JP2010078886A - 防眩フィルム、反射防止フィルム、偏光板および画像表示装置 - Google Patents

防眩フィルム、反射防止フィルム、偏光板および画像表示装置 Download PDF

Info

Publication number
JP2010078886A
JP2010078886A JP2008246884A JP2008246884A JP2010078886A JP 2010078886 A JP2010078886 A JP 2010078886A JP 2008246884 A JP2008246884 A JP 2008246884A JP 2008246884 A JP2008246884 A JP 2008246884A JP 2010078886 A JP2010078886 A JP 2010078886A
Authority
JP
Japan
Prior art keywords
particles
layer
film
refractive index
preferably
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008246884A
Other languages
English (en)
Inventor
Katsumi Inoue
Shinya Kato
Takato Suzuki
Daiki Wakizaka
克己 井上
進也 加藤
大樹 脇阪
貴登 鈴木
Original Assignee
Fujifilm Corp
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, 富士フイルム株式会社 filed Critical Fujifilm Corp
Priority to JP2008246884A priority Critical patent/JP2010078886A/ja
Publication of JP2010078886A publication Critical patent/JP2010078886A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】防眩性、黒締り、ギラツキに優れた防眩フィルムを提供する。
【解決手段】支持体上に、凹凸表面を有する防眩層を有し、該防眩層は少なくとも2種の透光性粒子を含有し、第1の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.01〜3.0μm大きく、第2の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.10μm以上小さく、該第1の透光性粒子は添加量が該防眩層の全固形分に対して0.1〜1質量%であり、該第2の透光性粒子は添加量が該防眩層の全固形分に対して2〜30質量%であり、該第2の透光性粒子が、無機酸化物粒子である防眩フィルム。
【選択図】なし

Description

本発明は、防眩フィルム、反射防止フィルム、偏光板および画像表示装置に関する。

液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような様々な画像表示装置において、外光の反射や像の映り込みによるコントラスト低下を防止するために、ディスプレイの表面には、防眩フィルムや防眩性反射防止フィルムが使用される。オフィスや家庭環境での使用が広がっており、室内の蛍光灯や視聴者の像がディスプレイ表面に写りこむことを防止する防眩性の向上と、明所での表示コントラストの更なる向上が要求されている。(例えば特許文献1参照)。

防眩フィルムにおいて、防眩層に透光性粒子を添加することで、防眩層表面に凹凸を持たせて光の散乱(表面散乱性)を起こさせる防眩機能と、透光性粒子と防眩層中の透光性樹脂の屈折率差から生ずる光の散乱機能(内部散乱性)とが用いられる。

表面散乱性による防眩機能を付与する場合は、一方でその表面散乱性により画像表示装置表面が白茶けて見え、黒締り感が低下する、表面凹凸によるレンズ効果によって引き起こされるギラツキが悪化するなどの問題が発生する。

内部散乱性はギラツキ改良、コントラストの視野角特性の改良などの目的で用いられるが、大きすぎると、表示コントラストが下がる弊害がある。一方、小さすぎるとギラツキが悪化する問題があり、適度な内部散乱性が求められていた。適度な内部散乱性を付与するためには、透光性粒子と透光性樹脂に屈折率差が必要であった。

内部散乱性を付与するために、防眩層に用いる透光性粒子と透光性樹脂の屈折率差を設けるため、透光性粒子と透光性樹脂が異なる樹脂成分からなることが好ましい。しかし、異なる樹脂成分を用いると、透光性粒子と透光性樹脂の親和性が低く、透光性粒子が透光性樹脂中で凝集を発生しやすく、その結果、表面凹凸は大きくなりすぎ、黒締りが悪化する。

一方、少なくとも最表面に層厚100nm程度の薄膜層である低屈折率層を設け、その低屈折率層の光学干渉によって反射防止を行う反射防止フィルムも用いられる。更に反射率を低下させるために、透明支持体と低屈折率層の間に高屈折率層を形成する2層薄膜干渉型、または、透明支持体と低屈折率層の間に中屈折率層、高屈折率層を順次形成する3層薄膜干渉型など、多層の光学干渉によって反射を防止する多層薄膜干渉型反射防止フィルムが知られている。特に広い波長範囲で反射を防止し、反射色を抑えながら、低反射率とするために、3層薄膜干渉型が望ましい。

多層薄膜干渉型の反射防止フィルムに用いる薄膜層(高屈折率層、中屈折率層、低屈折率層など)としては、金属酸化物の透明薄膜層を積層させた多層膜が従来から広く用いられている。通常、金属酸化物の透明薄膜は、化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法、スパッタリング法により形成することが行われてきた。

しかし、蒸着やスパッタリングによる金属酸化物の透明薄膜の形成方法は生産性が低く大量生産に適しておらず、生産性が高い湿式成膜法、特に塗布方式により形成する方法が提案されている。

映り込みと黒締まりをさらに向上させるためには防眩層上に上記2層乃至3層の薄膜干渉型の反射防止層を形成することが好ましい。しかしながら、生産性のよい上記塗布方式により該防眩層の凹凸表面にナノメートルスケールの薄膜をコーティングしようとすると、凹凸に起因して塗布ムラやハジキが生じ、膜厚が均一にならず設計通りに最適な光干渉が起きないことにより反射率が下がらないことがある。そのため、低反射と防眩性を両立することは困難であった。

こういった塗布ムラやハジキを改良するために、防眩層表面を表面処理した後にエージング処理したり(特許文献2)、防眩層と反射防止層の間に中間層を設けたりすること(特許文献3)が試みられている。また、低屈折率層中の中空球状シリカ系微粒子を凸部分より凹部分に多く存在するよう配置することが試みられている(特許文献4)。
しかしながら、これらの従来提案されている光学フィルムでは反射率を下げるには十分ではなかった。

防眩層の凹凸形状を形成している表面粗さにおいて凹凸スケール(凹凸の山高さと山間隔)の1/10以下のスケールで凹凸形状に沿って存在している微細な凹凸を低減すること、つまり平坦な部分を多くすることで、防眩層の凹凸表面にナノメートルスケールの薄膜を均一にコーティング出来る様になり設計通りの反射率となる。そのため、低反射と防眩性を両立する。

また、防眩層中に内部散乱性を付与する為に透光性の高屈折率樹脂粒子を使用した場合、その内部散乱粒子が凝集または複数連なることにより微細な凹凸を発生させ、防眩フィルムの黒締り感が悪化するという問題が発生したり、反射防止フィルムの各薄膜層の塗布ムラやハジキが生じ、膜厚が均一にならず、設計通りに反射率が下がらないなどの問題を発生させる。

特開2005−316450号公報 特開2006−145737号公報 特開2006−145587号公報 特開2006−146027号公報

本発明の目的は、防眩性、黒締り、ギラツキに優れた防眩フィルムを提供することにある。また、防眩性、黒締り、ギラツキに優れ、かつ、反射率の低い反射防止フィルムを提供することにある。本発明の別の目的は、該防眩フィルムまたは反射防止フィルムを具備した偏光板、および画像表示装置を提供することにある。

本発明者らは、鋭意検討の結果、下記の構成を有することで、前記問題を解決し、目的を達成することを見出した。

1.
支持体上に、凹凸表面を有する防眩層を有し、該防眩層は少なくとも2種の透光性粒子を含有し、第1の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.01〜3.0μm大きく、第2の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.10μm以上小さく、該第1の透光性粒子は添加量が該防眩層の全固形分に対して0.1〜1質量%であり、該第2の透光性粒子は添加量が該防眩層の全固形分に対して2〜30質量%であり、該第2の透光性粒子が、無機酸化物粒子である防眩フィルム。
2.
前記第1の透光性粒子の防眩層における単位面積当たりの個数が1〜10000個/mmである上記1に記載の防眩フィルム。
3.
前記第1の透光性粒子の平均粒子径が、前記第2の透光性粒子の平均粒子径より2μm以上大きい上記1または2に記載の防眩フィルム。
4.
前記防眩フィルムの凹凸表面の中心線平均粗さ(Ra)が0.03μm<Ra<0.4μmであり、凹凸の平均間隔(Sm)が80μm<Sm<700μmであり、該凹凸の傾斜角θを測定した際、0°<θ<0.5°の領域(θ(0.5))が40%以上を占める上記1〜3のいずれかに記載の防眩フィルム。
5.
上記1〜4のいずれかに記載の防眩フィルムの防眩層上に、該防眩層より屈折率が低い低屈折率層を有する反射防止フィルム。
6.
前記防眩層と前記低屈折率層との間に、前記防眩層よりも屈折率の高い高屈折率層をさらに有する上記5に記載の反射防止フィルム。
7.
積分反射率が1.5%以下である上記5または6に記載の反射防止フィルム。
8.
前記防眩層と前記高屈折率層との間に、前記防眩層よりも屈折率が高く、前記高屈折率層よりも屈折率の低い、中屈折率層をさらに有する上記6に記載の反射防止フィルム。
9.
積分反射率が1.0%以下である上記8に記載の反射防止フィルム。
10.
偏光膜と、該偏光膜の両側に設けられた保護フィルムとを有する偏光板であって、該保護フィルムの少なくとも一方が、上記1〜4のいずれかに記載の防眩フィルムまたは上記5〜9のいずれかに記載の反射防止フィルムである偏光板。
11.
上記1〜4のいずれかに記載の防眩フィルム、上記5〜9のいずれかに記載の反射防止フィルムまたは上記10に記載の偏光板をディスプレイの最表面に有する画像表示装置。

本発明によれば、防眩性、黒締り、ギラツキに優れた防眩フィルムを提供することができる。また、防眩性、黒締り、ギラツキに優れ、かつ、反射率の低い反射防止フィルムを提供することができる。さらに本発明によれば、該防眩フィルムまたは反射防止フィルムを具備した、偏光板、および画像表示装置を提供することができる。

以下、本発明について更に詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。

<防眩フィルムの層構成>
本発明の防眩フィルムは、支持体上に、凹凸表面を有する防眩層を有し、該防眩層は少なくとも2種の透光性粒子を含有し、第1の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.01〜3.0μm大きく、第2の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.10μm以上小さく、該第1の透光性粒子は添加量が該防眩層の全固形分に対して0.1〜1質量%であり、該第2の透光性粒子は添加量が該防眩層の全固形分に対して2〜30質量%であり、該第2の透光性粒子が、無機酸化物粒子である防眩フィルムである。

本発明の防眩フィルムは、支持体の上に少なくとも1層の防眩層を有する。
本発明の防眩フィルム、または該防眩フィルムを含む光学フィルムとして好ましい層構成の例を下記に示す。下記構成において基材フィルムは、フィルムで構成された支持体を指している。
・基材フィルム/防眩層
・基材フィルム/帯電防止層/防眩層
・基材フィルム/防眩層
・基材フィルム/防眩層/低屈折率層
・基材フィルム/防眩層/帯電防止層/低屈折率層
・基材フィルム/ハードコート層/防眩層/低屈折率層
・基材フィルム/ハードコート層/防眩層/帯電防止層/低屈折率層
・基材フィルム/ハードコート層/帯電防止層/防眩層/低屈折率層
・基材フィルム/防眩層/高屈折率層/低屈折率層
・基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層
・帯電防止層/基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層
・基材フィルム/帯電防止層/防眩層/中屈折率層/高屈折率層/低屈折率層
・帯電防止層/基材フィルム/防眩層/高屈折率層/低屈折率層/高屈折率層/低屈折率層

本発明の防眩フィルムおよび反射防止フィルムでは、防眩層、反射防止層以外の層が塗設されていてもよく、これらの層としては、上記の各層の他、例えば防汚層等が挙げられる。防眩層、反射防止層の少なくとも1種がハ−ドコート層、帯電防止層、防汚層等の機能を同時に有することがより好ましい。本発明の防眩フィルムは、上記したこれらの層を有することで、光学フィルムとして好適に利用できる。

本発明の反射防止フィルムは、低反射化の点から、防眩層の上に低屈折率層を有することが好ましいが、中屈折率層/高屈折率層/低屈折率層を含む構成の反射防止フィルムが更に好ましく、例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等に記載の構成が挙げられる。

<防眩層の構成>
防眩層は、少なくとも平均粒子径が防眩層の平均膜厚よりも0.01〜3.0μm大きい第1の透光性粒子と、平均粒子径が防眩層の平均膜厚よりも0.10μm以上小さく、無機酸化物粒子を含む第2の透光性粒子を含む。防眩層は、例えばこれらの透光性粒子、マトリックス形成成分(バインダー用モノマー類等)及び有機溶媒を含有する塗布液を塗布・乾燥し硬化して形成することができる。

防眩層を形成する塗布液は、例えば、電離放射線等で硬化されて形成する透光性ポリマーの原料となる主たるマトリックス形成バインダー用モノマー類、前記特定粒径の透光性粒子、重合開始剤、好ましくは、塗布液の粘度を調整するための高分子化合物、カール低減や屈折率調節等のための無機微粒フィラー、塗布助剤等を含む。

本発明では第1の透光性粒子は防眩性付与に用いられる。ギラツキ悪化、反射率上昇をせずに、防眩性を付与するには、第1の透光性粒子の大きさと添加量を本発明の範囲にし、少ない頻度の凹凸で適性な防眩性を付与することが必要である。それにより、必要な防眩性を付与しながら、表面の平坦な部分の割合を高くし、ギラツキ、反射率の悪化が防げる。一方、本発明では第2の透光性粒子は内部散乱性付与に用いられる。第2の透光性粒子は必要な内部散乱性を付与するために、第1の透光性粒子より添加量が多くなるが、平均膜厚に対し粒径が小さいこと、無機酸化物粒子を用いることで、粒子凝集や複数の連なりを防ぐことで、第1の透光性粒子で決まった凹凸の頻度増加を抑制し、ギラツキ、反射率、防眩性を全て良く保ったまま、内部散乱性を付与できる。これは、明確な理由は不明だが一般的に樹脂粒子より密度が大きい無機酸化物粒子を用いることで、塗布液を塗布し乾燥する過程において粒子の移動速度が遅くなり、粒子凝集や複数の連なりがしづらくなる、及び/または、粒子の沈降速度が速く、防眩層の断面方向において上部への存在確立が減る事が推定される。第2の透光性粒子に高屈折率樹脂粒子を用いると、内部散乱性と凝集性を両立できず、必要な内部散乱性を付与すると、表面凹凸の頻度が上がり、同時に平坦部の割合が減少することで、ギラツキ悪化、反射率上昇を起こしてしまう。

防眩層の厚さは2.5μm〜19.9μmが好ましく、3〜18μmが更に好ましく、5〜15μmがより好ましく、最も好ましくは5μm〜10μmである。2.5μm未満の場合には、鉛筆硬度といった膜の強度が不足すること、内部散乱粒子として用いる第2の透光性粒子が粒径2μm以下のものしか用いることができず、適切な内部散乱性が付与できない傾向がある。19.9μmを超えると膜のカールや脆性が悪化し、コスト上昇といった問題が生じる傾向がある。
防眩層の平均膜厚は防眩フィルムの断面を電子顕微鏡で観察し、膜厚をランダムに30ヶ所測定した平均値から算出される。

バインダーの屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。前記透光性粒子の屈折率は、液浸法により測定される。具体的には、屈折率の異なる2種類の溶媒(例えば、トルエン、1−ブロモナフタレン、1−クロロナフタレン、ジヨードメタン、イオウ入りジヨードメタンなど)の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して液温25℃で濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計を用いて液温25℃、589nmの波長の光を用いて測定される。

<第1の透光性粒子>
本発明に用いる第1の透光性粒子は、平均粒子径が防眩層の平均膜厚よりも0.01〜3.0μm大きいことが、防眩性を付与する点で必要であり、防眩性と膜表面の平坦部の割合を多くし、ギラツキを良化させたり、薄膜干渉層を均一に積層することを両立するためには0.05〜3.0μm大きいことがより好ましく、0.2〜2.5μm大きいことがさらに好ましい。
第1の透光性粒子の平均粒径は3.0〜20μmのものを用いるのが好ましい。透光性粒子の平均粒径は、3.0μm〜15μmがより好ましく、5.0μm〜12μmがさらに好ましい。平均粒径が3.0μm未満であると、防眩層の平均膜厚が薄くなり鉛筆硬度といった膜の強度が不足する問題が生じる傾向がある。一方、20μmを超えると、添加する層の膜厚を厚くする必要が生じ、膜のカールや脆性が悪化し、コスト上昇といった問題が生じる傾向がある。

防眩層の1つの凸部は実質的に5個以下の透光性粒子によって形成されていることが好ましく、実質的に1個の透光性粒子によって凸部が形成されていることがより好ましい。ここで「実質的に」とは、上記で定義された凸部のうち、90%以上が好ましい態様を満たしていることを意味する。凸部とは、防眩層の平均膜厚より大きい第1の透光性粒子が粒子の存在しないマトリックス成分で形成された膜厚より突出している部分を指し、逆に凹部は、第1の透光性粒子が粒子の存在しない部分を指す。

第1の透光性粒子の種類については、凸部は実質的に1個の透光性粒子によって形成されていることがより好ましいため、分散性の良好な粒子を選定することが好ましい。

分散性の良好な第1の透光性粒子としては、ポリメチルメタクリレート粒子及び、ポリメチルメタクリレートとポリスチレンとの共重合体粒子など透光性の有機樹脂粒子が好ましい。該共重合体粒子中のポリメチルメタクリレート比率は、60質量%以上であることが、分散性の観点から好ましく、ポリメチルメタクリレート粒子であることが特に好ましい。

第1の透光性粒子として金属酸化物粒子を用いることもできる。金属酸化物粒子としては、シリカ、アルミナなどの粒子を用いることもできるが、塗布液中での沈降しずらさや内部散乱性を変化させないなどの観点からは、凝集性の金属酸化物微粒子を用いることが好ましい。凝集性の金属酸化物粒子は、防眩層の〔1〕表面凹凸付与、〔2〕屈折率調整、〔3〕硬度アップ、〔4〕脆性、カール改良、等を目的に使用されるが、本発明における防眩層の表面凹凸付与に対し、透明性と安価である点から、上記金属酸化物微粒子としては、凝集性のシリカ粒子と凝集性のアルミナ粒子が好適であり、なかでも、一次粒子径が数十nmの粒子が凝集体を形成した凝集性のシリカが、適度な表面凹凸を安定に付与できる点で好ましい。凝集性のシリカは、例えば、珪酸ナトリウムと硫酸の中和反応により合成された、いわゆる湿式法により得ることができるがこれに限らない。湿式法にはさらに沈降法、ゲル化法に大別させるが、本発明はどちらの方法であってもよい。凝集性シリカの二次粒径は、3.0〜20μmの範囲が好ましいが、粒子を含有する防眩層の層厚と組合わせて選択される。二次粒径の調整は、粒子の分散度(サンドミル等を用いた機械的な分散、分散剤等を用いた化学的な分散、による制御を行う)で行う。

上記の透光性粒子を用いる場合には、バインダー中又は塗布液中での粒子の分散安定性及び沈降防止のために、シリカ等の可視光散乱を起こさない大きさの無機フィラーや、有機化合物(モノマーでもポリマーであってもよい)等の分散剤を添加してもよい。

なお、無機フィラーを添加するときには、その添加量が増す程、透光性粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与えない範囲内で用いることが好ましい。従って、好ましくは、粒径0.5μm以下の無機フィラーを、バインダー100質量部に対して塗膜の透明性を損なわない程度に、0.1質量部程度含有させるとよい。有機化合物等の分散剤は、透光性粒子100質量部に対して0.1〜50質量部添加するのが好ましい。更に好ましくは0.1〜40質量部、特に好ましくは0.3〜30質量部である。0.1質量部以上であれば、分散安定性に対する添加効果が現れ、50量部以下であれば、分散安定性に寄与しない成分が増えてブリードアウト等の問題が生じることがないので好ましい。

バインダー中又は防眩層形成用塗料中での分散安定性及び沈降防止のためには、透光性粒子の表面を表面処理してもよい。表面処理剤の種類としては、使用するバインダー、溶媒により適宜選択される。

上記防眩層の平均膜厚よりも大きい平均粒子径を有する第1の透光性粒子の添加量は防眩層の全固形分に対して0.1〜1質量%であることが、凹凸の密度を粗にすることで膜表面の平坦部の割合を多くし、薄膜干渉層を均一に積層する点から必要である。より好ましくは0.1〜0.7質量%、さらに好ましくは0.15〜0.5質量%である。添加量を0.1〜1質量%の範囲にしないと、防眩性、ギラツキ、反射率をともに良好にすることはできず、添加量を0.1質量%未満にすると防眩性が不十分になり、膜の均質感がなくなる。一方、1質量%を超えるとギラツキの悪化、反射率上昇などが起こる。

防眩層の平均膜厚よりも大きい平均粒子径を有する第1の透光性粒子の防眩層における単位面積当たりの個数としては、1〜10000個/mmであることが好ましい。さらに好ましくは5〜5000個/mm、より好ましくは10〜1500個/mm、とくに好ましくは10〜1000個/mm、最適には10〜500個/mmである。透光性粒子の個数は光学顕微鏡にて200の10視野観察してそれぞれの個数をカウントし、その平均値から算出することができる。

粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。平均粒径は得られた粒子分布から算出したり、光散乱法や電子顕微鏡写真により測定できる。

<第2の透光性粒子>
本発明では必要な内部散乱性を得るために前記第1の透光性粒子とは平均粒子径の異なる第2の透光性粒子を併用して用いる。前記透光性粒子で防眩性を付与し、第2の透光性粒子で内部散乱性を付与することが可能である。例えば、ディスプレイに防眩性反射防止フィルムを貼り付けた場合に、「ギラツキ」と呼ばれる表示画像品位上の不具合が発生する場合がある。本発明では「ギラツキ」は防眩性で議論される電灯等の照明の映り込みのまぶしさの有無ではなく、防眩性反射防止フィルム表面に存在する凹凸が引き起こすレンズ効果により画素が拡大もしくは縮小され輝度の均一性を失い、人の目にはR、G、Bがぎらついて見えてしまうことに由来するが、防眩性を付与する透光性粒子よりも小さな粒子径で、バインダーとは屈折率の異なる透光性粒子を併用することにより大きく改善することができる。

本発明において第2の透光性粒子を併用すると、第2の透光性粒子起因の膜の凹凸が発生し、膜表面の平坦部の割合が減る問題がある。第2の透光性粒子の分散性が悪く、大きな凝集体を形成すると防眩層表面が荒れた構造となり、防眩層上に薄膜干渉層の低屈折率層を設けた際の膜厚均一性が悪化し、反射率が低い光学フィルムが得られない場合があるので、分散性が良好な粒子とするのが好ましい。特に、反射率を下げるために、高屈折率層及び低屈折率層の2層設けたり、更に高屈折率層、中屈折率層、低屈折率層の3層以上設けたりした場合は、膜厚均一性が悪化し、反射率が低い光学フィルムが得られない場合があるので、本発明では、第2の透光性粒子の凝集による膜表面の平坦部の割合減少を防ぐことを目的に、第2の透光性粒子として、無機酸化物粒子を用いる。

第2の透光性粒子は防眩層の平均膜厚よりも小さい平均粒子径を有することが好ましい。具体的には、表面凹凸に寄与することなく内部散乱性を付与するためには、第2の透光性粒子の平均粒子径は、防眩層の平均膜厚の0.10μm以上小さいことが、膜の平坦部を減少させにくいために必要であり、1μm以上小さいことが好ましく、2μm以上小さいことがより好ましく、3μm以上小さいことがさらに好ましい。

第2の透光性粒子の配合割合は、防眩層の全固形分に対して2質量%〜30質量%とするのが、内部散乱性を付与し、ギラツキを改良するという点で必要であり、3〜25質量%とするのが好ましく、5〜20質量%とするのがより好ましい。

本発明において、用いられる第2の透光性粒子の粒度分布は、ヘイズ値と拡散性の制御、塗布面状の均質性の観点から、単分散性の粒子であること、すなわち粒子径が均一な粒子であることが好ましい。粒子径の均一さを表すCV値は0〜10%が好ましく、より好ましくは0〜8%、更に好ましくは0〜5%である。さらに平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と定義した場合、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒度分布を持つ透光性粒子は、調製又は合成反応後に、分級することも有力な手段であり、分級の回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。
透光性粒子の平均粒子径は、該透光性粒子を光学顕微鏡により観察し、観察された10000個の粒子直径の平均値から算出する。
粒度分布に関しては、第1の透光性粒子も上記範囲に入ることがより好ましい。

上記の第1、第2の透光性粒子を用いる場合に、バインダー中又は塗布液中での粒子の分散安定性及び沈降防止のために、シリカ等の可視光散乱を起こさない大きさの無機フィラーや、シランカップリング剤などで表面処理したり、有機化合物(モノマーでもポリマーであってもよい)等の分散剤を添加したりするのが好ましい。

なお、無機フィラーを添加するときには、その添加量が増す程、透光性粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与えない範囲内で用いることが好ましい。従って、好ましくは、粒径0.5μm以下の無機フィラーを、バインダー100質量部に対して塗膜の透明性を損なわない程度に、0.1質量部程度含有させるとよい。シランカップリング剤や分散剤は、透光性粒子100質量部に対して0.1〜50質量部添加するのが好ましい。更に好ましくは0.1〜40質量部、特に好ましくは0.3〜30質量部である。0.1質量部以上であれば、分散安定性に対する添加効果が現れ、50量部以下であれば、分散安定性に寄与しない成分が増えてブリードアウト等の問題が生じることがないので好ましい。

シランカップリング剤としては、ビニルトリメトキシシランやビニルトリエトキシシラン等のビニル系シランカップリング剤;N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ系シランカップリング剤;γ−グリシドキシプロピルトリメトキシシラン等のエポキシ系シランカップリング剤;アクリロキシプロピルトリメトキシシラン等のアクリロキシ系シランカップリング剤;3−メタクリロキシプロピルトリメトキシシラン等のメタクリロキシ系シランカップリング剤;3−メルカプトプロピルトリメトキシシラン等のメルカプト系シランカップリング剤;メチルトリメトキシシラン、トリメチルメトキシシラン、デシルトリエトキシシラン、ヒドロキシエチルトリメトキシシラン等のアルキル系シランカップリング剤;(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン等のフッ素含有有機基を有するシリコン化合物などが利用できる。
以上の他にも、ジイソプロポキシアルミニウムエチルアセトアセテート、ジイソプロポキシアルミニウムアルキルアセトアセテート、ジイソプロポキシアルミニウムモノメタクリレート、アルミニウムステアレートオキサイドトリマー、イソプロポキシアルミニウムアルキルアセトアセテートモノ(ジオクチルホスフェート)等の各種アルミニウム系カップリング剤、ジルコニウムジn−ブトキシド(ビス−2,4−ペンタンジオネート)、ジルコニウムトリn−ブトキシドペンタンジオネート、ジルコニウムジメタクリレートジブトキシド等の各種ジルコニウム化合物、更にイソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリクミルフェニルチタネート等のチタネート系カップリング剤等が挙げられる。

(無機酸化物粒子)
本発明にかかる透光性粒子を構成する無機酸化物粒子は、下記の3種類の形態を共にもしくは何れか有していることが好ましい。
無機酸化物粒子(1):シリカもしくはアルミナを主成分とする無機酸化物粒子
無機酸化物粒子(2):シリカを主成分とする核部と、シリカとシリコン以外の周期表4族または14族の金属の酸化物とを主成分とするシリカ系複合酸化物の被覆層とよりなる無機酸化物粒子
無機酸化物粒子(3):シリカとシリコン以外の周期表4族または14族の金属の酸化物を含有するシリカ系複合酸化物よりなる無機酸化物粒子

本発明の無機酸化物粒子の屈折率は、1.40〜1.90、好ましくは1.42〜1.70である。1.40未満の場合は、屈折率を下げるために多孔質構造を有することで、透光性樹脂や溶剤が多孔質部分に入り込み、無機酸化物粒子の屈折率が変化して内部散乱性制御が困難になる傾向がある。また、1.90を越えた場合、粒子の単分散性が得られにくくなり好ましくない傾向がある。

本発明の無機酸化物粒子の平均粒子径は、例えば、1.1〜19μmの範囲であり、好ましくは1.1〜15μmであり、特に好ましくは1.5〜10μmである。1.1μm未満の場合は、粒子径が小さくなることによって溶媒や樹脂中での分散性が低下し使い難くなる傾向がある。また、光の散乱効率が低くなることが懸念される傾向がある。一方、19μmを超えた場合は、膜表面の平坦部の割合を減らさないために、膜厚を厚くする必要が生じ、膜のカールや脆性が悪化し、コスト上昇といった問題が生じる傾向がある。

また本発明において、第1の透光性粒子の平均粒子径は、無機酸化物粒子(第2の透光性粒子)の平均粒子径より2μm以上大きいことが好ましい。これにより、膜表面の微細な凹凸が発生せず、平坦度の上昇を抑えるという効果を奏する。さらに好ましくは、第1の透光性粒子の平均粒子径は、無機酸化物粒子の平均粒子径より2.5μm以上大きいのがよい。

ここでは、無機酸化物粒子(1)について説明する。
粒子径が均一な粒子が得られ易い性質を損なわない範囲で、シリカもしくはアルミナ以外の他の成分を含んでいても良い。一般には、シリカもしくはアルミナの含有率は、80モル%以上、好ましくは85モル%以上、さらに好ましくは90モル%以上であることが好ましい。なお、特に粒子径が均一な粒子を形成するためには、含有率は99モル%以上であることが好ましい。

ここでは、無機酸化物粒子(2)について説明する。
無機酸化物粒子(2)は、シリカを主成分とする核部を有する。即ち、シリカは、吸水率が低く、熱膨張係数が小さい等の特性から有用であるが、他の特性として、球状や略球状、特に、後記の電子顕微鏡の撮影像から求められる円形度が0.8以上の真球に近い粒子を得易いという点がある。

ここで、透光性粒子としては、形状が均一であり、且つ、平均粒子径や粒度分布の再現性が高いものが望ましく、より真球状で、単分散性にも優れたものが好適である。得られる無機酸化物粒子の形状は、核部の形状に大きく影響されるため、本発明における球状無機酸化物粒子は、核部として、上記シリカを主成分とする粒子を使用することにより、上記透光性粒子に求められる性状を良好に満足したものになる。

かかる球状の粒子を他の酸化物によって得ることは困難であり、特に、粒子径が大きい球状粒子を得る場合、シリカを主成分とする粒子を核部として使用することによる効果が顕著に発揮される。この核部の粒子径は、具体的には、0.5μm以上が好ましく、より好ましくは0.5〜8μm、更に好ましくは0.8〜5μmである。また、電子顕微鏡の撮影像から求められる円形度は、0.8以上であるが、好ましくは0.85以上、さらに好ましくは0.90以上、最も好ましくは0.92以上であるのが好ましい。

なお、核部を形成するシリカは、球状が得られ易い性質を損なわない範囲で、シリカ以外の他の金属酸化物を含んでいても良い。一般には、該核部中のシリカの含有率は、80モル%以上、好ましくは85モル%以上、さらに好ましくは90モル%以上であることが好ましい。なお、特に前記円形度の高い核部を形成するためには、シリカの含有率は99モル%以上であることが好ましい。シリカ以外の他の金属酸化物としては、酸化ナトリウムや酸化カリウム等のシリカと結合可能な周期表1族の金属の酸化物、及び酸化マグネシウムや酸化カルシウム等のシリカと結合可能な周期表2族の金属の酸化物、及び酸化ホウ素や酸化アルミニウム等のシリカと結合可能な周期表第13族の金属の酸化物、及び酸化チタンや酸化ゲルマニウム等のシリカと結合可能な周期表4族または14族の金属の酸化物などが挙げられる。

上記核部の代表的な製造方法としては、特開平6−254383号公報、特開平8−048505号公報、特開昭62−72516号公報等などに記載されているように、ゾルゲル法を応用した方法が挙げられる。

上記方法によれば、単分散性の指標となる粒子径の変動係数が10%以下のものも容易に得られるため、得られる無機酸化物粒子の単分散性を向上させるために有効である。

本発明にかかる無機酸化物粒子(2)は、上記のシリカを主成分とする核部を、シリカとシリコン以外の周期表4族または14族の金属の酸化物とを主な構成成分とするシリカ系複合酸化物よりなる被覆層で被覆した二層構造を有する。

シリコン以外の周期表4族または14族の金属の酸化物としては、GeO、SnO、PbO、TiO、ZrO、HfO等が挙げられる。これらの中でも、TiO(チタニア)やZrO(ジルコニア)は、原料が安価で入手が容易である上に、屈折率が高いために、少量の添加によって高屈折率の被覆層を形成し易いために極めて好適に採用できる。なお、シリカ−チタニアやシリカ−ジルコニアの二成分系以外に、シリカ−チタニア−ジルコニアの三成分系も好適である。

本発明の被覆層に使用するシリカ系複合酸化物は、例えばシリコン以外の周期表4族または14族の金属の酸化物がチタニアの場合、シリカとチタニアが分子オーダーで均一に複合化されたものであって、単にシリカとチタニアの混合物とは異なる。したがって、該シリカ系複合酸化物は、シリカとシリコン以外の周期表4族または14族の金属の酸化物の構成成分が一般には化学的に結合して存在するもので、これらの構成成分を物理的に分離することは、通常はできない。両成分が化学的に結合していることは、赤外スペクトルや屈折率(粒子の光学的な透明性)を測定することで確認できる。

なお、本発明の無機酸化物粒子は、特に高温で焼成しない限りは非晶質であるため光学的な等方性が高く良好であるが、被覆層であるシリカ系複合酸化物層の屈折率を向上させるために1000℃前後の温度で焼成したものにしても良い。1000℃前後の高温で焼成した場合はシリコン以外の周期表4族または14族の金属の酸化物(例えば、チタニアやジルコニア)の一部が結晶化する場合があるが、光学的な透明性を維持できる範囲であれば問題なく使用できる。即ち、粒子同士が焼結してしまったり、結晶が大きくなり過ぎて可視光領域において不透明になったりしない(全光線透過率が大幅に低下しない)範囲であれば問題なく使用できる。そのためには粒子の焼成温度を300〜1100℃、好ましくは500〜1050℃とすることが好ましい。なお、結晶性の程度についてはX線回折等の手段で解析できる。

本発明の無機酸化物粒子において、被覆層に含有されるシリコン以外の周期表4族または14族の金属の酸化物は、一般に高屈折率材料であり、これらの含有率が高いほど、マトリックス樹脂との屈折率差を大きくでき、光散乱効率が高くできる粒子を得ることができる。

一般的に、屈折率が1.6を超えた粒子は、従来市販の樹脂ビーズでは達成できなかった領域であり、透光性粒子として極めて有用である。このため、本発明の複合酸化物粒子においても、被覆層の屈折率は1.6〜2.0の範囲、好ましくは1.65〜1.95の範囲、さらに好ましくは1.70〜1.90の範囲とするのが好適である。

なお、本発明において、無機酸化物粒子の屈折率は、25℃で589nmの波長の光を用いて液浸法により測定した値をいう。

なお、上記無機酸化物粒子は、シリカを主成分とする核部を、高屈折率を有する前記シリカ系複合酸化物で被覆した二層構造の粒子であるため、粒子自身の屈折率を直接測定することは困難である。参考のために、1050℃で12時間焼成したシリカ−チタニア系複合酸化物粒子のチタニア含有率と粒子の屈折率の関係が、チタニア含有率にほぼ比例するため、チタニア含有率を制御すれば粒子の屈折率を自由に調整できる。本発明における、上記被覆層の屈折率とは、同じ乾燥または焼成条件で得たシリカ系複合酸化物粒子における、シリコン以外の周期表4族または14族の金属の酸化物の含有率と粒子の屈折率との関係をもとに、該被覆層の組成から換算して求めた値である。

ここで、被覆層の屈折率を上記のような範囲とするためには、チタニアやジルコニアなどの周期表4族または14族の金属の酸化物の含有率は22〜70mol%の範囲、好ましくは25〜65mol%、さらに好ましくは30〜60mol%の範囲とすることが必要である。なお、ここで言う周期表4族または14族の金属の酸化物の含有率とは、シリカ系複合酸化物を構成するシリコンのモル数をSi、シリコン以外の周期表4族または14族の金属の酸化物を構成する金属元素のモル数をMとすると、M/(Si+M)×100で表わされる。上記含有率が22mol%未満の場合には光散乱効果が小さい場合があり、70mol%を超えるとチタニアなどのシリコン以外の周期表4族または14族の金属の酸化物が結晶化し易くなるために全光線透過率が低下することなどが懸念される。

以上のように、本発明の粒子は、被覆層が実質的にチタニアやジルコニアなどの金属酸化物の単一組成で構成されるのではなく、シリカとの複合酸化物にすることによって、金属酸化物の結晶化が抑制され、全光線透過率が高いという特徴がある。

本発明においては、被覆層の厚みは0.03μm以上であることが重要である。被覆層の厚みが薄い場合には、光が被覆層を経由して粒子中を透過し易くなるため、光散乱効率が低下する場合がある。したがって、被覆層の厚みは0.03μm以上、好ましくは0.05〜2μm、さらに好ましくは0.1〜1μmであることが光散乱効率を向上させる上で好ましい。

さらに、本発明の無機酸化物粒子は、電子顕微鏡の撮影像から求められる円形度が例えば0.8以上であり、好ましくは0.85以上、さらに好ましくは0.90以上、最も好ましくは0.92以上である。本発明の粒子が、このように球形性に優れたものになる理由は、前記したように核部に球形性の高いシリカ粒子を使用しているためであり、該核部の外側に形成される被覆層も、これに追従して球状になるからである。ここで、前記円形度が0.8以上であれば、光の散乱が等方的になり、さらに光散乱性能の再現性も高くなり好ましい。前記円形度が0.8未満の場合は、樹脂中に高充填し難くなり、コーティング剤に応用した場合に粘度が高くなったり、コート膜にしたときに表面にザラツキ感が出たり、傷つき易くなったりすることも懸念される。

上記円形度を始め、粒子の形状、平均粒子径、粒子径の変動係数等の情報は、電子顕微鏡像を画像解析することによって調べることができる。なお、ここで円形度は、電子顕微鏡の撮影像を画像処理することによって求められる値である。画像処理で得られた粒子の面積をS、粒子の周囲長をLとすると、
円形度=(4・π・S)/(L
である。200以上のサンプル数で平均して値を求めることにより、再現性のある実質的な一定値が得られる。

本発明の無機酸化物粒子は、前記被覆層の表面に、さらに最外層としてシリカを被覆しても良い。例えば、核部がシリカ、被覆層がシリカとチタニアよりなるシリカ系複合酸化物の場合、表面にチタニア成分が一部露出する場合がある。チタニアは紫外線を吸収することによって有機物を分解する、いわゆる光触媒能があることが知られているが、長期間太陽光下で使用した場合に樹脂バインダーなどが劣化することが懸念される。そのような場合は、本発明の無機酸化物粒子の最外層に、さらにシリカを被覆することによって光劣化の問題を軽減または解消することができる。上記最外層のシリカ被覆層の厚みは、1nm以上、好ましくは2〜1000nm、更に好ましくは3〜100nmが好ましい。

本発明の無機酸化物粒子は、前記したような要件が備わった粒子が得られる限り、その製造方法は何ら限定されるものではない。好適な製造方法としては、以下の方法が挙げられる。

すなわち、まず、シリコンのアルコキシドを触媒を含む含水有機溶媒(1)中で加水分解・縮合させることによって核部となる球状のシリカ粒子を製造し、続いて、シリコンのアルコキシドとシリコン以外の周期表4族または14族の金属のアルコキシドを混合した原料を前記シリカ粒子が分散された触媒を含む含水有機溶媒(2)中で加水分解・縮合させることによって前記シリカ粒子の表面にシリカとシリコン以外の周期表4族または14族の金属の酸化物よりなる被覆層を形成する方法が挙げられる。

ここで、用いる含水有機溶媒(1)及び(2)中の有機溶媒としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、ペンチルアルコール、ヘキシルアルコールなどのアルコール類、エチレングリコールやグリセリンなどの多価アルコール類、アセトン、メチルエチルケトンなどのケトン類、ジオキサン、ジエチルエーテルなどのエーテル類、酢酸エチルなどのエステル類、その他水と相溶性のある有機溶媒が単独または複数混合して用いられる。

含水有機溶媒(1)においては、メチルアルコール、エチルアルコール、イソプロピルアルコールのような低級アルコール類が金属アルコキシドや水との相溶性も高く、また粘度も低いために、特に、核部となる粒子を製造する際に好適に使用される。

一方、含水有機溶媒(2)においては、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、更にはペンチルアルコールやヘキシルアルコールのような長鎖アルコール類が、金属アルコキシドの反応性を制御するのに好適であり、特に、被覆層を形成する際には好適な場合がある。即ち、シリコンのアルコキシドとシリコン以外の周期表4族または14族の金属のアルコキシドを混合した原料の加水分解・縮合の反応性は、シリコンのアルコキシドのそれよりも非常に高いためにtert−ブチルアルコールのような長鎖アルコールを使用した方が微粒子の発生を抑制でき、被覆層を形成するのに好適である。

触媒を含む含水有機溶媒(1)及び(2)中の上記有機溶媒の割合は、およそ3〜95%、好ましくは60〜90%の範囲が好適である。

また、金属アルコキシドを加水分解するための触媒としては、N(CH等のアミン、N(CHOH、アンモニア、LiOH、NaOH、KOHなどの塩基が好適に使用できる。特に、アンモニアやアミンの場合は、製造した無機酸化物粒子を焼成すれば粒子中に塩基が残留しないために、加水分解用の触媒として極めて好適である。触媒の添加量は、用いる触媒の種類や含水有機溶媒中の水と有機溶媒の種類や含有率によって異なるために一概には言えないが、pHが10以上、好ましくは11以上になるように添加するのが好ましい。触媒として最も好適なアンモニアの場合は、NHとしての質量分率で2〜10%、好ましくは3〜7%の範囲が好適である。

触媒を含む含水有機溶媒(1)及び(2)中の水の割合は、用いる金属アルコキシドの種類によって異なるため一概には言えないが、3〜95%、好ましくは、5〜40%、さらに好ましくは5〜20%の範囲が好適である。

金属アルコキシドとしては、前記の触媒を含む含水有機溶媒中で加水分解を受けて金属酸化物になるものであれば公知の化合物が何ら制限なく採用される。

シリカの原料となるシリコンのアルコキシドの代表的なものを例示すると、例えば、一般式Si(OR)またはSiR'(OR)4−nで示されるシリコンのアルコキシド、またはシリコンのアルコキシドを部分的に加水分解して得られる低縮合物が工業的に入手し易く、その1種または2種以上の混合物が好ましく用いられる。なお、上記シリコンのアルコキシドの一般式において、RおよびR'はアルキル基で、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基などの低級アルキル基が好適である。nは1〜3の整数である。

また、シリコン以外の周期表4族または14族の金属の酸化物の原料となる金属アルコキシドとしては、シリコン以外の周期表4族または14族の金属のアルコキシドが特に制限されず使用される。例えば、一般式M(OR)(但し、Rはアルキル基)で表示される金属アルコキシドまたは上記一般式中の一つ又は二つのアルコキシド基(OR)がカルボキシル基あるいはβ−ジカルボニル基で置換された化合物が好ましい。ここでMはシリコン以外の周期表4族または14族で、具体的には例えば、Ge、Sn、Pb、Ti、Zr、Hf等が好適に使用される。本発明において一般に好適に使用される上記化合物を更に具体的に例示すると、Ti(O−isoC、Ti(O−nC等の化合物および上記Tiに代わって、Ge、Sn、Pb、Zr、Hf等で代替した周期表4族または14族の金属の化合物などが挙げられる。

なお、真球性のより高い無機酸化物粒子を得ようとした場合には、上記の化合物の中でもTiおよび/またはZrのアルコキシドが最も好適に採用できる。

シリカを主成分とする核部を製造する際には、前述したように公知の技術を採用することができる。具体的な方法は、例えば、特開平06−254383号公報、特開平08−048505号公報、特開昭62−72516号公報等に記載されている。上記のような方法を採用すれば、真球性のより高いシリカを主成分とした粒子が得られる。

シリカとシリコン以外の周期表4族または14族の金属の酸化物とを主成分とするシリカ系複合酸化物の被覆層を製造する際には、こうしたシリカ系複合酸化物からなる粒子の公知の製造方法を応用することができる。

即ち、被覆層を製造するためには、金属アルコキシドとして上述したシリコンのアルコキシドと、シリコン以外の周期表4族または14族の金属のアルコキシドを1種または2種以上混合して用いるが、両者は予め混合したものを原料として用いることができる。特に、本発明の無機酸化物粒子を得るためには、両者を混合する前に予めシリコンのアルコキシドの一部又は全部を部分的に加水分解(以下では、部分加水分解ともいう)させることが有効であり、さらにまた、以下に説明するように、部分加水分解させるときに使用する水の量をコントロールすることが極めて効果的である。

下記のような条件でシリコンのアルコシキドを水で部分加水分解した後にシリコン以外の周期表4族または14族の金属のアルコキシドと混合して複合アルコキシドを調製することによって、シリカ系複合酸化物よりなる被覆層を効率良く製造することができる。本発明の粒子のように、被覆層を形成するシリカ系複合酸化物における、シリコン以外の周期表4族または14族の酸化物の含有率が22モル%以上の高含有量のものは、特に、下記に示す条件で部分加水分解することが望ましい。

即ち、Xをシリカ系複合酸化物中におけるシリコン以外の周期表4族または14族の金属の酸化物の含有率(モル%)とし、Yをシリコン以外の周期表4族または14族の金属のアルコキシドに対する水の当量とすると、
i) 22≦X<30のとき、
Y=2〜4
ii) 30≦X≦50のとき、
−0.06X+3.5<Y<−0.06X+4.5
好適には、
−0.06X+3.7<Y<−0.06X+4.3
iii) 50<X≦70のとき、
(100/X−1)−0.5<Y<(100/X−1)+0.5
好適には、
(100/X−1)−0.3<Y<(100/X−1)+0.3
の範囲が良好である。

シリコンのアルコキシドを部分加水分解する際の水の量が上記範囲よりも少ない場合や多い場合には、被覆層を形成する際に反応を制御することが難しくなり、得られる無機酸化物粒子の球形性が低下する。また、微粒子が発生し易くなったり、融着粒子が多く生成したり、極端な場合は粒子合成中に粒子同士が凝集してしまうおそれも生じる。

上記部分加水分解の目的は、シリコンのアルコキシドの一部を加水分解することによって分子内にシラノール基(SiOH)を生成させ、次に該シラノール基とシリコン以外の周期表4族または14族の金属のアルコキシドとを反応させ、シリコンとシリコン以外の周期表4族または14族の金属の複合アルコキシドを生成させることにあると本発明者等は考えている。したがって、シリコンのアルコキシド、シリコン以外の金属のアルコキシド及び予備加水分解に使用する水の3者のモル比を精密に管理する必要があるものと考えられる。

シリコンのアルコキシドを部分加水分解する際には、該アルコキシドと水の両方に対して相溶性のあるメタノールやエタノールのような低級アルコール等の有機溶媒を併用することが好ましい。アルコール等の有機溶媒を使用しない場合は、シリコンのアルコキシドと水が相分離する傾向があり、部分加水分解が進行しないか、または非常に反応が遅くなる場合がある。また、部分加水分解を迅速に進めるために、前記の水には、触媒を添加することも好ましい。触媒としては酸が好適で、具体的には、塩酸、硫酸、硝酸、シュウ酸などが挙げられるが、特に制限はない。酸の濃度としては、水のpHが1〜4の範囲になるように添加するのが良い。

上述したように、シリコンのアルコキシドを水で部分加水分解した後にシリコン以外の周期表4族または14族の金属のアルコキシドと混合することによって複合アルコキシドからなる原料を調製した後、シリカを主成分とする核粒子を分散した塩基性触媒を含む含水有機溶媒(2)〔以下、反応液ともいう〕中で前記原料を加水分解・縮合させてシリカ系複合酸化物よりなる被覆層を形成する。

上記原料は、液中滴下することが好ましい。液中滴下とは、上記原料を反応液中に滴下する際、滴下口先端が反応液中に浸されていることを言う。滴下口先端の位置は、液中にあれば特に限定されないが、攪拌羽根の近傍などの充分に攪拌が行われる位置が望ましい。液中滴下をせずに、例えば、反応液の上部から液上滴下した場合には粒子が凝集しやすいため好ましくない。

また、上記原料と共に、別途調製されたアルカリ性水溶液を、触媒を含む含水有機溶媒中に同時滴下しても良い。該アルカリ性水溶液としては、10〜30質量%のアンモニア水などが好適である。なお、上記原料中のシリコンとシリコン以外の金属の総モル数に対して、該アルカリ性水溶液中の水のモル数が1〜6倍モル、好ましくは2〜5倍モルとなるような供給比でアルカリ性水溶液を滴下することが好ましい。アルカリ性水溶液の滴下は、特に液中滴下する必要はないが、攪拌羽根近傍で液中滴下した方が、反応液中での攪拌が充分に行われるので好ましい。上記のようにアルカリ性水溶液を同時滴下することによって、固形分濃度を高くして粒子を合成できるので、収率の高い合成が可能となる。

また、粒子の単分散性を上げるためには、滴下速度も重要な因子である。滴下速度は、できる限り遅くした方が、単分散性は高くなる傾向にある。しかしながら、滴下速度が遅い場合には、合成が終了するまでに長時間を要するため、実用的ではない。そのため、合成初期は滴下速度を遅くし、後半になってから滴下速度を速めるのも本発明を実施する上で好ましい態様である。

複合アルコキシドからなる原料およびアルカリ性水溶液は、それぞれ滴下を開始してから終了するまで連続的に滴下することが好ましい。なお、ここで言う連続的とは、好ましくは10分以上、さらに好ましくは3分以上の間隔を空けないことを言う。滴下速度は、必ずしも一定である必要はないが、滴下速度を変える場合には連続的に変えた方が望ましい。特開平4−77309号公報には、数回に分けて水を添加することが記されているが、このような方法では、急激な水の添加によって反応液中の雰囲気が乱され、粒子同志の凝集や、新たな核粒子の発生などが起こるため、好ましい方法ではない。

加水分解を行うときの反応槽の温度は、0℃〜50℃の範囲であれば良く、用いるアルコキシドの種類によって適宜選択される。

その他、加水分解に使用する反応容器、上記以外の反応条件等は公知のものが何ら制限なく採用される。

上記のように合成方法を採択することによって、シリカを主成分とする核部の周囲に、シリカ系複合酸化物よりなる被覆層を効率良く形成することができる。

合成終了後の粒子は、反応液中に分散したコロイド状の粒子分散液として得られる。用途によっては、そのまま使用しても良いし、反応液の溶媒を水もしくはアルコールなどの有機溶媒に溶媒置換した後に使用しても良い。

また、粒子を合成した後、遠心分離、ろ過、蒸留、スプレードライなどの手法で固液分離し、粉末の形で取り出しても良い。取り出した粉末は乾燥させることができる。乾燥温度は50℃以上300℃未満の範囲が好適で、乾燥時間は数時間から数日の間が好適である。乾燥した粉末はさらに高い温度で焼成することができる。

焼成温度は300℃〜1100℃の範囲が好適で、焼成時間は1〜24時間の範囲が好適である。乾燥または焼成後の粒子は、ボールミルやジェットミルなどを使用して粒子一つひとつに解砕することができる。また、樹脂や溶剤等に分散して使用する場合には、高シェアの分散機を使用することによって、樹脂や溶剤への分散と同時に粒子の解砕を行うことができる。更に、樹脂や溶剤への分散性を向上させるために該粒子はシランカップリング剤などの表面処理剤で処理しても良いし、界面活性剤などを併用して分散性を向上させることもできる。

次に、無機酸化物粒子(3)について説明する。
本発明においては、シリカ系複合酸化物粒子に配合するシリカ以外の周期表4族または14族の金属の酸化物の種類は特に制限はない。シリカ成分と結合し、単分散性の高い球状粒子を形成できる金属酸化物が好適に採用できる。

例えば具体的には、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、チタニウム、ジルコニウム、ゲルマニウム、ハフニウム、錫または鉛などの金属の酸化物が好適である。なお、単分散性の高い球状のシリカ系複合酸化物粒子を得ようとした場合には、上記の金属の酸化物の中でも、周期律表第4族金属の酸化物がさらに好適である。また、さらに単分散性を高めた球状のシリカ系複合酸化物粒子を得ようとした場合には、周期律表第4族金属の酸化物の中でも、チタニアおよび/またはジルコニアが最も好適である。

また、上記金属酸化物を単独でシリカと複合化させても良いし、複数の金属の酸化物をシリカと複合化させても良い。例えば、シリカ以外の金属酸化物として、チタニアとジルコニアの両方を使用して、シリカ−チタニア−ジルコニアの3元系のシリカ系複合酸化物粒子にしても良い。上記の他に、シリカ−チタニア−酸化ナトリウム、シリカ−ジルコニア−酸化ナトリウム、シリカ−アルミナ−チタニアなどの3元系のシリカ系複合酸化物粒子が挙げられる。さらにまた、Nd、Ce、Er、Tb、Tmなどの希土類元素の酸化物などを少量添加して光学的な活性を増加させれば、微小球レーザーなどへの応用も可能である。

本発明の無機酸化物粒子(3)は、シリカ以外の金属酸化物の含有率が30〜50モル%の範囲である。なお、ここで言う金属酸化物の含有率とは、シリカを構成するシリコンのモル数をSi、金属酸化物を構成する金属元素のモル数をMとすると、M/(Si+M)×100で表わされる。なお、前述したような3元系のシリカ系複合酸化物粒子の場合は、Mはシリカ以外の金属酸化物の総モル数である。

上記金属酸化物の含有率が30モル%未満の場合は、従来公知の方法でも単分散性の高い球状のシリカ系複合酸化物粒子を製造することが可能である。本発明においては、製造方法を改良することによって、従来製造することができなかった、金属酸化物の含有率が30〜50モル%の範囲の単分散性の高い球状のシリカ系複合酸化物粒子を製造することが可能となった。なお、金属酸化物の含有率が50モル%を超えると、単分散性が低下したり、凝集したりするため、製造が困難となる傾向にある。

本発明の無機酸化物粒子(3)は、粒子径の変動係数が30%以下、好ましくは20%以下、さらに好ましくは10%以下の単分散性の優れた球状のシリカ系複合酸化物粒子である。粒子の形状が球状であることによって、例えば樹脂等に充填する際に、複合樹脂の粘度を下げたり、樹脂中の粒子の充填率を上げることなどが可能である。また、粒子径の変動係数が30%以下であることによって、透明性を損なうことなしに樹脂などに高充填できるという効果がある。

本発明のシリカ系複合酸化物粒子は、走査型や透過型の電子顕微鏡等を用いることによって粒子形状を確認することができる。また、該粒子の平均粒子径や単分散性(粒子径の変動係数)は、前記電子顕微鏡像を解析したり、精度の高い粒度分布計などで計測することができる。好適には、上記の電子顕微鏡像を市販の画像解析装置を用いて解析することによって、平均粒子径、粒子径の変動係数、円形度などを求めることができる。

なお、本発明のシリカ系複合酸化物粒子の平均粒子径は、1.1〜10μmの範囲、好ましくは1.1〜5μmの範囲、さらに好ましくは1.1〜2μmの範囲が好適である。平均粒子径が2μmを超えて大きいものを製造しようとすると時間がかかり、さらに単分散性を維持するのが難しくなる場合がある。また、粒子形状の指標である円形度は、0.8以上、好ましくは0.85以上、さらに好ましくは0.90以上が好適である。

本発明のシリカ系複合酸化物粒子は、シリカとシリカ以外の金属酸化物の構成成分が、一般には化学的に結合して存在するもので、これらの構成成分を物理的に分離することはできない。両成分が化学的に結合していることは、赤外スペクトルや屈折率(粒子の光学的な透明性)を測定することで確認できる。

本発明のシリカ系複合酸化物粒子の比表面積は、特に限定されない。一般に、本粒子は500℃〜1300℃の範囲の温度で焼成して使用されるが、高温で焼成すると比表面積は小さくなり、低温で乾燥したものは比表面積が高くなる傾向にある。なお、1300℃を超えた温度で焼成すると、粒子同志が焼結する場合があり、単分散性を損なってしまうことが懸念される。

本発明の複合酸化物粒子は、そのほとんどが非晶質であるが、非晶質と一部結晶質との混合物になる場合もある。前述した焼成温度が低い場合は非晶質になり易く、より高温で焼成するとシリカ以外の金属酸化物の一部が結晶質となる場合がある。一般的にこれらの性質はX線回折等の手段で解析できる。なお、一般的に、本粒子の光学的に透明な性質を利用しようとする場合は、非晶質もしくは極一部のみが結晶質に転移した程度が好ましく、そのためには前述した焼成温度を1100℃以下、好ましくは1050℃以下、さらに好ましくは1000℃以下とすることが好ましい。

さらにまた、本発明のシリカ系複合酸化物粒子の密度や屈折率については、シリカ以外の金属酸化物の種類や含有率、さらには粒子の焼成温度等によって変わるため、一概には表示することができない。最も一般的には、密度は1.5〜5g/cmの範囲、屈折率は1.4〜3の範囲である。なお例えば、透明性が高く単分散性にも優れているシリカ−チタニア複合酸化物粒子に関しては、チタニアの含有率が30〜50モル%の範囲のものを1000℃で焼成した場合には、密度が2.6〜3.0g/cmの範囲、屈折率は1.65〜1.85の範囲であった。

従来、製造が不可能であった本発明のシリカ系複合酸化物粒子は、単分散性が高い球状の高屈折粒子として、反射防止層や透明樹脂への添加剤などとして極めて有用である。本発明のような単分散性の高い粒子は、その粒子径を目的とする可視光の波長(約0.4〜0.8μm)と一致させることによって、従来知られていなかったような光学的な特徴を発揮できる可能性があり、例えばチタニアを構成成分の一つとした粒子は、光触媒としても有用であり、また高屈折粒子はホトニック結晶などへの応用も期待できる。

続いて、本発明のシリカ系複合酸化物粒子の製造方法について説明するが、本発明のシリカ系複合酸化物粒子を製造する方法は、以下の製造方法に限定される訳ではない。

製造方法としては、金属アルコキシドを原料とし、触媒を含む含水有機溶媒中で前記金属アルコキシドを加水分解・縮合させることによって単分散性の高い球状の粒子を製造することができる。

ここで用いる含水有機溶媒中の有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、ジオキサン、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、その他水と相溶性のある有機溶媒が単独または複数混合して用いられる。これらの中でもメタノール、エタノール、イソプロパノールのような低級アルコール類は金属アルコキシドや水との相溶性も高く、また粘度も低いために、極めて好適に使用される。触媒を含む含水有機溶液中の上記有機溶媒の割合は、およそ3〜95%、好ましくは60〜90%の範囲が好適である。

また、金属アルコキシドを加水分解するための触媒としては、N(CHなどのアミン、アンモニア、LiOH、NaOH、KOH、N(CHOHなどの塩基が好適に使用できる。特に、アンモニアやアミンの場合は、製造したシリカ系複合酸化物粒子を焼成すれば粒子中に塩基が残留しないために、加水分解用の触媒として極めて好適である。触媒の添加量は、用いる触媒の種類や含水有機溶媒中の水と有機溶媒の種類や配合比率によって異なるために一概には言えないが、pHが10以上、好ましくは11以上になるように添加するのが好ましい。触媒として最も好適なアンモニアの場合は、NHとしての質量分率で2〜10%、好ましくは3〜7%の範囲が好適である。

触媒を含む含水有機溶液中の水の割合は、用いるアルコキシドの種類によって異なるため一概には言えないが、3〜95%、好ましくは、5〜40%、さらに好ましくは5〜20%の範囲が好適である。

金属アルコキシドとしては、前記の触媒を含む含水有機溶媒中で加水分解を受けて金属酸化物になるものであれば公知の化合物が何ら制限なく採用される。シリコンのアルコキシドの代表的なものを例示すると、例えば、一般式Si(OR)またはSiR'(OR)4−nで示されるシリコンのアルコキシド、またはシリコンのアルコキシドを部分的に加水分解して得られる低縮合物が工業的に入手し易く、その一種または2種以上の混合物が好ましく用いられる。なお、上記シリコンのアルコキシドの一般式において、RおよびR'はアルキル基で、例えばメチル基、エチル基、イソプロピル基、ブチル基などの低級アルキル基が好適である。nは1〜3の整数である。

また、シリコン以外の金属のアルコキシドとしては、周期律表第1族、第2族、第3族、第4族、第13族および第14族の金属のアルコキシドが特に制限されず使用される。例えば、一般式M1(OR)、M2(OR)2、M3(OR)3、M4(OR)4、M13(OR)3、M14(OR)4(但し、Rはアルキル基、特に好ましくは、炭素数4以下のもの)で表示される金属アルコキシドが好ましい。ここで、Mは第1族の金属、Mは第2族の金属、Mは第3族の金属、Mは第4族の金属、M13は第13族の金属、M14は第14族の金属で、具体的には、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、チタニウム、ホウ素、ジルコニウム、ハフニウム、アルミニウム、ゲルマニウム、錫または鉛が好適に使用される。本発明において一般に好適に使用される上記化合物を更に具体的に例示すると、NaOCH、NaOC、NaOC等の有機ナトリウム化合物および上記Naに代わって、Li、K等で代替した第1族化合物、Mg(OCH)、Mg(OC)、Mg(OC)、Mg(OC)、Mg(OC11)等の有機マグネシウム化合物および上記Mgに代わって、Ca、Sr、Ba等で代替した第2族化合物、Ti(OisoC)、Ti(OnC)等の化合物および上記Tiに代わってZr、Hf、Ge、Sn、Pb等で代替した第4族または第14族化合物、Al (OC)、Al(OC)、Al(OC)等の化合物および上記Alに代わってB等で代替した第13族化合物などが挙げられる。また、アルコキシド以外に上記金属の酢酸塩、アセト酢酸塩等のカルボン酸塩、CaCl、Ca(HOCCOO)・HO等の化合物も使用できる。

なお、単分散性の高い球状のシリカ系複合酸化物粒子を得ようとした場合には、上記の化合物の中でも周期律表第4族の金属のアルコキシドが好適であり、さらにそれらの中でもチタニウムおよび/またはジルコニウムのアルコキシドが最も好適に採用できる。

本発明のシリカ系複合酸化物粒子を製造するためには金属アルコキシドとして、上述したシリコンのアルコキシドと、シリコン以外の金属のアルコキシドを1種または2種以上混合して用いるが、両者は予め混合したものを原料として用いることが重要である。さらに両者を混合する前に予めシリコンのアルコキシドの一部又は全部を部分的に加水分解させる(以下では、部分加水分解ともいう)ことが重要であり、さらにまた、部分加水分解させるときに使用する水の量が非常に重要である。

下記のような条件でシリコンアルコシキドを水で部分加水分解した後にシリコン以外の金属のアルコキシドと混合して原料を調製することによって、シリカ以外の金属酸化物の含有率が30モル%以上であっても、粒子径の変動係数が30%以下で且つ球状のシリカ系複合酸化物粒子を効率良く得ることができる。

最も重要なのは、シリコンアルコキシドの部分加水分解に使用する水の量である。本発明の製造方法においては、シリコンのアルコキシドを水で部分加水分解する際にシリコンのアルコキシドを、下記式(1)で示される、シリコン以外の金属アルコキシドに対する水の当量Yを満足する量の水で部分加水分解することが極めて重要である。

−0.06X+3.5<Y<−0.06X+4.5 (1)
ここで、Xはシリカ系複合酸化物中におけるシリカ以外の金属酸化物の含有率(モル%)を表す。但し、30≦X≦50。また、Yはシリコン以外の金属のアルコキシドに対する水の当量を表す。

シリコンのアルコキシドを部分加水分解する際に、水の量が上記範囲よりも少ない場合や多い場合には、触媒を含む含水有機溶媒中で前記原料を加水分解・縮合させてシリカ系複合酸化物粒子を得る際に、反応を制御することが難しくなり、微小粒子が発生したり、融着粒子が多く生成したり、極端な場合は粒子合成中に粒子同志が凝集してしまう場合がある。部分加水分解の際の水の量は、シリコン以外の金属のアルコキシドに対する水の当量Yが、−0.06X+3.7<Y<−0.06X+4.3の範囲であることが好ましい。

上記部分加水分解の目的は、シリコンのアルコキシドの一部を加水分解することによって分子内にシラノール基(SiOH)を生成させ、次に該シラノール基とシリコン以外の金属のアルコキシドとを反応させ、シリコンとシリコン以外の金属の複合アルコキシドを生成させることにあると本発明者等は考えている。したがって、シリコン以外の金属のアルコキシド、シリコンのアルコキシド及び水の3者のモル比を精密に管理する必要があるものと考えられる。

シリコンのアルコキシドを部分加水分解する際には、該アルコキシドと水の両方に対して相溶性のあるアルコール等の有機溶媒を併用することが好ましい。アルコール等の有機溶媒を使用しない場合は、シリコンのアルコキシドと水が相分離する傾向があり、部分加水分解が進行しない、または非常に反応が遅くなる場合がある。また、部分加水分解を迅速に進めるために、前記の水には、触媒を添加することも好ましい。触媒としては酸が好適で、具体的には、塩酸、硫酸、硝酸、シュウ酸などが挙げられるが、特に制限はない。酸の濃度としては、水のpHが1〜4の範囲のものを使用するのが良い。

本発明にかかる製造方法では、上述したように、シリコンのアルコキシドを水で部分加水分解した後にシリコン以外の金属のアルコキシドと混合することによって原料を調製し、前記の触媒を含む含水有機溶媒(以下、反応液ともいう)中で前記原料を加水分解・縮合させてシリカ系複合酸化物粒子を得る。

上記原料は、液中滴下することが好ましい。液中滴下とは、上記原料を反応液中に滴下する際、滴下口先端が反応液中に浸されていることを言う。滴下口先端の位置は、液中にあれば特に限定されないが、攪拌羽根の近傍などの充分に攪拌が行われる位置が望ましい。液中滴下をせずに、例えば、反応液の上部から液上滴下した場合には粒子が凝集しやすいため好ましくない。

また、上記原料と共に、別途調製されたアルカリ性水溶液を、触媒を含む含水有機溶媒中に同時滴下しても良い。該アルカリ性水溶液としては、10〜30質量%のアンモニア水などが好適である。なお、上記原料中のシリコンとシリコン以外の金属の総モル数に対して、該アルカリ性水溶液中の水のモル数が好ましくは1〜6倍モル、より好ましくは2〜5倍モルとなるような供給比でアルカリ性水溶液を滴下することが好ましい。アルカリ性水溶液の滴下は、特に液中滴下する必要はないが、攪拌羽根近傍で液中滴下した方が、反応液中での攪拌が充分に行われるので好ましい。上記のようにアルカリ性水溶液を同時滴下することによって、固形分濃度を高くして粒子を合成できるので、収率の高い合成が可能となる。

また、単分散性を上げるためには、滴下速度も重要な因子である。滴下速度は、できる限り遅くした方が、単分散性は高くなる傾向にある。しかしながら、滴下速度が遅い場合には、合成が終了するまでに長時間を要するため、実用的ではない。そのため、合成初期は滴下速度を遅くし、後半になってから滴下速度を速めるのも本発明を実施する上で好ましい態様である。

アルコキシドからなる原料およびアルカリ性水溶液は、それぞれ滴下を開始してから終了するまで連続的に滴下することが好ましい。なお、ここで言う連続的とは、好ましくは10分以上、さらに好ましくは3分以上の間隔を空けないことを言う。滴下速度は、必ずしも一定である必要はないが、滴下速度を変える場合には連続的に変えた方が望ましい。特開平4−77309には、数回に分けて水を添加することが記されているが、このような方法では、急激な水の添加によって反応液中の雰囲気が乱され、粒子同志の凝集や、新たな核粒子の発生などが起こるため、好ましい方法ではない。

加水分解を行うときの反応槽の温度は、0℃〜50℃の範囲であれば良く、用いるアルコキシドの種類によって適宜選択される。

その他、加水分解に使用する反応容器、上記以外の反応条件等は公知のものが何ら制限なく採用される。

上記のように合成された粒子は、シリカ以外の金属酸化物の含有率が30〜50モル%であって、粒子径の変動係数が30%以下の球状のシリカ系複合酸化物粒子である。

合成終了後の粒子は、反応液中に分散したコロイド状の粒子分散液として得られる。用途によっては、そのまま使用しても良いし、反応液の溶媒を水もしくはアルコールなどの有機溶媒に溶媒置換した後に使用しても良い。

また、粒子を合成した後、遠心分離、ろ過、蒸留、スプレードライなどの手法で固液分離し、粉末の形で取り出しても良い。取り出した粉末は乾燥させることができる。乾燥温度は50℃〜300℃の範囲が好適で、乾燥時間は数時間から数日の間が好適である。乾燥した粉末はさらに高い温度で焼成することができる。焼成温度は300℃〜1300℃の範囲が好適で、焼成時間は1〜24時間の範囲が好適である。乾燥または焼成後の粒子は、ボールミルやジェットミルなどを使用して粒子ひとつひとつに解砕することができる。また、樹脂等に分散して使用する場合には、高シェアの分散機を使用することによって、樹脂への分散と同時に粒子の解砕を行うことができる。

透光性粒子の平均粒径は、塗膜中で2つ以上の粒子が隣接して存在している場合も、独立して存在している場合も、平均粒径は一次粒径を指す。但し、一次粒子径が0.1μm程度の凝集性の無機粒子が二次粒子として、本発明の粒子サイズを満たす大きさで塗布液中に分散され、その後塗布されている場合には二次粒子の大きさとする。

本発明の防眩フィルムにおいて、表面散乱に起因するヘイズ値は0〜2%であることが好ましく、更に好ましくは0.1〜1.5%、より好ましくは、0.3〜1.5%である。

本発明の防眩フィルムは、該防眩フィルムの凹凸表面の中心線平均粗さ(Ra)が0.03μm<Ra<0.4μm、凹凸の平均間隔(Sm)が80μm<Sm<700μmであり、該凹凸の傾斜角θを測定した際、0°<θ<0.5°の領域(θ(0.5))が40%以上98%未満であることが好ましい。
該防眩フィルムは、低屈折率層などの反射防止層を積層し、反射防止フィルムとした場合、積分反射率が1.5%以下であることが好ましく、1.0%以下であることがより好ましく、0.01〜1.0%であることがさらに好ましい。

防眩性付与の観点から0.05μm<Ra<0.20μmであることがより好ましく、0.08μm<Ra<0.15μmであることがさらに好ましい。また、防眩性と膜表面の平坦部の割合を多くし、薄膜干渉層を均一に積層することを両立するためには凹凸の平均間隔(Sm)が150μm<Sm<700μmであることがより好ましく、200μm<Sm<600μmであることがさらに好ましい。該凹凸の傾斜角θが0°<θ<0.5°の領域(θ(0.5))は、50%以上98%未満であることがより好ましく、60%以上95%未満であることがさらに好ましく、70%以上95%未満であることが特に好ましい。

防眩フィルムの中心線平均粗さ(Ra)が0.03μmより大きいと、表面の凹凸が適切な量で防眩性が十分得られる。0.4μmより小さいと、ギラツキや外光が反射した際の表面の白化等、および凹凸に応じた膜厚不均一による干渉能低下の問題が発生しないため好ましい。
凹凸の平均間隔(Sm)が80μmより大きいと表面凹凸の平坦部が少ない構造とならず膜厚不均一による干渉能低下の問題が発生しない。700μmより小さいと、表面の平坦部が非常に多い構造にはならず、防眩性が十分得られるので好ましい。

θ(0.5)が40%以上であると、凹凸に応じた膜厚不均一による干渉能低下が起こらず、積分反射率が1.5%以上であっても、黒締まりが良好な反射防止フィルムが得られるため好ましい。

本発明の防眩フィルムでは、θ(0.5)が40%以上である場合、さらに反射防止層(低屈折率層、中屈折率層、および高屈折率層の少なくとも1層)を積層した場合、凹凸に応じた膜厚不均一による干渉能低下が起こりにくく、積分反射率が1.5%以上であっても、黒締まりが良好な反射防止フィルムが得られるため好ましい。

θ(0.5)の測定方法は特に限定されることはないが、以下の測定方法が好ましい。 すなわち、面積が0.5乃至2平方マイクロメートルである三角形の頂点を透明フィルム基材面(支持体面)に仮定し、その点から鉛直上向きに伸ばした3つの垂線がフィルム表面と交わる3点によって形成される三角形の面の法線が、支持体から鉛直上向きに伸ばした垂線となす角θを表面の傾斜角度とし、基材上で250000平方マイクロメートル(0.25平方ミリメートル)以上の面積を該三角形に分割して測定した時の全測定点の傾斜角度分布を調べる。

傾斜角度を測定する方法を図1を参照して詳細に述べる。面積が0.5乃至2平方マイクロメートルとなるようなメッシュにフィルムを分割する(図1(a)参照)。図1(b)は分割したメッシュのうちの3点を抽出した図である。この支持体上の3点から鉛直上向きに垂線を伸ばし、その3点が表面と交わった点をA、B、Cとする。三角形ABC面の法線DD’が、支持体から鉛直上向きに伸ばした垂線OO’と為す角度θを傾斜角度とする。図1(c)は点O’DD’を含む平面Pで切ったときのフィルムの断面図である。線分EFは三角形ABCと平面Pとの交線である。測定面積は支持体上で250000平方マイクロメートル(0.25平方ミリメートル)以上が好ましく、この面を支持体上で三角形に分割して測定し、傾斜角度を求める。測定する装置はいくつかあるが、一例を述べる。装置はマイクロマップ社(米国)製SXM520−AS150型を用いた場合を説明する。例えば対物レンズが10倍の時、傾斜角度の測定単位は0.8平方マイクロメートルであり、測定範囲は500000平方マイクロメートル(0.5平方ミリメートル)である。対物レンズの倍率を大きくすれば、それに合わせて測定単位と測定範囲は小さくなる。測定データはMAT−LAB等のソフトを用いて解析し、傾斜角度分布を算出することができる。

本発明の防眩フィルムにおいて、内部散乱に起因するヘイズ値は3〜90%であることが好ましく、更に好ましくは5〜40%、最も好ましくは5〜20%である。

<透光性粒子調製>
本発明に係る第1の透光性粒子の製造法は、懸濁重合法、乳化重合法、ソープフリー乳化重合法、分散重合法、シード重合法等を挙げることができ、いずれの方法で製造されてもよい。これらの製造法は、例えば「高分子合成の実験法」(大津隆行、木下雅悦共著、化学同人社)130頁及び146頁から147頁の記載、「合成高分子」1巻、p.246〜290、同3巻、p.1〜108等に記載の方法、及び特許第2543503号明細書、同第3508304号明細書、同第2746275号明細書、同第3521560号明細書、同第3580320号明細書、特開平10−1561号公報、特開平7−2908号公報、特開平5−297506号公報、特開2002−145919号公報等に記載の方法を参考にすることができる。

<防眩層のマトリックス形成用バインダー>
本発明にかかる防眩層は、熱及び/または電離放射線硬化性化合物の架橋反応、重合反応により形成される。すなわち、バインダーとして熱及び/または電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成する。熱及び/または電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、熱(温風、赤外線)、光(紫外線)、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
防眩層の全固形分に対するマトリックス形成用バインダーの量は、好ましくは50〜99.0質量%、より好ましくは、50〜99.0質量%、さらに好ましくは60〜98.0質量%である。

光重合性官能基を有する光重合性多官能モノマーの具体例としては、ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;等を挙げることができる。

さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、(ジ)ペンタエリスリトールトリアクリレート、(ジ)ペンタエリスリトールペンタアクリレート、(ジ)ペンタエリスリトールテトラ(メタ)アクリレート、(ジ)ペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサトリアクリレート等が挙げられる。本明細書において、「(メタ)アクリレート」、「(メタ)アクリル酸」、「(メタ)アクリロイル」は、それぞれ「アクリレートまたはメタクリレート」、「アクリル酸またはメタクリル酸」、「アクリロイルまたはメタクリロイル」を表す。

多官能モノマーバインダーとしては、各層の屈折率を制御するために、屈折率の異なるモノマーを用いることが出来る。特に高屈折率モノマーの例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4’−メトキシフェニルチオエーテル等が含まれる。また、例えば特開2005−76005号、同2005−36105号に記載されたデンドリマーや、例えば特開2005−60425号記載のようなノルボルネン環含有モノマーを用いることもできる。

多官能モノマーや多官能オリゴマーのバインダーは二種類以上を併用してもよい。これらのエチレン性不飽和基を有するバインダーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
光重合性の多官能モノマーや多官能オリゴマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。

さらに、2個以上のエチレン性不飽和基を有する樹脂、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂および多価アルコール等の、多官能化合物などのオリゴマー又はプレポリマー等もあげられる。これらのモノマーは2種以上併用してもよく、また、2個以上のエチレン性不飽和基を有する樹脂はバインダー全量に対して10〜100%含有することが好ましい。

これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル重合開始剤又は熱ラジカル重合開始剤の存在下、電離放射線の照射又は加熱により行うことができる。従って、エチレン性不飽和基を有するモノマー、光ラジカル重合開始剤又は熱ラジカル重合開始剤、および粒子、必要に応じて無機フィラー、塗布助剤、その他の添加剤、有機溶媒等を含有する塗布液を調製し、該塗布液を透明支持体上に塗布後、電離放射線又は熱による重合反応により硬化して防眩層を形成する。電離放射線硬化と熱硬化を合わせて行うことも好ましい。光及び熱重合開始剤としては市販の化合物を利用することができ、それらは、「最新UV硬化技術」(p.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)や、チバ・スペシャルティ・ケミカルズ(株)のカタログに記載されている。

重合開始剤は、マトリックス形成用バインダーとなる前駆体(化合物)100質量部に対して、重合開始剤総量で0.1〜15質量部の範囲で使用することが好ましく、1〜10質量部の範囲がより好ましい。

本発明では、硬化膜の硬化収縮低減のためには、以下で述べるエポキシ系化合物を用いることが好ましい。これらのエポキシ基を有するモノマー類としては、1分子中にエポキシ基を2基以上有するモノマーが好ましく、これらの例としては特開2004−264563号、同2004−264564号、同2005−37737号、同2005−37738号、同2005−140862号、同2005−140862号、同2005−140863号、同2002−322430号等に記載されているエポキシ系モノマー類が挙げられる。

エポキシ基を有するモノマー類は層を構成する全バインダーに対して20〜100質量%含有することが硬化収縮低減のために好ましく、35〜100質量%含有することがより好ましく、50〜100質量%含有することがさらに好ましい。

エポキシ系モノマー、化合物類を重合させるための、光の作用によってカチオンを発生させる光酸発生剤としては、トリアリールスルホニウム塩やジアリールヨードニウム塩などのイオン性の化合物やスルホン酸のニトロベンジルエステルなどの非イオン性の化合物等が挙げられ、有機エレクトロニクス材料研究会編、「イメージング用有機材料」ぶんしん出版社刊(1997)などに記載されている化合物等種々の公知の光酸発生剤が使用できる。この中で特に好ましくはスルホニウム塩もしくはヨードニウム塩であり、対イオンとしてはPF 、SbF 、AsF 、B(C などが好ましい。

<防眩層の高分子化合物>
本発明の防眩層は、その他の高分子化合物を含有してもよい。高分子化合物を添加することで、硬化収縮を小さくしたり、塗布液の粘度調整を行うことができる。

高分子化合物は、塗布液に添加する時点で既に重合体を形成しており、該高分子化合物としては、例えばセルロースエステル類(例えば、セルローストリアセテート、セルロースジアセテート、セルロースプロピオネート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースナイトレート等)、ウレタンアクリレート類、ポリエステルアクリレート類、(メタ)アクリル酸エステル類(例えば、メタクリル酸メチル/(メタ)アクリル酸メチル共重合体、メタクリル酸メチル/(メタ)アクリル酸エチル共重合体、メタクリル酸メチル/(メタ)アクリル酸ブチル共重合体、メタクリル酸メチル/スチレン共重合体、メタクリル酸メチル/(メタ)アクリル酸共重合体、ポリメタクリル酸メチル等)、ポリスチレン等の樹脂が好ましく用いられる。

高分子化合物は、硬化収縮への効果や塗布液の粘度増加効果の観点から、高分子化合物を含有する層に含む全バインダーに対して、好ましくは1〜50質量%、より好ましくは5〜40質量%の範囲で含有することが好ましい。また、高分子化合物の分子量は質量平均で0.3万〜40万が好ましく、0.5万〜30万がより好ましく、0.5万〜20万がさらに好ましい。

<防眩層の無機フィラー>
本発明の防眩層には、上記の透光性粒子に加えて、屈折率の調整、膜強度の調整、硬化収縮減少、さらに低屈折率層を設けた場合の反射率低減の目的に応じて、無機フィラー使用することもできる。例えば、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属元素を含有する酸化物からなり、一次粒子の平均粒径が、一般に0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下1nm以上である微細な高屈折率無機フィラーを含有することも好ましい。

透光性粒子との屈折率差を調整するために、マトリックスの屈折率を低くする必要が生じた場合は、無機フィラーとして、シリカ微粒子、中空シリカ微粒子等の微細な低屈折率無機フィラーを用いることができる。好ましい粒径は、前記の微細な高屈折率無機フィラーと同じである。

無機フィラーは、表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。

無機フィラーの添加量は、防眩層の全質量の10〜90質量%であることが好ましく、より好ましくは20〜80質量%であり、特に好ましくは30〜75質量%である。

なお、無機フィラーは、粒径が光の波長よりも十分短いために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質の性質を有する。

<防眩層の界面活性剤>
本発明の防眩層では、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層用の塗布組成物中に含有することが好ましい。特に、フッ素系の界面活性剤は、より少ない添加量において、本発明の防眩フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。フッ素系の界面活性剤の好ましい例としては、例えば、特開2007−188070号公報の段落番号0049〜0074に記載の化合物が挙げられる。

本発明の防眩層で用いられる界面活性剤(特に、フッ素系ポリマー)の好ましい添加量は、塗布液に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。界面活性剤の添加量が0.001質量%以上で効果が十分であり、また5質量%以下とすることで、塗膜の乾燥が十分に行われ、塗膜としての良好な性能(例えば反射率、耐擦傷性)が得られる。

<防眩層用塗布液の有機溶媒>
防眩層を形成する塗布組成物には、有機溶媒を添加することができる。

有機溶媒としては、例えばアルコール系では、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、第二ブタノール、第三ブタノール、イソアミルアルコール、1−ペンタノール、n−ヘキサノール、メチルアミルアルコール等、ケトン系では、メチルイソブチルケトン(MIBK)、メチルエチルケトン(MEK)、ジエチルケトン、アセトン、シクロヘキサノン、ジアセトンアルコール等、エステル系では、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸n−ブチル、酢酸イソアミル、酢酸n−アミル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、乳酸メチル、乳酸エチル等、エーテル、アセタール系では、1,4ジオキサン、テトラヒドロフラン、2−メチルフラン、テトラヒドロピラン、ジエチルアセタール等、炭化水素系では、ヘキサン、ヘプタン、オクタン、イソオクタン、リグロイン、シクロヘキサン、メチルシクロヘキサン、トルエン、キシレン、エチルベンゼン、スチレン、ジビニルベンゼン等、ハロゲン炭化水素系では、四塩化炭素、クロロホルム、塩化メチレン、塩化エチレン、1,1,1−トリクロルエタン、1,1,2−トリクロルエタン、トリクロルエチレン、テトラクロルエチレン、1,1,1,2−テトラクロルエタン等、多価アルコールおよびその誘導体系では、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノアセテート、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ヘキシレングリコール、1,5−ペンタンジオール、グリセリンモノアセテート、グリセリンエーテル類、1,2,6−ヘキサントリオール等、脂肪酸系では、蟻酸、酢酸、プロピオン酸、絡酸、イソ絡酸、イソ吉草酸、乳酸等、窒素化合物系では、ホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、アセトニトリル等、イオウ化合物系では、ジメチルスルホキシド等、が挙げられる。

有機溶媒の中でメチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、アセトン、トルエン、キシレン、酢酸エチル、1−ペンタノール等が特に好ましい。また、有機溶媒には、凝集性制御の目的でアルコール、多価アルコール系の溶媒を適宜混合して用いてもよい。これらの有機溶媒は、単独でも混合して用いてもよく、塗布組成物中に有機溶媒総量として、20質量%〜90質量%含有することが好ましく、30質量%〜80質量%含有することがより好ましく、40質量%〜70質量%含有することが最も好ましい。防眩層の表面形状の安定化のためには、沸点が100℃未満の溶媒と沸点が100℃以上の溶媒を併用することが好ましい。

<防眩層の硬化>
防眩層は、塗布液を支持体に塗布後、光照射、電子線ビーム照射、加熱処理などを実施して、架橋又は重合反応させて形成できる。紫外線照射の場合、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。紫外線による硬化は、窒素パージ等で酸素濃度が4体積%以下、更に好ましくは2体積%以下、最も好ましくは0.5体積%以下の雰囲気下で硬化することが好ましい。

以下に、防眩層以外の層について説明する。

<低屈折率層>
本発明の反射防止フィルムは、前記防眩フィルムの防眩層上に、反射率を低減するため、該防眩層より屈折率が低い低屈折率層を有することが好ましい。低屈折率層の屈折率は、1.20〜1.46であることが好ましく、1.25〜1.46であることがより好ましく、1.30〜1.40であることが特に好ましい。低屈折率層の厚さは、50〜200nmであることが好ましく、70〜100nmであることがさらに好ましい。低屈折率層のヘイズは、3%以下であることが好ましく、2%以下であることがさらに好ましく、1%以下であることが最も好ましい。

低屈折率層を形成するための好ましい硬化物組成の態様としては、
(1)架橋性若しくは重合性の官能基を有する含フッ素化合物を含有する組成物、
(2)含フッ素のオルガノシラン材料の加水分解縮合物を主成分とする組成物、
(3)2個以上のエチレン性不飽和基を有するモノマーと中空構造を有する無機微粒子を含有する組成物、
が挙げられる。

(1)架橋性若しくは重合性の官能基を有する含フッ素化合物を含有する組成物
架橋性または重合性の官能基を有する含フッ素化合物としては、含フッ素モノマーと架橋性または重合性の官能基を有するモノマーの共重合体を挙げることができる。これら含フッ素ポリマーの具体例は、特開2003−222702号公報、特開2003−183322号公報等に記載されている。

上記のポリマーに対しては特開2000−17028号公報に記載のごとく適宜重合性不飽和基を有する硬化剤を併用してもよい。また、特開2002−145952号、特開2006−28409号、特開2006−284761号に記載のごとく含フッ素の多官能の重合性不飽和基を有する化合物との併用も好ましい。多官能の重合性不飽和基を有する化合物の例としては、上記の2個以上のエチレン性不飽和基を有するモノマーを挙げることができる。また、特開2004−170901号公報に記載のオルガノランの加水分解縮合物も好ましく、特に(メタ)アクリロイル基を含有するオルガノシランの加水分解縮合物が好ましい。これら化合物は、特にポリマー本体に重合性不飽和基を有する化合物を用いた場合に耐擦傷性改良に対する併用効果が大きく好ましい。

ポリマー自身が単独で十分な硬化性を有しない場合には、架橋性化合物を配合することにより、必要な硬化性を付与することができる。例えばポリマー本体に水酸基含有する場合には、各種アミノ化合物を硬化剤として用いることが好ましい。架橋性化合物として用いられるアミノ化合物は、例えば、ヒドロキシアルキルアミノ基及びアルコキシアルキルアミノ基のいずれか一方又は両方を合計で2個以上含有する化合物であり、具体的には、例えば、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物、グリコールウリル系化合物等を挙げることができる。これら化合物の硬化には、有機酸又はその塩を用いるのが好ましい。

(2)含フッ素のオルガノシラン材料の加水分解縮合物を主成分とする組成物
含フッ素のオルガノシラン化合物の加水分解縮合物を主成分とする組成物も屈折率が低く、塗膜表面の硬度が高く好ましい。フッ素化アルキル基に対して片末端又は両末端に加水分解性のシラノールを含有する化合物とテトラアルコキシシランの縮合物が好ましい。具体的組成物は、特開2002−265866号公報、317152号公報に記載されている。

(3)2個以上のエチレン性不飽和基を有するモノマーと中空構造を有する無機微粒子を含有する組成物
更に別の好ましい態様として、低屈折率の粒子とバインダーからなる低屈折率層が挙げられる。低屈折率粒子としては、有機でも無機でも良いが、内部に空孔を有する粒子が好ましい。中空粒子の具体例は、特開2002−79616号公報に記載のシリカ系粒子に記載されている。粒子屈折率は1.15〜1.40が好ましく、1.20〜1.30が更に好ましい。バインダーとしては、上記防眩層の頁で述べた二個以上のエチレン性不飽和基を有するモノマーを挙げることができる。

本発明の低屈折率層には、上記の防眩層の頁で述べた重合開始剤を添加することが好ましい。ラジカル重合性化合物を含有する場合には、該化合物に対して1〜10質量%、好ましくは1〜5質量%の重合開始剤を使用できる。

本発明の低屈折率層には、無機粒子を併用することができる。耐擦傷性を付与するために、低屈折率層の厚みの15%〜150%、好ましくは30%〜100%、更に好ましくは45%〜60%の粒径を有する微粒子を使用することができる。

本発明の低屈折率層には、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のポリシロキサン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することができる。

<高屈折率層、中屈折率層>
本発明の反射防止フィルムは、反射防止性を高めるために、高屈折率層を有すことが好ましく、さらに中屈折率層を設けることが好ましい。
とくに、前記防眩層と前記低屈折率層との間に、前記防眩層よりも屈折率の高い高屈折率層をさらに有することが好ましい。また、前記防眩層と前記高屈折率層との間に、前記防眩層よりも屈折率が高く、前記高屈折率層よりも屈折率の低い、中屈折率層をさらに有することも好ましい。
以下、本明細書では、この高屈折率層と中屈折率層を高屈折率層と総称して呼ぶことがある。なお、本発明において、高屈折率層、中屈折率層、低屈折率層の「高」、「中」、「低」とは層相互の相対的な屈折率の大小関係を表す。また、支持体との関係で言えば屈性率は、支持体>低屈折率層、高屈折率層>支持体の関係を満たすことが好ましい。
また、本発明においては、前記中屈折率層は、防眩層よりも屈折率が高く、高屈折率層よりも屈折率の低い層であり、前記防眩層と前記高屈折率層との間に設けられているのが
好ましい。
また、本明細書では高屈折率層、中屈折率層、低屈折率層を反射防止層と総称して呼ぶことがある。

防眩層の上に高屈折率層、低屈折率層を構築して、反射防止フィルムを作製するためには、高屈折率層の屈折率は1.55〜2.30であることが好ましく、より好ましくは1.55〜2.00、更に好ましくは、1.55〜1.70である。

支持体から近い順に中屈折率層、高屈折率層、低屈折率層を塗設し、反射防止フィルムを作成する場合、高屈折率層の屈折率は、1.60〜2.30であることが好ましく、1.65〜2.20であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましく、1.60〜1.70であることがさらに好ましい。

本発明に用いる高屈折率層および中屈折率層は屈折率調整、防眩層上への塗布性を良くするために無機微粒子を含有することが好ましく、分散媒体中に無機粒子を分散した分散液に、好ましくは、さらにマトリックス形成に必要なバインダー前駆体(例えば、後述する電離放射線硬化性の多官能モノマーや多官能オリゴマーなど)、光重合開始剤等を加えて高屈折率層および中屈折率層形成用の塗布組成物とし、透明支持体上に高屈折率層および中屈折率層形成用の塗布組成物を塗布して、電離放射線硬化性化合物(例えば、多官能モノマーや多官能オリゴマーなど)の架橋反応又は重合反応により硬化させて形成することが好ましい。

高屈折率層および中屈折率層に用いられるバインダー前駆体としては、上記の(重合性の不飽和結合を有する化合物)として記載した化合物を好ましく用いることができる。これらの化合物は2種以上を併用しても良い。

高屈折率層および中屈折率層のバインダー前駆体は、該層の塗布組成物の固形分量に対して、5〜80質量%添加するのが好ましい。

高屈折率層および中屈折率層における無機微粒子の含有量は、高屈折率層または中屈折率層の固形分全量に対し30〜90質量%であることが好ましく、より好ましくは40〜80質量%、特に好ましくは50〜75質量%である。無機微粒子は各層内で二種類以上を併用してもよい。
高屈折率層および中屈折率層には、芳香環を含む電離放射線硬化性化合物、フッ素以外のハロゲン化元素(例えば、Br,I,Cl等)を含む電離放射線硬化性化合物、S,N,P等の原子を含む電離放射線硬化性化合物などの架橋又は重合反応で得られるバインダー前駆体も好ましく用いることができる。

(無機微粒子)
本発明においては屈折率調整、防眩層上へ塗布した際の膜厚均一性改良、ハジキの改良、硬度などの物理特性、反射率、散乱性などの光学特性向上のため、各種無機微粒子を用いることができる。高屈折率層、中屈折率層への無機微粒子の添加量は、各層の固形分中30質量%以上であることが好ましく、40質量%以上であることがさらに好ましく、50質量%以上であることが最も好ましい。粒子添加量が30質量%以下であると防眩層上においてハジキの発生や膜厚均一性が悪化するため好ましくない。
無機微粒子としては、珪素、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも一つの金属の酸化物、具体例としては、SiO、ZrO、TiO、Al、In、ZnO、SnO、Sb、ITO、ATO等が挙げられる。すなわち、本発明においては、前記高屈折率層及び前記中屈折率層が、Si、Al、Ti、Zr、Sb、Zn、Sn、Inから選ばれる少なくとも1種の金属の酸化物微粒子を含有するのが好ましい。また、前記無機微粒子としては、その他BaSO、CaCO、タルクおよびカオリンなどを用いることもできる。
高屈折率層や中屈折率層を形成するに際しては、屈折率の高い無機微粒子を前記バインダー前駆体と共に、開始剤、有機置換されたケイ素化合物を溶媒中に分散した塗布組成物の硬化物が好ましい。
この場合の無機微粒子としては、屈折率の観点から、特にZrO、TiOが好ましく用いられる。

上記TiOの粒子としては、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有するTiOを主成分とする無機粒子が特に好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明におけるTiOを主成分とする粒子は、屈折率が1.90〜2.80であることが好ましく、2.10〜2.80であることがさらに好ましく、2.20〜2.80であることが最も好ましい。

TiOを主成分とする粒子の結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造が主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。

TiOを主成分とする粒子に、Co(コバルト)、Al(アルミニウム)及びZr(ジルコニウム)から選ばれる少なくとも1つの元素を含有することで、TiO2が有する光触媒活性を抑えることができ、本発明のフィルムの耐候性を改良することができる。
特に、好ましい元素はCo(コバルト)である。また、2種類以上を併用することも好ましい。
本発明のTiOを主成分とする無機粒子は、表面処理により特開2001−166104号公報記載のごとく、コア/シェル構造を有していても良い。

本発明に使用する無機微粒子の粒径は、分散媒体中でなるべく微細化されていることが好ましく、質量平均径は1〜200nmである。好ましくは5〜150nmであり、さらに好ましくは10〜100nm、特に好ましくは10〜80nmである。無機微粒子を100nm以下に微細化することで透明性を損なわないフィルムを形成できる。無機微粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。

無機微粒子の比表面積は、10〜400m/gであることが好ましく、20〜200m/gであることがさらに好ましく、30〜150m/gであることが最も好ましい。

本発明に使用する無機微粒子は分散媒体中に分散物として、各層形成用の塗布液に添加することが好ましい。
無機微粒子の分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテル アルコール(例、1-メトキシ-2-プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが特に好ましい。
特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。

無機微粒子は、分散機を用いて分散する。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。

(導電性粒子)
本発明の反射防止フィルムには導電性を付与するために、各種の導電性粒子を用いることができる。
導電性粒子は、金属の酸化物または窒化物から形成することが好ましい。金属の酸化物または窒化物の例には、酸化錫、酸化インジウム、酸化亜鉛および窒化チタンが含まれる。酸化錫および酸化インジウムが特に好ましい。導電性無機粒子は、これらの金属の酸化物または窒化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例には、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、S、B、Nb、In、Vおよびハロゲン原子が含まれる。酸化錫および酸化インジウムの導電性を高めるために、Sb、P、B、Nb、In、Vおよびハロゲン原子を添加することが好ましい。Sbを含有する酸化錫(ATO)およびSnを含有する酸化インジウム(ITO)が特に好ましい。ATO中のSbの割合は、3〜20質量%であることが好ましい。ITO中のSnの割合は、5〜20質量%であることが好ましい。

導電性無機粒子を表面処理してもよい。表面処理は、無機化合物または有機化合物を用いて実施する。表面処理に用いる無機化合物の例には、アルミナおよびシリカが含まれる。シリカ処理が特に好ましい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて実施してもよい。
導電性無機粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。また、二種類以上の導電性粒子を特定の層内あるいはフィルムとして併用してもよい。
導電性無機粒子は、分散物の状態で帯電防止層の形成に使用することができる。

高屈折率層および中屈折率層の膜厚は用途により適切に設計することができる。高屈折率層および中屈折率層を光学干渉層として用いる場合、30〜200nmが好ましく、より好ましくは50〜170nm、特に好ましくは60〜150nmである。

高屈折率層および中屈折率層のヘイズは、防眩機能を付与する粒子を含有しない場合、低いほど好ましい。5%以下であることが好ましく、さらに好ましくは3%以下、特に好ましくは1%以下である。
高屈折率層および中屈折率層は、前記支持体上に直接、又は、他の層を介して構築することが好ましい。

本発明の高屈折率層および中屈折率層では、塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層用の塗布組成物中に含有することが好ましい。界面活性剤としては、前記防眩層に記載の界面活性剤を用いることができる。

<透明支持体>
本発明の防眩フィルムの透明支持体としては、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースアシレート(例、トリアセチルセルロース、ジアセチルセルロース、代表的には富士フイルム社製TAC−TD80U,TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、(メタ)アクリル系樹脂(アクリペットVRL20A:商品名、三菱レイヨン社製、特開2004−70296号公報や特開2006−171464号公報記載の環構造含有アクリル系樹脂)などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、が好ましく、特にトリアセチルセルロースが好ましい。

本発明の防眩フィルムまたは反射防止フィルムを液晶表示装置に用いる場合、片面に粘着層を設ける等してディスプレイの最表面に配置する。また、本発明の防眩フィルムまたは反射防止フィルムと偏光板を組み合わせてもよい。該透明支持体がトリアセチルセルロースの場合は偏光板の偏光層を保護する保護フィルムとしてトリアセチルセルロースが用いられるため、本発明の防眩フィルムまたは反射防止フィルムをそのまま保護フィルムに用いることがコストの上では好ましい。

本発明の防眩フィルムまたは反射防止フィルムは、片面に粘着層を設ける等してディスプレイの最表面に配置したり、そのまま偏光板用保護フィルムとして使用される場合には、十分に接着させるためには透明支持体上に最外層を形成した後、鹸化処理を実施することが好ましい。鹸化処理は、公知の手法、例えば、アルカリ液の中に該フィルムを適切な時間浸漬して実施される。アルカリ液に浸漬した後は、該フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理することにより、最外層を有する側とは反対側の透明支持体の表面が親水化される。

<塗布方式>
本発明の防眩フィルムまたは反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。まず、各層を形成するための成分を含有した塗布液が調製される。次に、諸機能層を形成するための塗布液をディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法により透明支持体上に塗布し、加熱・乾燥するが、マイクログラビアコート法、ワイヤーバーコート法、ダイコート法(米国特許2681294号明細書、特開2006−122889号明細書参照)がより好ましく、ダイコート法が特に好ましい。

その後、光照射あるいは加熱して、機能層を形成するモノマーを重合して硬化する。これにより機能層が形成される。ここで必要であれば、機能層を複数層とすることができる。

次に、同様にして低屈折率層を形成するための塗布液を機能層上に塗布し、光照射あるいは加熱し(紫外線など電離放射線を照射、好ましくは加熱下で電離放射線を照射することにより硬化させ、)低屈折率層が形成される。このようにして本発明の反射防止フィルムが得られる。

<偏光板>
偏光板は、偏光膜の表側および裏側の両面を保護する2枚の保護フィルムで主に構成される。本発明の防眩フィルムまたは反射防止フィルムは、偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。本発明の防眩フィルムまたは反射防止フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、本発明の防眩フィルムまたは反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐傷性、防汚性等も優れた偏光板とすることができる。

親水化された表面は、ポリビニルアルコールを主成分とする偏光膜との接着性を改良するのに特に有効である。また、親水化された表面は、空気中の塵埃が付着しにくくなるため、偏光膜と接着させる際に偏光膜と防眩フィルムの間に塵埃が入りにくく、塵埃による点欠陥を防止するのに有効である。

鹸化処理は、最外層を有する側とは反対側の透明支持体の表面の水に対する接触角が40゜以下になるように実施することが好ましい。更に好ましくは30゜以下、特に好ましくは20゜以下である。

<画像表示装置>
本発明の防眩フィルムまたは反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)、表面電界ディスプレイ(SED)のような画像表示装置に適用することができる。特に好ましくは液晶表示装置(LCD)に用いられる。本発明の防眩フィルムまたは反射防止フィルムは透明支持体を有しているので、透明支持体側を画像表示装置の画像表示面に接着して用いられる。

本発明の防眩フィルムまたは反射防止フィルムは、偏光膜の表面保護フィルムの片側として用いた場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。

本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。

表1に防眩層用塗布液1〜15の組成を示す。防眩層用塗布液各々について、表1の組成で調整後、孔径30μmのポリプロピレン製フィルターでろ過して塗布液を調製した。なお、表1の数値は質量%である。

それぞれ使用した化合物を以下に示す。
PET−30:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製];
ビスコートV−360:エチレンオキシド(EO)変性したトリメチロールプロパントリアクリレート[大阪有機化学製]
粒子分散物:下記の粒子をポリトロン分散機にて10000rpmで20分間分散したMIBK分散液
粒子A:平均粒径6μm架橋アクリル粒子[屈折率1.50、綜研化学製]
粒子B:平均粒径8μm架橋アクリル粒子[屈折率1.50、綜研化学製]
粒子C:平均粒径10μm架橋アクリル粒子[屈折率1.50、綜研化学製]
粒子D:平均粒径5μmシリカ粒子[屈折率1.43、積水化学工業製]
粒子E:平均粒径2.5μmシリカ粒子[屈折率1.43、日本触媒製]
粒子H:平均粒径5μm架橋アクリル・スチレン粒子[屈折率1.56、綜研化学製]
粒子分散物:下記の粒子を後述の方法により粒子分散物を得る
粒子F:後述の方法により作製された無機酸化物粒子
粒子G:後述の方法により作製された無機酸化物粒子
Irg127:重合開始剤[イルガキュア127:チバ・スペシャルティ・ケミカルズ(株)製];
CAB:CAB−381−2[イーストマン・ケミカル社製]
MEK:メチルイソブチルケトン
MIBK:メチルエチルケトン
なお、粒子の屈折率は、屈折率の異なる2種類の溶媒(例えば、トルエン、1−ブロモナフタレン、1−クロロナフタレン、ジヨードメタン、イオウ入りジヨードメタンなど)の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して液温25℃で濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計を用いて液温25℃、589nmの波長の光を用いて測定した。

SP−13:フッ素系の界面活性剤(MEKの50質量%溶液として溶解した後に使用した。)

(無機酸化物粒子:粒子F)
まず、シリカ系複合酸化物よりなる被覆層の形成用原料として、シリコンとチタンのアルコキシドよりなる原料を調製した。

3リットルの三角フラスコに、メチルシリケート(Si(OMe)、多摩化学工業(株)、商品名;正珪酸メチル)203.1gを仕込み、撹拌しながら、メチルアルコール101.5gと0.035質量%塩酸24gを加え、室温で約10分間撹拌することによってメチルシリケートを部分加水分解した。

続いて、テトライソプロポキシチタン(Ti(OiPr)、日本曹達(株)、品名;A−1(TPT))189.3gをイソプロピルアルコール378.6gで希釈した液を加え、透明な均一溶液からなる被覆層形成用の原料(SiとTiの複合アルコキシド)896.5gを得た。なお仕込み組成より、このときのTiの含有率は、33.3モル%であった。

なお上記部分加水分解時におけるシリコン以外の周期表4族または14族の金属のアルコキシドに対する水の当量(Y値)は、2.0であった。

次に、シリカを主成分とする核部を製造した。

攪拌機付きのガラス製反応容器(内容積5リットル)に、tert-ブチルアルコールおよびアンモニア水(25質量%)をそれぞれ640gおよび160g仕込み、よく混合して反応液を調製し、反応液の温度を40℃に保持した。メチルシリケート(Si(OMe)、多摩化学工業(株)、商品名;正珪酸メチル)65.5gをメチルアルコール32.7gで希釈した原料とアンモニア水(25質量%)38.0gを反応液中にそれぞれ独立に液中同時滴下した。滴下を開始してから約10分後に反応液が白濁し始め、シリカ粒子が生成していることがわかった。約2時間かけて全ての原料とアンモニア水を滴下し、核部となるシリカ粒子を製造した。なお、滴下終了後の溶液の一部をサンプリングし、後の分析に供した。

引き続き、前述した被覆層形成用の原料896.5gとアンモニア水(25質量%)189.2gをそれぞれ独立して反応容器に滴下し、前記の核粒子の表面に被覆層を形成した。なお、原料とアンモニア水の滴下比率をほぼ一定にして、最初は滴下速度を遅めにし、後半は速度を上げて約6時間かけて全ての原料を滴下し、無機酸化物粒子を製造した。

滴下終了後、更に1時間攪拌を続けた後、系内の溶液を取り出し、5リットルのビーカーに移して静置した。溶媒として純水を用いて数回デカンテーションを繰り返して生成物を洗浄した。沈殿物を乾燥後、1050℃で12時間、空気中で焼成し、無機酸化物粒子を調製した。

前記のサンプリングした核部(シリカ粒子)も上記被覆粒子(無機酸化物粒子)と同じ条件で焼成した後、SEM観察し、粒子物性を評価した。その結果、核部は、平均粒子径が2.1μm、変動係数が6.5%、電子顕微鏡の撮影像から求められる円形度が0.97の単分散性の高い球状粒子であることがわかった。

一方、被覆粒子は、平均粒子径が2.5μm、変動係数が3.5%、電子顕微鏡の撮影像から求められる円形度が0.96の単分散性の高い球状粒子であることがわかった。上記の核部と被覆粒子の平均粒子径より、被覆層の厚みは0.2μmと見積もられた。

また、確認のためにオージェ電子分光法(AES)を用いて上記粒子の表面分析を行なったところ、粒子の表面層からはSiとTiが検出され、更にアルゴンイオンで表面をスパッタリングしながらTiの深さ方向の分布を調べたところ、Tiを含む表面層の厚みは約0.2μmであることがわかった。また上記表面層中のSiとTiの比率はTi:Si=1:2であることもわかった。
以上のように、シリカ とチタニアよりなるシリカ系複合酸化物でシリカ粒子が被覆された二層構造の無機酸化物粒子であることが確認できた。

得られた二層構造の無機酸化物粒子をメタノールに20%の濃度で分散し、無機酸化物粒子100質量%に対して、アクリロイルオキシプロピルトリメトキシシラン20部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加し、分散液を得た。その後、無機酸化物粒子の含率がほぼ一定になるようにMIBKを添加しながら、圧力30Torrで減圧蒸留による溶媒置換を行い、最後に濃度調整により固形分濃度30%の分散液を得た。

(無機酸化物粒子:粒子G)
撹拌羽根付きの内容積4リットルのガラス製反応器にイソプロパノールおよびアンモニア水(25重量%)をそ れぞれ480gおよび120g仕込み、反応液の温度を40℃に保持しつつ100rpmで撹拌した。

次に、3リットルの三角フラスコに、テトラメトキシシラン(Si(OMe)、コルコート(株)、商品名:メチルシリケート39)408gを仕込み、撹拌しながら、メタノール254gと0.035重量%塩酸水溶液(pH2.1)47.6gを加え、約10分間撹拌してテトラメトキシシランの部分加水分解を行った。このとき、該溶液はテトラメトキシシランの加水分解による発熱を観測した。また、GC/MSを用
いて分析したところ、テトラメトキシシランの一つのメトキシ基が加水分解し、Si(OMe)(OH)が生成していることが確認できた。

続いて、チタンテトライソプロポキシド(Ti(O−iPr)、日本曹達(株)、商品名:A−1)375gをイソプロパノール400gで希釈した液を加え、無色透明な均一溶液(SiとTiの複合アルコキシド)を得た。

なお、上記でテトラメトキシシランの部分加水分解に用いた水の量は、チタンテトライソプロポキシドに対して2.0当量であった。また、仕込み組成より、テトラメトキシシランとチタンテトライソプロポキシドの合計のモル数に対するチタンテトライソプロポキシドの配合比率は、33モル%であった。

シリカ以外の金属酸化物の含有量が33モル%の場合、式(1)より求められる部分加水分解に必要な水の、シリカ以外の金属アルコキシドに対する当量は、1.52を超え2.52未満である。

上記複合アルコキシド溶液(原料)約1480gを0.3g/minの速度で、アルカリ性水溶液としてアンモニア水(25重量%)320gを0.1g/minの速度で反応液中に同時滴下してシリカ系複合酸化物粒子を合成した。滴下開始後、原料とアルカリ性水溶液の滴下速度を徐々に増加させ、5時間かけて全量を滴下した。

滴下終了後30分間撹拌を続けた後、溶液を取り出した。溶液の重量は約2400gであった。ろ過、乾燥後に回収した粒子は261gであった。したがって、粒子を製造した際のスラリー濃度は約11%であった。溶媒として純水を用いて数回デカンテーションを繰り返して生成物を洗浄した。沈殿物を乾燥後、1000℃で4時間、空気中で焼成し、無機酸化物粒子を調製した。

得られた粒子を走査型電子顕微鏡で観察した結果、粒子形状は明らかに球状であった。画像解析の結果、平均粒子径は1.5μm、粒子径の変動係数は8.7%、粒子の円形度は0.88であった。

焼成した粒子を走査型電子顕微鏡で観察した結果、密度は2.67g/cm、屈折率は1.70であった。X線回折の結果、乾燥した粒子は非晶質であった。また、1000℃で焼成した粒子は、25.2°付近にアナターゼ型チタニア由来のピークを検出した。よって焼成粒子は、シリカマトリックス中にチタニアの微結晶が分散した球状の粒子であることが分かった。

得られた無機酸化物粒子をメタノールに20%の濃度で分散し、無機酸化物粒子100質量%に対して、アクリロイルオキシプロピルトリメトキシシラン20部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加し、分散液を得た。その後、無機酸化物粒子の含率がほぼ一定になるようにMIBKを添加しながら、圧力30Torrで減圧蒸留による溶媒置換を行い、最後に濃度調整により固形分濃度30%の分散液を得た。

(中屈折率層用塗布液Aの調製)
ZrO微粒子含有ハードコート剤(デソライトZ7404[屈折率1.72、固形分濃度:60質量%、酸化ジルコニウム微粒子含量:70質量%(対固形分)、酸化ジルコニウム微粒子の平均粒子径:約20nm、溶剤組成:MIBK/MEK=9/1、JSR(株)製])10.0質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA)3.0質量部、光重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)0.1質量部、メチルイソブチルケトン86.9質量部を添加して攪拌し、さらにSP−13を0.1質量部添加し、十分に攪拌ののち、孔径0.4μmのポリプロピレン製フィルターで濾過して中屈折率層用塗布液Aを調製した。
中屈折率層用塗布液Aを約4μmの厚みになるようにガラス板に塗布し、アッベ屈折率計(アタゴ(株)製)にて測定した結果、1.62であった。

(高屈折率層用塗布液Aの調製)
ZrO微粒子含有ハードコート剤(デソライトZ7404[屈折率1.72、固形分濃度:60質量%、酸化ジルコニウム微粒子含量:70質量%(対固形分)、酸化ジルコニウム微粒子の平均粒子径:約20nm、溶剤組成:MIBK/MEK=9/1、JSR(株)製])15.0質量部に、メチルイソブチルケトン85.0質量部を添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過して高屈折率層用塗布液Aを調製した。
高屈折率層用塗布液Aを約4μmの厚みになるようにガラス板に塗布し、アッベ屈折率計(アタゴ(株)製)にて測定した結果、1.62であった。

(低屈折率層用塗布液Aの調製)
(中空シリカ粒子分散液の調製)
中空シリカ粒子微粒子ゾル(イソプロピルアルコールシリカゾル、触媒化成工業(株)製CS60−IPA、平均粒子径60nm、シエル厚み10nm、シリカ濃度20%、シリカ粒子の屈折率1.31)500部に、アクリロイルオキシプロピルトリメトキシシラン20部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加し、分散液を得た。その後、シリカの含率がほぼ一定になるようにシクロヘキサノンを添加しながら、圧力30Torrで減圧蒸留による溶媒置換を行い、最後に濃度調整により固形分濃度18.2%の分散液を得た。得られた分散液のIPA残存量をガスクロマトグラフィーで分析したところ0.5%以下であった。

得られた中空シリカ粒子分散液を用いて下記組成の低屈折率層用塗布液Aを調製した。

低屈折率層用塗布液Aの組成
DPHA 1.0質量部
P−1 1.6質量部
中空シリカ粒子分散液(18.2%) 26.4質量部
RMS−033 0.4質量部
イルガキュア907 0.3質量部
M−1 1.9質量部
MEK 168.4質量部

「P−1」:特開2004−45462号公報に記載の含フッ素共重合体P−3(質量平均分子量約50000)
DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物、日本化薬(株)製
イルガキュア907:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
M−1:特開2006−284761号公報に記載の含フッ素化合物

RMS−033:メタクリロキシ変性シリコーン(Gelest(株)製)

低屈折率層用塗布液Aを約4μmの厚みになるようにガラス板に塗布し、アッベ屈折率計(アタゴ(株)製)にて測定した結果、1.36であった。

[実施例1]
防眩フィルム試料F−101〜115の作製

(1)防眩層の塗設
80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士フイルム(株)製)をロール形態から巻き出して、表2に示す防眩層用塗布液を使用し特開2006−122889号公報実施例1記載のスロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下酸素濃度約0.1%で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量100mJ/cm2の紫外線を照射して塗布層を硬化させ巻き取った。各防眩層の平均膜厚は表2の値になるように塗布量を調整し、表2に示す試料101〜115を作製した。

(防眩フィルムの評価)
以下の方法により防眩フィルムの諸特性の評価を行った。結果を表3に示す。

[映り込み]
防眩フィルムの裏面を黒マジックで塗りつぶした後に、硝子板に貼り付け、防眩フィルムの表面に蛍光灯の光を反射させた際の蛍光灯のエッジのボケの様子を評価した。
◎:十分にボケており、輪郭が直線状に認識できない。
○:十分にボケており、輪郭が直線状にほとんど認識できない。
△:輪郭がやや直線状に認識できるが、気にならない。
×:蛍光灯の形がはっきりと映り込み、気になる。
△以上のレベルを合格と判定した。

[黒締り]
IPS方式液晶セルを使用した液晶表示装置(32”TV:W32-L7000、日立(株)製)に設けられている視認側の表面フィルムを剥がし、代わりに本発明の光学フィルムを、塗布面を視認側にして、裏面に粘着剤を介して貼り付けた。1000luxの明室にて、液晶表示装置を黒表示にして、目視により評価し、下記判定を行った。
10点満点で評価。10点は、外光による白ちゃけ感が全く感じられず、黒表示としては輝度が低く、明室下コントラストが申し分なく高い。一方、4点以下は、外光による白ちゃけ感が強すぎて、黒表示として許容外(NG)であり、明室下コントラストが低い。

(ギラツキ)
透過型白色面光源のバックライトビュアの上に、解像度100ppiのマトリックスフィルタ(厚さ:0.7mm)を介して、暗室環境下で全方位におけるギラツキ(防眩フィルムの表面突起のレンズ効果が原因の輝度バラツキ)の程度を、以下の基準で目視評価した。
◎:全くギラツキが見られない
○:非常に注意深く観察するとギラツキがわずかに視認できる
△:ギラツキがわずかに視認出来るが気にならない
△×:ギラツキが見え気になる。
×:不快なギラツキがある
△以上のレベルを合格と判定した。

(表面形状の評価)
得られたフィルムの表面形状をJIS B−0601(1994)に基づいて、表面凹凸の算術平均粗さ(Ra)、平均間隔(Sm)を小坂研究所(株)製サーフコーダーMODEL SE−3Fにより評価した。Smに関しては、測定の際の測定長は8mm、カットオフ値は0.8mmとした。

(傾斜角度θ)
前記の本発明に好適な方法に従い測定した。

(へイズ)
[1]JIS−K7136に準じて、得られた反射防止フィルムの全ヘイズ値(H)を測定した。
[2]反射防止フィルムの表面および裏面にシリコーンオイルを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S9111、MATSUNAMI製)を2枚用いて裏表より挟んで、完全に2枚のガラス板と得られた反射防止フィルムを密着し、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間にシリコーンオイルのみを挟みこんで測定したヘイズを引いた値をフィルムの内部ヘイズ(Hi)として算出した。
[3]上記[1]で測定した全ヘイズ(H)から上記[2]で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出した。
測定装置としては、日本電色工業(株)製の濁度計「NDH−2000」を用いた。

F-101〜110の結果から、粒子1の平均粒径が防眩層の平均膜厚より0.01〜3.0μm大きく、粒子2(無機酸化物粒子)の平均粒径が防眩層の平均膜厚よりも0.10μm以上小さく、粒子1の添加量が防眩層の全固形分に対して0.1〜1質量%、粒子2の添加量が防眩層の全固形分に対して2〜30質量%にある防眩フィルムは、映り込み、黒締り、ギラツキが良好な結果が得られることがわかった。また、θ(0.5)が50%以上、更には70%以上になることで、黒締りが更に良化することがわかった。

[実施例2]
防眩性反射防止フィルム試料F−201〜206、301〜306の作製

実施例1で作製した防眩フィルムF−101,102,105,106,107,111上に、表4に示す塗布液を使用し特開2006−122889号明細書実施例1記載のスロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、60℃で60秒乾燥の後、さらに窒素パージ下酸素濃度約0.01〜0.1%の範囲で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量240mJ/cm2の紫外線を照射して塗布層を硬化させ巻き取った。各層の膜厚は表4の値になるように事前にPETフィルム上で塗布量を調整しその塗布量で塗布を行ない、表4に示す試料F−201〜206、301〜306を作製した。
PETフィルム上の膜厚は、反射分光膜厚計「FE3000(大塚電子(株)製)」を用いて算出した。

(防眩性反射防止フィルムの評価)
以下の方法により反射防止フィルムの特性の評価を行った。結果を表5に示す。

(積分反射率)
防眩性反射防止フィルムの裏面をサンドペーパーで粗面化した後に黒色インクで処理し、裏面反射をなくした状態にした。該反射防止フィルムの表面を、分光光度計V−550(日本分光(株)製)の積分球に装着して、380〜780nmの波長領域において、反射率を測定し、450〜650nmの平均反射率を積分反射率として算出した。

[黒締り]
IPS方式液晶セルを使用した液晶表示装置(32”TV:W32-L7000、日立(株)製)に設けられている視認側の表面フィルムを剥がし、代わりに本発明の光学フィルムを、塗布面を視認側にして、裏面に粘着剤を介して貼り付けた。1000luxの明室にて、液晶表示装置を黒表示にして、目視により評価し、下記判定を行った。
10点満点で評価。10点は、外光による白ちゃけ感が全く感じられず、黒表示としては輝度が低く、明室下コントラストが申し分なく高い。一方、4点以下は、外光による白ちゃけ感が強すぎて、黒表示として許容外(NG)であり、明室下コントラストが低い。

F-201〜205の結果から、本発明の防眩フィルムを使用して作製した防眩性反射防止フィルムは、積分反射率が1.5%以下となり、黒締りが良化している。 F-301〜305は、反射率が1.0%以下となり、F-201〜205より更に黒締りが良化している。

[実施例3]
(防眩性反射防止フィルムの鹸化処理)
試料F-101〜110、F-201〜205、F−301〜305について、以下の処理を行った。1.5mol/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/Lの希硫酸水溶液を調製し、35℃に保温した。作製した防眩性反射防止フィルムを上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で充分に乾燥させた。このようにして、鹸化処理済み反射防止フィルム(KF-101〜110、KF-201〜205、KF-301〜305)を作製した。

(偏光板の作製)
1.5mol/L、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士フイルム(株)製)と、鹸化処理済み反射防止フィルム(KF-101〜110、KF-201〜205、KF-301〜305)の各々のフィルムに、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光膜の両面を接着、保護して偏光板(PF-101〜110、PF-201〜205、PF-301〜305)を作製した。

[実施例4]
実施例3で作製した偏光板(PF-101〜110、PF-201〜205、PF-301〜305)を、防眩層あるいは低屈折率層が最表面となるように透過型TN液晶表示装置搭載のノートパソコンの液晶表示装置(偏光選択層を有する偏光分離フィルムである住友3M(株)製のD−BEFをバックライトと液晶セルとの間に有する)の視認側の偏光板と貼り代えたところ、背景の映りこみが極めて少なく、表示品位の非常に高い表示装置が得られた。

[実施例5]
実施例1、2における本発明試料(F-101〜110、F-201〜205、F−301〜305)フィルムを貼りつけた透過型TN液晶セルの視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムとして、光学補償フィルム(ワイドビューフィルムエース、富士フイルム(株)製)を用いたところ、明室でのコントラストに優れ、且つ上下左右の視野角が非常に広く、極めて視認性に優れ、表示品位の高い液晶表示装置が得られた。

[実施例6]
本発明試料(F-201〜205、F-301〜305)フィルムを、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。

[実施例7]
実施例2における本発明試料(F-201〜205、F-301〜305)フィルムを用いて、片面に本発明の防眩性反射防止フィルムを有する偏光板を作製し、偏光板の本発明の防眩性反射防止フィルムを有している側の反対面にλ/4板を張り合わせ、本発明の防眩性反射防止フィルム側が最表面になるように、有機EL表示装置の表面のガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反射がカットされ極めて視認性の高い表示が得られた。

図1(a)〜(c)は、それぞれ、傾斜角度の測定方法の概要を説明する模式図である。

Claims (11)

  1. 支持体上に、凹凸表面を有する防眩層を有し、該防眩層は少なくとも2種の透光性粒子を含有し、第1の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.01〜3.0μm大きく、第2の透光性粒子は平均粒子径が該防眩層の平均膜厚よりも0.10μm以上小さく、該第1の透光性粒子は添加量が該防眩層の全固形分に対して0.1〜1質量%であり、該第2の透光性粒子は添加量が該防眩層の全固形分に対して2〜30質量%であり、該第2の透光性粒子が、無機酸化物粒子である防眩フィルム。
  2. 前記第1の透光性粒子の防眩層における単位面積当たりの個数が1〜10000個/mmである請求項1に記載の防眩フィルム。
  3. 前記第1の透光性粒子の平均粒子径が、前記第2の透光性粒子の平均粒子径より2μm以上大きい請求項1または2に記載の防眩フィルム。
  4. 前記防眩フィルムの凹凸表面の中心線平均粗さ(Ra)が0.03μm<Ra<0.4μmであり、凹凸の平均間隔(Sm)が80μm<Sm<700μmであり、該凹凸の傾斜角θを測定した際、0°<θ<0.5°の領域(θ(0.5))が40%以上を占める請求項1〜3のいずれかに記載の防眩フィルム。
  5. 請求項1〜4のいずれかに記載の防眩フィルムの防眩層上に、該防眩層より屈折率が低い低屈折率層を有する反射防止フィルム。
  6. 前記防眩層と前記低屈折率層との間に、前記防眩層よりも屈折率の高い高屈折率層をさらに有する請求項5に記載の反射防止フィルム。
  7. 積分反射率が1.5%以下である請求項5または6に記載の反射防止フィルム。
  8. 前記防眩層と前記高屈折率層との間に、前記防眩層よりも屈折率が高く、前記高屈折率層よりも屈折率の低い、中屈折率層をさらに有する請求項6に記載の反射防止フィルム。
  9. 積分反射率が1.0%以下である請求項8に記載の反射防止フィルム。
  10. 偏光膜と、該偏光膜の両側に設けられた保護フィルムとを有する偏光板であって、該保護フィルムの少なくとも一方が、請求項1〜4のいずれかに記載の防眩フィルムまたは請求項5〜9のいずれかに記載の反射防止フィルムである偏光板。
  11. 請求項1〜4のいずれかに記載の防眩フィルム、請求項5〜9のいずれかに記載の反射防止フィルムまたは請求項10に記載の偏光板をディスプレイの最表面に有する画像表示装置。
JP2008246884A 2008-09-25 2008-09-25 防眩フィルム、反射防止フィルム、偏光板および画像表示装置 Pending JP2010078886A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246884A JP2010078886A (ja) 2008-09-25 2008-09-25 防眩フィルム、反射防止フィルム、偏光板および画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246884A JP2010078886A (ja) 2008-09-25 2008-09-25 防眩フィルム、反射防止フィルム、偏光板および画像表示装置

Publications (1)

Publication Number Publication Date
JP2010078886A true JP2010078886A (ja) 2010-04-08

Family

ID=42209418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246884A Pending JP2010078886A (ja) 2008-09-25 2008-09-25 防眩フィルム、反射防止フィルム、偏光板および画像表示装置

Country Status (1)

Country Link
JP (1) JP2010078886A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243908A (ja) * 2009-04-08 2010-10-28 Toshiba Mobile Display Co Ltd 液晶表示装置
JP2011232547A (ja) * 2010-04-27 2011-11-17 Tomoegawa Paper Co Ltd 光学積層体、偏光板および表示装置
JP2012123384A (ja) * 2010-11-16 2012-06-28 Sumitomo Chemical Co Ltd 光拡散フィルム、偏光板および画像表示装置
JP2014032317A (ja) * 2012-08-03 2014-02-20 Dainippon Printing Co Ltd 光学フィルム用基材、光学フィルム、偏光板、液晶パネルおよび画像表示装置
WO2014155787A1 (ja) * 2013-03-29 2014-10-02 積水化成品工業株式会社 光学フィルム
WO2016038853A1 (ja) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 反射防止部材およびその製造方法
WO2016047059A1 (ja) * 2014-09-22 2016-03-31 パナソニックIpマネジメント株式会社 反射防止部材
US9529121B2 (en) 2010-10-04 2016-12-27 Dai Nippon Printing Co., Ltd. Anti-glare film, method for producing anti-glare film, polarizer and image display device
JP2017040937A (ja) * 2016-11-04 2017-02-23 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
US9606271B2 (en) 2010-10-04 2017-03-28 Dai Nippon Printing Co., Ltd. Anti-glare film, method for producing anti-glare film, polarizer, and image display device having different size particles with impregnation layers
WO2017131048A1 (ja) * 2016-01-27 2017-08-03 旭硝子株式会社 硬化性組成物、硬化物、その製造方法および物品
WO2018142722A1 (ja) * 2017-01-31 2018-08-09 日本板硝子株式会社 光拡散粒子、光拡散透過シート、及び光拡散粒子を製造する方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304603A (ja) * 1996-05-14 1997-11-28 Nippon Kayaku Co Ltd ノングレア層を有するシート
JP2000121809A (ja) * 1998-10-14 2000-04-28 Dainippon Printing Co Ltd 防眩フィルム、偏光板及び透過型表示装置
JP2000333810A (ja) * 1999-05-27 2000-12-05 Hayashi Zoen:Kk 穴明きレンゲ
JP2004144934A (ja) * 2002-10-23 2004-05-20 Fuji Photo Film Co Ltd 防眩性反射防止フィルム、偏光板およびディスプレイ装置
WO2006088206A1 (ja) * 2005-02-21 2006-08-24 Dai Nippon Printing Co., Ltd. 光学積層体
JP2007108724A (ja) * 2005-09-16 2007-04-26 Fujifilm Corp 防眩性反射防止フィルム、これを用いた偏光板および液晶表示装置
JP2008040063A (ja) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd 防眩性光拡散部材
JP2008046496A (ja) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2008102511A (ja) * 2007-10-04 2008-05-01 Fujifilm Corp 防眩性反射防止フィルム、偏光板およびディスプレイ装置
JP2008122832A (ja) * 2006-11-15 2008-05-29 Toppan Printing Co Ltd 防眩性光拡散部材
JP2008158483A (ja) * 2006-05-23 2008-07-10 Fujifilm Corp 偏光板用保護フィルム、偏光板及び液晶表示装置
JP2009061686A (ja) * 2007-09-06 2009-03-26 Teijin Dupont Films Japan Ltd 防眩性積層体
WO2010001492A1 (ja) * 2008-07-02 2010-01-07 帝人デュポンフィルム株式会社 防眩性積層体

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304603A (ja) * 1996-05-14 1997-11-28 Nippon Kayaku Co Ltd ノングレア層を有するシート
JP2000121809A (ja) * 1998-10-14 2000-04-28 Dainippon Printing Co Ltd 防眩フィルム、偏光板及び透過型表示装置
JP2000333810A (ja) * 1999-05-27 2000-12-05 Hayashi Zoen:Kk 穴明きレンゲ
JP2004144934A (ja) * 2002-10-23 2004-05-20 Fuji Photo Film Co Ltd 防眩性反射防止フィルム、偏光板およびディスプレイ装置
WO2006088206A1 (ja) * 2005-02-21 2006-08-24 Dai Nippon Printing Co., Ltd. 光学積層体
JP2007108724A (ja) * 2005-09-16 2007-04-26 Fujifilm Corp 防眩性反射防止フィルム、これを用いた偏光板および液晶表示装置
JP2008158483A (ja) * 2006-05-23 2008-07-10 Fujifilm Corp 偏光板用保護フィルム、偏光板及び液晶表示装置
JP2008040063A (ja) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd 防眩性光拡散部材
JP2008046496A (ja) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2008122832A (ja) * 2006-11-15 2008-05-29 Toppan Printing Co Ltd 防眩性光拡散部材
JP2009061686A (ja) * 2007-09-06 2009-03-26 Teijin Dupont Films Japan Ltd 防眩性積層体
JP2008102511A (ja) * 2007-10-04 2008-05-01 Fujifilm Corp 防眩性反射防止フィルム、偏光板およびディスプレイ装置
WO2010001492A1 (ja) * 2008-07-02 2010-01-07 帝人デュポンフィルム株式会社 防眩性積層体

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243908A (ja) * 2009-04-08 2010-10-28 Toshiba Mobile Display Co Ltd 液晶表示装置
JP2011232547A (ja) * 2010-04-27 2011-11-17 Tomoegawa Paper Co Ltd 光学積層体、偏光板および表示装置
US9606271B2 (en) 2010-10-04 2017-03-28 Dai Nippon Printing Co., Ltd. Anti-glare film, method for producing anti-glare film, polarizer, and image display device having different size particles with impregnation layers
US9529121B2 (en) 2010-10-04 2016-12-27 Dai Nippon Printing Co., Ltd. Anti-glare film, method for producing anti-glare film, polarizer and image display device
JP2012123384A (ja) * 2010-11-16 2012-06-28 Sumitomo Chemical Co Ltd 光拡散フィルム、偏光板および画像表示装置
JP2014032317A (ja) * 2012-08-03 2014-02-20 Dainippon Printing Co Ltd 光学フィルム用基材、光学フィルム、偏光板、液晶パネルおよび画像表示装置
JP6069490B2 (ja) * 2013-03-29 2017-02-01 積水化成品工業株式会社 光学フィルム
WO2014155787A1 (ja) * 2013-03-29 2014-10-02 積水化成品工業株式会社 光学フィルム
WO2016038853A1 (ja) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 反射防止部材およびその製造方法
WO2016047059A1 (ja) * 2014-09-22 2016-03-31 パナソニックIpマネジメント株式会社 反射防止部材
CN106716184A (zh) * 2014-09-22 2017-05-24 松下知识产权经营株式会社 防反射部件
WO2017131048A1 (ja) * 2016-01-27 2017-08-03 旭硝子株式会社 硬化性組成物、硬化物、その製造方法および物品
JP2017040937A (ja) * 2016-11-04 2017-02-23 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
WO2018142722A1 (ja) * 2017-01-31 2018-08-09 日本板硝子株式会社 光拡散粒子、光拡散透過シート、及び光拡散粒子を製造する方法

Similar Documents

Publication Publication Date Title
JP5331919B2 (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板、及び画像表示装置
KR101660435B1 (ko) 광학 필름, 편광판, 액정 패널 및 화상 표시 장치
JP5558414B2 (ja) 反射防止積層体の製造方法
KR101182002B1 (ko) 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및표시 장치
JP5974894B2 (ja) 防眩性フィルム、偏光板及び画像表示装置
JP2013174888A (ja) アンチグレアフィルム用組成物およびそれを用いて製造したアンチグレアフィルム
JP4324344B2 (ja) 反射防止フィルムおよびその形成方法、偏光板、画像表示装置
CN103299217B (zh) 防反射膜、防反射膜的制造方法、偏振片和图像显示装置
JP5145938B2 (ja) 帯電防止防眩フィルム
US8795823B2 (en) Optical layered body, polarizer and image display device
US8215780B2 (en) Hard-coated antiglare film, and polarizing plate and image display including the same
TWI534002B (zh) 光學積層體及光學積層體之製造方法
JP4641846B2 (ja) 防眩性積層体
JP3967822B2 (ja) 反射防止膜およびそれを用いた画像表示装置
DE60038477T2 (de) Antireflexbeschichtung, damit versehene Polarisationsplatte, und Bildanzeigegerät mit der Antireflexbeschichtung oder mit der Polarisationsplatte
US7813038B2 (en) Light-scattering film, polarizing plate and image display
KR101044113B1 (ko) 반사방지 코팅 조성물 및 이것을 이용하여 제조된 반사방지필름
KR100867338B1 (ko) 코팅 조성물, 그 도막, 반사 방지막, 반사 방지 필름, 화상 표시 장치 및 중간 제품
JP4187454B2 (ja) 反射防止フィルム
CN103439761B (zh) 光学膜、偏振片和图像显示装置
KR101274848B1 (ko) 반사 방지 필름, 반사 방지 필름의 제조 방법, 하드 코팅 필름, 편광판 및 표시 장치
JP4155337B1 (ja) 防眩性フィルムおよびその製造方法、ならびに表示装置
JP4484612B2 (ja) 組成物、コーティング組成物、反射防止フィルム、偏光板、画像表示装置
KR101139267B1 (ko) 광학 기능 필름, 반사 방지 필름, 편광판, 및 화상 표시 장치
US8389049B2 (en) Optical film, method for producing the same, polarizing plate and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004