず、封止樹脂シートを形成するための樹脂組成物の溶融混練物を押出成形し、押出成形物を基板15上に載置してプレスすることにより封止樹脂シート11の形成と積層とを一括にて行う方法や、封止樹脂シート11を形成するための樹脂組成物を離型処理シート上に塗布し、塗布膜を乾燥させて封止樹脂シート11を形成した上で、この封止樹脂シート11を基板15上に転写する方法などが挙げられる。
 本実施形態では、上記封止樹脂シート11を採用することにより、半導体チップ12の被覆に基板15上に貼り付けるだけで半導体チップ12を埋め込むことができ、パッケージの生産効率を向上させることができる。この場合、熱プレスやラミネータなど公知の方法により封止樹脂シート11を基板15上に積層することができる。熱プレス条件としては、温度が、例えば、40~120℃、好ましくは、50~100℃であり、圧力が、例えば、50~2500kPa、好ましくは、100~2000kPaであり、時間が、例えば、0.3~10分間、好ましくは、0.5~5分間である。また、封止樹脂シート11の半導体チップ12及び基板15への密着性および追従性の向上を考慮すると、好ましくは、減圧条件下(例えば10~2000Pa)において、プレスすることが好ましい。
 (封止工程)
 封止工程では、上記封止樹脂シート11を熱硬化処理して樹脂封止を行う。熱硬化性封止樹脂シートの熱硬化処理の条件は、加熱温度として好ましくは100℃から200℃、より好ましくは120℃から180℃、加熱時間として好ましくは10分から180分、より好ましくは30分から120分の間、必要に応じて加圧しても良い。加圧の際は、好ましくは0.1MPaから10MPa、より好ましくは0.5MPaから5MPaを採用することができる。
 (後硬化工程)
 本実施形態においては、封止工程の後に、封止樹脂シートをアフターキュアする後硬化工程を行ってもよい。本工程においては、前記封止工程で硬化不足の封止樹脂を完全に硬化させる。本工程における加熱温度は、封止樹脂の種類により異なるが、例えば165~185℃の範囲内であり、加熱時間は0.5~8時間程度である。封止工程又は後硬化工程を経ることにより半導体パッケージを作製することができる。
 (バンプ形成)
 最後に、基板15の半導体チップ12搭載面とは反対側の面に複数のバンプ16を形成する。バンプ16は、半田ボールや半田メッキなど公知の方法で設けることができる。バンプの材質は特に限定されず、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。
 (第2パッケージの作製)
 第2パッケージに搭載される第2半導体チップ22としては特に限定されず、例えばメモリチップを用いることができる。また、図2に示すように、半導体チップ22を1個搭載するだけでなく、複数の半導体チップを多段に積層してもよい。この半導体チップ22を基板25にダイボンドフィルム23を介して固定した後、半導体チップ22と基板25とをボンディングワイヤー24により電気的に接続する。次いで、封止樹脂シート21を半導体チップ22を覆うように基板25に貼り合わせ、封止樹脂シート21の熱硬化処理を行うことにより樹脂封止を行う。最後に、基板25の裏面(半導体チップ22の搭載面とは反対側の面)に複数のバンプ26を形成する。この際、バンプ26の高さは、第1パッケージ上の樹脂封止部分の高さより大きくし、スタンドオフ(パッケージ間のスペース)を確保するようにする。これらの工程は、第1パッケージの工程と同様に行うことができる。
 (パッケージ積層)
 第1パッケージと第2パッケージとの積層は、PoP構造対応のパッケージマウンターなどの公知の装置を用いて行うことができる。その際のリフロー工程の加熱温度は特に限定されないが、240~270℃程度であればよい。
[第2実施形態]
 第1実施形態では、半導体チップの基板への固定をダイボンドフィルムにより行い、両者間の電気的接続をワイヤーボンディングにより図っていたが、第2実施形態では、半導体チップに設けられた突起電極を用いたフリップチップ接続により両者間の固定及び電気的接続を図ってもよい。従って、第2実施形態は、固定工程における固定様式のみ第1実施形態と異なるので、以下では主にこの相違点について説明する。
 本実施形態では、前記固定工程において、第1半導体チップを基板にフリップチップ接続により固定する(図示せず)。フリップチップ接続では、第1半導体チップの回路面が基板と対向するいわゆるフェイスダウン実装となる。第1半導体チップにはバンプ等の突起電極が複数設けられており、突起電極と基板上の電極とが接続されている。また、基板と第1半導体チップとの間には、両者間の熱膨張率の差の緩和や両者間の空間の保護を目的として、アンダーフィル材が充填されている。
 接続方法としては特に限定されず、従来公知のフリップチップボンダーにより接続することができる。例えば、第1半導体チップに形成されているバンプ等の突起電極を、基板の接続パッドに被着された接合用の導電材(半田など)に接触させて押圧しながら導電材を溶融させることにより、第1半導体チップと基板との電気的導通を確保し、第1半導体チップを基板に固定させることができる(フリップチップボンディング)。一般的に、フリップチップ接続の際の加熱条件としては240~300℃であり、加圧条件としては0.5~490Nである。
 突起電極としてバンプを形成する際の材質としては、特に限定されず、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。
 アンダーフィル材としては従来公知の液状又はフィルム状のアンダーフィル材を用いることができる。
 (その他の実施形態)
 フリップチップ接続の態様としては、第2実施形態で説明した突起電極としてのバンプによる接続に限定されず、導電性接着剤組成物による接続や、バンプと導電性接着剤組成物とを組み合わせた突起構造による接続等も採用することができる。なお、本発明では、第1半導体チップの回路面が基板と対向して接続されるフェイスダウン実装となる限り、突起電極や突起構造等の接続様式の相違にかかわらずフリップチップ接続と称することとする。導電性接着剤組成物としては、エポキシ樹脂等の熱硬化性樹脂に金、銀、銅等の導電性フィラーを混合させた従来公知の導電性ペースト等を用いることができる。導電性接着剤組成物を用いる場合、基板への第1半導体チップの搭載後、80~150℃で0.5~10時間程度熱硬化処理することにより第1半導体チップを固定することができる。
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例に過ぎない。
[実施例1]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ200μmの封止樹脂シートAを作製した。
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))       5.6重量%
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
     5.9重量%
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                             0.2重量%
 エラストマー((株)カネカ製、SIBSTAR 072T)          5.0重量%
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454FC、平均粒子径19μm)                          79.9重量%
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                        0.1重量%
 有機系難燃剤((株)伏見製薬所製、FP-100)              3.0重量%
 カーボンブラック(三菱化学(株)製、#20)                0.3重量%
[実施例2]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ200μmの封止樹脂シートBを作製した。
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))       7.0重量%
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
                                       7.4重量%
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                             0.2重量%
 エラストマー((株)カネカ製、SIBSTAR 072T)          6.3重量%
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454FC、平均粒子径19μm)                          74.9重量%
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                        0.1重量%
 有機系難燃剤((株)伏見製薬所製、FP-100)              3.7重量%
 カーボンブラック(三菱化学(株)製、#20)                0.3重量%
[実施例3]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ200μmの封止樹脂シートCを作製した。
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))       8.4重量%
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
                                       8.9重量%
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                             0.3重量%
 エラストマー((株)カネカ製、SIBSTAR 072T)          7.6重量%
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454FC、平均粒子径19μm)                          69.9重量%
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                        0.1重量%
 有機系難燃剤((株)伏見製薬所製、FP-100)              4.5重量%
 カーボンブラック(三菱化学(株)製、#20)                0.3重量%
[比較例1]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ200μmの封止樹脂シートDを作製した。
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))       3.3重量%
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
                                       3.5重量%
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                             0.1重量%
 エラストマー((株)カネカ製、SIBSTAR 072T)          3.0重量%
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454FC、平均粒子径19μm)                          87.9重量%
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                        0.1重量%
 有機系難燃剤((株)伏見製薬所製、FP-100)              1.8重量%
 カーボンブラック(三菱化学(株)製、#20)                0.3重量%
[比較例2]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ200μmの封止樹脂シートEを作製した。
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))      11.3重量%
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
                                      11.9重量%
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                             0.4重量%
 エラストマー((株)カネカ製、SIBSTAR 072T)         10.1重量%
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454FC、平均粒子径19μm)                          59.9重量%
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                        0.1重量%
 有機系難燃剤((株)伏見製薬所製、FP-100)              6.0重量%
 カーボンブラック(三菱化学(株)製、#20)                0.3重量%
 (封止樹脂シートの線膨張率及びガラス転移温度(Tg)の測定)
 線膨張率の測定は、熱機械分析装置((株)リガク社製:形式:TMA8310)を用いて行った。具体的には、各封止樹脂シートを150℃で1時間加熱して熱硬化させ、この硬化物からサンプルサイズを長さ25mm×幅4.9mm×厚さ200μmとして測定試料を得た後、測定試料をフィルム引っ張り測定用治具にセットし、引張荷重4.9mN、昇温速度10℃/minの条件下で測定し、線膨張率を得た。また、同様の測定試料をフィルム引っ張り測定用治具にセットし、-50~300℃の温度域での引張貯蔵弾性率及び損失弾性率を、周波数1Hz、昇温速度10℃/minの条件下で測定し、当該測定におけるtanδ(G”(損失弾性率)/G’(貯蔵弾性率))の値を算出することによりガラス転移温度(Tg)を得た。結果を表1に示す。
 (表面反り量の測定)
 表面反り量の測定用のサンプルとしては、図3に示すように、シリコンチップ2がダイボンドフィルム3を介して基板5上に搭載され、基板5の全面が封止樹脂シート1により樹脂封止された半導体パッケージ10を用いる。
 (表面反り量の測定用の半導体パッケージの作製)
 以下の仕様の半導体チップにダイボンドフィルムを下記ラミネート条件にて貼り合わせた。
 <半導体チップ>
 半導体チップサイズ:35mm□(厚さ200μm(=0.2mm))
 <ダイボンドフィルム>
 フィルムサイズ:35mm□(厚さ25μm)
 メーカー:三菱樹脂株式会社
 製品名:EM-710
 <ラミネート条件>
 ラミネート温度:120℃
 ラミネート速度:1000rpm
 施工数:1回
 別途、以下の仕様の乾燥TF-BGA(Thin Fine-Pitch Ball Grid Array)基板を準備した。
 <TF-BGA基板>
 メーカー:日本サーキット工業
 製品名:TFBGA032T(AUS5)
 基板サイズ:50mm□(厚さ320μm(=0.32mm))
 基板材質:BT Resin、Cu、Ni、Au、ソルダーマスク
 パッド数:225
 パッドピッチ:1000μm
 乾燥条件::150℃×3時間、次いでシリカゲル存在下、常温まで冷却
 次に、上記半導体チップを以下のラミネート条件にて乾燥TF-BGA基板に貼り合わせた後、ダイボンドフィルムを以下の熱処理により硬化させることで半導体チップを基板上に実装した。
 <ラミネート条件>
 ラミネート温度:120℃
 ラミネート速度:1000rpm
 施工数:2回
 <熱硬化条件>
 熱硬化条件:150℃×1時間
 次いで、得られた半導体チップ実装基板の表面を下記条件にてプラズマ処理し、表面改質を行った。
 <プラズマ処理>
 動作ガス:アルゴン
 ガス流量:40cc/min
 出力:100W
 照射時間:1分間
 プラズマ処理後の半導体チップ実装基板上に、以下に示す貼り付け条件下、封止樹脂シートA~Eのそれぞれを真空プレスにより貼付けた。このときの基板、ダイボンドフィルム及び封止樹脂シート(半導体チップが内在)の総厚さは750μmであった。
 <貼り付け条件>
 温度:90℃
 加圧力:1.5MPa
 真空度:25Torr(3333Pa)
 プレス時間:1分
 大気圧に開放した後、熱風乾燥機中、150℃、1時間の条件で封止樹脂シートを熱硬化させた後、25℃で1時間静置することで、熱処理1を経た表面反り量測定用の半導体パッケージを作製した。
 さらに、上記熱処理1を経た半導体パッケージを240℃の雰囲気下へ投入することで、熱処理2の際の表面反り量測定用の半導体パッケージを作製した。
 (封止樹脂シートの表面反り量の測定手順)
 表面反り量測定用のサンプルとして上記熱処理1を経た段階の半導体パッケージ及び熱処理2を経た段階の半導体パッケージを用い、温度可変レーザ三次元測定器((株)ティーテック社製)を用いて封止樹脂シートの表面中央部(図4Aに示す平面視での対角線の交点)の高さ及び表面四隅の高さを測定し、封止樹脂シート表面中央部の高さと表面四隅との差を表面反り量Wとした(図4B及び図4C参照)。具体的には、図4A~図4Cに示すように、封止樹脂シートの2本の対角線に沿って表面を2回スキャニングすることにより各対角線に沿った表面形状を求め、計4点の表面四隅の高さの平均と中央部の高さの差を求めることにより表面反り量Wを算出した。半導体パッケージの表面反り量が許容範囲(-0.6mm以上0.1mm以下)である場合を「○」、反りが該許容範囲外である場合を「×」として評価した。なお、熱処理2に用いた加熱チャンバの上蓋はガラス製であり、これを通してレーザによる240℃雰囲気下での表面反り量の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表1より分かるように、実施例1~3の封止樹脂シートにより作製した半導体パッケージでは樹脂封止時及びはんだリフローに対応する熱処理時の表面反り量がともに小さく、封止樹脂シートの反りが抑制されていることから、これらにより作製した半導体パッケージでは良好な信頼性が得られると考えられる。一方、比較例1では樹脂封止時における表面反り量が大きく、また、比較例2でははんだリフローに対応する熱処理時の反りが大きいことから、比較例1及び2のシートでは、いずれかの要因の影響が大きくなって、得られるパッケージ全体の信頼性が劣ることになると考えられる。
   1、11、21  熱硬化性封止樹脂シート
   2   シリコンチップ
   3、13、23  ダイボンドフィルム
   5、15、25  基板
   6、16、26  バンプ
   10、100  半導体パッケージ
   12  第1半導体チップ
   14、24  ボンディングワイヤー
   22  第2半導体チップ
   21  第1熱硬化性封止樹脂シート
   22  熱硬化性封止樹脂シート
   T  総厚さ
   W  表面反り量
 

Claims (6)

  1.  無機充填剤を70重量%以上80重量%以下の含有量で含み、
     以下の熱処理1及び熱処理2の際の表面反り量がそれぞれ-0.6mm以上0.1mm以下である熱硬化性封止樹脂シート。
     熱処理1:35mm角で厚さ0.2mmのシリコンチップが厚さ25μmのダイボンドフィルムを介して搭載された50mm角で厚さ0.32mmのプリント基板上に、前記熱硬化性封止樹脂シートを貼り合わせ後の総厚さが0.75mmとなるように貼り合わせ、150℃で1時間熱処理して封止体とした後、25℃で1時間静置する。
     熱処理2:前記熱処理1を経た前記封止体をさらに240℃雰囲気下へ投入する。
  2.  150℃で1時間熱処理した後の線膨張率がガラス転移温度以下で15ppm/K以上30ppm/K以下である請求項1に記載の熱硬化性封止樹脂シート。
  3.  前記無機充填剤がシリカ粒子である請求項1又は2に記載の熱硬化性封止樹脂シート。
  4.  前記無機充填剤の平均粒径が0.1μm以上35μm以下である請求項1~3のいずれか1項に記載の熱硬化性封止樹脂シート。
  5.  電子部品が搭載された実装基板を準備する準備工程、
     前記電子部品を覆うように前記実装基板上に請求項1~4のいずれか1項に記載の熱硬化性封止樹脂シートを積層して総厚さ0.75mm以下の積層体を形成する積層体形成工程、及び
     前記熱硬化性封止樹脂シートを熱硬化させる封止工程
     を含む電子部品パッケージの製造方法。
  6.  前記準備工程及び前記積層体形成工程を繰り返して得られる複数の積層体を多段に積層した後、前記封止工程を行う請求項5に記載の電子部品パッケージの製造方法。
PCT/JP2014/060619 2013-04-26 2014-04-14 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法 WO2014175095A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157025361A KR20160002718A (ko) 2013-04-26 2014-04-14 열경화성 밀봉 수지 시트 및 전자 부품 패키지의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-093648 2013-04-26
JP2013093648A JP6018967B2 (ja) 2013-04-26 2013-04-26 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法

Publications (1)

Publication Number Publication Date
WO2014175095A1 true WO2014175095A1 (ja) 2014-10-30

Family

ID=51791674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060619 WO2014175095A1 (ja) 2013-04-26 2014-04-14 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法

Country Status (4)

Country Link
JP (1) JP6018967B2 (ja)
KR (1) KR20160002718A (ja)
TW (1) TWI606925B (ja)
WO (1) WO2014175095A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173609A (ja) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
CN111070626A (zh) * 2019-12-31 2020-04-28 福建连众智惠实业有限公司 一种塑料薄膜退火装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749887B2 (ja) * 2015-02-26 2020-09-02 日立化成株式会社 封止用フィルム及びそれを用いた電子部品装置
TWI601219B (zh) * 2016-08-31 2017-10-01 矽品精密工業股份有限公司 電子封裝件及其製法
KR102446861B1 (ko) 2017-09-21 2022-09-23 삼성전자주식회사 적층 패키지 및 그의 제조 방법
JP6953971B2 (ja) * 2017-10-04 2021-10-27 昭和電工マテリアルズ株式会社 硬化性樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP6953973B2 (ja) * 2017-10-04 2021-10-27 昭和電工マテリアルズ株式会社 硬化性樹脂組成物、電子部品装置及び電子部品装置の製造方法
SG11202002844QA (en) * 2017-10-04 2020-04-29 Hitachi Chemical Co Ltd Curable resin composition, electronic component device, and production method for electronic component device
JP6953972B2 (ja) * 2017-10-04 2021-10-27 昭和電工マテリアルズ株式会社 硬化性樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP7461229B2 (ja) 2020-06-17 2024-04-03 日東電工株式会社 封止用樹脂シート

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055770A (ja) * 2002-07-18 2004-02-19 Fujitsu Ltd 半導体装置の製造方法および半導体装置
JP2004300431A (ja) * 2003-03-17 2004-10-28 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物および半導体装置
JP2010182996A (ja) * 2009-02-09 2010-08-19 Murata Mfg Co Ltd 電子部品の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037229B1 (ko) 2006-04-27 2011-05-25 스미토모 베이클리트 컴퍼니 리미티드 반도체 장치 및 반도체 장치의 제조 방법
TWI342053B (en) * 2007-07-02 2011-05-11 Advanced Semiconductor Eng Thermal process for reducing warpage of package
JP5001903B2 (ja) * 2008-05-28 2012-08-15 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
JP2010118649A (ja) * 2008-10-16 2010-05-27 Hitachi Chem Co Ltd 封止用液状樹脂組成物、及びこれを用いた電子部品装置
JP5272199B2 (ja) * 2010-11-10 2013-08-28 日立化成株式会社 半導体装置の製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055770A (ja) * 2002-07-18 2004-02-19 Fujitsu Ltd 半導体装置の製造方法および半導体装置
JP2004300431A (ja) * 2003-03-17 2004-10-28 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物および半導体装置
JP2010182996A (ja) * 2009-02-09 2010-08-19 Murata Mfg Co Ltd 電子部品の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173609A (ja) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
CN111070626A (zh) * 2019-12-31 2020-04-28 福建连众智惠实业有限公司 一种塑料薄膜退火装置

Also Published As

Publication number Publication date
KR20160002718A (ko) 2016-01-08
TWI606925B (zh) 2017-12-01
JP6018967B2 (ja) 2016-11-02
TW201500197A (zh) 2015-01-01
JP2014216526A (ja) 2014-11-17

Similar Documents

Publication Publication Date Title
JP6018967B2 (ja) 熱硬化性封止樹脂シート及び電子部品パッケージの製造方法
CN108352333B (zh) 半导体用粘接剂、半导体装置以及制造该半导体装置的方法
JP4994743B2 (ja) フィルム状接着剤及びそれを使用する半導体パッケージの製造方法
KR20170113430A (ko) 반도체 장치 및 반도체 장치의 제조 방법
TWI614863B (zh) 膠黏薄膜、半導體裝置的製造方法以及半導體裝置
KR20170035609A (ko) 접착 필름, 반도체 장치의 제조 방법 및 반도체 장치
WO2015060106A1 (ja) 半導体パッケージの製造方法
JP6228734B2 (ja) 電子部品封止用樹脂シート、樹脂封止型半導体装置、及び、樹脂封止型半導体装置の製造方法
JPH10289969A (ja) 半導体装置およびそれに用いる封止用樹脂シート
JP5754072B2 (ja) 粘接着剤組成物、回路部材接続用粘接着剤シート及び半導体装置の製造方法
TW201904007A (zh) 半導體用膜狀接著劑、半導體裝置的製造方法及半導體裝置
JP2017122193A (ja) 半導体用接着剤及び半導体装置の製造方法
JP5585542B2 (ja) 接着フィルムおよびその用途ならびに半導体装置の製造方法
TWI824195B (zh) 切晶黏晶膜與使用其之半導體封裝及其製造方法
KR102012789B1 (ko) 반도체 장치
WO2020196430A1 (ja) 半導体用接着剤、半導体装置の製造方法及び半導体装置
CN111480218A (zh) 半导体装置、半导体装置的制造方法和粘接剂
JP5043494B2 (ja) 封止用熱硬化型接着シート
TW202033708A (zh) 半導體用接著劑、半導體裝置的製造方法及半導體裝置
JP2017171817A (ja) 半導体用接着剤、半導体装置、及び半導体装置の製造方法
JP2009135506A (ja) 接着フィルムおよびその用途ならびに半導体装置の製造方法
TWI834852B (zh) 半導體用接著劑、半導體裝置的製造方法及半導體裝置
TWI838750B (zh) 接著劑用組成物及膜狀接著劑、以及使用膜狀接著劑之半導體封裝及其製造方法
TWI828455B (zh) 接著劑用組成物及膜狀接著劑、以及使用膜狀接著劑之半導體封裝及其製造方法
US20240084172A1 (en) Adhesive composition, film adhesive, and semiconductor package using film adhesive and producing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157025361

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788129

Country of ref document: EP

Kind code of ref document: A1