JP2010118573A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2010118573A
JP2010118573A JP2008291741A JP2008291741A JP2010118573A JP 2010118573 A JP2010118573 A JP 2010118573A JP 2008291741 A JP2008291741 A JP 2008291741A JP 2008291741 A JP2008291741 A JP 2008291741A JP 2010118573 A JP2010118573 A JP 2010118573A
Authority
JP
Japan
Prior art keywords
dicing
manufacturing
sic
main surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008291741A
Other languages
English (en)
Inventor
Yoshinori Matsuno
吉徳 松野
Naoki Yuya
直毅 油谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008291741A priority Critical patent/JP2010118573A/ja
Publication of JP2010118573A publication Critical patent/JP2010118573A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Dicing (AREA)

Abstract

【課題】ダイシング工程のスループットを向上させるとともに、ダイシングブレードの長寿命化にも寄与する、SiC基板を用いた半導体装置の製造方法を得る。
【解決手段】ダイシング工程を行う前に、SiCウエハ(高濃度n型基板1及び低濃度n型エピタキシャル層2)の表面にショットキ電極5及び表面開口ダイシングライン領域7を形成し、SiCウエハの裏面にオーミック電極4及び裏面開口ダイシングライン領域8を形成する工程を実行する。これら表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8は共に所定のダイシングラインを含んでいる。その後、ブレードを用いたダイシング工程により、SiCウエハを所定のダイシングラインで分割して複数の半導体チップを得る。
【選択図】図1

Description

この発明は、例えば、SiC(炭化珪素)ショットキバリアダイオード(以下「SiC−SBD」と略記)のような、SiCを構成材料とする半導体装置の製造方法に関する。
省エネ、CO2排出量低減の有力な候補の1つとして、その特長的な物性値から低損失、高耐圧、高耐熱性に優れるSiC半導体デバイスの実用化が期待されている。なぜなら、SiC半導体デバイスは低損失、すなわち、低消費電力に優れるため、CO2排出量低減効果が期待できるからである。
SiC−SBDの作製においては、一般にSi半導体ウエハプロセスに準じて熱酸化、成膜、加工エッチング、写真製版、イオン注入、アニール等のプロセスをウエハ(半導体基板)状態で行い、所望の断面、平面デバイス構造をパターニング形成してウエハ工程を完了する。
静特性評価はウエハ状態で実施可能な項目も多いので、それらの測定を済ませた後、個々のダイオードチップ(半導体チップ)に分割する。このように基本的にはSiプロセスと同様に処理出来る工程が多いのだが、Siと比較してSiC材料の特異性から注意を要するプロセスもあるので、この点を考慮する必要がある。
ダイシング工程に関してもSiと比較して極めて硬度の高いSiCではブレード方式の場合、良好にダイシングするための仕様の決定が容易ではない。ブレードダイシング方式における代表的な不良モードにはチッピング、蛇行、目詰まり等がある。さらにダイシング工程のスループット向上やコスト低減、つまりドレスと呼ばれるブレード使用途中の目立て作業の頻度短縮やブレード長寿命化も要求されるが、これらの幾つかはブレード仕様決定の際、トレードオフとなる事象もあり全ての仕様を満足するのは容易でない。
したがって、ワークつまり被ダイシング物の仕様を工夫することにより、良好にダイシングするためのブレード仕様選択の幅を広めることが出来ればそれが望ましい。
なお、チップ分割技術に関する用語に「ダイシング」の他「スクライブ」もよく用いられるが、本明細書においては次の認識の下で主として「ダイシング」という用語を用いる。ウエハ上に形成されたチップを個々に分割する技術をダイシング(dicing)という。この方法には、レーザやダイヤモンド針によりチップに沿って切削溝をつくり機械的に分割するスクライビング(scribing)方式と、ブレードと呼ばれる薄いダイヤモンドホイールの高速回転により深く切り込み、切断時に個々のLSIチップに分割することも可能なダイシングソー(dicing saw)方式とがある。ダイシングソーの性能向上とウエハサイズの大形化につれてウエハが厚くなったため、現在ではダイシングソー方式(ブレードを用いたダイシング)が広く採用されている。
ダイシングブレードは砥石とボンドとチップポケットの三要素から構成される。一般にシリコンLSIチップをSiウエハからブレードダイシングにより分割して得る際、そのブレード仕様は、基板材料であるSi以外の電極材料に用いられる金属部分もダイシングすることを想定し、目詰まりの影響を抑制出来るよう配慮がなされている。
しかし、Siウエハよりもはるかに硬質のSiCウエハをダイシングするためのブレードの仕様を決定する際には、出来れば目詰まりの主要因となる金属材料をダイシング対象から排除したい。つまりダイシングライン上に金属材料が形成、配置されないようなワーク構造とすることが望まれる。
一般的にSiC−SBDチップをSiCウエハに多数個形成する場合、表面にはダイシングラインと呼ばれる開口部が形成されており、ここはSiC表面が露出されている。これに対して裏面は通常パターニングされることなく全面にオーミック接合やメタライズが形成されているのが一般的である。
なお、以下で示す特許文献1〜特許文献3には、SiC等の基板の裏面に溝を設けた構造が開示されている。
特開2006−156658号公報 特開2005−012206号公報 特開2004−064028号公報
このように、SiC基板に対するダイシング工程を含む従来の半導体装置の製造方法は、ダイシング時の蛇行や素子端のチッピングを回避すると共に、目詰まりを低減しダイシング途中のブレード表面の「ドレス」と呼ばれる目立て頻度を減らすことが十分でないという問題点があった。
この発明は上記問題点を解決するためになされたもので、ダイシング工程のスループットを向上させるとともに、ダイシングブレードの長寿命化にも寄与する、SiC基板を用いた半導体装置の製造方法を得ることを目的とする。
この発明に係る請求項1記載の半導体装置の製造方法は、(a) SiCを構成材料とする半導体基板の第1主面上に第1の電極を形成するとともに、所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第1主面が露出した第1主面開口ダイシングライン領域を形成するステップと、(b) 前記半導体基板の第2主面上に合金材料からなる第2の電極を形成し、前記第2の電極上に金属層を形成するとともに、前記所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第2主面が露出した第2主面開口ダイシングライン領域を形成するステップと、(c) 前記ステップ(a) 及び(b) 後に行われ、ブレードを用いたダイシング工程により、前記半導体基板を前記所定のダイシングラインで分割して複数の半導体チップを得るステップとを備える。
この発明に係る請求項8記載の半導体装置の製造方法は、(a) 半導体基板の第1主面上に第1の電極を形成するとともに、所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第1主面が露出した第1主面開口ダイシングライン領域を形成するステップと、(b) 前記半導体基板の第2主面上に合金材料からなる第2の電極を形成するとともに、前記所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第2主面が露出した第2主面開口ダイシングライン領域を形成するステップと、(c) 前記ステップ(a) 及び(b) 後に行われ、ダイシング工程により、前記半導体基板を前記所定のダイシングラインで分割して複数の半導体チップを得るステップと、(d) 前記ステップ(c) 後に実行され、前記複数の半導体チップの少なくとも一つにおいて、前記第2の電極上に金属層を形成するステップとを備える。
請求項1記載の半導体装置の製造方法は、ステップ(a) 及び(b) により、半導体基板の第1及び第2主面に、各々が所定のダイシングラインを少なくとも含む第1主面開口ダイシングライン領域及び第2主面開口ダイシングライン領域を形成している。
したがって、ダイシング工程のスループットを向上させるとともに、ダイシング用のブレードの長寿命化にも寄与する、SiC基板を用いた半導体装置の製造方法を得ることができる。
請求項8記載の半導体装置の製造方法は、ステップ(a) 及び(b) により、半導体基板の第1及び第2主面に、各々が所定のダイシングラインを少なくとも含む第1主面開口ダイシングライン領域及び第2主面開口ダイシングライン領域を形成している。
したがって、ダイシング工程のスループットを向上させるとともに、ダイシング用のブレードの長寿命化にも寄与する、SiC基板を用いた半導体装置の製造方法を得ることができる。
<実施の形態1>
図1は、この発明の実施の形態1による炭化珪素半導体装置(炭化珪素ショットキダイオード、SiC−SBD)の製造方法の一部を示す断面図である。すなわち、図1は実施の形態1の製造方法におけるダイシング工程直前の構造を示している。図2は図1の裏面(下側の面)の平面構造を示す平面図である。なお、図2のA−A断面が図1に相当する。後述の図6及び図7についても同様である。なお、図2において、メタライズ層6の図示を省略している。
以下、図1及び図2を参照して、実施の形態1の製造方法について説明する。まず、(0001)シリコン面4H−SiCからなる高濃度n型基板1を準備する。オフ角は8°が一般的で大口径化とともに4°オフも供給されている。
高濃度n型基板1の抵抗率は、0.02Ω・cm程度である。次に高濃度n型基板1の上に、不純物濃度が5×1015/cm3程度の低濃度n型エピタキシャル層2を10μm程度の膜厚でエピタキシャル成長させる。その後に表面を犠牲酸化してもよい。表面に形成された熱酸化膜がプロセス保護膜として機能する。
高濃度n型基板1の厚みは300〜400μm位が一般的であるが、昨今、SBD素子の順方向微分抵抗Ronの低減を目指して、薄板化も検討されており、200〜100μmさらには100μm以下に仕上げる技術も試されている。以降、高濃度n型基板1及び低濃度n型エピタキシャル層2の積層構造を単に「SiCウエハ」と呼ぶ場合がある。
kV超級の耐圧を安定して確保するために、ショットキ電極端部の電界集中緩和構造としてAlイオン注入によるGR(Guard Ring(ガードリング))、さらにその外側に連続して表面電界を低減する目的のGRより注入Alイオン濃度が若干薄いJTE(Junction Termination Extension) からなるp型イオン注入終端領域3を0.8μm程度の深さで形成する。これには写真製版によりフォトレジストで注入パターンを形成しておけば良い。p型イオン注入終端領域3を終端構造として完成させるためには、注入層を活性化する必要がある。例えばRTA(Rapid Thermal Anneal)タイプのアニール炉を用いて、常圧Ar雰囲気で1600℃、10分程度の高温熱処理する。この場合、バンチングステップ発生を抑制する手法として、アニールする際グラファイトキャップを表面に被覆する手法を採用するのが有効である。グラファイトキャップ(G-cap)付きのサンプル構造であれば、少なくとも1500〜1700℃の温度範囲で10分アニールすれば、p型イオン注入終端領域3は50%以上の活性化率が得られ終端構造として十分機能し、且つ1nm以上のバンチングステップが発生することもない。
なおG-capなしの場合、20nm程度のバンチングステップが発生し、その凹凸形状がリーク電流を増大させる。さらに20nm程度のバンチングステップが発生したSiC表面は(0001)シリコン面以外の面方位も出現しているために、熱酸化すると(000-1)カーボン面が(0001)シリコン面のおよそ10倍以上も厚いSiO2熱酸化膜が形成されるので明らかなように、ウエハ面内のSiO2熱酸化膜の厚みばらつきが激増する。これはフッ酸エッチングによる酸化膜除去後も局所的に酸化膜残不良が発生する原因となり、リーク電流を増大させる。なお、活性化アニール前にはSiO2熱酸化膜はいったん除去する。
このようにして活性化アニールされたSiC表面には活性化アニール後最表面には変質層が発生するので、RIEエッチングや犠牲酸化により除去するのが望ましい。先述の薄板化はこのタイミングで裏面研磨により実現することも可能である。
この後、裏面には例えばNiシリサイドのオーミック電極4を、表面にはTiメタルによるショットキ電極5を形成する。裏面にオーミック電極4を形成するプロセス温度が表面のショットキ接合に損傷を与える温度1000℃位になる場合は、裏面のオーミック電極4を表面のショットキ電極5よりも先に形成しなければならない。
裏面に形成するオーミック電極4としてのNiシリサイド形成工程でも、後述する裏面メタライズと同様にダイシングする箇所をパターニング開口させる。NiシリサイドはNiメタルほど靭性が高くないものの、ダイシング時ブレードの目詰まり原因になるので、低濃度n型エピタキシャル層2の表面同様、ダイシング領域についてSiCを露出させることは、ブレードの目詰まり低減に有効である。
Niシリサイドからなる裏面オーミック電極4を裏面開口ダイシングライン領域8を設けて選択的に形成するには、例えばフォトレジストを利用したリフトオフプロセスが簡便である。裏面開口ダイシングライン領域8として開口させたい領域がフォトレジストで覆われるよう写真製版によりパターニングする。表面との相対位置精度に関しては既に終えた工程、マーク工程、あるいはGRやJTEの注入工程時のアライメントマークを裏面から十分認識出来る。
可視光領域で半透明のn型高濃度n型基板1の表面側、つまり10μm程度成長したエピタキシャル層2の表面に、写真製版工程での位置合わせの基準となるマークを形成する。その形成方法は例えば、RIEドライエッチングによりフォトレジストをマスクとしてSiCエピタキシャル層2の表面を0.3〜0.4μm程度掘り込み凹部を形成する。このマークがGRやJTEの注入パターン、ショットキ電極5、Alメタライズ、メタライズ上を開口したポリイミド等の表面の写真製版工程のみならず、半透明であることを利用し表面のアライメントマークを裏面から読み取るのである。
図3は高濃度n型基板1の裏面及び表面からの光学顕微鏡像を模式的に示す説明図である。同図(a) がSiCウエハ(高濃度n型基板1)の裏面からの顕微鏡像を示し、同図(b) がSiCウエハ(低濃度n型エピタキシャル層2)の表面からの顕微鏡像を示している。
図3の(a) に示すように、実際に半透明のSiC基板である高濃度n型基板1の表面に凹部、すなわちマーク15を形成した場合、凹部形成面でない裏面からでも十分、マーク15を認識できる。図3の(a) ,(b) 間の比較から明らかなように、凹部(マーク15)形成面でない裏面からの方がより鮮明にマーク15を認識できている。なお、最悪数ミクロンのずれが生じても後工程で数ミクロンのチッピングを気にしないダイシングで吸収されるレベルである。
次に、パターニングしたフォトレジストを含む高濃度n型基板1の裏面上全体に、Niをスパッタや電子ビーム蒸着により成膜する。アセトン等の有機溶剤に浸漬してフォトレジスト上のNi膜を根こそぎ除去した後、アニールすれば、高濃度n型基板1の裏面にNiシリサイドからなるオーミック電極4と、裏面開口ダイシングライン領域8とが同時に完成する。
このように、半透明のSiC基板である高濃度n型基板1の表面におけるマーク15(アライメントマーク)によるパターンを参照して、オーミック電極4を精度良く形成することができる。なお、マーク15が存在しない場合でも、ショットキ電極5が形成されている場合は、高濃度n型基板1の表面におけるショットキ電極5によるパターンを参照してオーミック電極4を精度良く形成することもできる。逆に、オーミック電極4形成後にショットキ電極5を形成する場合は、高濃度n型基板1の裏面におけるオーミック電極4によるパターンを参照してショットキ電極5を精度良く形成することも可能である。
なお、上述した方法に変えて、オーミック電極4(及び裏面開口ダイシングライン領域8)の形成方法として、アニール前のNi膜のパターニングをウエットエッチングにより実施した後、シリサイド処理を行い最終的にオーミック電極4を形成する方法を用いることも可能である。しかし、この場合、Ni膜のウェットエッチング処理に関するエッチャントとマスク材料の組み合わせに注意が必要である。
SiCウエハの裏面へのオーミック電極4の形成、SiCウエハの表面へのショットキ電極5の形成後、さらに、表面のショットキ電極5上にワイヤボンディング用に例えばAlメタライズし、メタライズ上を開口したポリイミドを形成する。この時、もちろんダイシングライン上はポリイミドも開口させ、表面開口ダイシングライン領域7を設けている。金属にも増して樹脂材料であるポリイミドはブレードの目詰まり要因となるからである。なお、SiCウエハ(高濃度n型基板1+低濃度n型エピタキシャル層2)の表面に表面開口ダイシングライン領域7を設けることは従来から一般的であったため、その製造方法の詳細は省略する。
オーミック電極4上にはダイボンド用に例えばNi,Auをメタライズしてメタライズ層6を形成することにより、ウエハ工程完了となる。メタライズ層6の形成においてもオーミック電極4と同様、裏面開口ダイシングライン領域8が設けられる(維持される)ように行われる。
この際、メタライズ層6を、ショットキ電極5と同様にリフトオフプロセスを用いる等の処理が考えられる。ただし、裏面に形成されるオーミック電極4に比べてNi,Auの厚みは合わせて1μm程度と厚いので、アセトン等の有機溶剤に浸漬しただけでリフトオフが良好に進行しない場合は、超音波を付加するのが有効である。一般にリフトオフを容易に進行させるには、パターン形成したいメタル膜の厚みをレジスト厚の2/3以下にするのが望ましいが、実際には超音波の付加により、メタル膜よりレジスト厚の方が厚いような構造でも数時間以上の浸漬により何とかパターン形成出来る実績も得られている。
このようにして、ウエハプロセスが完了すると図1で示すワーク(SiCウエハ、オーミック電極4、ショットキ電極5及びメタライズ層6)が得られる。本明細書では、SiCウエハ(高濃度n型基板1、低濃度n型エピタキシャル層2)に種々の構成物(オーミック電極4、ショットキ電極5及びメタライズ層6等)が形成された構造を総称して「ワーク」と呼ぶ場合がある。
まず、複数のチップに分割する前のウエハ状態で個々のチップの電気特性、特に静特性をオートステージ、オートプローブ等を駆使して効率的に評価した後、ブレードを用いたダイシング工程を実行することになる。
このように、実施の形態1の製造方法では、ダイシング工程直前において、SiCウエハの表面には複数のショットキ電極5が表面開口ダイシングライン領域7によって格子状に分離形成されており、SiCウエハの裏面には複数のオーミック電極4及びメタライズ層6が裏面開口ダイシングライン領域8によって島状(格子状)に分離形成されている。なお、図1において、表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8におけるダイシングライン仮想中心線を切断線9として示している。すなわち、SiCウエハの表面上から切断線9を切断するようにダイシング工程が実施される。
図2に示すように、裏面開口ダイシングライン領域8はダイシング工程に設定されるダイシングライン(切断線9)を含む領域に設定されている。同様に、表面開口ダイシングライン領域7も裏面開口ダイシングライン領域8に対応してダイシング工程に設定されるダイシングラインを含む領域に設定されている。
ダイシング工程は前述したとおり、スクライビング方式とダイシングソー方式とがあるが、ダイシング面つまりチップ断面の形状がより平坦に良好に仕上げるためにブレードを用いたダイシングソー方式を採用する。シリコンLSIチップをシリコンウエハから分割する場合には、へき開面が正確に出るように分割する方法もあるが、4H−SiCウエハではへき開面は正三角形に出易く、さらにオフ角を有するので結晶方位面に沿ったへき開を利用する方法は適切でない。
ダイシングブレードは砥石とボンドとチップポケットの三要素から構成される。ダイシングを良好に実施するにはダイサーのブレード回転数、送り速度等の設定条件も重要である。ビッカース硬度22のSiC材料がワークの場合、その最適化は決して容易ではないが、本発明ではSiCウエハの表面に表面開口ダイシングライン領域7を設けるとともに、裏面にも裏面開口ダイシングライン領域8を設けている。
したがって、SiCウエハの表面及び裏面において、その構成材料であるSiCを露出させ、ダイシング工程時において、基板材料であるSiC以外の材質が所定のダイシングライン上に可能な限り存在しないような構造にしている。このため、目詰まり対策からの仕様制限が大幅に緩和される結果、良好にダイシングするためのブレード仕様、およびそれを用いる時のダイシング条件設定が有利となる効果を奏する。
図4はショットキ電極5の形成面であるSiCウエハの表面を上にしたSiC−SBD半導体装置の構造を模式的に示す斜視図である。図5はオーミック電極4の形成面である裏面を上にしたSiC−SBD半導体装置の構造を模式的に示す斜視図である。なお、図5においては、メタライズ層6の図示を省略している。
図4及び図5で示す構造において、蛇行、チッピング程度の少ない良好なブレード仕様、ダイサー設定条件が決まれば、ワーク、つまりプロセス完了したSiCウエハの裏面をダイシングシート(図示せず)に気泡が発生しないよう貼付け、図示しないダイサーの定盤に真空吸着させる。
ダイシングシートはSiCウエハのフルカットを想定しているのでブレードの侵入深さをダイシングシートの厚み途中までとするために必要である。ブレードはSiCウエハの表面で30,000rpm程度の高速回転で準備され、送り速度1〜10mm/sec程度で実際に切断を始める。SiCウエハ厚みは400〜100μm程度、ダイシングシートは100μm程度を想定しており、ダイシングシートを10〜50μm程度まで切断するようダイサーにおけるブレードの鉛直位置、つまり侵入深さを設定する。
SiCウエハを複数のチップに分割するダイシング工程実行後は、ダイシングシートから分割された個々のチップを剥がしとり、チップトレイに保管する等、適切な後処置をする。ダイシングシートにはUV光照射により粘着力を大きく劣化させ、チップの取り剥がしを容易にする「UVシート」と呼ばれるタイプが便利である。ダイシングチップの保管方法に関しては、UV光照射前または後、チップがダイシングシートに貼り付けられたままの状態で保管するのもウエハ内の個々のチップ識別、特性マッピングとの対応の確実性の点から利点が多い。ところが、裏面に形成されるオーミック電極4、あるいはダイボンド用のメタライズ層6の密着性に関して、数百時間以上で密着性が劣化し、ダイシングシートに貼り付いたまま長期保管したチップにおいて、シートからとり剥がした際、裏面電極剥離という問題を生じる例もある。
図6は実施の形態1のSiC−SBDの製造方法の他の態様(その1)を示す平面図である。すなわち、図6は図1の裏面の平面構造を示す平面図であり、図6のB−B断面が図1に相当する。
図6に示すように、裏面電極であるオーミック電極4c及びメタライズ層6の平面パターンの四隅に曲率半径Rをつけて丸め部14を設けている。
このように、他の態様(その1)では、オーミック電極4cは平面視矩形状を呈しており、4隅に丸め部14を有している。かつ、メタライズ層6はオーミック電極4c内に位置し、平面視矩形状を呈しており、4隅に丸め部18を有している。
したがって、ダイシング工程実行後に分割された複数のチップを上述したダイシングシートからとり剥がす際、メタライズ層6及びオーミック電極4cは剥離しにくいという効果を奏する。すなわち、メタライズ層6c及びオーミック電極4cは剥離防止に有効な平面形状を呈している。なお、丸め部14及び丸め部18の曲率半径Rは50μm程度以上あるのが望ましい。
上述したように、実施の形態1の製造方法は、ダイシング工程を行う前に、SiCウエハの表面にショットキ電極5及び表面開口ダイシングライン領域7を形成し、SiCウエハの裏面に合金材料からなるオーミック電極4及びメタライズ層6並びに裏面開口ダイシングライン領域8を形成する工程を実行している。これら表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8は共に所定のダイシングラインを含んでいる。
その後、ブレードを用いたダイシング工程により、SiCウエハを所定のダイシングラインで分割して複数の半導体チップCPを得ている。
このように、実施の形態1の製造方法では、省エネ材料であるSiCを用いたSiCウエハの表面及び裏面に、各々が所定のダイシングラインを少なくとも含む表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8を形成している。
その結果、図1の構造を得た後に行うダイシング工程を、オーミック電極4、ショットキ電極5及びメタライズ層6の影響を受けることなく、ブレードを用いて表面から裏面にかけてSiCウエハに対して行うことができるため、ダイシング工程のスループットを向上させるとともに、ダイシング用のブレードの長寿命化にも寄与する効果を奏する。
また、SiCウエハは耐熱性に優れ、低損失であり発熱作用は十分小さいため、別途、冷却装置が不要になる分、装置全体の小型化を図ることができる。
図7は実施の形態1の製造方法の他の態様(その2)を示す平面図である。同図に示すように、TEG(Test Element Group)領域12を表面開口ダイシングライン領域7外の領域(ショットキ電極5形成予定領域の一部)に形成している。TEGとは成膜や加工のプロセスモニタ、部分抵抗値などの電気特性測定端子等から形成される。あるいは写真製版工程において露光時マスクとSiCウエハとの位置合わせに用いるアライメントマークも含んでもよい。TEG領域12は金属材料形成時の膜厚モニタパッド等のSiC以外の材料からなる場合も多い。
このように、ダイシング工程前に、SiCウエハの表面の表面開口ダイシングライン領域7以外の領域にTEG領域12を設ける工程を有するのが実施の形態1の製造方法の他の態様(その2)である。
上述したように、他の態様(その2)は、TEG領域12を表面開口ダイシングライン領域7外の領域に形成している。すなわち、表面開口ダイシングライン領域7上に一般的に配置していたTEG領域12を、表面開口ダイシングライン領域7外の領域に設けている。
したがって、表面開口ダイシングライン領域7にTEG領域12が存在しない分、ブレードに基板材料であるSiC以外に接触させない、つまりダイシングライン上からSiC以外の材質を排除することができるため、目詰まり低減を図ることができる効果を奏する。
なお、図7で示した他の態様(その2)では、表面開口ダイシングライン領域7にTEG領域12を全く形成しない構造を示したが、表面開口ダイシングライン領域7におけるTEG領域12の形成面積を少なくする態様も考えられる。
また、裏面オーミック(オーミック電極4)、および裏面メタライズ(メタライズ層6)形成工程においてSiCウェハの基板厚みが200μm程度以下である場合、本発明ではいずれも島状に裏面電極を形成するので、SiC基板に対してオーミック電極4(メタライズ層6)が有する膜ストレスが低減され、SiC基板の反り、歪み(内部応力)が緩和される。
図4、図5で示す構造ではSiCウエハの表面及び裏面共に開口部(表面開口ダイシングライン領域7,裏面開口ダイシングライン領域8)は全てダイシングラインとしており、1チップには島状の裏面電極(オーミック電極4)が1つだけ形成されることを想定している。
図8は実施の形態1の製造方法の他の態様(その3)を示す平面図である。図8に示すように、1チップに複数個の島状の裏面電極(部分オーミック電極4p,部分メタライズ層6p(図示省略))が形成されるように、さらに細かく裏面に開口部を設けてもよい。図8の例では、右上において、1チップに4個の部分オーミック電極4p(部分メタライズ層6p(図示省略))を島状に形成している。
このように、実施の形態1の製造方法の他の態様(その3)は、1チップに複数の部分オーミック電極4pを島状に形成することにより、SiCウエハに対するオーミック電極4(メタライズ層6)による膜ストレスについてのさらなる緩和効果を発揮することができる。
この際、局所的に著しく大面積に裏面電極が開口することのないよう、裏面電極の形成領域/未形成領域の比の値がおよそ1以上であれば十分である。すなわち、裏面電極である複数の部分オーミック電極4p(部分メタライズ層6p)の形成領域がチップ全体の半分以上であれば良い。
上述したように、実施の形態1においては、SiCウエハの表面及び裏面において表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8を設けることにより、半透明のSiC露出部が発生する。このため、SiCウエハの表面におけるメタライズプロセスのパターニング終了判断を目視で容易に可能となる等、多種多様な効果が期待される。
<実施の形態2>
実施の形態1ではSiCウエハの表面にブレードが配置されるようにSiCウエハの裏面にダイシングシートに貼付け、ダイサーの定盤に真空吸着させる方法としたが、ダイシング条件によってはチッピング程度に関して、表面と裏面で顕著な差異が生じる場合がある。
実施の形態2のSiC−SBDの製造方法では、裏面にも従来の表面と同様にダイシングライン開口部(裏面開口ダイシングライン領域8)が設けられているため、チップパターンが裏面からも容易に認識できる。このため、SiCウエハの表面つまりショットキ接合面(ショットキ電極5の形成面)にダイシングシートに貼付け、ウエハ裏面からダイシング処理を精度良く行うことができる。
すなわち、図5に示す構造のように、オーミック電極4の形成面である裏面を上にして、ショットキ電極5の形成面である表面を下にして、ダイシングシートをショットキ電極5に貼り付け、オーミック電極4の形成面である裏面からブレードを用いたダイシング工程を実行しても良い。
このように、実施の形態2の製造方法では、図5の構造を得た後に行うダイシング工程を、オーミック電極4、ショットキ電極5及びメタライズ層6の影響を受けることなく、ブレードを用いて裏面から表面にかけてSiCウエハに対するダイシングを行うことができる。
このため、ダイシング工程のスループットを向上させるとともに、ダイシング用のブレードの長寿命化にも寄与する効果を奏する。
上述のように、ブレードを用いたダイシング工程を実施の形態1のようにSiCウエハの表面から裏面にかけて行うことができるとともに、実施の形態2のようにSiCウエハの裏面から表面にかけて行うこともできる。その結果、ダイシング工程内容の選択肢が拡がることにより、良好なダイシング条件下でダイシング工程が行える可能性を高めることができる。
<実施の形態3>
上述した実施の形態1及び実施の形態2の製造方法は、いずれも裏面オーミック(オーミック電極4)、裏面メタライズ(メタライズ層6)ともSiCウエハの状態で処理し、いったんウエハ工程を終え、ウエハ状態で測定可能な電気特性を評価した後、チップ分割するためのダイシング工程を行う手順であった。
これに対して、スパッタ、電子ビーム蒸着などの成膜方法による裏面メタライズ工程の前にダイシングしてしまうプロセス手順を採用したのが実施の形態3の製造方法である。
当然、裏面メタライズ工程前にダイシングを行うので、ダイシングブレードに裏面メタライズ材料が接触することは皆無となるため、ブレードダイシング時の目詰まりをさらなる低減化を図ることにより、ブレード長寿命化を実現できる。ダイシング後に裏面メタライズする際の具体的な手順はおよそ次のとおりである。
図9〜図11は実施の形態3であるSiC−SBD半導体装置の製造方法の一部を示す説明図である。図9〜図11それぞれにおいて、(a) は裏面から視た平面図を示し、(b) は当該平面図の断面構造を示している。
図9に示すように、実施の形態1及び実施の形態2と同様、ダイシング工程直前において、SiCウエハ(高濃度n型基板1,低濃度n型エピタキシャル層2)の表面にはショットキ電極5が形成されており、裏面にはオーミック電極4cが形成されている。この際、実施の形態1と同様にして、ショットキ電極5はダイシングライン(切断線9)を含む領域に表面開口ダイシングライン領域7が設けられるように形成され、オーミック電極4cも同様にダイシングライン(切断線9)を含む領域に裏面開口ダイシングライン領域8が設けられるように形成される。
なお、図9(a) のC−C断面が(b) の構造となる。なお、表面に通常形成される、メタライズ、ポリイミドの図示は省略している。また、図9(b) において、表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8におけるダイシングライン仮想中心線を切断線9として示している。
この状態でダイボンド用の裏面メタライズ層は形成されていないものの、電気的静特性評価は可能である。Niシリサイドに代表される裏面のオーミック電極4cと測定系の導電性ステージの直接接触により電気的接触に関しては問題ないからである。
図9で示すウエハ状態で静特性評価を終えると、ダイシング工程を実行する。一般に丸型ウエハからチップをダイシングにより切り出す時には、ブレードと向かい合わない方の面、つまり通常はウエハ裏面にダイシングシートを貼り付ける。
しかし、実施の形態3では、図10に示すように、オーミック電極4c上にメタライズ層を形成する必要があるため、SiCウエハの表面上に気泡、微小塵などが入らないよう全面に渡って密着させてダイシングシート10を貼付ける。なお、同図ではダイシングシート10がSiCウエハ上に浮いて示されているが、実際にはショットキ電極5上(ショットキ電極5状にメタライズ層が形成されている場合はメタライズ層上)に粘着剤を介して貼り付けられている。この点については後に示す図11についても同様である。
この際、望ましくは、ステンレス、アルミ製などのダイシングリング11と呼ばれる板状の輪をウエハより一回り大きい直径を有するダイシングシートに接着する。なお、図10(a) のD−D断面が(b) の構造となる。
この状態で少なくともダイシングシート10が裂けないようにセミフルカットでSiCウエハを裏面からブレードを用いてダイシングして複数のチップCPを得る。なお、ここで述べる「セミフルカット」とはSiCウエハを完全に切断し、ダイシングシート10を切断することなく残存させることを意味する。
これにより、SiCウエハを完全に切断したとしても、図10に示すように、個々のチップCPはダイシングシート10に貼り付いた状態で同一平面に保持される。
この状態まで工程を進めてから、図11に示すように、最終裏面メタライズ工程として、例えばNi,Auをスパッタ、電子ビーム蒸着などで成膜して、オーミック電極4c上を含む各チップCPの裏面にメタライズ層16を形成する。なお、図11(a) のE−E断面が(b) の構造となる。
メタライズ層16の成膜は通常装置真空チャンバ内で行うので、ダイシングリング11ごとチャンバに挿入セット出来ない場合は、真空チャンバ内に多数にダイシング分割されたチップが貼り付いたシートごと真空吸着出来るようなワークセット部があるのが望ましい。これは成膜方法にもよるが、形成されるメタライズ層16の膜厚、膜質均一性を高める目的である。SiCウエハの断面を完全に切断せず厚みの一部を残すハーフカットであれば、チップCPはまだ分断されておらずウエハ状態を保持しているので、先述のダイシングリング11や真空吸着は不要である。ただし、ハーフカットを行った場合、SiCウエハの一部を切断せず残存させているため、最終的に当該一部をブレイク(切断)する必要があり、この際、「バリ」と呼ばれる不安定なエッジ形状が発生する懸念材料を有している。
なお、ダイシング工程後のメタライズ層16の成膜処理時に多少、チップCPの側壁へのメタル付着が予想される。SiCウエハをハーフカットする場合はメタル成膜後にブレイクを実施するので、付着メタルによる電気的短絡は発生しないが、SiCウエハをフルカットする場合は、注意が必要である。
少なくともスパッタ法によるメタライズ層16の成膜であればCVD(=Chemical Vapor Deposition)のように顕著に側壁に付着することはないので問題ない。なお、図11において、チップCPの側壁へのメタル付着は無視出来る程度を想定し、図示していない。
上述したように、実施の形態3の製造方法は、ダイシング工程を行う前に、SiCウエハの表面にショットキ電極5及び表面開口ダイシングライン領域7を形成し、SiCウエハの裏面に合金材料からなるオーミック電極4及び裏面開口ダイシングライン領域8を形成する工程を実行している。これら表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8は共に所定のダイシングラインを含んでいる。
その後、ブレードを用いたダイシング工程により、SiCウエハを所定のダイシングラインで分割して複数の半導体チップCPを得ている。このダイシング工程の後、SiCウエハの裏面において、各チップCPのオーミック電極4上にメタライズ層6を形成している。
このように実施の形態3のSiC−SBDの製造方法は、ブレードを用いたダイシング工程に先がけ、SiCウエハの表面及び裏面に、各々が所定のダイシングラインを少なくとも含む表面開口ダイシングライン領域7及び裏面開口ダイシングライン領域8を形成している。
その結果、ブレードを用いたダイシング工程を、ショットキ電極5及びオーミック電極4cの影響を受けることなく、SiCウエハに対して行うことができるため、ダイシング工程のスループットを向上させるとともに、ダイシング用のブレードの長寿命化にも寄与する効果を奏する。
加えて、ダイシング工程後に、複数のチップCPそれぞれにおいて、オーミック電極4c上にメタライズ層16を形成するため、メタライズ層16の形成によるダイシング工程への影響を確実に回避することができる効果を奏する。
<その他>
上述した実施の形態1〜実施の形態3では、適用するデバイスとしてSiC−SBDを示したが、SiC−MOSFET等、ウエハ工程で通常、裏面電極を全面に形成し、ダイシング工程により複数のチップに分割する製造方法を実施するデバイスであれば、基板材料の種類も含め、本願発明の半導体装置の製造方法は他にも実施可能であることは勿論である。
この発明の実施の形態1によるSiC−SBDの製造方法を示す断面図である。 この発明の実施の形態1によるSiC−SBDの製造方法を示す断面図である。 高濃度n型基板1の裏面及び表面からの光学顕微鏡像を模式的に示す説明図である。 表面を上にしたSiC−SBDの構造を模式的に示す斜視図である。 裏面を上にしたSiC−SBDの構造を模式的に示す斜視図である。 実施の形態1のSiC−SBDの製造方法の他の態様(その1)を示す平面図である。 実施の形態1のSiC−SBDの製造方法の他の態様(その2)を示す平面図である。 実施の形態1のSiC−SBDの製造方法の他の態様(その3)を示す平面図である。 実施の形態3であるSiC−SBDの製造方法の一部を示す説明図である。 実施の形態3であるSiC−SBDの製造方法の一部を示す説明図である。 実施の形態3であるSiC−SBDの製造方法の一部を示す説明図である。
符号の説明
1 高濃度n型基板、2 低濃度n型エピタキシャル層、3 p型イオン注入終端領域、4,4c オーミック電極、4p 部分オーミック電極、5 ショットキ電極、6 メタライズ層、6p 部分メタライズ層、7 表面開口ダイシングライン領域、8 裏面開口ダイシングライン領域、9 切断線、10 ダイシングシート、11 ダイシングリング。

Claims (9)

  1. (a) SiCを構成材料とする半導体基板の第1主面上に第1の電極を形成するとともに、所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第1主面が露出した第1主面開口ダイシングライン領域を形成するステップと、
    (b) 前記半導体基板の第2主面上に合金材料からなる第2の電極を形成し、前記第2の電極上に金属層を形成するとともに、前記所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第2主面が露出した第2主面開口ダイシングライン領域を形成するステップと、
    (c) 前記ステップ(a) 及び(b) 後に行われ、ブレードを用いたダイシング工程により、前記半導体基板を前記所定のダイシングラインで分割して複数の半導体チップを得るステップとを備える、
    半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法であって、
    (d) 前記ステップ(c) より前に実行され、前記半導体基板の第1主面上において前記第1主面開口ダイシングライン領域以外の領域にTEG領域を形成するステップをさらに備える、
    半導体装置の製造方法。
  3. 請求項1あるいは請求項2記載の半導体装置の製造方法であって、
    前記ステップ(c) は、前記半導体基板の第1主面から第2主面にかけて前記ダイシング工程を実施する、
    半導体装置の製造方法。
  4. 請求項1あるいは請求項2記載の半導体装置の製造方法であって、
    前記ステップ(c) は、前記半導体基板の第2主面から第1主面にかけて前記ダイシング工程を実施する、
    半導体装置の製造方法。
  5. 請求項1ないし請求項4のうち、いずれか1項に記載の半導体装置の製造方法であって、
    前記ステップ(b)は、前記半導体基板の第1主面におけるパターンを参照して、少なくとも前記第2の電極を形成するステップを含む、
    半導体装置の製造方法。
  6. 請求項1ないし請求項5のうち、いずれか1項に記載の半導体装置の製造方法であって、
    前記第2の電極及び前記金属層は平面視矩形状を呈し、その角部に丸め部を有する、
    半導体装置の製造方法。
  7. 請求項1ないし請求項6のうち、いずれか1項に記載の半導体装置の製造方法であって、
    前記ステップ(c) 後に得られる複数の半導体チップのうち、少なくとも一つは複数の第2電極を有する、
    半導体装置の製造方法。
  8. (a) 半導体基板の第1主面上に第1の電極を形成するとともに、所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第1主面が露出した第1主面開口ダイシングライン領域を形成するステップと、
    (b) 前記半導体基板の第2主面上に合金材料からなる第2の電極を形成するとともに、前記所定のダイシングラインを少なくとも含む領域に、前記半導体基板の第2主面が露出した第2主面開口ダイシングライン領域を形成するステップと、
    (c) 前記ステップ(a) 及び(b) 後に行われ、ダイシング工程により、前記半導体基板を前記所定のダイシングラインで分割して複数の半導体チップを得るステップと、
    (d) 前記ステップ(c) 後に実行され、前記複数の半導体チップの少なくとも一つにおいて、前記第2の電極上に金属層を形成するステップと、
    を備える半導体装置の製造方法。
  9. 請求項8記載の半導体装置の製造方法であって、
    前記半導体基板は構成材料をSiCとする半導体基板を含み、
    前記第2の電極を構成材料を合金とする第2の電極を含み、
    前記ダイシング工程はフレードを用いたダイシング工程を含む、
    半導体装置の製造方法。
JP2008291741A 2008-11-14 2008-11-14 半導体装置の製造方法 Pending JP2010118573A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291741A JP2010118573A (ja) 2008-11-14 2008-11-14 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291741A JP2010118573A (ja) 2008-11-14 2008-11-14 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010118573A true JP2010118573A (ja) 2010-05-27

Family

ID=42306039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291741A Pending JP2010118573A (ja) 2008-11-14 2008-11-14 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2010118573A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160575A (ja) * 2011-01-31 2012-08-23 Shindengen Electric Mfg Co Ltd 半導体ウエハーのダイシング方法及び半導体ウエハー
JP2013077593A (ja) * 2011-09-29 2013-04-25 Denso Corp 半導体装置の製造方法
JP2013149804A (ja) * 2012-01-19 2013-08-01 Shindengen Electric Mfg Co Ltd 半導体装置の製造方法及び半導体装置
JP2014011280A (ja) * 2012-06-28 2014-01-20 Shindengen Electric Mfg Co Ltd 半導体ウェーハのダイシング方法及び半導体装置の製造方法
JP2014013812A (ja) * 2012-07-04 2014-01-23 Disco Abrasive Syst Ltd SiC基板の加工方法
JP2014036201A (ja) * 2012-08-10 2014-02-24 Mitsubishi Electric Corp 半導体装置とその製造方法
JP2014139997A (ja) * 2013-01-21 2014-07-31 Rohm Co Ltd 発光素子および発光素子パッケージ
WO2014209629A1 (en) * 2013-06-27 2014-12-31 Flipchip International, Llc Electroplating using dielectric bridges
JP2015005635A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP2015065350A (ja) * 2013-09-25 2015-04-09 富士電機株式会社 半導体装置
US9362366B2 (en) 2013-05-13 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Semiconductor element, semiconductor element manufacturing method, semiconductor module, semiconductor module manufacturing method, and semiconductor package
JP2017022422A (ja) * 2016-10-31 2017-01-26 三星ダイヤモンド工業株式会社 スクライブ方法及びスクライブ装置
US9728606B2 (en) 2012-03-30 2017-08-08 Fuji Electric Co., Ltd. Silicon carbide semiconductor element and fabrication method thereof
JP2020013059A (ja) * 2018-07-20 2020-01-23 株式会社東芝 装置の製造方法
JP2020021964A (ja) * 2017-11-16 2020-02-06 ローム株式会社 発光素子および発光素子パッケージ
US11114402B2 (en) 2018-02-23 2021-09-07 Semiconductor Components Industries, Llc Semiconductor device with backmetal and related methods
CN113594106A (zh) * 2021-09-28 2021-11-02 江苏长晶科技有限公司 晶片尺寸封装
JP7518225B2 (ja) 2019-06-17 2024-07-17 ローム株式会社 SiC半導体装置およびその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251638A (ja) * 1988-03-31 1989-10-06 Toshiba Corp 集積回路装置の製造方法
JPH0287669A (ja) * 1988-09-26 1990-03-28 Mitsubishi Electric Corp 半導体装置
JPH06252234A (ja) * 1993-03-02 1994-09-09 Mitsubishi Electric Corp 半導体装置
JP2003347390A (ja) * 2002-05-28 2003-12-05 Fujitsu Ltd マーク認識方法及び半導体装置の製造方法及び実装方法
JP2004014709A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2004303915A (ja) * 2003-03-31 2004-10-28 Nagase & Co Ltd 半導体装置の製造方法
JP2005322738A (ja) * 2004-05-07 2005-11-17 Toshiba Corp 半導体装置の製造方法
JP2006165179A (ja) * 2004-12-06 2006-06-22 Denso Corp 半導体基板およびその製造方法
JP2006319110A (ja) * 2005-05-12 2006-11-24 Tokyo Seimitsu Co Ltd ワーク切断方法
JP2008098529A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 半導体装置及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251638A (ja) * 1988-03-31 1989-10-06 Toshiba Corp 集積回路装置の製造方法
JPH0287669A (ja) * 1988-09-26 1990-03-28 Mitsubishi Electric Corp 半導体装置
JPH06252234A (ja) * 1993-03-02 1994-09-09 Mitsubishi Electric Corp 半導体装置
JP2003347390A (ja) * 2002-05-28 2003-12-05 Fujitsu Ltd マーク認識方法及び半導体装置の製造方法及び実装方法
JP2004014709A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2004303915A (ja) * 2003-03-31 2004-10-28 Nagase & Co Ltd 半導体装置の製造方法
JP2005322738A (ja) * 2004-05-07 2005-11-17 Toshiba Corp 半導体装置の製造方法
JP2006165179A (ja) * 2004-12-06 2006-06-22 Denso Corp 半導体基板およびその製造方法
JP2006319110A (ja) * 2005-05-12 2006-11-24 Tokyo Seimitsu Co Ltd ワーク切断方法
JP2008098529A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 半導体装置及びその製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160575A (ja) * 2011-01-31 2012-08-23 Shindengen Electric Mfg Co Ltd 半導体ウエハーのダイシング方法及び半導体ウエハー
JP2013077593A (ja) * 2011-09-29 2013-04-25 Denso Corp 半導体装置の製造方法
JP2013149804A (ja) * 2012-01-19 2013-08-01 Shindengen Electric Mfg Co Ltd 半導体装置の製造方法及び半導体装置
US9728606B2 (en) 2012-03-30 2017-08-08 Fuji Electric Co., Ltd. Silicon carbide semiconductor element and fabrication method thereof
JP2014011280A (ja) * 2012-06-28 2014-01-20 Shindengen Electric Mfg Co Ltd 半導体ウェーハのダイシング方法及び半導体装置の製造方法
JP2014013812A (ja) * 2012-07-04 2014-01-23 Disco Abrasive Syst Ltd SiC基板の加工方法
JP2014036201A (ja) * 2012-08-10 2014-02-24 Mitsubishi Electric Corp 半導体装置とその製造方法
JP2014139997A (ja) * 2013-01-21 2014-07-31 Rohm Co Ltd 発光素子および発光素子パッケージ
US9362366B2 (en) 2013-05-13 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Semiconductor element, semiconductor element manufacturing method, semiconductor module, semiconductor module manufacturing method, and semiconductor package
JP2015005635A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 炭化珪素半導体装置の製造方法
WO2014209629A1 (en) * 2013-06-27 2014-12-31 Flipchip International, Llc Electroplating using dielectric bridges
JP2015065350A (ja) * 2013-09-25 2015-04-09 富士電機株式会社 半導体装置
JP2017022422A (ja) * 2016-10-31 2017-01-26 三星ダイヤモンド工業株式会社 スクライブ方法及びスクライブ装置
JP2020021964A (ja) * 2017-11-16 2020-02-06 ローム株式会社 発光素子および発光素子パッケージ
US11114402B2 (en) 2018-02-23 2021-09-07 Semiconductor Components Industries, Llc Semiconductor device with backmetal and related methods
US12040295B2 (en) 2018-02-23 2024-07-16 Semiconductor Components Industries, Llc Semiconductor device with backmetal and related methods
JP2020013059A (ja) * 2018-07-20 2020-01-23 株式会社東芝 装置の製造方法
JP7518225B2 (ja) 2019-06-17 2024-07-17 ローム株式会社 SiC半導体装置およびその製造方法
CN113594106A (zh) * 2021-09-28 2021-11-02 江苏长晶科技有限公司 晶片尺寸封装
CN113594106B (zh) * 2021-09-28 2021-12-17 江苏长晶科技有限公司 晶片尺寸封装

Similar Documents

Publication Publication Date Title
JP2010118573A (ja) 半導体装置の製造方法
JP4690485B2 (ja) 半導体素子の製造方法
US9728606B2 (en) Silicon carbide semiconductor element and fabrication method thereof
US9263525B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US11715768B2 (en) Silicon carbide components and methods for producing silicon carbide components
JP2014039057A (ja) 半導体装置の製造方法
CN107706096B (zh) 一种碳化硅功率芯片背面减薄和制备欧姆接触的方法及产品
JP6658171B2 (ja) 半導体装置の製造方法
JP2014229843A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP3227287B2 (ja) 窒化ガリウム系化合物半導体チップの製造方法と窒化ガリウム系化合物半導体素子
JP2004087955A (ja) 半導体装置の製造方法及び半導体装置
JP5532754B2 (ja) 半導体装置の製造方法
JP2013026247A (ja) 半導体装置の製造方法
JP4834309B2 (ja) 半導体装置の製造方法
JP7258668B2 (ja) 半導体装置、及び、半導体装置の製造方法
US10636708B2 (en) Method of manufacturing semiconductor device
CN103094169B (zh) 分离多个裸片的方法和分离多个裸片的处理装置
JP4337637B2 (ja) 半導体素子の製造方法
JP6102171B2 (ja) 炭化珪素mos型半導体装置の製造方法
JP4572529B2 (ja) 半導体素子の製造方法
JP2013093493A (ja) 半導体装置の製造方法
JP7531151B2 (ja) 窒化ガリウム半導体装置の製造方法
TW201009927A (en) Method for manufacturing a semiconductor device, and a semiconductor device
JP3772807B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP5353036B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918