JP2010055816A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010055816A
JP2010055816A JP2008217119A JP2008217119A JP2010055816A JP 2010055816 A JP2010055816 A JP 2010055816A JP 2008217119 A JP2008217119 A JP 2008217119A JP 2008217119 A JP2008217119 A JP 2008217119A JP 2010055816 A JP2010055816 A JP 2010055816A
Authority
JP
Japan
Prior art keywords
fuel cell
oxidant gas
operation mode
flow path
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008217119A
Other languages
English (en)
Other versions
JP5200766B2 (ja
Inventor
Hironori Ishikawa
浩規 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008217119A priority Critical patent/JP5200766B2/ja
Publication of JP2010055816A publication Critical patent/JP2010055816A/ja
Application granted granted Critical
Publication of JP5200766B2 publication Critical patent/JP5200766B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】通常運転においてはエネルギー消費の少ない高効率運転ができ、高負荷、低圧、低温の環境においては高出力運転が可能であるコンパクトで低騒音な圧縮機を備える燃料電池システムを提供することを目的とする。
【解決手段】酸化剤ガスがコンプレッサ部14aから燃料電池2までの酸化剤ガス供給流路11を流通し燃料電池2の酸化剤ガス流路を経過して酸化剤ガス排出流路12から大気へ排出する第1流路29と、酸化剤ガスがコンプレッサ部14aから燃料電池2までの酸化剤ガス供給流路11に設けた分岐部Sからタービン部14bを通過し酸化剤ガス供給流路12の分岐部Sと燃料電池2との間に設けた流入部Pに流入する第2流路と、第1流路29と、第2流路30とを切替える制御装置7とを備え、高効率運転モードと高圧運転モードの運転モードにより制御装置7が第1流路29と第2流路30との切替えを行なう。
【選択図】 図2

Description

本発明は、燃料電池システムの酸化剤ガスの圧力制御に関する。
燃料電池では、燃料には水素、酸化剤としては酸素を含む空気が用いられ、水素は燃料側電極の触媒の作用によって水素イオンと電子に分離され、分離された電子が外部負荷を移動し電力として取り出される。水素イオンは電解質膜を通して酸化剤極に移動し、酸化剤側電極の触媒の作用で水素イオンと外部の負荷を回ってきた電子と酸素が結合して水が生成される。
このような、燃料電池システムにおいては、酸化剤としての空気を燃料電池システムに供給するために空気圧縮機が用いられ、空気圧縮機は、燃料ガスの供給量又は発電量に基づいて必要空気量が算出され、この必要空気流量が供給されるように空気圧縮機の回転速度を制御している。そして坂道を登る際等の大きな出力が必要になったときには、通常より大きな空気流量の供給が必要であるため、圧縮機のコンプレッサ部と対向側に電動機を挟んで1軸上に膨張機が設けられ、排気エネルギーを膨張機で回収し、回収したエネルギーによって電動機をアシストし大流量を得るようにしている。また通常運転時は排気エネルギーを膨張機で回収し電動機をアシストすることによって低電力で運転でき効率化を図っている(例えば、特許文献1)。
また、特許文献2には、圧縮機とは別体でターボチャージャが設けられ、圧縮機から吐出された酸化剤ガスを、燃料電池からの排気によって駆動されるターボチャージャで増圧して対応しているものがある。
特開H7−14599号公報 特開2002−56865号公報
しかしながら、上記特許文献1に記載された従来技術では、排気エネルギーを膨張機で回収し電動機をアシストしているため、低電力で圧縮機の作動ができるが、より高圧縮の酸化剤ガスを得るためにコンプレッサの回転翼外周部の周速を音速程度以上になるように設定しなければならない場合があり、許容される騒音からコンプレッサの回転翼を高速回転させようとしても、限界があるという問題がある。
また上記特許文献2に記載された従来技術では、別体でターボチャージャが設けられ、2段で酸化剤ガスの圧縮がされるため高圧化はできるが、コストが高くなるとともに、圧縮機が2つになるため大きな騒音が発生するという問題がある。
本発明は、通常運転においてはエネルギー消費の少ない高効率運転ができ、高負荷、低圧、低温の環境においては高出力運転が可能であるコンパクトで低騒音な圧縮機を備える燃料電池システムを提供することを目的とする。
上記の課題を解決するため、請求項1に係る発明の特徴は、燃料極および酸化剤極にそれぞれ供給された燃料ガスおよび酸化剤ガスによって発電する燃料電池と、前記燃料電池に前記酸化剤ガスを供給するための酸化剤ガス供給流路にコンプレッサ部が配設され、前記燃料電池の反応後の前記酸化剤ガスを前記燃料電池から排出するための酸化剤ガス排出流路にタービン部が配設されたターボチャージャ圧縮機と、を備えた燃料電池システムにおいて、前記酸化剤ガスが前記コンプレッサ部から前記燃料電池までの前記酸化剤ガス供給流路を流通し前記燃料電池の酸化剤ガス流路を経過して前記酸化剤ガス排出流路から大気へ排出する第1流路と、前記酸化剤ガスが前記コンプレッサ部から前記燃料電池までの前記酸化剤ガス供給流路に設けた分岐部から前記タービン部を通過し前記酸化剤ガス供給流路の前記分岐部と前記燃料電池との間に設けた流入部に流入する第2流路と、前記第1流路と前記第2流路とを切替える制御装置とを備え、高効率運転モードと高圧運転モードの運転モードにより前記制御装置が前記第1流路と第2流路との切替えを行なうことである。
請求項2に係る発明の特徴は、請求項1に記載の燃料電池システムにおいて、前記酸化剤ガス供給流路の前記分岐部と前記酸化剤ガス排出流路の前記タービン部の出口とを連通する第1分岐路と、前記酸化剤ガス排出流路の前記タービン部と前記燃料電池との間に設けられたバイパス部から該バイパス部と、前記酸化剤ガス供給流路の前記分岐部と前燃料電池との間に設けられた前記流入部とを連通する第2分岐路と、前記酸化剤ガス排出流路の前記燃料電池と前記バイパス部との間に設けられた排出部と、前記酸化剤ガス排出流路の前記排出部から分岐した大気排出路と、を備え、前記第2流路が第1分岐路、前記タービン部、前記タービン部から前記バイパス部までの前記酸化剤ガス排出流路、第2分岐路を順次経過して前記酸化剤ガス供給流路に流入し前記燃料電池の前記酸化剤ガス流路から前記酸化剤ガス排出流路の前記排出部を介して前記大気排出路に繋がることである。
請求項3に係る発明の特徴は、請求項2に記載の燃料電池システムにおいて、前記酸化剤ガス供給流路の前記分岐部と前記流入部との間に第1バルブが配設され、第2バルブが前記酸化剤ガス排出流路の前記バイパス部と前記排出部との間に配設され、第3バルブが前記酸化剤ガス排出流路の前記タービン部の前記出口下流に配設され、第4バルブが前記第1分岐路に配設され、第5バルブが前記第2分岐路に配設され、第6バルブが前記大気排出路に配設され、前記高効率運転モードでは第1バルブ乃至第3バルブを開弁して第4バルブ乃至第6バルブを閉弁し、前記高圧運転モードでは第1バルブ乃至第3バルブを閉弁して第4バルブ乃至第6バルブを開弁することである。
請求項4に係る発明の特徴は、請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置はアクセル開度を検出するアクセル開度検出手段と、前記アクセル開度に対応する車速を検出する車速検出手段と、事前に取得された所定のアクセル開度に対応する車速のデータを記憶する記憶手段とをさらに備え、前記アクセル開度検出手段によって検出された所定のアクセル開度に対応する前記車速検出手段によって検出された前記車速が、前記記憶手段に記憶された当該所定のアクセル開度に対応する車速より所定量以上小さいときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことである。
請求項5に係る発明の特徴は、請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置は外気圧を検出する外気圧検出手段をさらに備え、外気圧検出手段によって検出された値が所定の値を下回ったときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことである。
請求項6に係る発明の特徴は、請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置は気温を検出する外気温検出手段をさらに備え、前記外気温検出手段によって検出された値が所定の値を下回ったときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことである。
請求項7に係る発明の特徴は、請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置はアクセル開度検出手段と、車速検出手段と、事前に取得された所定のアクセル開度に対応する車速のデータを記憶する記憶手段と、外気圧検出手段と、外気温検出手段と、をさらに備え、前記アクセル開度検出手段によって検出された所定のアクセル開度に対応する前記車速検出手段によって検出された前記車速が、前記記憶手段に記憶された当該所定のアクセル開度に対応する車速より所定量以上小さいとき、前記外気圧検出手段によって検出された値が所定の値を下回ったとき、または前記外気温検出手段によって検出された値が所定の値を下回ったときの少なくとも一つに該当したときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことである。
上記のように構成した請求項1に係る発明においては、高効率運転モードと、高圧運転モードの2つの運転モードに対応してそれぞれ第1および第2流路が設けられ、制御装置によって第1流路と第2流路との切替えが行なわれる。これにより適切なタイミングで運転モードの切替えが行なわれるのでスムースな運転が実現できる。
上記のように構成した請求項2に係る発明においては、第2流路が第1分岐路、タービン部、タービン部からバイパス部までの酸化剤ガス排出流路、第2分岐路を順次経過して酸化剤ガス供給流路に流入し燃料電池の酸化剤ガス流路から酸化剤ガス排出流路の排出部を介して大気排出路に繋がる経路で構成され、第1流路と第2流路との切替えが、制御装置によって行なわれる。これにより1台の圧縮機で高効率運転と、高圧運転の2運転モードを実現でき、よってコンパクトにシステムが構成できて、小型化、低コスト化、低騒音化が図れる。
上記のように構成した請求項3に係る発明においては、高効率運転モードと高圧運転モードの2つの運転モードに応じて設定される第1および第2流路は、第1流路および第2流路上にそれぞれ設けられた第1乃至第6バルブをそれぞれ組合せて作動させ、切替えられる。これにより第1乃至第6バルブのON、OFFの組み合わせのみの簡易な制御で高効率運転と、高圧運転の2運転モードの切り替えを実現でき、よって制御の負荷が低減できて、低コスト化が図れる。
上記のように構成した請求項4に係る発明においては、請求項1に記載の燃料電池システムにおいて、アクセル開度検出手段と、車速検出手段と、をさらに備え、アクセル開度検出手段によって検出された所定のアクセル開度に対応する車速検出手段によって検出された車速が、記憶手段に記憶された当該所定のアクセル開度に対応する車速より所定量以上小さいときに制御装置によって高効率運転モードから前記高圧運転モードへの切替えが行なわれる。これにより通常は高効率な運転ができるとともに、高負荷時にスムースな運転が実現される。
上記のように構成した請求項5に係る発明においては、高効率運転モードから高圧運転モードへの切替えを、外気圧検出手段によって検出された値が所定の値を下回ったときに制御装置によって行なう。これにより外気圧が低いときでも必要な圧力の酸化剤ガスを燃料電池に供給できスムースな運転が実現できる。
上記のように構成した請求項6に係る発明においては、高効率運転モードから高圧運転モードへの切替えを、外気温検出手段により検出された値が所定の値を下回ったときに制御装置によって行なう。これにより外気温が燃料電池システムの運転に適さない温度に低下したとき高圧運転モードに切替えることにより、酸化剤ガスを圧縮するときに発生する熱により燃料電池を暖めることができるためスムースな運転が実現される。
上記のように構成した請求項7に係る発明においては、アクセル開度検出手段によって検出された所定のアクセル開度に対応する車速検出手段によって検出された車速が、記憶手段に記憶された当該所定のアクセル開度に対応する車速より所定量以上小さいとき、外気圧検出手段によって検出された値が所定の値を下回ったとき、または外気温検出手段によって検出された値が所定の値を下回ったときの少なくとも一つに該当したときに制御装置によって高効率運転モードから高圧運転モードへの切替えが行なわれる。これにより、より確実に運転モード切替えのタイミングの検出が可能になり、スムースな運転が実現される。
以下、図面を参照して、本発明の実施形態に係る燃料電池システムについて説明する。図1は、燃料電池システム1の構成図である。本実施形態の燃料電池システム1は、燃料電池自動車(FCHV)、電気自動車、ハイブリッド自動車などの車両に搭載することができるが、もちろん車両のみならず各種移動体(例えば、船舶や飛行機、ロボットなど)や定置型電源にも適用可能である。
燃料電池システム1は、燃料電池2と、酸化剤ガスとしての空気(酸素)を燃料電池2に供給する酸化剤ガス配管系3と、燃料ガスとしての水素ガスを燃料電池2に供給する燃料ガス配管系4と、検出手段(アクセル開度検出手段、外気圧検出手段、外気温検出手段)からの検出データに基づいて運転モードを制御する制御装置7と、を備えている。
燃料電池2は、例えば固体高分子電解質型で構成され、多数の単セルを積層したスタック構造を備えている。単セルは、イオン交換膜(例えばフッ素樹脂系イオン交換膜等)からなる電解質の一方の面に空気極(カソード)を有し、他方の面に燃料極(アノード)を有し、さらに空気極及び燃料極を両側から挟みこむように一対のセパレータを有している。一方のセパレータの酸化剤ガス流路2aに酸化剤ガスが供給され、他方のセパレータの燃料ガス流路2bに燃料ガスが供給される。供給された燃料ガス及び酸化剤ガスの電気化学反応により、燃料電池2は電力を発生する。燃料電池2での電気化学反応は発熱反応であり、固体高分子電解質型の燃料電池2の温度は、およそ60〜80℃となる。
酸化剤ガス配管系3は、基本的な流路として燃料電池2に供給される酸化剤ガスが流れる供給流路11と、燃料電池2から排出された酸化剤オフガスが流れる排出流路12と、を有している。
供給流路11は燃料電池2内の酸化剤ガス流路2aと連通し、また第4バルブ36、第5バルブ45を介して排出流路12に連通している。供給流路11には、上流からエアクリーナ13と、酸化剤ガス(外気)を取り込み燃料電池2の空気極に供給する図2に示すターボチャージャ圧縮機14のコンプレッサ側のコンプレッサ部14aの第1遠心翼18と、後述する運転モード切替え用の第1バルブ34と、ターボチャージャ圧縮機14によって燃料電池2に圧送される酸化剤ガスを加湿する加湿器15と、が設けられている。加湿器15は、供給流路11を流れる低湿潤状態の酸化剤ガスと、排出流路12を流れる高湿潤状態の酸化剤オフガスとの間で水分交換を行い、燃料電池2に供給される酸化剤ガスを適度に加湿するものである。
排出流路12は上流から加湿器15と、後述する運転モード切替え用の第2バルブ35と、図2に示すターボチャージャ圧縮機14のタービン部14bの第2遠心翼19と、第3バルブ46とが設けられている。
図2に示すように、ターボチャージャ圧縮機14は、ハウジング20と、モータM1と、回転軸5と、回転軸5の一端に固定されたコンプレッサ部14aの第1遠心翼18と、回転軸5の他端に固定されたタービン部14bの第2遠心翼19と、ハウジング20に固定され回転軸5を低摺動抵抗で回転可能に支持する2個の軸受け8と、によって構成される。
ハウジング20はターボチャージャ圧縮機14の外形を形成するものであり、例えばアルミ等の金属材料によって形成され、図略のブラケット等を介して車両に固定される。
ハウジング20は、コンプレッサ部14a側に、酸化剤ガスを吸入する入力口31と、吸入され導入された酸化剤ガスを昇圧する機能をもつ狭い円環状通路であるディフーザ10aと、ディフーザ10aを通過した酸化剤ガスが旋廻する渦巻状通路であるスクロール室9aと、圧縮されて昇圧された酸化剤ガスを導出する出力口32と、を備える。
またタービン部14b側には、タービン部14b内の酸化剤オフガスを排出する機能およびコンプレッサ部14aで圧縮された圧縮酸化剤ガスを導入する機能をもつ出口39と、酸化剤オフガスの導入および第2遠心翼19により圧縮された酸化剤ガスの導出機能を持つ入口38とを備える。そして出口39から導入された酸化剤ガスを圧縮する機能および入口38から導入された酸化剤オフガスを減圧する機能をもつ狭い円環状通路であるディフーザ10bと、酸化剤ガスが旋廻する渦巻状通路であるスクロール室9bと、を備える。
モータM1はハウジング20の中央部に収容されている。モータM1は燃料電池システム1が要求する発電量に応じて酸化剤ガスを燃料電池2に圧送するために、制御装置7によってインバータ65を介して回転制御される。モータM1は永久磁石によって形成される回転子48と、ステータ50aとステータ50aに巻回されるコイル50bからなる固定子49とによって構成され、固定子49はハウジング20に固定される。モータM1のコイル50bに周期的に電流を通電することによって電磁場(磁界)を発生させ、発生した電磁場と回転子48の永久磁石の磁界とを、吸引、反発させ、これを繰り返すことにより回転を継続させるものである。
回転軸5は、回転子48の回転中心に固定され、モータM1の回転子48の回転と同期して回転軸中心に回転される。また回転軸5は、延在された両端にそれぞれコンプレッサ部14aの第1遠心翼18と、タービン部14bの第2遠心翼19とが固定されている。これにより回転軸5はモータM1と、第1遠心翼18および第2遠心翼19とのお互いの力を伝達する。
コンプレッサ部14aの第1遠心翼18は、モータM1の所定方向への回転によって、酸化剤ガスである空気を外部からコンプレッサ部14a内に入力口31を介して吸入するためのものである。そして吸入された空気がディフューザ10aを通過することにより圧縮されるよう構成されている。このような作動がされるように第1遠心翼18の羽根形状は形成されている。
タービン部14bの第2遠心翼19は、燃料電池システム1の運転モードに応じて2つの機能を備える。1つ目の機能は、高効率運転モードにおいて燃料電池2から排出された酸化剤オフガスが入口38から導入され、酸化剤オフガスの流れによって第2遠心翼19が回転されて、回転されることにより発生した機械エネルギーをモータM1に還元し、モータM1の負荷を軽減するものである。2つ目の機能は、高圧運転モードにおいて、タービン部14bの出口39から導入された圧縮酸化剤ガスをディフューザ10bに圧送し更に高圧縮するものである。第2遠心翼19は2つの機能を満足するよう羽根形状が形成されている。
ターボチャージャ圧縮機14から圧送される酸化剤ガスは上述のとおり2つの運転モードにおいてそれぞれ異なる流路(第1流路29、第2流路30)を通るよう構成されている。1つ目が第1流路29を通る、通常の運転時に適用され燃費のよい効率的な運転を行なうための高効率運転モードである。2つ目が第2流路30を通る、急な坂道を登るとき等の高負荷に対応するための高負荷環境時や、高地で運転されるとき等では、外気圧が通常の運転時より低く導入される酸化剤ガスの圧力も低いために発電効率が落ちる酸化剤ガス低圧環境時、および外気温が非常に低く燃料電池の起動、運転を行うために急速に燃料電池を暖機する必要がある時に適用される高圧運転モードである。
つまり高圧運転モードは高効率運転モードに比べて高圧縮することで酸化剤ガスの圧力を高効率モード時より高めて(圧力が高くなることで流速が増し、燃料電池に供給できる流量も増加する)燃料電池に供給でき、また高圧縮することによって発生する熱を取り出したりするためのものである。第1流路29および第2流路30には流路の切替えを行なうための第1乃至第6バルブ34、35、46、36、45、37が備えられている。
まず高効率運転モード時に酸化剤ガス通路となる第1流路29について図1、図2に基づいて説明する。第1流路29はターボチャージャ圧縮機14のコンプレッサ部14aの出力口32と、燃料電池2の酸化剤ガス入口2aaとの間が接続され、接続された流路に第1バルブ34が介在されている。また燃料電池2の酸化剤ガス出口2abとタービン部の入口38とが接続され、接続された流路に第2バルブ35が介在されている。さらに排出路47が、一端を前記タービン部14bの出口39に接続され他端を大気に接続されて設けられ、第3バルブ46が排出路47上に介在されている。さらにターボチャージャ圧縮機14のタービン部14bの入口38から出口39の流路、燃料電池2の酸化剤ガス流路2aを加えて第1流路29が構成されている。
次に高圧運転モード時に酸化剤ガスが通る第2流路30について図1、図2に基づいて説明する。第2流路30は、第1分岐路55、第2分岐路17および大気排出路40によって構成される。第1分岐路55は一端がコンプレッサ部14aの出力口32と第1バルブ34との間の分岐部Sで接続され、他端がタービン部14bの出口39に接続され、第1分岐路55上に第4バルブ36が介在されている。また第2分岐路17は一端が第1バルブ34と燃料電池2の酸化剤ガス入口2aaとの間の、加湿器15よりも上流の流入部Pで接続され、他端が第2バルブ35とタービン部14bの入口38との間のバイパス部Qで接続され、第2分岐路17上に第5バルブ45が介在されている。さらに大気排出路40は一端が燃料電池2の酸化剤ガス出口2abと第2バルブ35との間の、加湿器15よりも下流の排出部Rで接続され、他端が大気に接続され、大気排出路40上に第6バルブ37が介在されている。さらに供給流路11の流入部Pから酸化剤ガス入口2aaまでの流路、燃料電池2の酸化剤ガス流路2a、排出流路12の酸化剤ガス出口2abから排出部Rまでの流路を加えて第2流路30が構成されている。ここで、供給流路11の流入部Pから酸化剤ガス入口2aaまでの流路、燃料電池2の酸化剤ガス流路2a、排出流路12の酸化剤ガス出口2abから排出部Rまでの流路は第1流路と兼用している。このように第2流路の一部を第1流路と兼用することでコンパクト化、低コスト化を図ることができる。なお、第1乃至第6バルブ34、35、46、36、45、37は通電時開となるノーマルクローズタイプの電磁弁である。
次に燃料ガス配管系4は図1に示すように、水素供給源21と、水素供給源21から燃料電池2に供給される燃料ガスである水素ガスが流れる供給流路22と、供給流路22に設けられている、上流から順番に元弁26と、調圧弁27と、遮断弁28と、燃料電池2の燃料ガス流路2bと、水素オフガスが排出される排出流路23とから構成されている。元弁26を開くことで水素供給源21から供給流路22に流出した水素ガスは、調圧弁27で減圧され、遮断弁28を経て、燃料電池2の燃料ガス流路2bに供給されたのち、未使用の水素ガスは水素オフガス排出流路23を通り、図略の水素希釈器を介して大気に排出される。
制御装置7は、内部にCPU,ROM,RAMを備えたマイクロコンピュータとして構成される。CPUは、制御プログラムに従って所望の演算を実行して、運転モード切替えバルブの制御を行う。ROMは、CPUで処理する制御プログラムや制御データを記憶する。RAMは、主として制御処理のための各種作業領域として使用される。
制御装置7は、図示しない車両が置かれる環境の気温を検出する所定の位置に設けられた外気温検出手段44である外気温センサ51や、外気圧を検出する所定の位置に設けられた外気圧検出手段43である外気圧センサ52からの検出信号が入力される。また制御装置7は、車両のアクセル開度を検出するアクセル部に設けられたアクセル開度検出手段41であるアクセル開度センサ53や、車両の車速を検出する車軸に設けられた車速検出手段42である回転速度センサ54などの各種センサからの検出信号が入力され、第1バルブ34乃至第6バルブ37およびターボチャージャ圧縮機14のモータM1に制御信号を出力する。
次に本実施形態におけるシステムの動作について、図1乃至図6を参照しながら説明する。本燃料電池システム1を用いた車両においては、運転者が図示しないアクセルを踏むことにより、踏んだアクセル開度がアクセル開度検出手段41であるアクセル開度センサ53によって検出され、検出された値が制御装置7に送信される。
制御装置7は送信された検出データに基づき、燃料電池2での必要な発電量を導出し、導出された発電量に基づいて燃料電池2に供給すべき酸化剤ガスの供給量が導出される。
制御装置7は、導出された必要酸化剤ガス量データに基づき、ターボチャージャ圧縮機14のモータM1の回転数を制御し、必要量の酸化剤ガスを燃料電池2の酸化剤極に供給する。そして酸化剤極に供給された酸化剤ガスと燃料極に供給された水素とが、交換膜を介して反応し必要な発電量が発電される。
次に通常運転モードである高効率運転モードの場合のターボチャージャ圧縮機14の動作について図2に基づいて詳細に説明する。高効率運転モードでは、酸化剤ガスである空気は、ターボチャージャ圧縮機14のモータM1の回転により大気からエアクリーナ13を介してターボチャージャ圧縮機14のコンプレッサ部14aの入力口31に吸込まれる。吸い込まれた酸化剤ガスは第1遠心翼18の外周で高速の運動エネルギーを得て、狭い円環状の通路であるディフューザ10aを通過し運動エネルギーが圧力エネルギーに変換されて圧縮され昇圧する。更に渦巻き状の通路であるスクロール室9aを通り出力口32より導出される。出力口32から導出された圧縮酸化剤ガスは、上述した第1流路29(破線)を通り燃料電池2に供給される。このとき第1バルブ34、第2バルブ35、第3バルブ46は通電されて開弁され、第4バルブ36、第5バルブ45、第6バルブ37は閉弁し、第2流路には圧縮酸化剤ガスは供給されない。燃料電池2で反応された反応後の酸化剤オフガスは排出流路12を通り、通電され開弁された第2バルブ35を通ってターボチャージャ圧縮機14のタービン部14bの入口38に導入される。入口38に導入されたのちタービン部14bのスクロール室9b、ディフューザ10bを順番に通過し第2遠心翼19に供給され、第2遠心翼19を回転する動力として作用されて、タービン部14bの出口39より、開弁された第3バルブ46を介して排出路47を通り大気に排出される。よってモータM1への入力電力はモータM1と同軸に配置される第2遠心翼19の補助により軽減され効率的な低燃費運転を行なうことができる。
次に高圧運転モードの場合のターボチャージャ圧縮機14の動作について図2に基づいて詳細に説明する。高圧運転モードは、高効率運転モード時に使用された第1流路29を第2流路30に切替えることによって行なう。第2流路30への切替えは、制御装置7によって第4、第5および第6バルブ36、45、37に通電し開弁し、第1、第2および第3バルブ34、35、46への通電を解除し閉弁することにより実現する。
高圧運転モードにおいては、酸化剤ガスである空気は、高効率運転モードのときと同様のプロセスでターボチャージャ圧縮機14のコンプレッサ部14aの出力口32から圧縮された酸化剤ガスとして導出される。出力口32から導出された圧縮酸化剤ガスは、ターボチャージャ圧縮機14のタービン部14bの出口39に、開弁された第4バルブ36を介して圧送される。出口39から導入された圧縮酸化剤ガスはタービン部14b内の第2遠心翼19の外周で高速の運動エネルギーを得て、円環状の通路であるディフューザ10bを通過し運動エネルギーが圧力エネルギーに変換されることにより、さらに増圧されてスクロール室9bを通り入口38より導出される。このようにコンプレッサ部14aで圧縮された酸化剤ガスをさらにタービン部14bで圧縮することで、モータM1の回転数を増すことなく酸化剤ガスの増圧が可能となるため、第1遠心翼18および第2遠心翼19の周速を音速以下に抑えることができ騒音の問題が解決できる。
そして上述した第2流路上のバイパス部Qと、流入部Pと、バイパス部Qと流入部Pの間に設けられた第2分岐路17と、を開弁された第5バルブ45を介して通過し、燃料電池2に高圧縮の酸化剤ガスとして供給する。よって高効率運転モード時に対して、酸化剤ガスの圧力が高くなり流量が増すことで、大きな量の発電がされるので急な坂道や加速が必要な高負荷状態でスムースに走行可能となる。また気圧が低い高地における低圧環境状態では、酸化剤ガスの圧力をモータM1の回転数を増すことなく効率よく上げることができ燃料電池の発電に対し適性な圧力を維持する。さらに酸化剤ガスがコンプレッサ部14aとタービン部14bとで2段に圧縮されることで酸化剤ガスがコンプレッサ部14aだけで圧縮されたときより酸化剤ガスの温度を高くすることができるので燃料電池2の暖機が必要なときに燃料電池2を効率よく加温することができる。燃料電池2から反応後の酸化剤オフガスが排出されるときは、排出流路12において加湿器15を通過したのち、第2バルブ35の手前、即ち上流側の排出部Rで分岐された大気排出路40から、通電されて開弁された第6バルブ37を介して大気に排出される。
次に運転モードの切替えの制御について図3のフローチャート1に基づいて説明する。まず高効率運転モードにて走行している状態を想定して説明する。
ステップS10でスタートし、ステップS11において、運転者によって踏まれたアクセル踏量がアクセル開度センサ53によってアクセル開度として検出され制御装置7に送信される。
制御装置7に、車軸近傍に設けられた車速検出手段42である回転速度センサ54の車速データが検出され送信されて、RAMに記憶される。(ステップS12)。
次に制御装置7は事前に取得され記憶手段であるROMに記憶されている所定の条件のもと取得された所定のアクセル開度に対応する車速prevと、走行中に車速検出手段42によって取得されRAMに記憶された当該アクセル開度に対応する車速runvとを比較する。そして走行中に検出された車速runvが事前に取得した車速prevに対し所定量(例えば事前取得の車速prevに対し80%)より小さいか否かの判定を下記(数1)式にて行なう。
(数1)
検出車速runv<(事前取得の車速prev)×0.8
そして(数1)式を満たさない、即ち車速は十分速く、高効率運転モードのままでよいと判定したときはchangeflagを0とする。また(数1)式を満たしたとき、即ち車速は遅く、高圧運転モードへの切り替えが必要と判定したときはchangeflagを1とたてる(ステップS13)。
次のステップS14ではchangeflagの確認を行い、changeflagが0であれば、高効率運転モードを維持するため、第1、第2および第3バルブ34、35、47は開弁のままとし、第4、第5、第6バルブ36、45、37は閉弁のままとして(ステップS15)、プログラムを終了する(ステップS16)。
またchangeflagが1であれば、高圧運転モードに切替える必要があり、第1、第2および第3バルブ34、35、47は通電を解除し閉弁させ、第4、第5および第6バルブ36、45,37には通電し開弁させて、第1流路と第2流路の切替えを行ない(ステップS17)、プログラムを終了する(ステップS18)。
上述の説明より明らかなように、第1の実施形態においては第1流路29および第2流路30上にそれぞれ設けられた第1乃至第6バルブ34、35、47、36、45、37をそれぞれ組合せて作動させることにより、1台のターボチャージャ圧縮機14で、2つの運転モード(高効率運転モード、高圧運転モード)が実現できる。これによりコンパクトにシステムが構成でき、小型化、低コスト化、低騒音化が図れる。
また第1の実施形態においては、事前に取得した所定のアクセル開度における車速と、走行中に車速検出手段42によって検出された所定のアクセル開度における車速とを比較し検出された車速が、事前に取得した車速より所定量以上小さくなったら高圧運転モードへの切替えが自動で速やかに行なわれる。これにより通常は高効率な運転ができる、とともに急な坂道等の高負荷時や、外気圧が低く酸化剤ガスの圧力が不足して十分な発電量が得られない時にもスムースな運転が実現できる。
次に本発明に係る第2の実施形態について説明する。第2の実施形態については第1の実施形態と、運転モード切替えのための信号の検出手段のみが異なり、その他の構成、作用、運転モードの切替え方法等については同一であるため、同一部分については説明を省略する。また同一部品については同一符号を付し説明する。
第2の実施形態は、所定の位置に設けられた、外気圧検出手段43である外気圧センサ52によって検出された値が所定の値(例えば950hPa)を下回った場合に、運転モードを高効率運転モードから高圧運転モードに切替えて、高圧縮の酸化剤ガスを燃料電池2に供給するものである。外気圧の低下に伴って低下した酸化剤ガスの圧力を高圧縮することによって、燃料電池2の化学反応が良好に行われる圧力に昇圧することで燃料電池2の発電量を維持するものである。
図4は第2の実施形態に係る運転モードの切替えの制御を示したフローチャート2である。まず通常の運転モード即ち、高効率運転モードにて走行している状態を想定して説明する。
ステップS20で制御がスタートする。走行中、制御装置7には所定の位置に設けられた外気圧検出手段43である外気圧センサ52によって検出されたデータが随時送信される(ステップS21)。
制御装置7は送信された外気圧データが所定の値(例えば950hPa)より小さいか、否かの判定を行なう。所定の値以上の場合はchangeflagを0とし、所定の値より小さいときはchangeflagを1とたてる(ステップS22)。
次のステップでchangeflagの確認を行い(ステップS23)、changeflagが0であれば、高効率運転モードを維持するため第1、第2および第3バルブ34、35、47は開弁のままとし、第4、第5および第6バルブ36、45、37は閉弁のままとして(ステップS24)、プログラムを終了する(ステップS25)。
またchangeflagが1であれば、高圧運転モードに切替えるため第1、第2および第3バルブ34、35、47は通電を解除し閉弁させ、第4、第5および第6バルブ36、45、37には通電し開弁させて、第1流路29と第2流路30の切替えを行ない(ステップS26)、プログラムを終了する(ステップS27)。
上述の説明から明らかなように第2の実施形態においては、高効率運転モードから高圧運転モードへの切替えを、外気圧検出手段43によって検出された値が所定の値を下回ったとき(気圧が低いとき)に行なうため通常の低地を走行時は高効率な運転ができるとともに、高地に上ったときには、自動で高圧運転モードに切替えがされるため外気圧の低下による酸化剤ガスの圧力不足を補って良好な運転を提供する。
次に本発明に係る第3の実施形態について説明する。第3の実施形態についても第1の実施形態と、運転モード切替えのための信号の検出手段のみが異なり、その他の構成、作用、運転モードの切替え方法等については同一であるため、同一部分については説明を省略する。また同一部品については同一符号を付し説明する。
第3の実施形態は、所定の位置に設けられた、外気温検出手段44である外気温センサ51によって検出された値が所定の値(例えば摂氏0℃)を下回った場合に、運転モードを高効率運転モードから高圧運転モードに切替えて、高圧縮酸化剤ガスを燃料電池2に供給するものである。高圧運転モードに切替えることにより酸化剤ガス温度をより昇温させることができ昇温した熱により燃料電池2を暖機して良好な運転状態を得るものである。
図5は第3の実施形態に係る運転モードの切替えの制御を示したフローチャート3である。まず通常の運転モード即ち、高効率運転モードにて走行している状態を想定して説明する。
ステップS30で制御がスタートする。走行中、制御装置7には所定の位置に設けられた外気温検出手段44である外気温センサ51によって検出されたデータが随時送信される(ステップS31)。制御装置7は送信された外気温otempが所定の値(例えば摂氏0℃)より小さいか、否かの判定を行ない、所定の値以上であると判定した場合はchangeflagを0とし、所定の値より小さいときはchangeflagを1とたてる(ステップS32)。
次のステップではchangeflagの確認を行い(ステップS33)、changeflagが0であれば、高効率運転モードを維持するため第1、第2および第3バルブ34、35、47は開弁のままとし、第4、第5および第6バルブ36、45、37は閉弁のままとして(ステップS34)、プログラムを終了する(ステップS35)。
またchangeflagが1であれば、高圧運転モードに切替えるため第1、第2および第3バルブ34、35、47は通電を解除し閉弁させ、第4、第5および第6バルブ36、45、37には通電し開弁させて、第1流路と第2流路の切替えを行ない(ステップS36)、プログラムを終了する(ステップS37)。
上述の説明から明らかなように、第3の実施形態においては高効率運転モードから高圧運転モードへの切替えを、外気温検出手段44によって検出された値が所定の値を下回ったときに行なう。これにより外気温が下がって燃料電池システムの運転に適さない状態になっても、運転モードが自動で高圧運転モードに速やかに切替えられるため、熱が発生され燃料電池システムが急速に暖機されるので、スムースに良好な運転状態に移行できる。
次に上記第1乃至第3の実施形態を複合させた形態としての第4の実施形態について説明する。第4の実施形態においては、アクセル開度検出手段41および車速検出手段42、外気圧検出手段43、外気温検出手段44の全ての検出手段を同時に設け、いずれかのデータがいずれかの条件を満足したときに運転モードの切替えを行なうものである。
図6は第4の実施形態に係る運転モードの切替えの制御を示したフローチャート4である。
ステップS40で制御がスタートする。運転者によって踏まれたアクセル踏量がアクセル開度センサ53によってアクセル開度として検出され制御装置7に送信される。また図示しない車軸近傍に設けられた車速検出手段42である回転速度センサ54の車速データが検出され送信されて、RAMに記憶される。さらに外気圧検出手段43である外気圧センサ52によって検出されたデータ、および外気温検出手段44である外気温センサ51によって検出されたデータが随時制御装置7に送信される(ステップS41)。
次にステップS42にてフローチャート1のステップS13と同様に
(数1)
検出車速runv<(事前取得の車速prev)×0.8
を満たすか否か判定し、(数1)式を満たしたときはステップS47に移動し高圧運転モードに切替える。また(数1)式を満たさないときはステップS43に移行する。
次にステップS43では、制御装置7は送信された外気圧データopressが所定の値(例えば950hPa)より小さいか、否かの判定を行なう。所定の値以上の場合は高効率運転モードのままでよいと判定されステップS44に進む。また所定の値より小さいときはステップS47に移行し高圧運転モードに切替える。
次にステップS44では、制御装置7は送信された外気温otempが所定の値(例えば摂氏0℃)より小さいか、否かの判定を行ない、所定の値以上の場合は高効率運転モードのままでよいと判定されステップS45に進み高効率運転モードを維持する。また所定の値より小さいときはステップS47に移行し高圧運転モードに切替える。こうすることにより高負荷環境、低気圧環境、低温環境等を全て網羅でき、より確実に高効率運転モードと高圧運転モードの切替えが可能となり、スムースな運転が実現できる。
さらに、上記の各実施形態においては高効率運転モードから高圧運転モードへの切替えは自動ではなく手動によって行なうようにしてもよい。手動で行なう場合は、各フローチャート1,2,3,4で高圧運転モードへの切替えを行なう各ステップS17、S26、S36、S47において、制御装置7は運転者に対し表示灯を点灯させる等の信号を送信して運転モードの切替えの必要があることを認識させ、所定の位置に設けられた切替えスイッチ切替えさせることにより、第1乃至第6バルブ34、35、47、36、45、37を作動させ流路を切替えるようにすればよい。こうすることにより、例えば高地において定置型電源等として利用する場合等、手動で1度だけ高圧運転モード用に切替えて使用すればよく、低地用のシステムと多くの部分で共通化が図れ、コスト低減を図ることができる。
本発明の実施形態に係る燃料電池システムの構成図である。 本発明の実施形態に係るターボチャージャ圧縮機の断面図である。 第1の実施形態に係る運転モード切替え制御のためのフローチャートである。 第2の実施形態に係る運転モード切替え制御のためのフローチャートである。 第3の実施形態に係る運転モード切替え制御のためのフローチャートである。 第4の実施形態に係る運転モード切替え制御のためのフローチャートである。
符号の説明
1…燃料電池システム、2…燃料電池、3…酸化剤ガス配管系、7…制御装置、11…供給流路、12…排出流路、14…ターボチャージャ圧縮機、15…加湿器、17…第2分岐路、18…第1遠心翼、19…第2遠心翼、29…第1流路、30…第2流路、31…コンプレッサ部入力口、32…コンプレッサ部出力口、34…第1バルブ、35…第2バルブ、36…第4バルブ、37…第6バルブ、38…タービン部入口、39…タービン部出口、40…大気排出路、45…第5バルブ、46…第3バルブ、47…排出路、51…外気温センサ、52…外気圧センサ、53…アクセル開度センサ、54…回転速度センサ、55…第1分岐路、M1…モータ、P…流入部、Q…バイパス部、R…排出部、S…分岐部。

Claims (7)

  1. 燃料極および酸化剤極にそれぞれ供給された燃料ガスおよび酸化剤ガスによって発電する燃料電池と、
    前記燃料電池に前記酸化剤ガスを供給するための酸化剤ガス供給流路にコンプレッサ部が配設され、前記燃料電池の反応後の前記酸化剤ガスを前記燃料電池から排出するための酸化剤ガス排出流路にタービン部が配設されたターボチャージャ圧縮機と、を備えた燃料電池システムにおいて、
    前記酸化剤ガスが前記コンプレッサ部から前記燃料電池までの前記酸化剤ガス供給流路を流通し前記燃料電池の酸化剤ガス流路を経過して前記酸化剤ガス排出流路から大気へ排出する第1流路と、
    前記酸化剤ガスが前記コンプレッサ部から前記燃料電池までの前記酸化剤ガス供給流路に設けた分岐部から前記タービン部を通過し前記酸化剤ガス供給流路の前記分岐部と前記燃料電池との間に設けた流入部に流入する第2流路と、
    前記第1流路と前記第2流路とを切替える制御装置とを備え、
    高効率運転モードと高圧運転モードの運転モードにより前記制御装置が前記第1流路と第2流路との切替えを行なうことを特徴とする燃料電池システム。
  2. 請求項1に記載の燃料電池システムにおいて、前記酸化剤ガス供給流路の前記分岐部と前記酸化剤ガス排出流路の前記タービン部の出口とを連通する第1分岐路と、前記酸化剤ガス排出流路の前記タービン部と前記燃料電池との間に設けられたバイパス部から該バイパス部と、前記酸化剤ガス供給流路の前記分岐部と前記燃料電池との間に設けられた前記流入部とを連通する第2分岐路と、前記酸化剤ガス排出流路の前記燃料電池と前記バイパス部との間に設けられた排出部と、前記酸化剤ガス排出流路の前記排出部から分岐した大気排出路と、を備え、
    前記第2流路が第1分岐路、前記タービン部、前記タービン部から前記バイパス部までの前記酸化剤ガス排出流路、第2分岐路を順次経過して前記酸化剤ガス供給流路に流入し前記燃料電池の前記酸化剤ガス流路から前記酸化剤ガス排出流路の前記排出部を介して前記大気排出路に繋がることを特徴とする燃料電池システム。
  3. 請求項2に記載の燃料電池システムにおいて、前記酸化剤ガス供給流路の前記分岐部と前記流入部との間に第1バルブが配設され、第2バルブが前記酸化剤ガス排出流路の前記バイパス部と前記排出部との間に配設され、第3バルブが前記酸化剤ガス排出流路の前記タービン部の前記出口下流に配設され、第4バルブが前記第1分岐路に配設され、第5バルブが前記第2分岐路に配設され、第6バルブが前記大気排出路に配設され、
    前記高効率運転モードでは第1バルブ乃至第3バルブを開弁して第4バルブ乃至第6バルブを閉弁し、前記高圧運転モードでは第1バルブ乃至第3バルブを閉弁して第4バルブ乃至第6バルブを開弁することを特徴とする燃料電池システム。
  4. 請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置はアクセル開度を検出するアクセル開度検出手段と、前記アクセル開度に対応する車速を検出する車速検出手段と、事前に取得された所定のアクセル開度に対応する車速のデータを記憶する記憶手段とをさらに備え、
    前記アクセル開度検出手段によって検出された所定のアクセル開度に対応する前記車速検出手段によって検出された前記車速が、前記記憶手段に記憶された当該所定のアクセル開度に対応する車速より所定量以上小さいときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことを特徴とする燃料電池システム。
  5. 請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置は外気圧を検出する外気圧検出手段をさらに備え、外気圧検出手段によって検出された値が所定の値を下回ったときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことを特徴とする燃料電池システム。
  6. 請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置は気温を検出する外気温検出手段をさらに備え、前記外気温検出手段によって検出された値が所定の値を下回ったときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことを特徴とする燃料電池システム。
  7. 請求項1乃至請求項3に記載の燃料電池システムにおいて、前記制御装置はアクセル開度検出手段と、車速検出手段と、事前に取得された所定のアクセル開度に対応する車速のデータを記憶する記憶手段と、外気圧検出手段と、外気温検出手段と、をさらに備え、前記アクセル開度検出手段によって検出された所定のアクセル開度に対応する前記車速検出手段によって検出された前記車速が、前記記憶手段に記憶された当該所定のアクセル開度に対応する車速より所定量以上小さいとき、前記外気圧検出手段によって検出された値が所定の値を下回ったとき、または前記外気温検出手段によって検出された値が所定の値を下回ったときの少なくとも一つに該当したときに前記高効率運転モードから前記高圧運転モードへの切替えを行なうことを特徴とする燃料電池システム。
JP2008217119A 2008-08-26 2008-08-26 燃料電池システム Expired - Fee Related JP5200766B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217119A JP5200766B2 (ja) 2008-08-26 2008-08-26 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217119A JP5200766B2 (ja) 2008-08-26 2008-08-26 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010055816A true JP2010055816A (ja) 2010-03-11
JP5200766B2 JP5200766B2 (ja) 2013-06-05

Family

ID=42071525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217119A Expired - Fee Related JP5200766B2 (ja) 2008-08-26 2008-08-26 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5200766B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111783A1 (ja) 2010-03-12 2011-09-15 カルピス株式会社 大腸におけるビフィズス菌の増加及び減少抑制剤
JP2012216380A (ja) * 2011-03-31 2012-11-08 Honda Motor Co Ltd 燃料電池システム
JP2012221731A (ja) * 2011-04-08 2012-11-12 Honda Motor Co Ltd 燃料電池システム及びその発電停止方法
JP2012239311A (ja) * 2011-05-12 2012-12-06 Honda Motor Co Ltd 燃料電池車両
JP2013192779A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 超音波診断装置、画像処理装置及び画像処理プログラム
JP2015098853A (ja) * 2013-11-20 2015-05-28 三菱日立パワーシステムズ株式会社 コンバインド発電システム及びコンバインド発電システムの運転方法
JP2016063862A (ja) * 2014-09-22 2016-04-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
KR20160070278A (ko) * 2014-12-09 2016-06-20 현대자동차주식회사 연료전지 시스템
DE102017205704A1 (de) * 2017-04-04 2018-10-04 Robert Bosch Gmbh Turbokompressor, insbesondere für ein Brennstoffzellensystem
JP2019160501A (ja) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP2019214295A (ja) * 2018-06-13 2019-12-19 本田技研工業株式会社 燃料電池車両

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742573A (ja) * 1993-07-30 1995-02-10 Mitsubishi Heavy Ind Ltd 圧縮空気エネルギー貯蔵式電力平準化システム
JP2005508482A (ja) * 2001-11-08 2005-03-31 ボーグワーナー・インコーポレーテッド 2段電動コンプレッサ
JP2005121173A (ja) * 2003-10-20 2005-05-12 Toyota Motor Corp 複数のタンクからなるタンク装置
JP2005135910A (ja) * 2003-10-29 2005-05-26 General Motors Corp <Gm> 燃料電池システムの給気のための2段階圧縮
JP2005251694A (ja) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd 燃料電池システム
JP2006312907A (ja) * 2005-05-09 2006-11-16 Toyota Motor Corp ガス供給装置、燃料電池システム及びガス供給方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742573A (ja) * 1993-07-30 1995-02-10 Mitsubishi Heavy Ind Ltd 圧縮空気エネルギー貯蔵式電力平準化システム
JP2005508482A (ja) * 2001-11-08 2005-03-31 ボーグワーナー・インコーポレーテッド 2段電動コンプレッサ
JP2005121173A (ja) * 2003-10-20 2005-05-12 Toyota Motor Corp 複数のタンクからなるタンク装置
JP2005135910A (ja) * 2003-10-29 2005-05-26 General Motors Corp <Gm> 燃料電池システムの給気のための2段階圧縮
JP2005251694A (ja) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd 燃料電池システム
JP2006312907A (ja) * 2005-05-09 2006-11-16 Toyota Motor Corp ガス供給装置、燃料電池システム及びガス供給方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111783A1 (ja) 2010-03-12 2011-09-15 カルピス株式会社 大腸におけるビフィズス菌の増加及び減少抑制剤
JP2012216380A (ja) * 2011-03-31 2012-11-08 Honda Motor Co Ltd 燃料電池システム
US9437886B2 (en) 2011-04-08 2016-09-06 Honda Motor Co., Ltd. Fuel cell system and method for stopping power generation in fuel cell system
JP2012221731A (ja) * 2011-04-08 2012-11-12 Honda Motor Co Ltd 燃料電池システム及びその発電停止方法
JP2012239311A (ja) * 2011-05-12 2012-12-06 Honda Motor Co Ltd 燃料電池車両
JP2013192779A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 超音波診断装置、画像処理装置及び画像処理プログラム
JP2015098853A (ja) * 2013-11-20 2015-05-28 三菱日立パワーシステムズ株式会社 コンバインド発電システム及びコンバインド発電システムの運転方法
JP2016063862A (ja) * 2014-09-22 2016-04-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
KR20160070278A (ko) * 2014-12-09 2016-06-20 현대자동차주식회사 연료전지 시스템
KR101655602B1 (ko) * 2014-12-09 2016-09-08 현대자동차주식회사 연료전지 시스템
US9972853B2 (en) 2014-12-09 2018-05-15 Hyundai Motor Company Air supply control system of fuel cell
DE102017205704A1 (de) * 2017-04-04 2018-10-04 Robert Bosch Gmbh Turbokompressor, insbesondere für ein Brennstoffzellensystem
JP2019160501A (ja) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP6996361B2 (ja) 2018-03-12 2022-01-17 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP2019214295A (ja) * 2018-06-13 2019-12-19 本田技研工業株式会社 燃料電池車両
CN110588381A (zh) * 2018-06-13 2019-12-20 本田技研工业株式会社 燃料电池车辆
JP7094787B2 (ja) 2018-06-13 2022-07-04 本田技研工業株式会社 燃料電池車両
CN110588381B (zh) * 2018-06-13 2023-02-17 本田技研工业株式会社 燃料电池车辆

Also Published As

Publication number Publication date
JP5200766B2 (ja) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5200766B2 (ja) 燃料電池システム
JP5303609B2 (ja) 燃料電池システム
US8927161B2 (en) Fuel cell system
US10727508B2 (en) Fuel cell system and method for switching off a fuel cell stack
JP4701624B2 (ja) 燃料電池システム
US8192884B2 (en) Fuel cell system and mobile object
US20160133965A1 (en) Fuel Cell System, Fuel Cell Vehicle, and Control Method for Fuel Cell System
JP2020071957A (ja) 燃料電池システム
US20170054166A1 (en) Fuel cell system and method for operating such a system
JP2019046761A (ja) 燃料電池システム
JP2008147139A (ja) 燃料電池システム
CN216015434U (zh) 燃料电池系统
JP4530176B2 (ja) 燃料電池車両
JP5142004B2 (ja) 燃料電池システム及びその制御方法
US20230246208A1 (en) Fuel cell system
JP5142006B2 (ja) 燃料電池システム
JP2007205613A (ja) 加湿器及び燃料電池システム
JP2008059933A (ja) 燃料電池システム及び水量推定方法
JP2008218242A (ja) 燃料電池システム
JP2010080270A (ja) 燃料電池システム
JP5110347B2 (ja) 燃料電池システムおよびその停止処理方法
JP2008218170A (ja) 燃料電池システムおよびその掃気処理方法
JP2006222040A (ja) 燃料電池システム
JP7250839B2 (ja) 燃料電池システム
JP2005302442A (ja) 燃料電池のカソードガス加湿装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R151 Written notification of patent or utility model registration

Ref document number: 5200766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees