JP2010057150A - 協動回路 - Google Patents

協動回路 Download PDF

Info

Publication number
JP2010057150A
JP2010057150A JP2008234571A JP2008234571A JP2010057150A JP 2010057150 A JP2010057150 A JP 2010057150A JP 2008234571 A JP2008234571 A JP 2008234571A JP 2008234571 A JP2008234571 A JP 2008234571A JP 2010057150 A JP2010057150 A JP 2010057150A
Authority
JP
Japan
Prior art keywords
control signal
control
control module
module
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008234571A
Other languages
English (en)
Other versions
JP5489440B2 (ja
Inventor
Fu-Yang Shih
富洋 史
Ken-Tang Wu
肯唐 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macroblock Inc
Original Assignee
Macroblock Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macroblock Inc filed Critical Macroblock Inc
Publication of JP2010057150A publication Critical patent/JP2010057150A/ja
Application granted granted Critical
Publication of JP5489440B2 publication Critical patent/JP5489440B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4247Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus
    • G06F13/4256Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus using a clocked protocol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Logic Circuits (AREA)

Abstract

【課題】協動回路の高周波数での運転時の高パワー消耗、電磁干渉及び各ステージの回路のパルス幅変調周波数が異なる問題を解決する。
【解決手段】第1制御信号と第2制御信号を生成し、該第1制御信号のパルス幅は該第2制御信号のパルス幅により決定する第1制御モジュールと、該第1制御モジュールに接続されて該第1制御信号と第2制御信号を受け取り、並びに該第1制御信号と該第2制御信号に基づき第3制御信号を生成する第2制御モジュールと、を包含し、該第2制御モジュールが該第1制御信号と該第2制御信号に基づき該第3制御信号の周波数とデューティ−サイクルを該第2制御信号の周波数とデューティ−サイクルと同じとなすが、位相は第2制御信号の位相に較べて位相遅延を発生する。
【選択図】図1

Description

本発明は一種の協動回路に係り、特に現ステージの制御モジュールの生成する制御信号の位相が前ステージの生成する制御信号の位相に較べて位相遅延を発生するものに関する。
現在、大電流装置制御に応用されている協動回路は、一般には回路内部のスイッチにより制御され、例えば、SPI(Serial Peripheral Interface)、I2C、SM(System Management)バス或いはPMバスを通信インタフェースとしている。
ただし、SPI、I2C、SMバス或いはPMバスには以下のような欠点がある。
1.SPI以外は、いずれも別にアドレスを必要とし、高周波数の切り換え時に、クロック周波数が低すぎ、7ビット解析度、500kHzのパルス幅変調では、そのクロック周波数は60MHzが必要である。
2.SPIは環状トポロジーを使用し、アドレス不要であるが、低周波数の状況では起動できず、高周波数時にはパワー消耗し且つ電磁干渉とノイズの問題を解決しなければならない。
3.マスタ制御回路が設定データ、例えば数量、解析度或いは位相シフト等をスレーブ回路に伝送する場合、これらのスレーブ回路はクロックを具備してデータ伝送する必要がある。もし、外部クロックを採用するとパワー消耗し電磁干渉の問題も発生する。もし、各スレーブ回路内にそれぞれクロックジェネレータをビルトインするとなると、コストアップしパワー消耗する。且つ各集積回路のクロックは同じでなく、このため各集積回路のパルス幅変調周波数の差異を形成する。
このため、アドレス不要で且つどのような周波数で操作されても、低パワー消耗、低電磁干渉で、各ステージの回路のパルス幅変調周波数が同じという効果を達成する一種の協動回路の研究開発が必要である。
ゆえに、本発明は一種の協動回路を提供し、その主要な目的は、協動回路の高周波数での運転時の高パワー消耗、電磁干渉及び各ステージの回路のパルス幅変調周波数が異なる問題を解決することにある。
請求項1の発明は、協動回路において、
第1制御モジュールであって、第1制御信号と第2制御信号を生成し、該第1制御信号の周波数とパルス幅は該第2制御信号の周波数とパルス幅により決定される、上記第1制御モジュールと、
第2制御モジュールであって、該第1制御モジュールに接続されて該第1制御信号と該第2制御信号を受け取り、並びに該第1制御信号と該第2制御信号に基づき第3制御信号を生成する、上記第2制御モジュールと、
を包含し、該第2制御モジュールが、該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路としている。
請求項2の発明は、請求項1記載の協動回路において、更に複数の第3制御モジュールを包含し、これら第3制御モジュールは、該第1制御信号を受け取り、これら第3制御モジュール中の第1ステージは該第2制御モジュールに接続され並びに該第1制御信号及び該第3制御信号を受け取り、これにより現ステージの制御モジュールの第3制御信号を生成し、その他の第3制御モジュールはいずれも前ステージの第3制御モジュールに接続され、並びに前ステージの第3制御信号及び該第1制御信号を受け取って現ステージの制御モジュールの第3制御信号を生成し、該第2制御モジュールは該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相と較べての位相遅延を発生させ、これら第3制御モジュールは該第1制御信号及び前ステージの第3制御信号に基づき、現ステージの制御モジュールの第3制御信号の位相に、前ステージの第3制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路としている。
請求項3の発明は、請求項1記載の協動回路において、更に複数の第3制御モジュールを包含し、これら第3制御モジュール中の第1ステージは該第2制御モジュールに接続され、その他の第3制御モジュールはいずれも前ステージの第3制御モジュールに接続され、該第2制御モジュールは、該第1制御信号に基づき該第1ステージの第3制御モジュールに発送する第1制御信号を生成し、その他の各ステージの第3制御モジュールは前ステージの第3制御モジュールの第1制御信号に基づき、後ステージの第3制御モジュールに発送する第1制御信号を生成し、各ステージの制御モジュールは前ステージの制御モジュールの生成する第1制御信号と該第3制御信号に基づき、現ステージの制御モジュールの制御信号を生成し、該第2制御モジュールは該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相と較べての位相遅延を発生させ、これら第3制御モジュールは前ステージの制御モジュールの生成する第1制御信号及び前ステージの制御信号に基づき、現ステージの制御モジュールの制御信号の位相に、前ステージの制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路としている。
請求項4の発明は、請求項1記載の協動回路において、該第3制御信号は該第1制御モジュールにフィードバックされ、該第1制御モジュールは第4制御信号を生成し、該第4制御信号がある状態の時、該第2制御モジュールは、該第1制御信号及び該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、該第4制御信号が別の状態の時、該第1制御信号、該第2制御信号及び該第3制御信号はそれぞれ各自の周波数、パルス、及び位相を有し、該第1制御モジュールが該第1制御信号及び該第2制御信号を該第2制御モジュールに伝送し、並びに、該第2制御モジュールが該第1制御モジュールにフィードバックする第3制御信号に基づき、該第2制御モジュールの数量を判定することを特徴とする、協動回路としている。
請求項5の発明は、請求項2記載の協動回路において、そのうち最後のステージの制御モジュールの制御信号が該第1制御モジュールにフィードバックされ、該第1制御モジュールが第4制御モジュールを生成し、このモード設定信号がある状態の時、該第2制御モジュールが該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、これら第3制御モジュールは該第1制御信号と前ステージの制御信号に基づき、現ステージの制御モジュールの制御信号の位相に、前ステージの制御信号の位相に較べての位相遅延を発生させ、該第4制御信号が別の状態の時、該第1制御信号、該第2制御信号及び該第3制御信号はそれぞれの周波数、パルス幅及び位相を有し、該第1制御モジュールが該第1制御信号を該第2制御モジュールに伝送し、並びに該第1制御信号が順にこれら第3制御モジュールを通過し、該第1制御モジュールにフィードバックされる最後のステージの制御モジュールの制御信号に基づき、該第2制御モジュール及びこれら第3制御モジュールの総数量を判定することを特徴とする、協動回路としている。
請求項6の発明は、請求項3記載の協動回路において、そのうち最後のステージの制御モジュールの第1制御信号及び第3制御信号が該第1制御モジュールにフィードバックされ、該第1制御モジュールが第4制御モジュールを生成し、該第4制御信号が別の状態の時、該第2制御モジュールが、該第1制御信号及び該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、これら第3制御モジュールは前ステージの制御モジュールを通過した第1制御信号及び前ステージの第3制御信号に基づき、前該前ステージの制御信号の位相に、前ステージの第3制御信号の位相に較べての位相遅延を生成させ、該第4制御信号が別の状態の時、該第1制御信号、該第2制御信号及び該第3制御信号はそれぞれの周波数、パルス幅及び位相を有し、該第1制御モジュールが該第1制御信号を該第2制御モジュールに伝送し、並びに該第1制御信号に順にこれら第3制御モジュールを通過させ、該第1制御モジュールにフィードバックされる最後のステージの制御モジュールの第3制御信号に基づき、該第2制御モジュール及びこれら第3制御モジュールの総数量を判定することを特徴とする、協動回路としている。
請求項7の発明は、請求項1記載の協動回路において、該第1制御信号の周波数は該第2制御信号の周波数に、これらイネーブルされた協動制御モジュールの数量の総和を乗じたものに等しく、且つ該第1制御信号のパルス幅は、該第2制御信号のパルス幅を該第1制御信号の周期で除算した余数とされることを特徴とする、協動回路としている。
請求項8の発明は、請求項1記載の協動回路において、該第2制御信号の上縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第2制御信号の下縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて高準位となることを特徴とする、協動回路としている。
請求項9の発明は、請求項2記載の協動回路において、該第2制御信号の上縁がトリガされた後、各該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第2制御信号の下縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて高準位とされることを特徴とする、協動回路としている。
請求項10の発明は、請求項3記載の協動回路において、該第2制御信号の上縁がトリガされた後、各該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第2制御信号の下縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて高準位とされることを特徴とする、協動回路としている。
請求項11の発明は、請求項1記載の協動回路において、該第1制御信号の下縁がトリガされ且つ該第2制御信号が高準位とされる時、該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第1制御信号の上縁がトリガされ且つ該第2制御信号が低準位とされる時、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて低準位とされることを特徴とする、協動回路としている。
請求項12の発明は、請求項2記載の協動回路において、該第1制御信号の下縁がトリガされ且つ前ステージの制御信号が高準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号上縁にトリガされて高準位となり、該第1制御信号の上縁がトリガされ且つ前ステージの制御信号が低準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号下縁にトリガされて低準位となることを特徴とする、協動回路としている。
請求項13の発明は、請求項3記載の協動回路において、該第1制御信号の下縁がトリガされ且つ前ステージの制御信号が高準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号上縁にトリガされて高準位となり、該第1制御信号の上縁がトリガされ且つ前ステージの制御信号が低準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号下縁にトリガされて低準位となることを特徴とする、協動回路としている。
請求項14の発明は、協動回路において、
第1制御モジュールであって、第1制御信号と第2制御信号及び第5制御信号を生成し、該第5制御信号は該第2制御信号のパルス幅と周波数データを包含し、且つ該第1制御信号の周波数とパルス幅は該該第2制御信号の周波数とパルス幅により決定される、上記第1制御モジュールと、
第2制御モジュールであって、該第1制御モジュールに接続されて該第1制御信号と該第2制御信号を受け取り、並びに該第1制御信号により該第2制御モジュールがトリガされて、該第5制御信号を受け取り並びに後ステージの制御モジュールの第3制御信号及び第5制御信号を生成する、上記第2制御モジュールと、
を包含し、該第2制御モジュールが、該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路としている。
請求項15の発明は、請求項14記載の協動回路において、更に複数の第3制御モジュールを包含し、この第3制御モジュールは、該第1制御信号を受け取り、これら第3制御モジュール中の第1ステージは該第2制御モジュールに接続され並びに該第1制御信号及び該第5制御信号を受け取り、これにより現ステージの制御モジュールの第3制御信号及び第5制御信号を生成し、現ステージの制御モジュールの第5制御信号は、該第3制御信号のパルス幅と周波数データを包含し、その他の第3制御モジュールはいずれも前ステージの第3制御モジュールに接続され、並びに前ステージの第5制御信号及び該第1制御信号を受け取って現ステージの制御モジュールの第3制御信号及び該第2制御信号を受け取り、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、これら第3制御モジュールは該第1制御信号及び前ステージの第3制御信号に基づき、現ステージの制御モジュールの第3制御信号の位相に、前ステージの第3制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路としている。
本発明は一種の協動回路であり、それは、第1制御信号と第2制御信号を生成し、該第1制御信号のパルス幅は該第2制御信号のパルス幅により決定する第1制御モジュールと、該第1制御モジュールに接続されて該第1制御信号と第2制御信号を受け取り、並びに該第1制御信号と該第2制御信号に基づき第3制御信号を生成する第2制御モジュールと、を包含し、該第2制御モジュールが該第1制御信号と該第2制御信号に基づき該第3制御信号の周波数とデューティ−サイクルを該第2制御信号の周波数とデューティ−サイクルと同じとなすが、位相は第2制御信号の位相に較べて位相遅延を発生する。
本発明は大幅に信号伝送の周波数を低減し、協動回路がどのような周波数で作動する時も、低パワー消耗、低電磁干渉、及び各ステージの回路の作動周波数が同じであるという効果を達成する。
図1は本発明の協動回路の実施例のシステムブロック図である。図1に示されるように、本発明の協動回路1は、第1制御モジュール2と第2制御モジュール3を包含する。該第1制御モジュール2は、第1制御信号CLKと第2制御信号DOUT 0を生成し、該第1制御信号CLKのパルス幅は該第2制御信号DOUT 0のパルス幅及び協動回路モジュールの数量及び作動周波数により決定される。該第2制御モジュール3は、該第1制御モジュール2に接続されて該第1制御信号CLKと該第2制御信号DOUT 0を受け取り、並びに該第1制御信号CLKと該第2制御信号DOUT 0に基づき第3制御信号DOUT 1を生成する。
該第2制御モジュール3は該第1制御信号CLKと該第2制御信号DOUT 0に基づき、該第3制御信号DOUT 1の周波数とデューティ−サイクルを、該第2制御信号DOUT 0の周波数とデューティ−サイクルと同じとなすが、位相は該第2制御信号DOUT 0の位相に較べて位相遅延を発生する。
該第2制御信号DOUT 0と該第3制御信号DOUT 1は状態制御信号とされ、好ましい実施方式は、使用者の必要により該第3制御信号DOUT 1が該第1制御モジュール2にフィードバックされる。
別の好ましい実施方式では、該第1制御モジュール2が第4制御信号MODEを生成し、該第4制御信号MODEが、ある状態の時、該第1制御モジュール2が該第1制御信号CLK及び第2制御信号DOUT 0を該第2制御モジュール3に伝送し、並びに該第2制御モジュール3が該第1制御モジュール2にフィードバックする第3制御信号DOUT 1に基づき、該第2制御モジュール3の数量を判定し、且つ該第4制御信号MODEが該状態の時、該第1制御モジュール2は該第1制御信号CLKと該第2制御信号DOUT 0を該第2制御モジュール3に伝送し、該第2制御モジュール3をイネーブルする。該第4制御信号MODEが別の状態の時、該第2制御モジュール3は該第1制御信号CLK及び第2制御信号DOUT 0に基づき、該第3制御信号DOUT 1の位相に、該第2制御信号DOUT 0に較べての位相遅延を発生させ、このとき、該第1制御信号CLK、該第2制御信号DOUT 0及び該第3制御信号DOUT 1は各自の周波数、パルス幅及び位相を有し、使用者は実際の必要により適当に調整できる。周波数及びパルス幅の計算方式は、前述の第1制御信号CLKの周波数値を、第2制御信号DOUT 0の周波数に、該第1制御モジュール2と既にイネーブルされた第2制御モジュール3の数量の総和を乗じたものに等しくするのが良い。第1制御信号CLKのパルス幅は該第2制御信号DOUT 0のパルス幅を該第1制御信号CLKの周期で除算した余数とするのがよい。
実際には、第1制御モジュール2及び第2制御モジュール3をトリガするメカニズムは、該第2制御信号DOUT 0の信号上縁がトリガされて高準位とされた後、該第3制御信号DOUT 1が、該第1制御信号CLKの次の信号上縁にトリガされて高準位とされるか、或いは、該第1制御信号CLKの下縁がトリガされ且つ該第2制御信号DOUT 0が高準位とされた時に、該第3制御信号DOUT 1が、該第1制御信号CLKの次の信号上縁にトリガされ高準位とされ、該第2制御信号DOUT 0の信号下縁がトリガされ低準位とされた時、該第3制御信号DOUT 1は該第1制御信号CLKの次の下縁にトリガされて低準位とされ、この部分の時間は即ち、該制御モジュールのデューティ−サイクルDとされ、詳細なトリガ波形図は、後続の複数の第3制御モジュールの実施例において更に詳細に説明される。以上は僅かにそのうちの可能な作動方式であり、この技術の領域の属する分野における通常の知識を有する者であれば、その他のトリガ方式によっても、類似の効果を達成できることは理解できるので、ここでは多くは述べない。
図2は本発明の協動回路の別の実施例のシステムブロック図であり、図3は図2の実施例のトリガ波形図であり、それは前述の実施例の第1制御モジュール2と第2制御モジュール3のほか、続いて接続される第3制御モジュール4と第3制御モジュール5(本実施例では二つの第3制御モジュールを以て説明する)を有する場合を説明する。実際には第2制御モジュール3と第3制御モジュール4、第3制御モジュール5の構造は同じとされるのがよく、図2及び図3も参照されたいが、本発明の協動回路1は第1制御モジュール2及び第2制御モジュール3のほか、更に、複数の第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)を有し得て、これらの第3制御モジュールはまた、第2制御モジュール3と同じく、該第1制御信号CLKを受け取る。そのうち、第3制御モジュール4は該第2制御モジュール3に接続され並びに該第1制御信号CLKと該第3制御信号DOUT 1を受け取り、これにより、該ステージの制御モジュールの制御信号DOUT 2を生成する。第3制御モジュール5は前ステージの第3制御モジュール4に接続され並びに前ステージの制御信号DOUT 2と該第1制御信号CLKを受け取り、これにより該ステージの制御モジュールの制御信号DOUT 3を生成する。該第2制御モジュール3は該第1制御信号CLKと該第2制御信号DOUT 0に基づき、該第3制御信号DOUT 1の位相に該第2制御信号DOUT 0の位相に較べての位相遅延を発生させる。これらの第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)は該第1制御信号CLK及び前ステージの制御信号に基づき、現ステージの制御モジュールの位相に前ステージの制御信号の位相に較べての位相遅延を発生させる。そのうち、該第2制御信号DOUT 0、該第3制御信号DOUT 1及び制御信号DOUT 2及び制御信号DOUT 3はいずれも状態制御信号とされる。
好ましい実施方式では、使用者の必要により、最後のステージの制御モジュールの制御信号DOUT 3が該第1制御モジュール2にフィードバックされて、回路が正常に作動しているか否かが判断される。
制御モジュール総数量の判断、及び、第2或いは第3制御モジュールのイネーブルの好ましい実施方式は、以下のとおりである。すなわち、該第1制御モジュール2が第4制御信号MODEを生成し、該第4制御信号MODEが、ある状態の時、該状態は各制御モジュール総数量を判断し、第2制御モジュール3或いは第3制御モジュールをイネーブルする状態とされる。このモード下で、第1制御モジュール2は該第2制御信号DOUT 0を伝送するピンより一組のパラメータ(これは該第2制御信号DOUT 0中に包含され得る)を送出し、並びに任意の周波数の第1制御信号CLKを送出して後ステージ(第2制御モジュール3或いは第3制御モジュール)をトリガし並びに順にこれらの第3制御モジュールを通過する該一組のパラメータを読み取らせる。該第1制御モジュール2はフィードバックされる制御信号DOUT 3により第2制御モジュール3と第3制御モジュールの数量を判断し、並びに該パラメータを送出することにより第2制御モジュール3或いはこれらの第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)をイネーブル或いはディスエーブルする。
該第4制御信号MODEが別の状態の時、該第2制御モジュール3は該第1制御信号CLK及び第2制御信号DOUT 0に基づき、該第3制御信号DOUT 1の位相に、該第2制御信号DOUT 0に較べての位相遅延を発生させ、これら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)は該第1制御信号CLK及び前ステージの制御信号に基づき現ステージの制御モジュールの制御信号に、前ステージの制御信号の位相に較べての位相遅延を発生させる。このとき、該第1制御信号CLK、該第2制御信号DOUT 0及び該第3制御信号DOUT 1は各自の周波数、パルス幅及び位相を有し、使用者は実際の必要により適当に調整できる。且つ使用者は実際の必要により、該第1制御モジュール2に、該第2制御モジュール3及びこれら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)をイネーブルする数量を決定させることができる。
周波数及びパルス幅の計算方式は、前述の第1制御信号CLKの周波数値を、第2制御信号DOUT 0の周波数値を、該第1制御モジュール2、既にイネーブルされた第2制御モジュール3及び既にイネーブルされた第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)の数量の総和で除算したものに、等しくするのが良い。第1制御信号CLKのパルス幅は該第2制御信号DOUT 0のパルス幅を該第1制御信号CLKの周期で除算した余数とするのがよい。
実際の、該第1制御モジュール2、該第2制御モジュール3及びこれら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)をトリガするメカニズムは、好ましくは、図3に示されるようであり、前ステージの制御信号の信号上縁がトリガされて高準位とされた後、現ステージの制御モジュールの制御信号が、該第1制御信号の次の信号上縁にトリガされて高準位となり、前ステージの制御信号の信号下縁がトリガされ低準位となった後、現ステージの制御モジュールの制御信号が該第1制御信号の次の信号下縁にトリガされて低準位となり、この部分の時間がすなわち各制御モジュールのデューティ−サイクルDとされ、これがすなわち各制御モジュールの制御信号に等しいか、或いはデューティ−サイクルDを以て各ステージの制御モジュールが制御信号を生成する。
図4は図2の実施例の別のトリガ波形図である。図4に図2を併せて参照されたい。該第4制御信号MODEが別の状態の時、該第2制御モジュール3は該第1制御信号CLKと該第2制御信号DOUT 0に基づき、該第3制御信号DOUT 1の位相に、該第2制御信号DOUT 0の位相に較べての位相遅延を発生させ、これら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)は該第1制御信号CLK及び前ステージの制御信号に基づき、現ステージの制御モジュールの制御信号の位相に、前ステージの制御信号に較べての、位相遅延を発生させる。このとき、該第1制御信号CLK、該第2制御信号DOUT 0及び該第3制御信号DOUT 1は各自の周波数、パルス幅及び位相を有し、使用者は実際の必要により適当に調整できる。且つ使用者は実際の必要により、該第1制御モジュール2に、該第2制御モジュール3及びこれら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)をイネーブルする数量を決定させることができる。
周波数及びパルス幅の計算方式は、前述の第1制御信号CLKの周波数値を、第2制御信号DOUT 0の周波数値を、該第2制御信号DOUT 0のパルス幅を、該第1制御モジュール2、既にイネーブルされた第2制御モジュール3及び既にイネーブルされた第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)の数量の総和で除算したものに等しくする。
該第1制御信号CLKの下縁がトリガされ且つ前ステージの制御信号が高準位である時、現ステージの制御モジュールの制御信号は、該第1制御信号CLKの次の信号上縁にトリガされて高準位となり、該第1制御信号CLKの上縁がトリガされ且つ前ステージの制御信号が低準位である時、現ステージの制御モジュールの制御信号は、該第1制御信号の次の信号下縁にトリガされて低準位となり、この部分の時間がすなわち、各制御モジュールのデューティ−サイクルDとされ、これが各ステージの制御モジュールの制御信号と同じとされるか、或いは、デューティ−サイクルDを以て各ステージの制御モジュールの制御信号が生成される。図3及び図4から、トリガ波形は異なっても、同様に位相遅延の効果を発生することが分かり、これにより、周知のこの技術の分野の属する領域における通常の知識を有する者であれば、本発明の協動回路により、異なるトリガ波形を利用して位相遅延の効果を達成することが分かり、それはまた本発明の保護の範疇に属する。
図5は本発明の協動回路の別の実施例のシステムブロック図であり、それは、前述の実施例の、第1制御モジュール2により第1制御信号CLKを統一して送出する伝送方式のほか、本発明は、該第1制御信号CLKに順に各制御モジュールを通過させる方式の伝送も可能であることを説明する。図5に示されるように、これら第3制御モジュール中の第1ステージ(第3制御モジュール4)は該第2制御モジュール3に接続され、その他の第3制御モジュール(第3制御モジュール5)はいずれも前ステージの第3制御モジュール(第3制御モジュール4)に接続され、該第2制御モジュール3は該第1制御信号CLKに基づき、該第1ステージの第3制御モジュール(第3制御モジュール4)に発送する第1制御信号CLKを生成し、その他の各ステージの第3制御モジュール(第3制御モジュール5)は前ステージの第3制御モジュール(第3制御モジュール4)の第1制御信号CLKに基づき、後ステージの第3制御モジュールに発送する第1制御信号CLKを生成する。各ステージの制御モジュールは並びに前ステージの制御モジュールの生成する第1制御信号CLK及び該第3制御信号に基づき、現ステージの制御モジュールの制御信号を生成し、そのうち、第1制御信号CLKに関しては、最後のステージの制御モジュール(第3制御モジュール5)の生成する第1制御信号が該第1制御モジュール2にフィードバックされるのが望ましく、上述の目的を達成するためには、該第2制御モジュール3及びこれら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)がそれぞれにバッファユニット(図示せず)、例えばバッファを具備して、該第1制御信号CLKを緩衝或いは強化する。
この方式は各ステージの第1制御信号CLKと制御信号の伝送遅延時間を調整でき、これにより次のステージの制御モジュールの誤判断を防止できる。該第2制御モジュール3は該第1制御信号CLK及び該第2制御信号DOUT 0に基づき、該第3制御信号DOUT 1の位相に、該第2制御信号DOUT 0の位相に較べての位相遅延を発生させ、これらの第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)は前ステージの制御モジュールを通過した第1制御信号CLK及び前ステージの制御信号に基づき、現ステージの制御モジュールの制御信号の位相に、前ステージの制御信号の位相と較べての位相遅延を発生させる。そのうち、該第2制御信号DOUT 0、該第3制御信号DOUT 1、制御信号DOUT 2及び制御信号DOUT 3はいずれも状態制御信号とされる。
好ましい実施方式では、使用者の必要により、最後のステージの制御モジュールの制御信号DOUT 3が該第1制御モジュール2にフィードバックされ、こうして回路作動が正常であるか否かが判断される。
制御モジュール総数量の判断、及び、第2或いは第3制御モジュールのイネーブルの好ましい実施方式は、以下のとおりである。すなわち、該第1制御モジュール2が第4制御信号MODEを生成し、該第4制御信号MODEが、ある状態の時、該状態は各制御モジュール総数量を判断し、第2制御モジュール3或いは第3制御モジュールをイネーブルする状態とされる。このモード下で、第1制御モジュール2は該第2制御信号DOUT 0を伝送するピンより一組のパラメータ(これは該第2制御信号DOUT 0中に包含され得る)を送出し、並びに任意の周波数の第1制御信号CLKを送出して後ステージ(第2制御モジュール3或いは第3制御モジュール)をトリガし並びに該一組のパラメータを読み取らせ並びに順にこれら第3制御モジュールを通過させて伝送する。該第1制御モジュール2はフィードバックされる制御信号DOUT 3により第2制御モジュール3と第3制御モジュールの数量を判断し、並びに該パラメータを送出することにより第2制御モジュール3或いはこれらの第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)をイネーブル或いはディスエーブルする。
このとき、該第1制御信号CLK、該第2制御信号DOUT 0及び該第3制御信号DOUT 1は各自の周波数、パルス幅及び位相を有し、使用者は実際の必要により適当に調整できる。
該第4制御信号MODEが別の状態の時、該第2制御モジュール3は該第1制御信号CLKと該第2制御信号DOUT 0に基づき、該第3制御信号DOUT 1の位相に、該第2制御信号DOUT 0の位相に較べての位相遅延を発生させ、これら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)は前ステージの制御モジュールを通過した第1制御信号CLK及び前ステージの制御信号により、現ステージの制御モジュールの制御信号の位相に、前ステージの制御モジュールの制御信号の位相に較べての位相遅延を発生させ、且つ使用者は、実際の必要により、該第1制御モジュール2に、該第2制御モジュール3及びこれら第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)をイネーブルする数量を決定させることができる。
周波数及びパルス幅の計算方式は、前述の第1制御信号CLKの周波数値を、第2制御信号DOUT 0の周波数値を、該第2制御信号DOUT 0のパルス幅を該第1制御モジュール2、既にイネーブルされた第2制御モジュール3及び既にイネーブルされた第3制御モジュール(第3制御モジュール4及び第3制御モジュール5)の数量の総和で除算したものに等しくするのがよい。トリガの方式は、前述の図3及び図4に関する説明を参照できるので、ここでは再度説明しない。図5から、第1制御信号CLK伝送のメカニズムが違っても、同様に状態制御信号の位相遅延効果を発生させられることが分かり、これにより、この発明の領域における通常の知識を有する者であれば本発明の協動回路により、異なった第1制御信号CLKの伝送メカニズムによって位相遅延の結果を達成できることが分かり、それも本発明の保護の範疇に属する。
図6は本発明の更にまた別の実施例のシステムブロック図である。図6に図5を併せて参照されたい。図6の図5との差異は、該第1制御モジュール2が第1制御信号CLK、第2制御信号(図示せず)及び第5制御信号SDOUT 0を生成することにある。そのうち、該第5制御信号SDOUT 0は該第2制御信号のパルス幅と周波数データを包含し、且つ該第1制御信号CLKの周波数とパルス幅は、該第2制御信号の周波数とパルス幅により決定され、第2制御モジュール3が該第1制御信号CLKを受け取り、並びに該第1制御信号CLKにより該第2制御モジュール3をトリガし、これにより該第5制御信号SDOUT 0を受け取り並びに後ステージの制御モジュール(第3制御モジュール4)の第3制御信号(図示せず)及び第5制御信号SDOUT 1を生成し、もしマルチステージの状況を有するならば、これにより類推されるように、後続の第5制御信号SDOUT 2を生成し、最後のステージの第5制御信号SDOUT 3を該第1制御モジュール2にフィードバックする。該第2制御信号及びこれら第3制御信号はこれら制御モジュールにおいて生成され、前の実施例で記載されている第4制御信号MODEは不要である。第5制御信号SDOUT 0〜SDOUT 3はデジタル制御信号を伝送し、並びに第4制御信号MODEで次のステージの制御モジュールをトリガして信号を受け取らせ、更に前述の第1制御信号CLKの高準位/低準位時間の変調方式を組み合わせることで、デューティ−サイクルDに位相遅延を加えて次のステージの制御モジュールに伝送できる。
例えば、もし、デューティ−サイクルD=TCLX ×n+mで、そのうち、TCLX は第1制御信号CLKの周期であるなら、その決定方式は前述したように、mが第1制御信号CLKの高準位或いは低準位時間の幅であり、並びに第5制御信号SDOUT 0でn及びイネーブルモジュール数量Eの情報を伝送する。第5制御信号SDOUT 0は第1制御信号CLKの周波数により順に一組のヘッダー、例えば111111111を伝送し、次のステージの制御モジュールにこれがデューティ−サイクルDを設定する信号であると認識させ、ヘッダーの後にデューティ−サイクルDの高準位/低準位の時間長さを加え、例えば前述のE=4、n=3ならば、01000011の信号を送出し、前の4ビットの0100はE=4を代表し、後の4ビットの0011はn=3を代表する。次のステージの制御モジュールが第1制御信号CLKを受け取り、並びに第1制御信号CLKの上縁にトリガされ第5制御信号SDOUT 0を受け取ると、現ステージの制御モジュールのデューティ−サイクルDが終えた後に、第2制御信号の一つの第1制御信号CLK周期が開始、並びに三つの第1制御信号CLK周期が続いた後、第4個の第1制御信号CLK周期の下縁で終了し(四つの制御モジュールを例としている)、並びに次の信号上縁で次のデューティ−サイクルDを開始し、そのデューティ−サイクルDは同様に、D=TCLX ×n+mで、且つ一つの第1制御信号CLK周期の固定位相差を保持する。第2制御モジュールはまた第5制御信号SDOUT 1と第5制御信号SDOUT 0に下降後に一つの第1制御信号CLK周期を保持させるが、内容が同じものを次のステージの制御モジュールに伝送し、その他の制御信号はいずれもこの方式により順に伝送する。各ステージは新たな設定を受け取った後に新たなデューティ−サイクルに改められ、こうしてデューティ−サイクルの一つの位相差の遅延を達成した後に、次のステージの制御モジュールに伝送する目的を達成できる。上述のデジタルデータ設定方式、例えばヘッダー或いは内容のエンコードは、同一目的を達成できる多種類の設定が可能であり、その原理は何れも同じである。これによりこの技術の領域の通常の知識を有する者は、本発明の協動回路により、異なる第5制御信号SDOUT 0〜SDOUT 3のエンコードメカニズムを利用し、位相遅延の結果を達成できることが分かり、それもまた本発明の保護の範疇に属する。
以上の各実施例は本発明の説明をしやすくするためのものであり、本発明の特許請求の範囲を制限するものではなく、そのうち例示された回路構造、トリガ波形、或いは該第1制御信号及び各状態制御信号に発生させる時間上の遅延は、使用者の実際の製品の必要により異なった但し等しい効果の調整を有し得て、それにより最良の効果を獲得できる。
以上から明らかであるように、本発明は一種の協動回路を提供し、それはどのような周波数で操作される時も、低パワー消耗、低電磁干渉及び各ステージ回路の作動周波数が同じである効果を達成できる。
以上は本発明の詳細な説明であるが、以上は本発明の好ましい実施例の説明にすぎず、本発明の実施の範囲を制限するものではなく、本発明の特許請求の範囲の記載に基づきなし得る、同等の効果を有する変化及び修飾は、いずれも本発明の特許請求の範囲内に属する。
本発明の協動回路の実施例のシステムブロック図である。 本発明の協動回路の別の実施例のシステムブロック図である。 図2の実施例のトリガ波形図である。 図2の実施例の別のトリガ波形図である。 本発明の協動回路の更に別の実施例のシステムブロック図である。 本発明の更にまた別の実施例のシステムブロック図である。
符号の説明
1 協動回路 2 第1制御モジュール 3 第2制御モジュール
4 第3制御モジュール 5 第3制御モジュール
CLK 第1制御信号 D デューティ−サイクル
T 第2制御信号の周期 DOUT 0 第2制御信号
DOUT 1 第3制御信号 DOUT 2 第3制御信号
DOUT 3 第3制御信号 MODE 第4制御信号
SDOUT 0 第5制御信号 SDOUT 1 第5制御信号
SDOUT 2 第5制御信号 SDOUT 3 第5制御信号

Claims (15)

  1. 協動回路において、
    第1制御モジュールであって、第1制御信号と第2制御信号を生成し、該第1制御信号の周波数とパルス幅は該第2制御信号の周波数とパルス幅により決定される、上記第1制御モジュールと、
    第2制御モジュールであって、該第1制御モジュールに接続されて該第1制御信号と該第2制御信号を受け取り、並びに該第1制御信号と該第2制御信号に基づき第3制御信号を生成する、上記第2制御モジュールと、
    を包含し、該第2制御モジュールが、該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路。
  2. 請求項1記載の協動回路において、更に複数の第3制御モジュールを包含し、これら第3制御モジュールは、該第1制御信号を受け取り、これら第3制御モジュール中の第1ステージは該第2制御モジュールに接続され並びに該第1制御信号及び該第3制御信号を受け取り、これにより現ステージの制御モジュールの第3制御信号を生成し、その他の第3制御モジュールはいずれも前ステージの第3制御モジュールに接続され、並びに前ステージの第3制御信号及び該第1制御信号を受け取って現ステージの制御モジュールの第3制御信号を生成し、該第2制御モジュールは該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相と較べての位相遅延を発生させ、これら第3制御モジュールは該第1制御信号及び前ステージの第3制御信号に基づき、現ステージの制御モジュールの第3制御信号の位相に、前ステージの第3制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路。
  3. 請求項1記載の協動回路において、更に複数の第3制御モジュールを包含し、これら第3制御モジュール中の第1ステージは該第2制御モジュールに接続され、その他の第3制御モジュールはいずれも前ステージの第3制御モジュールに接続され、該第2制御モジュールは、該第1制御信号に基づき該第1ステージの第3制御モジュールに発送する第1制御信号を生成し、その他の各ステージの第3制御モジュールは前ステージの第3制御モジュールの第1制御信号に基づき、後ステージの第3制御モジュールに発送する第1制御信号を生成し、各ステージの制御モジュールは前ステージの制御モジュールの生成する第1制御信号と該第3制御信号に基づき、現ステージの制御モジュールの制御信号を生成し、該第2制御モジュールは該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相と較べての位相遅延を発生させ、これら第3制御モジュールは前ステージの制御モジュールの生成する第1制御信号及び前ステージの制御信号に基づき、現ステージの制御モジュールの制御信号の位相に、前ステージの制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路。
  4. 請求項1記載の協動回路において、該第3制御信号は該第1制御モジュールにフィードバックされ、該第1制御モジュールは第4制御信号を生成し、該第4制御信号がある状態の時、該第2制御モジュールは、該第1制御信号及び該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、該第4制御信号が別の状態の時、該第1制御信号、該第2制御信号及び該第3制御信号はそれぞれ各自の周波数、パルス、及び位相を有し、該第1制御モジュールが該第1制御信号及び該第2制御信号を該第2制御モジュールに伝送し、並びに、該第2制御モジュールが該第1制御モジュールにフィードバックする第3制御信号に基づき、該第2制御モジュールの数量を判定することを特徴とする、協動回路。
  5. 請求項2記載の協動回路において、そのうち最後のステージの制御モジュールの制御信号が該第1制御モジュールにフィードバックされ、該第1制御モジュールが第4制御モジュールを生成し、このモード設定信号がある状態の時、該第2制御モジュールが該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、これら第3制御モジュールは該第1制御信号と前ステージの制御信号に基づき、現ステージの制御モジュールの制御信号の位相に、前ステージの制御信号の位相に較べての位相遅延を発生させ、該第4制御信号が別の状態の時、該第1制御信号、該第2制御信号及び該第3制御信号はそれぞれの周波数、パルス幅及び位相を有し、該第1制御モジュールが該第1制御信号を該第2制御モジュールに伝送し、並びに該第1制御信号が順にこれら第3制御モジュールを通過し、該第1制御モジュールにフィードバックされる最後のステージの制御モジュールの制御信号に基づき、該第2制御モジュール及びこれら第3制御モジュールの総数量を判定することを特徴とする、協動回路。
  6. 請求項3記載の協動回路において、そのうち最後のステージの制御モジュールの第1制御信号及び第3制御信号が該第1制御モジュールにフィードバックされ、該第1制御モジュールが第4制御モジュールを生成し、該第4制御信号が別の状態の時、該第2制御モジュールが、該第1制御信号及び該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、これら第3制御モジュールは前ステージの制御モジュールを通過した第1制御信号及び前ステージの第3制御信号に基づき、前該前ステージの制御信号の位相に、前ステージの第3制御信号の位相に較べての位相遅延を生成させ、該第4制御信号が別の状態の時、該第1制御信号、該第2制御信号及び該第3制御信号はそれぞれの周波数、パルス幅及び位相を有し、該第1制御モジュールが該第1制御信号を該第2制御モジュールに伝送し、並びに該第1制御信号に順にこれら第3制御モジュールを通過させ、該第1制御モジュールにフィードバックされる最後のステージの制御モジュールの第3制御信号に基づき、該第2制御モジュール及びこれら第3制御モジュールの総数量を判定することを特徴とする、協動回路。
  7. 請求項1記載の協動回路において、該第1制御信号の周波数は該第2制御信号の周波数に、これらイネーブルされた協動制御モジュールの数量の総和を乗じたものに等しく、且つ該第1制御信号のパルス幅は、該第2制御信号のパルス幅を該第1制御信号の周期で除算した余数とされることを特徴とする、協動回路。
  8. 請求項1記載の協動回路において、該第2制御信号の上縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第2制御信号の下縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて高準位となることを特徴とする、協動回路。
  9. 請求項2記載の協動回路において、該第2制御信号の上縁がトリガされた後、各該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第2制御信号の下縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて高準位とされることを特徴とする、協動回路。
  10. 請求項3記載の協動回路において、該第2制御信号の上縁がトリガされた後、各該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第2制御信号の下縁がトリガされた後、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて高準位とされることを特徴とする、協動回路。
  11. 請求項1記載の協動回路において、該第1制御信号の下縁がトリガされ且つ該第2制御信号が高準位とされる時、該第3制御信号は該第1制御信号の次の信号上縁にトリガされ高準位となり、該第1制御信号の上縁がトリガされ且つ該第2制御信号が低準位とされる時、該第3制御信号は該第1制御信号の次の信号下縁にトリガされて低準位とされることを特徴とする、協動回路。
  12. 請求項2記載の協動回路において、該第1制御信号の下縁がトリガされ且つ前ステージの制御信号が高準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号上縁にトリガされて高準位となり、該第1制御信号の上縁がトリガされ且つ前ステージの制御信号が低準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号下縁にトリガされて低準位となることを特徴とする、協動回路。
  13. 請求項3記載の協動回路において、該第1制御信号の下縁がトリガされ且つ前ステージの制御信号が高準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号上縁にトリガされて高準位となり、該第1制御信号の上縁がトリガされ且つ前ステージの制御信号が低準位とされる時、現ステージの制御モジュールの第3制御信号が該第1制御信号の次の信号下縁にトリガされて低準位となることを特徴とする、協動回路。
  14. 協動回路において、
    第1制御モジュールであって、第1制御信号と第2制御信号及び第5制御信号を生成し、該第5制御信号は該第2制御信号のパルス幅と周波数データを包含し、且つ該第1制御信号の周波数とパルス幅は該該第2制御信号の周波数とパルス幅により決定される、上記第1制御モジュールと、
    第2制御モジュールであって、該第1制御モジュールに接続されて該第1制御信号と該第2制御信号を受け取り、並びに該第1制御信号により該第2制御モジュールがトリガされて、該第5制御信号を受け取り並びに後ステージの制御モジュールの第3制御信号及び第5制御信号を生成する、上記第2制御モジュールと、
    を包含し、該第2制御モジュールが、該第1制御信号と該第2制御信号に基づき、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路。
  15. 請求項14記載の協動回路において、更に複数の第3制御モジュールを包含し、この第3制御モジュールは、該第1制御信号を受け取り、これら第3制御モジュール中の第1ステージは該第2制御モジュールに接続され並びに該第1制御信号及び該第5制御信号を受け取り、これにより現ステージの制御モジュールの第3制御信号及び第5制御信号を生成し、現ステージの制御モジュールの第5制御信号は、該第3制御信号のパルス幅と周波数データを包含し、その他の第3制御モジュールはいずれも前ステージの第3制御モジュールに接続され、並びに前ステージの第5制御信号及び該第1制御信号を受け取って現ステージの制御モジュールの第3制御信号及び該第2制御信号を受け取り、該第3制御信号の位相に、該第2制御信号の位相に較べての位相遅延を発生させ、これら第3制御モジュールは該第1制御信号及び前ステージの第3制御信号に基づき、現ステージの制御モジュールの第3制御信号の位相に、前ステージの第3制御信号の位相に較べての位相遅延を発生させることを特徴とする、協動回路。
JP2008234571A 2008-08-27 2008-09-12 同期回路 Expired - Fee Related JP5489440B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW097132691A TW201009586A (en) 2008-08-27 2008-08-27 Coordinated operation circuit
TW097132691 2008-08-27

Publications (2)

Publication Number Publication Date
JP2010057150A true JP2010057150A (ja) 2010-03-11
JP5489440B2 JP5489440B2 (ja) 2014-05-14

Family

ID=41055365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234571A Expired - Fee Related JP5489440B2 (ja) 2008-08-27 2008-09-12 同期回路

Country Status (7)

Country Link
US (1) US7816965B2 (ja)
EP (1) EP2163998B1 (ja)
JP (1) JP5489440B2 (ja)
KR (1) KR101043571B1 (ja)
ES (1) ES2398850T3 (ja)
PL (1) PL2163998T3 (ja)
TW (1) TW201009586A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742814B2 (en) 2009-07-15 2014-06-03 Yehuda Binder Sequentially operated modules
US8602833B2 (en) 2009-08-06 2013-12-10 May Patents Ltd. Puzzle with conductive path
US11330714B2 (en) 2011-08-26 2022-05-10 Sphero, Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US9019718B2 (en) 2011-08-26 2015-04-28 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US9597607B2 (en) 2011-08-26 2017-03-21 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015232B2 (ja) * 1997-07-25 2007-11-28 富士通株式会社 プリスケーラ、分周器及びpll回路
JP3566051B2 (ja) * 1997-11-14 2004-09-15 株式会社ルネサステクノロジ 位相の異なる複数のクロック信号を出力するクロック信号発生回路およびそれを用いたクロック位相制御回路
KR20000026573A (ko) * 1998-10-21 2000-05-15 윤종용 클럭 주파수 배주 회로
US6023420A (en) * 1998-11-17 2000-02-08 Creare, Inc. Three-phase inverter for small high speed motors
JP2001136059A (ja) * 1999-11-01 2001-05-18 Fujitsu Ltd プリスケーラ及びpll回路
US20050225365A1 (en) * 2002-02-15 2005-10-13 John Wood Electronic circuits
CA2425654C (en) * 2002-04-16 2006-04-11 Research In Motion Limited Frequency divider system
US6744296B1 (en) * 2003-05-05 2004-06-01 Linear Technology Corporation Circuits and methods for accurately setting a phase shift
US6947493B2 (en) * 2003-10-10 2005-09-20 Atmel Corporation Dual phase pulse modulation decoder circuit
US7920601B2 (en) * 2003-12-19 2011-04-05 Gentex Corporation Vehicular communications system having improved serial communication
US7053687B1 (en) * 2004-02-05 2006-05-30 Xilinx, Inc. Binary hysteresis comparator circuits and methods
KR100594258B1 (ko) * 2004-02-26 2006-06-30 삼성전자주식회사 위상 합성된 출력신호를 이용하여 지터를 줄이는 듀티싸이클 보정 회로 및 그 방법
US6980042B2 (en) * 2004-04-05 2005-12-27 Micron Technology, Inc. Delay line synchronizer apparatus and method
KR100733420B1 (ko) * 2005-06-30 2007-06-29 주식회사 하이닉스반도체 동기식 반도체 메모리 장치
US7453301B1 (en) * 2005-08-05 2008-11-18 Xilinx, Inc. Method of and circuit for phase shifting a clock signal
KR100705502B1 (ko) 2005-12-10 2007-04-09 한국전자통신연구원 클록 편차를 제거하는 클록 발생 장치 및 클록 수신 장치
KR100752548B1 (ko) * 2006-01-10 2007-08-29 (주)이앤아이 하이브리드 전동기의 제어 장치 및 그 제어 방법
DE102007020005B3 (de) * 2007-04-27 2008-10-09 Texas Instruments Deutschland Gmbh Integrierte Schaltung zur Takterzeugung für Speicherbausteine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011068719; 湯山俊夫著: 「ディジタルIC回路の設計」 , 19870110, 169〜174頁、182〜184頁, CQ出版株式会社 *

Also Published As

Publication number Publication date
TWI371692B (ja) 2012-09-01
PL2163998T3 (pl) 2013-05-31
TW201009586A (en) 2010-03-01
EP2163998B1 (en) 2012-12-05
EP2163998A1 (en) 2010-03-17
US7816965B2 (en) 2010-10-19
KR20100025455A (ko) 2010-03-09
ES2398850T3 (es) 2013-03-22
JP5489440B2 (ja) 2014-05-14
US20100052757A1 (en) 2010-03-04
KR101043571B1 (ko) 2011-06-23

Similar Documents

Publication Publication Date Title
TWI410791B (zh) 用以傳送及接收複數個資料位元的裝置與方法
EP3469487B1 (en) Triple-data-rate technique for a synchronous link
JP5489440B2 (ja) 同期回路
US8406271B2 (en) Spread spectrum clock generating circuit
US8457247B2 (en) In-band generation of low-frequency periodic signaling
JP2007233968A (ja) スペクトラム拡散クロック制御装置及びスペクトラム拡散クロック発生装置
CN103782516A (zh) 多个环形振荡器的同步输出
KR20140068113A (ko) 펄스폭 변조 데이터-세트 코히어런스의 유지
CN107870664B (zh) Usbpd c型bmc经编码接收消息静噪检测
WO2012017732A1 (ja) 送信装置、受信装置および送受信システム
JP2009118449A (ja) 高集積システムのためのクロックデータ復旧回路及び方法
US20090190631A1 (en) Method for generating a spread spectrum clock and apparatus thereof
JP5217946B2 (ja) 半導体回路及び信号伝送システム
CN114356136A (zh) 感应信号的芯片间同步检测方法、驱动装置及触控装置
US9025716B2 (en) Inter-integrated circuit-slave interface, and method for operating an inter-integrated circuit-slave interface
JP2004005009A (ja) クロック信号発生装置、通信装置および半導体装置
JP2016152576A (ja) データ伝送装置並びに送信装置及び受信装置
CN101677243B (zh) 协同运作电路
US6825705B2 (en) Clock signal generation circuit and audio data processing apparatus
JP2006165992A (ja) スケルチ回路及びこれを用いた通信装置
CN115469583A (zh) 唤醒低功耗模式的控制电路和控制方法
KR101418519B1 (ko) 분주기 및 분주기의 분주 방법
US20040056690A1 (en) Transformation of a periodic signal into an adjustable-frequency signal
JP5633132B2 (ja) データ伝送システム及び方法、データ送信装置及び受信装置
TWM650457U (zh) 隔離式積體電路及載頻控制電路

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees