JP2010177587A - 電子増倍機能内蔵型の固体撮像素子 - Google Patents

電子増倍機能内蔵型の固体撮像素子 Download PDF

Info

Publication number
JP2010177587A
JP2010177587A JP2009020924A JP2009020924A JP2010177587A JP 2010177587 A JP2010177587 A JP 2010177587A JP 2009020924 A JP2009020924 A JP 2009020924A JP 2009020924 A JP2009020924 A JP 2009020924A JP 2010177587 A JP2010177587 A JP 2010177587A
Authority
JP
Japan
Prior art keywords
multiplication
electrode
region
register
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009020924A
Other languages
English (en)
Other versions
JP5243983B2 (ja
Inventor
Hisanori Suzuki
久則 鈴木
Yasuto Yoneda
康人 米田
慎一郎 ▲高▼木
Shinichiro Takagi
Kentaro Maeda
堅太郎 前田
Masaharu Muramatsu
雅治 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009020924A priority Critical patent/JP5243983B2/ja
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to PCT/JP2010/051037 priority patent/WO2010087366A1/ja
Priority to EP10735832A priority patent/EP2264766B1/en
Priority to US12/920,119 priority patent/US8466498B2/en
Priority to KR1020107019015A priority patent/KR101064066B1/ko
Priority to AT10735832T priority patent/ATE557422T1/de
Priority to CN2010800011699A priority patent/CN101960599B/zh
Priority to TW99102723A priority patent/TWI470781B/zh
Publication of JP2010177587A publication Critical patent/JP2010177587A/ja
Application granted granted Critical
Publication of JP5243983B2 publication Critical patent/JP5243983B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/1485Frame transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76816Output structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】増倍電極下のスプリアス電荷による画像信号中のノイズを除去する。
【解決手段】この電子増倍機能内蔵型の固体撮像素子においては、増倍レジスタEMにおける電子転送方向に垂直な断面内において、絶縁層2は、中央領域の厚みよりも、両サイド部の厚みが大きくなっており、N型の半導体領域1Cの中央領域と両サイド部との境界において一対のオーバーフロードレイン1Nが形成され、それぞれのオーバーフロードレイン1Nは、増倍レジスタEMにおける電子転送方向に沿って延びている。オーバーフローゲート電極Gは、絶縁層2の薄い部分から厚い部分にかけて延びており、また、各転送電極8(8A,8B)の長手方向の両端部と絶縁層2との間に介在し、各電極8(8A,8B)に対するシールド電極としても機能している。
【選択図】図8

Description

本発明は、電子増倍機能内蔵型の固体撮像素子に関するものである。
従来、増倍レジスタを有する固体撮像素子が知られている(例えば、下記特許文献1参照)。このような固体撮像素子においては、撮像領域から読み出された電荷を、水平シフトレジスタを介して増倍レジスタに転送している。増倍レジスタは、半導体層上に形成された絶縁層と、絶縁層上に形成された転送電極とを備えているが、ある電極(DC電極)に直流電位を与えて固定した状態で、次段の転送電極(増倍電極)の電位を大きく上昇させると、これらの電極間の電荷転送時において、電子増倍が行われるとされている。下記特許文献1に記載の増倍レジスタでは、増倍電極によってチャネル両側のアイソレーション近傍に発生するスプリアス電荷を抑制するため、アイソレーションと増倍電極との間にシールド電極を配置している。
特表2007−533130号公報
しかしながら、上述の構造の場合、増倍電極下のスプリアス電荷の除去は十分ではなく、画像信号中にノイズが含まれるという問題がある。
本発明は、このような課題に鑑みてなされたものであり、ノイズを十分に除去できる電子増倍機能内蔵型の固体撮像素子を提供することを目的とする。
上述の課題を解決するため、本発明に係る電子増倍機能内蔵型の固体撮像素子は、撮像領域と、撮像領域からの電子を転送する水平シフトレジスタと、水平シフトレジスタからの電子を増倍する増倍レジスタとを備え、増倍レジスタは、半導体領域と、半導体領域上に形成された絶縁層と、絶縁層上に隣接して形成された複数の転送電極と、転送電極間に配置され直流電位が印加されるDC電極と、を備え、増倍レジスタにおける電子転送方向に垂直な断面内において、絶縁層は、中央領域の厚みよりも、両サイド部の厚みが大きくなっており、半導体領域の中央領域と両サイド部との境界において一対のオーバーフロードレインが形成され、それぞれのオーバーフロードレインは、増倍レジスタにおける電子転送方向に沿って延びていることを特徴とする。
増倍レジスタにおいては、DC電極直下の半導体領域から電子を、特定の転送電極(増倍電極)に大きな電圧をかけて、この直下の半導体領域に引きつけて増倍する。また、電子走行の両サイド部の絶縁層の厚みは大きく、このような絶縁層(局所酸化膜(LOCOS))は、電子の走行領域や不純物の添加領域を制御するのに有効である。その一方で、大きな電圧が印加される増倍電極により形成される電界によって、かかる絶縁層における厚みの大きな箇所(両サイド部)と、小さな箇所(中央領域)との境界(バーズビーク)、或いはその外側の絶縁層の直下における半導体領域内において、スプリアス電荷が発生することが判明した。
そこで、本発明では、かかる境界において一対のオーバーフロードレインを形成し、それぞれのオーバーフロードレインが、増倍レジスタにおける電子転送方向に沿って延びていることとした。これにより、発生したスプリアス電荷をオーバーフロードレインが吸収することができるため、ノイズ成分の少ない電子増倍が可能となる。
また、本発明に係る電子増倍機能内蔵型の固体撮像素子は、DC電極の次段に位置する転送電極を増倍電極とし、増倍電極及びオーバーフロードレインから絶縁され、且つ、増倍電極とオーバーフロードレインとの間に介在するオーバーフローゲート電極を更に備えることができる。増倍レジスタ内の過剰電子は、ブルーミングに似た現象を生じさせるため、これがノイズとして機能し、好ましくない。
そこで、本発明では、オーバーフローゲート電極に与えるバイアス電位を制御することによって、増倍レジスタ内に存在する過剰電子を、オーバーフロードレイン内に導くことも可能である。また、オーバーフロードレインの外側に位置する絶縁層の厚い部分の直下の領域で発生したノイズ電荷が、増倍レジスタの電子走行領域に流入するのを抑制することもできる。これにより、ノイズ成分の少ない電子増倍が可能となる。
もちろん、オーバーフローゲート電極の代わりに、適当なポテンシャル障壁領域を半導体領域内に形成しておくことで、かかるポテンシャル障壁領域を超えた過剰電子を、オーバーフロードレイン内に流すことができる。
すなわち、本発明に係る電子増倍機能内蔵型の固体撮像素子は、オーバーフロードレインと半導体領域との間に、半導体領域からオーバーフロードレインへの電子の流入を阻害するポテンシャル障壁領域を備えることができる。この構造の場合、オーバーフローゲートを形成しない場合においても、電子走行領域から、ポテンシャル障壁領域を超えた過剰電子を、オーバーフロードレインに流すことができる。これにより、ノイズ成分の少ない電子増倍が可能となる。また、ポテンシャル障壁領域は、オーバーフロードレインの外側に位置する絶縁層の厚い部分の直下の領域で発生したノイズ電荷が、増倍レジスタの電子走行領域に流入するのを抑制することもできる。
また、上記半導体領域はN型半導体からなり、ポテンシャル障壁領域は、半導体領域よりも低濃度のN型半導体からなり、オーバーフロードレインは、半導体領域よりも高濃度のN型半導体からなることが好ましい。この場合、低濃度のN型半導体が、上記ポテンシャル障壁領域として機能するため、ノイズ成分の少ない電子増倍が可能となる。
本発明の電子増倍機能内蔵型の固体撮像素子によれば、ノイズ成分の少ない電子増倍が可能となる。
固体撮像素子の平面図である。 図1に示した固体撮像素子のII−II矢印断面図である。 図1に示した固体撮像素子のIII−III矢印断面図である。 固体撮像素子の詳細な接続関係を示す平面図である。 図4に示した固体撮像素子のV−V矢印断面図である。 駆動/読出回路と固体撮像素子の接続関係を示すブロック図である。 増倍レジスタにおけるポテンシャル図である。 第1形態に係る増倍レジスタの斜視図である。 増倍レジスタの平面図である。 図8に示した増倍レジスタのX−X矢印断面図である。 第2形態に係る増倍レジスタの斜視図である。 増倍レジスタの平面図である。 図11に示した増倍レジスタのXIII−XIII矢印断面図である。
以下、実施の形態に係る電子増倍機能内蔵型の固体撮像素子について説明する。なお、同一要素には同一符号を用いることとし、重複する説明は省略する。
図1は裏面入射型の固体撮像素子100の平面図である。
半導体基板上には絶縁層2が形成されており、絶縁層2の表面上には複数の垂直電荷転送電極が形成され、これらは垂直シフトレジスタを構成している。垂直シフトレジスタの形成された領域は撮像領域VRであって、本例の場合はCCD撮像領域である。なお、撮像領域VRは、MOS型のイメージセンサから構成してもよい。
撮像領域VRの一辺には、水平シフトレジスタHRが隣接して設けられており、水平シフトレジスタHRから増倍レジスタEMに至る電荷転送経路内には、コーナーレジスタCRが配置されている。コーナーレジスタCRの構造は、水平シフトレジスタHRと同一であるが、電荷転送方向が円弧を描くように曲がっている。増倍レジスタEMの出力端には、アンプAMPが電気的に接続されており、アンプAMPの出力端子OSから取得された画像信号が画素ごとに順次読み出される。
絶縁層2が形成された半導体基板の裏面側の中央部は、矩形状にエッチングされており、凹部DPが形成されている。凹部DPの形成された側は、基板の裏面であり、イメージは固体撮像素子の裏面側に入射する。
図2は、図1に示した固体撮像素子のII−II矢印断面図である。
固体撮像素子100は、P型の半導体基板1Aと、半導体基板1A上に成長したP型のエピタキシャル層1Bと、エピタキシャル層1B内に形成された撮像領域VRと、エピタキシャル層1B内に形成されたN型の半導体領域1Cを有しており、埋め込みチャネル型のCCDが構成されている。光像hνは、基板裏面側から入射する。半導体基板1Aは裏面側からエッチングされ、凹部DPを構成している。なお、半導体基板1A、エピタキシャル層1B及び半導体領域1Cを含んだ全体を半導体基板1とする。半導体基板1上に絶縁層2が形成され、絶縁層2上に転送電極3が設けられている。エピタキシャル層1Bの一部にはP型のコンタクト領域1Gが形成されており、コンタクト領域1Gには電極E1が設けられている。電極E1にグランド電位などの基準電位を与えると、P型の半導体基板1Aとエピタキシャル層1Bの電位が決定される。
撮像領域VRにおいて、転送される電子は、図2の紙面に垂直な方向に進行する。なお、N型の半導体領域内には、電荷転送方向に沿って延びた複数のP型半導体領域からなるアイソレーションIS(図4参照)が形成され、垂直シフトレジスタの各チャネルを画成しているが、説明の簡略化のため、同図ではアイソレーションを示していない。
図3は、図1に示した固体撮像素子のIII−III矢印断面図である。
撮像領域VRに設けられた転送電極3A、3Bは交互に配置されており、これらは一部領域が重なっているが、隣接する転送電極3A,3B間には絶縁層5が介在し、電気的に分離されている。撮像領域VRからの信号は水平シフトレジスタHRによって、コーナーレジスタCRを介して、増倍レジスタEMに転送される。また、水平シフトレジスタHRの隣には、増倍レジスタEM(同図では電極群をのみをEMとして模式的に示している)が位置している。
半導体基板1は凹部DPの形成された薄板部と、その周囲の厚板部からなる。厚板部においては、光の入射によって内部で発生したキャリアは、表面側に到達する前に消滅する。特に、半導体基板1AのP型不純物濃度は、エピタキシャル層1Bよりも十分に高濃度であるので、キャリアの走行距離も短くなる。水平シフトレジスタHR、コーナーレジスタCR(図1参照)及び増倍レジスタEMは、少なくとも薄板部よりも外側の領域に形成され、好ましくは厚板部の領域に形成されている。したがって、厚板部において発生したキャリアが、これらのレジスタ内に混入することはない。
図4は、固体撮像素子の詳細な接続関係を示す平面図である。
撮像領域VRは、垂直方向に沿って交互に配置された垂直転送電極3A,3Bを備えている。各転送電極3A,3Bは水平方向に延びており、隣接するもの同士は若干重なっている。本例においては、転送電極3には、3相の駆動電圧(P1V,P2V,P3V)が与えられている。この駆動電圧の印加により、転送電極直下に蓄積された電子が、垂直方向に転送される。なお、同図においては、FFT(フル・フレーム・トランスファー)方式のCCDが示されているが、これは蓄積領域を更に含むFT(フレーム・トランスファー)方式のCCD、或いは、IT(インターライン・トランスファー)方式のCCDに置換することもできる。
撮像領域VRには、各垂直電荷転送チャネルCH1〜CH10を分離するためのP型のアイソレーションISが形成されている。撮像領域VRを構成するチャネルCH1〜CH10において光の入射に応答して発生した電荷は、垂直方向へ転送され、チャネル毎に水平シフトレジスタHRの各転送電極6の直下に流れ込む。
なお、撮像領域VRと水平シフトレジスタHRとの間には、ゲート電圧TGが与えられる転送電極(トランスファーゲート)が設けられており、ゲート電圧TGを制御することで、撮像領域VRから水平シフトレジスタHRに流れ込む電荷量を制御することができる。
水平シフトレジスタHRを構成している転送電極6A,6Bは、水平方向に沿って交互に配置され、一部分が重なっている。なお、いずれのレジスタにおいても、隣接する転送電極3A、3B、6A,6B、7A,7B、8A,8B間には、絶縁層2の上に形成された絶縁層5(図5参照)が介在しており、これらは電気的に分離されている。転送電極6には、3相の駆動電圧(P1HA,P2HA,P3HA)が与えられ、転送電極6の直下の電子は、水平方向に転送される。水平シフトレジスタHRには、円弧状に曲がったコーナーレジスタCRが連続している。コーナーレジスタCRを構成している転送電極7A,7Bは、円弧に沿って交互に配置され、一部分が重なっている。転送電極7には、水平シフトレジスタに与えられるものと共通の3相の駆動電圧(P1HA,P2HA,P3HA)が与えられ、転送電極7の直下の電子は、円弧に沿って、増倍レジスタEMまで転送される。
増倍レジスタEMでは、転送電極8A,8Bを水平方向に沿って交互に配置しており、一部分が重なっている。転送電極8には、3相の駆動電圧(P1HB,P2HB,P3HB)が与えられ、転送電極8の直下の電子は、水平方向に転送される。4つ組の転送電極8のうち、3つの転送電極8には駆動電圧が与えられるが、残りの1つの転送電極8は、DC電極であって直流電位DCBが与えられる。本例では、水平方向に順次隣接する4つ組の転送電極8、すなわち、第1番目、第2番目、第3番目、第4番目の転送電極8がある場合、2番目に位置するものをDC電極として、これに直流電位DCBを与える。
転送電極8に与えられる電位は正電位であるが、第1番目の転送電極8に適当な正電位(P1HB)を印加し、ポテンシャル井戸を深くし(電位を上げる:図7参照)、この井戸内に電子を蓄積しておく。第3番目の転送電極8にも大きな正電位(P2HBの最大値>P2HAの最大値)を与え、ポテンシャル井戸を深くしておき、第2番目の転送電極8に与えられる一定の電位(DCB)は、これらの電位(P1HB,P2HB)よりも低く、第1番目と第3番目の井戸の間にポテンシャル障壁を形成する。この状態で、第1番目のポテンシャル井戸を浅くしていくと(電位を下げる;図7参照)、ポテンシャル井戸から溢れた電子が、ポテンシャル障壁を越えて、第3番目の転送電極のポテンシャル井戸(ポテンシャル深さΦA)内に落ちる。この電子の落下の際、電子増倍が行われる。第1番目のポテンシャルの電位は、更に下げて(上方向)、蓄積された電子が完全に第3番目のポテンシャル井戸に転送されるようにする。なお、ポテンシャルΦの向きは下向きが正である。
この増倍された電子は、第4番目の転送電極8の直下のポテンシャル井戸を深くしながら、第3番目の転送電極8の直下のポテンシャル井戸を浅くすることで、第4番目のポテンシャル井戸に移動させることができる。同様に、第4番目のポテンシャル井戸に蓄積された電子は、第3番目から第4番目の電荷転送を行った方法と同じ方法を用いて、次の組の第1番目のポテンシャル井戸に移動させ、蓄積される。以下、上記と同一の手法を用いて、次の組においても、増倍・転送工程を繰り返す。なお、本例では、電荷転送には、3相駆動が用いられているが、これは4相駆動としたり、2相駆動とすることも可能である。
増倍された電子は、最終的に高濃度のN型半導体領域FDに流れ込む。半導体領域FDは、アンプAMPに接続されている。このアンプAMPは半導体基板1内に作りこまれたフローティング・ディフュージョン・アンプである。
図5は、図4に示した固体撮像素子のV−V矢印断面図である。なお、図6は、駆動/読出回路200と固体撮像素子100の接続関係を示すブロック図である。駆動/読出回路200から、各種の信号が固体撮像素子100に与えられる。なお、電荷読出部の説明においては、便宜上、各要素と信号は同一符号を用いることとする。
まず、信号読出部の構成について説明する。信号読出部の半導体領域FDには、アンプAMPが接続されている。半導体領域FD内の電荷量に応じて、トランジスタQBのゲート電位が変動し、これに応じて、出力ドレインODからトランジスタQBを介して抵抗Rを流れる電流量が変化する。すなわち、半導体領域FDに蓄積された電荷量に応じて、抵抗Rの両端値の電圧(出力電圧)OSが変化し、これが読み出されることとなる。
1つの画素からの電荷が読み出された後、リセットゲートRGにリセット電圧RGが入力され、リセットドレインRDを介して半導体領域FDの電位がリセットされる。ここで、リセットドレインRDのポテンシャルは正であるため、リセット時には、電子を蓄積可能なポテンシャル井戸が半導体領域FD内に形成される。リセット後には、リセットゲートRGの電位を制御して、トランジスタQAをオフし、半導体領域FDの電位をフローティングレベルにしておく。
なお、半導体領域FD内に電荷を流入させる前は、手前の信号ゲートSGの電位を上げて、ここに電荷を蓄積し、且つ、出力ゲートOGの電位は固定して、信号ゲートSGの直下領域から半導体領域FD内に電荷が流れ込まないように障壁を形成しておく。その後、出力ゲートOGの電位は固定したまま、信号ゲートSGの電位を下げれば、信号ゲートSGの直下に蓄積された電荷が、半導体領域FD内に流れ込む。
次に、増倍レジスタEMについて説明する。増倍レジスタEMは、水平シフトレジスタHRからの電子を増倍する。
エピタキシャル層は、結晶性に優れていることで知られている。したがって、P型のエピタキシャル層1BにN型の半導体領域を1C形成した場合、垂直シフトレジスタ、水平シフトレジスタHR、及びコーナーレジスタCRにおける電子は、結晶性の優れた半導体内において転送され、ノイズが少なくなり、電子転送が高精度に行われる。このように転送された電子は、増倍レジスタEMの半導体領域1C内に入る。
増倍レジスタEMは、N型の半導体領域1Cと、半導体領域1C上に形成された絶縁層2と、絶縁層2上に隣接して形成された複数の転送電極8と、転送電極8間に配置され直流電位DCB(図4及び図7参照)が印加されるDC電極8とを備えている。なお、エピタキシャル層1Bは基板全面に形成されているが、N型の半導体領域1Cは、撮像領域VR、水平シフトレジスタHR、コーナーレジスタCR、増倍レジスタEMの形成された領域のみに選択的に形成されている。
図7は、増倍レジスタEMにおけるポテンシャル図である。
上記構造の場合、同図に示すように、増倍レジスタEMにおける転送電極8の直下の半導体領域内の電位変化が急峻になり、電子増倍率が著しく向上する。すなわち、直流電位DCBが印加されるDC電極8と、電位P2HBが与えられる次段の転送電極(増倍電極)8との間における、N型の半導体領域1C内の電位変化が急峻になり、顕著に電子増倍が行われる。
直流電位DCBが与えられる第2番目のポテンシャルを超えて、第1番目のポテンシャル井戸(電位P1HB)から、第3番目のポテンシャル井戸(電位PH2B)に電子が流れ込む際に、電子増倍が行われる。
図8は第1形態に係る増倍レジスタEMの斜視図、図9は増倍レジスタの平面図、図10は図8に示した増倍レジスタEMのX−X矢印断面図である。
上述のように、この電子増倍機能内蔵型の固体撮像素子は、撮像領域VRと、撮像領域VRからの電子を転送する水平シフトレジスタHRと、水平シフトレジスタHRからの電子を増倍する増倍レジスタEMとを備えている。増倍レジスタEMは、N型の半導体領域1Cと、半導体領域1C上に形成された絶縁層2と、絶縁層2上に隣接して形成された複数の転送電極8と、転送電極8間に配置され直流電位が印加されるDC電極8(DCBが印加される電極)とを備えている。なお、DC電極8(DCB)の次段に位置する転送電極を増倍電極8(P2HB)としている。隣接する電極8は、一部分が重なっているが、これらの間には絶縁層が介在しており、電気的には分離されている。
ここで、増倍レジスタEMにおける電子転送方向に垂直な断面(図10)内において、絶縁層2は、中央領域の厚みよりも、両サイド部の厚みが大きくなっており、半導体領域1Cの上記中央領域と上記両サイド部との境界において一対のオーバーフロードレイン1Nが形成されている。両サイド部の絶縁層2は、局所酸化膜(LOCOS)である。そして、それぞれのオーバーフロードレイン1Nは、増倍レジスタEMにおける電子転送方向(各転送電極8の長手方向と厚み方向の双方に垂直な方向)に沿って延びている。絶縁層2の中央領域は薄いため、この絶縁層2を介して不純物のイオン注入や拡散を行って半導体領域1Cを形成することもできるが、もちろん中央領域の絶縁層2の形成前に不純物を添加してもよい。
個々のオーバーフロードレイン1Nは、絶縁層2における一対の上記境界にそれぞれ接触している。絶縁層2の厚い部分の直下には、高濃度のP型半導体からなるアイソレーション(チャネルストップ)CSが形成されている。アイソレーションCSは、電子転送方向に沿って延びており、その不純物濃度はエピタキシャル層1Bの不純物濃度よりも高い。また、個々のオーバーフロードレイン1Nは、P型のアイソレーションCSとN型の半導体領域1Cとの間に形成されている。
駆動信号P1HB、DCB、P2HB、P3HBがそれぞれ印加される電極8(8A,8B)は、それぞれ、コンタクト電極H1,HD,H2,H3を介して、配線L1,LD,L2,L3に電気的に接続されている。したがって、配線L1,LD,L2,L3に、駆動信号P1HB、DCB、P2HB、P3HBをそれぞれ与えれば、各電極8に所望のバイアス電位を与えることができる。配線L1,LD,L2,L3は、それぞれ、電子転送方向に沿って延びており、絶縁層2の厚い部分上、かつ、配線L1,LD,L2,L3の上に位置している。
増倍レジスタEMにおいては、DC電極8(DCBが与えられる電極)直下の半導体領域2のポテンシャルに対して、特定の転送電極(増倍電極)8(P2HBが与えられる電極)に大きな電圧をかけて、この直下の半導体領域2のポテンシャルを深くして、電子を増倍している。
また、電子走行の両サイド部の絶縁層2の厚みは大きく、半導体表面を内部に押し下げるように形成されているので、絶縁層2の厚い部分は、アイソレーションCSと協働して、電子の走行領域を、絶縁層2の中央領域(薄い領域)の直下に制限するように機能している。また、絶縁層2の厚い部分が、N型不純物の添加の際には、マスクとして機能し、不純物の添加領域を制御するのにも有効である。
大きな電圧が印加される増倍電極8により形成される電界によって、絶縁層2における厚みの大きな箇所(両サイド部)と、小さな箇所(中央領域)との境界(バーズビーク)、或いはその外側の絶縁層2の直下における半導体領域1C,CS内において、スプリアス電荷が発生する。この境界には、一対のオーバーフロードレイン1Nが形成されている。それぞれのオーバーフロードレイン1Nは、増倍レジスタEMにおける電子転送方向に沿って延びているので、発生したスプリアス電荷をオーバーフロードレイン1Nが吸収することができる。したがって、この増倍レジスタEMでは、ノイズ成分の少ない電子増倍が可能となる。
また、本例の増倍レジスタEMは、オーバーフローゲート電極Gを更に備えている。オーバーフローゲート電極Gは、増倍電極8及びオーバーフロードレイン1Nから絶縁されており、且つ、増倍電極8とオーバーフロードレイン1Nとの間に介在している。詳説すれば、オーバーフローゲート電極Gは、絶縁層2の薄い部分から厚い部分にかけて延びており、また、各転送電極8(8A,8B)の長手方向の両端部と絶縁層2との間に介在し、各電極8(8A,8B)に対するシールド電極としても機能している。オーバーフローゲート電極Gと全ての電極8(8A,8B)との間には図示しない絶縁層が介在している。なお、一対のオーバーフローゲート電極Gは、電子転送方向に沿って延びている。増倍レジスタ8内の過剰電子は、ブルーミングに似た現象を生じさせるため、これがノイズとして機能し、好ましくない。
本例では、オーバーフローゲート電極Gに与えるバイアス電位を制御することによって、増倍レジスタEM内に存在する過剰電子を、オーバーフロードレイン1N内に導くことも可能である。オーバーフローゲート電極Gにオーバーフロードレインに対して正となる電位を与えると、オーバーフローゲート電極Gの下のポテンシャル障壁が低くなって、オーバーフロードレイン1N内に過剰電子が流入しやすくなる。また、オーバーフロードレイン1Nの外側に位置する絶縁層2の厚い部分の直下の領域で発生したノイズ電荷が、オーバーフローゲート電極Gに与えられた正電位で低くなったポテンシャル障壁を乗り越えやすくなって、オーバーフロードレイン1N内に排出されると、増倍レジスタEMの電子走行領域(中央領域)に流入するのを抑制することもできる。これにより、ノイズ成分の少ない電子増倍が可能となる。
なお、電子の転送時において、オーバーフローゲート電極Gにオーバーフロードレインに対して負となる電位を与えると、そのポテンシャル障壁が高くなって、電子走行領域内に電子が、オーバーフロードレイン1N内には流れ込まない。アイソレーションCSからの不要電荷の電子走行領域内への流入も抑制することができる。閾値よりも小さな電荷量の転送を行う場合には、このような使用形態も可能である。すなわち、オーバーフローゲート電極Gには必要な時にだけオーバーフロードレインに対して正となる電位を与えることで、オーバーフロードレイン1Nに過剰電子やノイズ電荷を排出することができる。
図11は第2形態に係る増倍レジスタEMの斜視図、図12は増倍レジスタEMの平面図、図13は図11に示した増倍レジスタEMのXIII−XIII矢印断面図である。
第2形態の増倍レジスタEMは、第1形態と比較して、オーバーフローゲートGが無い点と、オーバーフロードレイン1Nの外側を囲むように、ポテンシャル障壁領域1nが形成されている点である。その他の構成は、第1形態と同一である。
ポテンシャル障壁領域1nは、オーバーフロードレイン1Nと半導体領域1C、1B,CSとの間に設けられており、半導体領域1C、1B,CSからオーバーフロードレイン1Nへの電子の流入を阻害している。半導体領域1CはN型半導体1Cからなるが、ポテンシャル障壁領域1nは、半導体領域1Cよりも低濃度のN型半導体からなり、オーバーフロードレイン1Nは、半導体領域1Cよりも高濃度のN型半導体からなっている。この場合、低濃度のN型半導体は、これよりも高濃度の半導体領域1Cから見ると、電子に対してはポテンシャル障壁として機能する。すなわち、このポテンシャル障壁によって、電子走行領域内に電子が、オーバーフロードレイン1N内には流れ込まない。
この構造の場合、オーバーフローゲートを形成しない場合においても、電子走行領域から、ポテンシャル障壁領域1nを超えた過剰電子を、オーバーフロードレイン1Nに流すことができる。オーバーフローゲートがないため、その製造は簡略化される。また、この障壁によって、上記境界で発生した電荷は電子走行領域内には流れにくくなる。これにより、ノイズ成分の少ない電子増倍が可能となる。また、ポテンシャル障壁領域は、オーバーフロードレイン1Nの外側に位置する絶縁層2の厚い部分の直下の領域で発生したノイズ電荷が、増倍レジスタEMの電子走行領域に流入するのを抑制することもできる。なお、上述のN型の半導体領域1Cが存在することで、埋め込みチャネル型のCCDが構成されているが、これを省略すると、表面チャネル型のCCDを形成することができる。
なお、上述の半導体の材料はSiであるが、各実施形態における半導体層内のP型の不純物濃度C及びN型の不純物濃度Cの範囲は、以下の場合が好適である。なお、P型エピタキシャル層1Bの面抵抗は撮像領域VRにおける光感度が高くなるように設定されている。
・P型半導体基板1Aの不純物濃度C(1A)=1×1017〜1×1019/cm
・P型エピタキシャル層1Bの不純物濃度C(1B)=1×1011〜1×1016/cm
・N型半導体領域1Cの不純物濃度C(1C)=1×1012〜1×1017/cm
・オーバーフロードレイン1Nの不純物濃度C(1N)=1×1017〜1×1020/cm
・ポテンシャル障壁1nの不純物濃度C(1n)=1×1011〜1×1017/cm
ここで、不純物濃度Cは以下の関係を満たしている。
・C(1A)>C(1C)>C(1B)
ここで、P型半導体基板1Aの厚みt(1A)、P型エピタキシャル層1Bの厚みt(1B)、N型半導体領域1Cの厚みt(1C)は、以下の関係を満たしている。
・t(1A)>t(1B)>t(1C)
なお、上述の形態は、半導体基板をエッチングすることなく、表面入射型の固体撮像素子に適用することも可能である。
本発明は、高性能な電子増倍を行うことで、微弱な光像を撮像することが可能な電子増倍機能内蔵型の固体撮像素子に適用することができる。
1A…半導体基板、1B…エピタキシャル層、VR…撮像領域、1C…N型の半導体領域、HR…水平シフトレジスタ、EM…増倍レジスタ。

Claims (4)

  1. 撮像領域と、
    前記撮像領域からの電子を転送する水平シフトレジスタと、
    前記水平シフトレジスタからの電子を増倍する増倍レジスタと、
    を備え、
    前記増倍レジスタは、
    半導体領域と、
    前記半導体領域上に形成された絶縁層と、
    前記絶縁層上に隣接して形成された複数の転送電極と、
    前記転送電極間に配置され直流電位が印加されるDC電極と、
    を備え、
    前記増倍レジスタにおける電子転送方向に垂直な断面内において、前記絶縁層は、中央領域の厚みよりも、両サイド部の厚みが大きくなっており、前記半導体領域の前記中央領域と前記両サイド部との境界において一対のオーバーフロードレインが形成され、
    それぞれの前記オーバーフロードレインは、前記増倍レジスタにおける電子転送方向に沿って延びている、
    ことを特徴とする電子増倍機能内蔵型の固体撮像素子。
  2. 前記DC電極の次段に位置する前記転送電極を増倍電極とし、前記増倍電極及び前記オーバーフロードレインから絶縁され、且つ、前記増倍電極と前記オーバーフロードレインとの間に介在するオーバーフローゲート電極を更に備える、
    ことを特徴とする請求項1に記載の電子増倍機能内蔵型の固体撮像素子。
  3. 前記オーバーフロードレインと前記半導体領域との間に、前記半導体領域から前記オーバーフロードレインへの電子の流入を阻害するポテンシャル障壁領域を備えている、
    ことを特徴とする請求項1に記載の電子増倍機能内蔵型の固体撮像素子。
  4. 前記半導体領域はN型半導体からなり、
    前記ポテンシャル障壁領域は、前記半導体領域よりも低濃度のN型半導体からなり、
    前記オーバーフロードレインは、前記半導体領域よりも高濃度のN型半導体からなる、
    ことを特徴とする請求項3に記載の電子増倍機能内蔵型の固体撮像素子。




JP2009020924A 2009-01-30 2009-01-30 電子増倍機能内蔵型の固体撮像素子 Active JP5243983B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009020924A JP5243983B2 (ja) 2009-01-30 2009-01-30 電子増倍機能内蔵型の固体撮像素子
EP10735832A EP2264766B1 (en) 2009-01-30 2010-01-27 Solid-state image sensing device containing electron multiplication function
US12/920,119 US8466498B2 (en) 2009-01-30 2010-01-27 Solid state image device having a pair of overflow drains extends along the electron transfer direction at a boundary between channel region and channel stop isolation regions of the multiplication register
KR1020107019015A KR101064066B1 (ko) 2009-01-30 2010-01-27 전자 증배 기능 내장형의 고체 촬상 소자
PCT/JP2010/051037 WO2010087366A1 (ja) 2009-01-30 2010-01-27 電子増倍機能内蔵型の固体撮像素子
AT10735832T ATE557422T1 (de) 2009-01-30 2010-01-27 Festkörper-bilderfassungsgerät mit elektronenmultiplikationsfunktion
CN2010800011699A CN101960599B (zh) 2009-01-30 2010-01-27 内建电子倍增功能型的固体摄像元件
TW99102723A TWI470781B (zh) 2009-01-30 2010-01-29 Built-in electronic multiplier functional type of solid-state imaging components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020924A JP5243983B2 (ja) 2009-01-30 2009-01-30 電子増倍機能内蔵型の固体撮像素子

Publications (2)

Publication Number Publication Date
JP2010177587A true JP2010177587A (ja) 2010-08-12
JP5243983B2 JP5243983B2 (ja) 2013-07-24

Family

ID=42395625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020924A Active JP5243983B2 (ja) 2009-01-30 2009-01-30 電子増倍機能内蔵型の固体撮像素子

Country Status (8)

Country Link
US (1) US8466498B2 (ja)
EP (1) EP2264766B1 (ja)
JP (1) JP5243983B2 (ja)
KR (1) KR101064066B1 (ja)
CN (1) CN101960599B (ja)
AT (1) ATE557422T1 (ja)
TW (1) TWI470781B (ja)
WO (1) WO2010087366A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093562A (ja) * 2011-09-26 2013-05-16 Parkes Christopher 枯渇型電荷増倍ccd画像センサ
WO2022123903A1 (ja) * 2020-12-07 2022-06-16 浜松ホトニクス株式会社 光電変換装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330001B2 (ja) * 2009-01-30 2013-10-30 浜松ホトニクス株式会社 固体撮像装置
CN105611197B (zh) * 2015-12-23 2018-08-17 中国科学院长春光学精密机械与物理研究所 无抗溢出功能帧转移ccd的抗饱和读出方法
JP6991981B2 (ja) 2016-02-24 2022-01-13 マジック リープ, インコーポレイテッド 光エミッタのための薄型相互接続子
CN109788901B (zh) 2016-07-25 2024-01-02 奇跃公司 光场处理器系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325720A (ja) * 2001-04-27 2002-11-12 Fuji Photo Film Co Ltd 内視鏡装置
JP2003051510A (ja) * 2001-06-04 2003-02-21 Isetex Inc 電荷領域内に対数ダイナミック・レンジ圧縮を実現する電荷増倍器
JP2003086782A (ja) * 2001-08-31 2003-03-20 Eastman Kodak Co 破壊電圧を高めたccdデバイスの横型オーバーフロードレイン及びブルーミング防止構造

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984575A (ja) * 1982-11-08 1984-05-16 Hitachi Ltd 固体撮像素子
US4679212A (en) * 1984-07-31 1987-07-07 Texas Instruments Incorporated Method and apparatus for using surface trap recombination in solid state imaging devices
JPS61198676A (ja) * 1985-02-27 1986-09-03 Nec Corp 半導体集積回路装置
JPH0728031B2 (ja) * 1989-02-11 1995-03-29 日本電気株式会社 電荷転送装置
JPH03252163A (ja) * 1990-02-28 1991-11-11 Mitsubishi Electric Corp Ccd撮像装置
KR100298039B1 (ko) 1991-07-11 2001-10-24 윌리엄 비. 켐플러 전하증배장치및그제조방법
JPH05335549A (ja) 1992-06-01 1993-12-17 Matsushita Electric Ind Co Ltd 固体撮像装置およびその駆動方法
JP2914496B2 (ja) * 1996-12-05 1999-06-28 日本電気株式会社 固体撮像素子
GB2323471B (en) 1997-03-22 2002-04-17 Eev Ltd CCd imagers
US6278142B1 (en) 1999-08-30 2001-08-21 Isetex, Inc Semiconductor image intensifier
US6693671B1 (en) * 2000-03-22 2004-02-17 Eastman Kodak Company Fast-dump structure for full-frame image sensors with lod antiblooming structures
JP5026641B2 (ja) 2000-04-28 2012-09-12 テキサス インスツルメンツ インコーポレイテッド 固体撮像センサ
US7420605B2 (en) 2001-01-18 2008-09-02 E2V Technologies (Uk) Limited Solid state imager arrangements
US6608337B2 (en) * 2001-04-12 2003-08-19 Ise Tex, Inc Image sensor with an enhanced near infra-red spectral response and method of making
JP3689866B2 (ja) 2002-05-30 2005-08-31 日本テキサス・インスツルメンツ株式会社 Cmd及びcmd搭載ccd装置
JP4289872B2 (ja) * 2002-11-15 2009-07-01 三洋電機株式会社 固体撮像素子及びその駆動方法
US20050029553A1 (en) 2003-08-04 2005-02-10 Jaroslav Hynecek Clocked barrier virtual phase charge coupled device image sensor
GB2413007A (en) 2004-04-07 2005-10-12 E2V Tech Uk Ltd Multiplication register for amplifying signal charge
GB2424758A (en) 2005-03-31 2006-10-04 E2V Tech CCD device
GB2431538B (en) 2005-10-24 2010-12-22 E2V Tech CCD device
US20080007622A1 (en) * 2006-06-08 2008-01-10 Eastman Kodak Company Method of improving solid-state image sensor sensitivity
JP5270392B2 (ja) * 2009-01-30 2013-08-21 浜松ホトニクス株式会社 固体撮像装置
US8294802B2 (en) * 2009-10-30 2012-10-23 Truesense Imaging, Inc. CCD image sensors having multiple lateral overflow drain regions for a horizontal shift register

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325720A (ja) * 2001-04-27 2002-11-12 Fuji Photo Film Co Ltd 内視鏡装置
JP2003051510A (ja) * 2001-06-04 2003-02-21 Isetex Inc 電荷領域内に対数ダイナミック・レンジ圧縮を実現する電荷増倍器
JP2003086782A (ja) * 2001-08-31 2003-03-20 Eastman Kodak Co 破壊電圧を高めたccdデバイスの横型オーバーフロードレイン及びブルーミング防止構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093562A (ja) * 2011-09-26 2013-05-16 Parkes Christopher 枯渇型電荷増倍ccd画像センサ
WO2022123903A1 (ja) * 2020-12-07 2022-06-16 浜松ホトニクス株式会社 光電変換装置

Also Published As

Publication number Publication date
CN101960599A (zh) 2011-01-26
EP2264766A4 (en) 2011-03-09
EP2264766A1 (en) 2010-12-22
US20110186913A1 (en) 2011-08-04
ATE557422T1 (de) 2012-05-15
TWI470781B (zh) 2015-01-21
EP2264766B1 (en) 2012-05-09
US8466498B2 (en) 2013-06-18
JP5243983B2 (ja) 2013-07-24
KR101064066B1 (ko) 2011-09-08
WO2010087366A1 (ja) 2010-08-05
CN101960599B (zh) 2012-11-07
KR20100107061A (ko) 2010-10-04
TW201103140A (en) 2011-01-16

Similar Documents

Publication Publication Date Title
JP5537523B2 (ja) 固体撮像装置
US7235826B2 (en) Solid-state image pickup device
US20070052056A1 (en) Solid-state imaging device and method of manufacturing same
KR101159032B1 (ko) 고체 촬상 소자
JP6406585B2 (ja) 撮像装置
JP4751865B2 (ja) 裏面照射型固体撮像素子及びその製造方法
JP5243984B2 (ja) 電子増倍機能内蔵型の固体撮像素子
JP5243983B2 (ja) 電子増倍機能内蔵型の固体撮像素子
JP2006352142A (ja) Cmosイメージセンサー及びその製造方法
JP2015142114A (ja) 固体撮像装置
JP2016051791A (ja) 固体撮像装置及びその製造方法
JP2008066742A (ja) 固体撮像装置
JP5335459B2 (ja) 電子増倍機能内蔵型の固体撮像素子
JP2020080377A (ja) 固体撮像装置
JP4215596B2 (ja) 固体撮像装置
JPH0682823B2 (ja) 固体撮像装置
JP2007299806A (ja) 固体撮像装置及びその製造方法
JP2010182790A (ja) 固体撮像素子、撮像装置、固体撮像素子の製造方法
JP2000150852A (ja) 固体撮像装置
JP2007059733A (ja) 固体撮像素子、固体撮像素子の製造方法および固体撮像素子を用いた画像撮影装置
JP2007142298A (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2005317768A (ja) 固体撮像素子
JPH11126896A (ja) 固体撮像素子
JP2007142040A (ja) 固体撮像素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250