JP2009271206A - レーザ光整形光学系及びそれを用いたレーザ光供給装置 - Google Patents

レーザ光整形光学系及びそれを用いたレーザ光供給装置 Download PDF

Info

Publication number
JP2009271206A
JP2009271206A JP2008119890A JP2008119890A JP2009271206A JP 2009271206 A JP2009271206 A JP 2009271206A JP 2008119890 A JP2008119890 A JP 2008119890A JP 2008119890 A JP2008119890 A JP 2008119890A JP 2009271206 A JP2009271206 A JP 2009271206A
Authority
JP
Japan
Prior art keywords
waveguide
laser
optical system
laser beam
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008119890A
Other languages
English (en)
Inventor
Arata Ko
新 高
Hiroyuki Ohashi
弘之 大橋
Kazunori Shinoda
和憲 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2008119890A priority Critical patent/JP2009271206A/ja
Publication of JP2009271206A publication Critical patent/JP2009271206A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】 半導体レーザアレイを含むレーザ光源からのレーザビームの形状を好適に整形することが可能なレーザ光整形光学系、及びレーザ光供給装置を提供する。
【解決手段】 導波路部材41〜47がスロー方向に配列され、レーザビームをスロー方向にN個のビーム成分に分割する分割導波路アレイ40と、導波路部材51〜57がファースト方向に配列され、分割されたビーム成分をファースト方向に整列して合成する合成導波路アレイ50とによってレーザ光整形光学系30を構成する。導波路アレイ40の導波路部材は、光軸に対して傾いて設けられ、内部を伝搬するビーム成分を反射して導波路アレイ50へと出力させる分割反射面を有する。導波路アレイ50の導波路部材は、光軸に対して傾いて設けられ、入力されたビーム成分を反射して内部を伝搬させる合成反射面を有する。
【選択図】 図6

Description

本発明は、半導体レーザアレイを含むレーザ光源からのレーザビームの形状を整形するレーザ光整形光学系、及び整形光学系を用いたレーザ光供給装置に関するものである。
従来、半導体レーザ光源の1つとして、複数の半導体レーザの発光部が一次元に配列された半導体レーザアレイが用いられている。半導体レーザアレイでは、発光部の長手方向となるスロー方向に複数の発光部が配列される。また、他の半導体レーザ光源として、スロー方向に直交するファースト方向に複数の半導体レーザアレイが積層された半導体レーザアレイスタックが用いられている。これらの半導体レーザアレイを含むレーザ光源は、例えば高出力のレーザビームを供給可能な光源装置として好適に用いることができる。
また、レーザビームの導光については、レーザ光源の後段に設置されたコリメートレンズや集光レンズ等による導光光学系を介してレーザビームを外部に供給する構成が用いられている。例えば、レーザビームを効率良く利用するために光ファイバによる伝送を用いる構成では、レーザ光源からのレーザビームを所定の光学系によって光ファイバの入射端面へと集光しつつ導いて、レーザ光源と光ファイバとを光学的に結合することでレーザ光を外部へと供給する構成が用いられる。また、特許文献1には、半導体レーザ光源からのレーザビームを反射光学系を用いて導く構成が記載されている。
特表平10−508117号公報
半導体レーザアレイでは、一般に、個々の発光部のサイズはスロー方向で100〜200μm程度、ファースト方向で1μm程度である。また、発光部から出射されるレーザ光の拡がり角度は、スロー方向で8°(FWHM)程度で比較的小さく、ファースト方向では40°程度とビーム拡がりが大きい。これに対して、半導体レーザアレイのレーザ光出射側には、例えばスロー方向を長手方向とするシリンドリカルレンズなどのファースト方向コリメートレンズが配置され、これによってファースト方向でのレーザ光の拡がり角度は複数の発光部の全てについて小さく変換される。
一方、スロー方向でのレーザ光の拡がり角度については、半導体レーザアレイに設けられている複数の発光部に対して個々にスロー方向コリメートレンズを設ける構成も可能であるが、このような構成では、スロー方向の拡がり角度の低減効果に限界がある。特に、連続光(CW光)動作ではなくパルス光動作をする半導体レーザアレイでは、発光による発熱量が小さいため、複数の発光部が狭い間隔で高密度に配置される傾向がある。この場合、個々の発光部に対してコリメートレンズを設置する構成によって、スロー方向の拡がり角度を充分に低減することは難しい。レーザ光源からのレーザビームを導いて外部へと供給する導光光学系においては、このようなスロー方向及びファースト方向でのレーザ光の出力特性の相違を考慮して、光学系を設計する必要がある。
本発明は、以上の問題点を解決するためになされたものであり、半導体レーザアレイを含むレーザ光源から出射されるレーザビームの導光において、レーザビームの形状を好適に整形することが可能なレーザ光整形光学系、及びそれを用いたレーザ光供給装置を提供することを目的とする。
このような目的を達成するために、本発明によるレーザ光整形光学系は、それぞれレーザ光を出射する複数の発光部がスロー方向に配列された半導体レーザアレイを含むレーザ光源からのレーザビームの形状を整形する整形光学系であって、(1)N個(Nは2以上の整数)の分割導波路部材をスロー方向に配列して構成され、レーザ光源から入力されたレーザビームをスロー方向に沿ってN個のビーム成分に分割し、N個の分割導波路部材をそれぞれ伝搬したN個のビーム成分を出力する分割導波路アレイと、(2)N個の分割導波路部材にそれぞれ光学的に接続されるN個の合成導波路部材をスロー方向に直交するファースト方向に配列して構成され、分割導波路アレイから入力され、N個の合成導波路部材をそれぞれ伝搬したN個のビーム成分をファースト方向に整列したビーム形状に合成して、整形された出力ビームとして出力する合成導波路アレイとを備え、(3)分割導波路アレイのN個の分割導波路部材のそれぞれは、分割導波路部材の光軸に対して所定角度で傾いて設けられ、光軸に沿って部材内部を伝搬するビーム成分を反射して、部材の側面を介して合成導波路アレイでの対応する合成導波路部材へと出力されるようにビーム成分の光路を変更する分割反射面を有し、(4)合成導波路アレイのN個の合成導波路部材のそれぞれは、合成導波路部材の光軸に対して所定角度で傾いて設けられ、部材の側面を介して分割導波路アレイでの対応する分割導波路部材から入力されたビーム成分を反射して、光軸に沿って部材内部を伝搬するようにビーム成分の光路を変更する合成反射面を有することを特徴とする。
上記したレーザ光整形光学系においては、半導体レーザアレイから出射されるスロー方向に延びるレーザビームをスロー方向でN個のビーム成分に分割し、それらのビーム成分をファースト方向に整列させることでレーザ光のビーム形状を整形している。ここで、上記したように、半導体レーザアレイからのレーザビームでは、ファースト方向の拡がり角度はコリメートレンズによって小さくされる一方で、スロー方向については、ある程度の拡がり角度を持った状態でレーザ光が供給される場合がある。これに対して、レーザビームをスロー方向で分割してファースト方向に整列させる上記構成によれば、スロー方向とファースト方向とでレーザ光の出力条件を好適にバランスさせることができる。
また、このような構成において、レーザビームをスロー方向で分割する前段の分割光学系を、それぞれ分割反射面を有するN個の分割導波路部材からなる分割導波路アレイによって構成するとともに、分割されたビーム成分をファースト方向に整列させて合成する後段の合成光学系を、それぞれ合成反射面を有するN個の合成導波路部材からなる合成導波路アレイによって構成している。このように、2個の導波路アレイを組み合わせることにより、上記のようにビーム整形を行う整形光学系を好適に実現することができる。また、このように整形光学系の全体で導波路部材を用いる構成では、光学系内でのレーザビームの拡がりの発生が抑制される。以上により、上記構成の整形光学系によれば、レーザ光源からのレーザビームの形状を好適に整形することが可能となる。
ここで、整形光学系内でレーザビームが伝搬する光路長については、N個のビーム成分のそれぞれについて、分割導波路部材での分割光路長と合成導波路部材での合成光路長とを合わせた整形光路長が、N個のビーム成分で互いに等しいように構成されていることが好ましい。これにより、ビーム形状が整形された出力ビームとして、良好な特性のレーザビームを得ることができる。
具体的には、分割導波路アレイにおいて、スロー方向に配列されたN個の分割導波路部材を、それぞれの分割導波路部材での分割光路長が第1分割導波路部材から第N分割導波路部材まで順に長くなるように第1〜第N分割導波路部材としたときに、合成導波路アレイは、N個の合成導波路部材として第1〜第N分割導波路部材にそれぞれ光学的に接続される第1〜第N合成導波路部材がファースト方向に配列されて、それぞれの合成導波路部材での合成光路長が第1合成導波路部材から第N合成導波路部材まで順に短くなるように構成されていることが好ましい。これにより、例えばN個のビーム成分で整形光路長が互いに等しくなる構成等、整形光学系の構成を好適に実現することができる。
また、合成導波路アレイの出力端での出力ビームの出力面積は、分割導波路アレイの入力端でのレーザビームの入力面積と等しく設定されていることが好ましい。これにより、整形光学系に入力された段階でのレーザビームのビーム品質を保持したままでビーム形状の整形を行って、良好な品質の出力ビームを供給することが可能となる。
分割導波路アレイ及び合成導波路アレイを含む整形光学系の具体的な構成については、分割導波路部材での分割反射面、及び合成導波路部材での合成反射面は、それぞれ導波路部材の光軸に対して角度45°で傾いて設けられていることが好ましい。これにより、整形光学系において導波路部材内部を伝搬するビーム成分に対する反射光学系を簡単な構成で好適に構成することができる。
また、分割導波路アレイのN個の分割導波路部材のそれぞれは、分割導波路部材の光軸に対して所定角度で傾いて設けられ、部材の側面を介してレーザ光源から入力されたビーム成分を反射して、光軸に沿って部材内部を伝搬するようにビーム成分の光路を変更する入力反射面を有し、合成導波路アレイのN個の合成導波路部材のそれぞれは、合成導波路部材の光軸に対して所定角度で傾いて設けられ、光軸に沿って部材内部を伝搬するビーム成分を反射して、部材の側面を介して外部へと出力されるようにビーム成分の光路を変更する出力反射面を有する構成としても良い。
この場合、分割導波路部材での分割反射面、入力反射面、及び合成導波路部材での合成反射面、出力反射面は、それぞれ導波路部材の光軸に対して角度45°で傾いて設けられていることが好ましい。これにより、整形光学系において導波路部材内部を伝搬するビーム成分に対する反射光学系を好適に構成することができるとともに、平行四辺形状となる導波路部材を好適に形成することが可能となる。
本発明によるレーザ光供給装置は、(a)それぞれレーザ光を出射する複数の発光部がスロー方向に配列された半導体レーザアレイを含み、所定の形状のレーザビームを出射するレーザ光源と、(b)半導体レーザアレイからのレーザビームをスロー方向に直交するファースト方向についてコリメートするファースト方向コリメートレンズと、(c)レーザ光源からファースト方向コリメートレンズを介して入力されたレーザビームの形状を、レーザビームがスロー方向に沿って分割されたN個のビーム成分をファースト方向に整列したビーム形状に合成して、整形された出力ビームとして出力する上記したレーザ光整形光学系とを備えることを特徴とする。
上記したレーザ光供給装置においては、レーザ光源の半導体レーザアレイに対してファースト方向コリメートレンズを設置するとともに、分割導波路アレイ及び合成導波路アレイからなる上記構成の整形光学系を用いてレーザ光のビーム形状を整形する構成としている。これにより、スロー方向とファースト方向とでレーザ光の出力条件を好適にバランスさせて、ビーム形状が好適に整形された出力ビームを供給することが可能となる。
ここで、レーザ光供給装置から外部へのレーザ光の供給については、外部装置等へのレーザ光の伝送に光ファイバを用い、その入射端面にレーザビームを入射させる構成が考えられる。このように光ファイバが用いられる場合、レーザ光供給装置は、レーザ光整形光学系から出力される出力ビームに対して設けられ、後段に設置された光ファイバの入射端面へと出力ビームを集光しつつ供給するファイバ入射光学系を備えることが好ましい。
具体的には、ファイバ入射光学系として、レーザ光整形光学系からの出力ビームをスロー方向について拡大するスロー方向拡大光学系と、スロー方向に拡大された出力ビームをスロー方向及びファースト方向の両方向について集光して光ファイバの入射端面へと供給する非球面レンズとを有する構成を用いることができる。このような構成では、光ファイバに対するレーザ光の集光角をスロー方向とファースト方向とで好適にバランスさせることが可能となる。
また、レーザ光整形光学系に対してレーザビームを供給するレーザ光源については、レーザ光源は、複数の半導体レーザアレイがファースト方向に積層された半導体レーザアレイスタックを含んで構成されている構成を用いても良い。この場合においても、単一の半導体レーザアレイをレーザ光源とした場合と同様に、上記構成のレーザ光整形光学系によってビーム形状を好適に整形することができる。
また、レーザ光供給装置は、レーザ光源からファースト方向コリメートレンズを介して出射されたレーザビームをファースト方向について圧縮するファースト方向圧縮光学系を備えることとしても良い。このような構成は、例えば上記した半導体レーザアレイスタック等がレーザ光源として用いられている場合に有効である。
本発明のレーザ光整形光学系、及びレーザ光供給装置によれば、半導体レーザアレイを含むレーザ光源からのレーザビームをスロー方向でN個のビーム成分に分割し、それらのビーム成分をファースト方向に整列させることでレーザ光のビーム形状を整形するとともに、それぞれ分割反射面を有するN個の導波路部材からなる分割導波路アレイと、それぞれ合成反射面を有するN個の導波路部材からなる合成導波路アレイとを組み合わせて整形光学系を構成することにより、スロー方向とファースト方向とでレーザ光の出力条件をバランスさせて、レーザビームの形状を好適に整形することが可能となる。
以下、図面とともに本発明によるレーザ光整形光学系、及びそれを用いたレーザ光供給装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
図1は、本発明によるレーザ光供給装置の第1実施形態の構成を示す斜視図である。また、図2は、図1に示したレーザ光供給装置におけるレーザビームの光路及びビーム形状について示す斜視図である。本レーザ光供給装置1Aは、単一または複数の半導体レーザアレイを含むレーザ光源から出射されるレーザ光を所定のビーム形状に整形して、出力レーザビームとして外部へと供給する供給装置である。
ここで、以下の説明においては、図1に示すように、半導体レーザアレイの発光部から出射されるレーザ光の出射光軸方向をZ軸方向とし、光軸方向に直交して発光部の配列方向となる方向をスロー方向(X軸方向)とし、光軸方向及びスロー方向に直交する方向をファースト方向(Y軸方向)とする。また、スロー方向及びファースト方向については、レーザ光供給装置1A内でのレーザ光の伝搬に伴い、光軸方向(レーザ光の伝搬方向)とともに変化するものとして定義する。図1においては、後述するレーザ光整形光学系30を通過する前後について、それぞれスロー方向、ファースト方向を図示している。
図1に示すレーザ光供給装置1Aは、レーザ光源ユニット10と、ファースト方向圧縮光学系20と、レーザ光整形光学系30と、ファイバ入射光学系60とを備えて構成されている。また、図1の構成例では、本供給装置1Aの後段には、光ファイバ80が設置されている。本実施形態のレーザ光供給装置1Aは、レーザ光源からのレーザビームを、この光ファイバ80の入射端面81へと集光しつつ入射させるように構成されている。
レーザ光源ユニット10は、第1レーザ光源11と、第2レーザ光源13と、光学部材15とを有して構成されている。第1レーザ光源11は、それぞれレーザ光を出射する複数の発光部がスロー方向に配列された半導体レーザアレイを含むレーザ光源である。図3は、半導体レーザアレイを含むレーザ光源の構成の一例を示す斜視図である。本構成例では、レーザ光源11は、5個の半導体レーザアレイ111〜115がファースト方向に積層された半導体レーザアレイスタックとして構成されている。
レーザ光源11に含まれる半導体レーザアレイ111〜115のそれぞれは、図4に示すように、複数の発光部Eがスロー方向に等間隔で配列されて構成されている。ここで、図4において、Wは各発光部Eの発光幅、Pは発光部Eの配列ピッチ、Dは半導体レーザアレイの積層間隔を示している。また、このレーザアレイの積層間隔Dは、各レーザアレイから出射されるレーザビームのファースト方向での出射間隔になる。また、積層されたレーザアレイ111〜115の間には、必要に応じてヒートシンク等が設けられる。
また、図3に示すように、レーザ光源11の前方には、半導体レーザアレイ111〜115にそれぞれ対応するように、5個のファースト方向コリメートレンズ121〜125からなるコリメートレンズアレイ12が設置されている。これにより、半導体レーザアレイ111〜115から出射されるスロー方向が長手方向となるレーザビームは、それぞれ対応するコリメートレンズ121〜125によってファースト方向についてコリメートされた後、後段の光学部材15に向けて出射される。
第2レーザ光源13は、それぞれレーザ光を出射する複数の発光部がスロー方向に配列された半導体レーザアレイを含むレーザ光源であり、第1レーザ光源11と同様に、5個の半導体レーザアレイ131〜135がファースト方向に積層された半導体レーザアレイスタックとして構成されている。また、レーザ光源13の前方には、半導体レーザアレイ131〜135にそれぞれ対応するように、5個のファースト方向コリメートレンズからなるコリメートレンズアレイ14が設置されている。
これらの第1、第2レーザ光源11、13は、図1に示すように、レーザ光の出射光軸方向が互いに直交するように配置されている。また、これらのレーザ光源11、13に対し、その後段にレーザビーム合成用の光学部材15が設置されている。この光学部材15は、レーザ光を透過させる材料で形成された板状部材から構成された光学板である。
光学部材15は、その一方の面(第1レーザ光源11の光軸方向からみて上流側の面)が第1レーザ光源11に対面し、他方の面(下流側の面)が第2レーザ光源13に対面した状態で、レーザ光源11、13のそれぞれの光軸に対して45°傾くように設置されている。また、光学部材15には、レーザ光源11からのレーザ光を透過する透過領域16と、レーザ光源13からのレーザ光を反射してその光路を90°変更する反射領域17とがファースト方向に交互に設けられている。反射領域17については、例えば、光学部材15の下流側の面に所定パターンで反射膜を形成する構成を用いることができる。
図5は、2個のレーザ光源11、13からのレーザビームの合成について示す模式図である。図5において、パターン(a)は第1レーザ光源11からレンズアレイ12を介して出射されるレーザ光のビームパターンS11(図2参照)を示し、パターン(b)は第2レーザ光源13からレンズアレイ14を介して出射されるレーザ光のビームパターンS13を示している。また、パターン(c)はレーザ光源11、13からのレーザビームが光学部材15によって合成された後のビームパターンS21を示している。
第1レーザ光源11からのレーザビームのパターンS11は、半導体レーザアレイ111〜115のそれぞれから出射されるレーザビームB11〜B15を含むビームパターンとなっている。レーザビームB11〜B15は、それぞれスロー方向を長手方向とするストライプ状のパターンを有し、レーザ光源11でのレーザアレイの積層間隔に対応する間隔Dでファースト方向に並んでいる。第2レーザ光源13からのレーザビームのパターンS13は、半導体レーザアレイ131〜135のそれぞれから出射されるレーザビームB31〜B35を含むビームパターンとなっている。レーザビームB31〜B35は、それぞれスロー方向を長手方向とするストライプ状のパターンを有し、レーザ光源13でのレーザアレイの積層間隔に対応する間隔Dでファースト方向に並んでいる。
また、レーザ光源11、13は、半導体レーザアレイ111〜115、131〜135のファースト方向の位置が積層間隔の半分のD/2だけ互いにずれるように配置されている。これにより、ビームパターンS11、S13では、第2レーザ光源13からのパターンS13での各レーザビームの位置が、第1レーザ光源11からのパターンS11での各レーザビームの位置からみてD/2だけずれるパターンとなっている。
このようなビームパターンS11、S13に対し、光学部材15は、第1レーザ光源11のレーザアレイ111〜115に対応する位置が透過領域16となって、レーザビームB11〜B15が光学部材15を透過し、かつ、第2レーザ光源13のレーザアレイ131〜135に対応する位置が反射領域17となって、レーザビームB31〜B35が光学部材15で反射されるように構成されている。
これにより、光学部材15による合成後のレーザビームのビームパターンS21では、レーザビームB11〜B15及びレーザビームS31〜S35の伝搬方向が同一の方向となる。また、上記したレーザ光源11、13の配置構成及び光学部材15の構成により、合成後のビームパターンS21では、第1レーザ光源11からのレーザビームB11〜B15及び第2レーザ光源13からのレーザビームB31〜B35がファースト方向に交互に位置して、全体として長方形状のビーム形状を有するレーザビームが得られる。図1のレーザ光供給装置1Aでは、このレーザビームがビーム形状の整形等の対象となる。
レーザ光源11、13、及び光学部材15を含むレーザ光源ユニット10の後段には、ファースト方向圧縮光学系20が配置されている。本構成例においては、この圧縮光学系20は、ファースト方向縮小レンズ21と、ファースト方向コリメートレンズ22とによって構成されている。縮小レンズ21は、例えば平凸シリンドリカルレンズからなり、光学部材15から入射されたレーザビームのパターンS21(図2参照)をファースト方向について縮小する。また、コリメートレンズ22は、例えば平凹シリンドリカルレンズからなり、パターンS22までファースト方向に縮小されたレーザビームを平行光ビームに戻す。このファースト方向に圧縮されたレーザビームは、整形光学系30に対して、パターンS40を有するレーザビーム(入力ビーム)として入力される。
図6は、本発明によるレーザ光整形光学系30の第1実施形態の構成を示す斜視図である。また、図7は、整形光学系30を構成する分割導波路アレイ及び合成導波路アレイの構成を示す斜視図である。また、図8は、整形光学系30の構成、及び整形光学系30内での各ビーム成分の光路を示す図である。図7(a)は分割導波路アレイを、図7(b)は合成導波路アレイをそれぞれ示している。また、図8(a)は整形光学系の上面図を、図8(b)は正面図を、図8(c)は側面図をそれぞれ示している。また、図8では、7個のビーム成分のうち、第1のビーム成分及び第7のビーム成分の光路を示している。
レーザ光整形光学系30は、レーザ光源ユニット10からのレーザビームを入力ビームとし、そのビーム形状を整形して得られたレーザビームを出力ビームとして出力する整形光学系である。本実施形態においては、レーザ光整形光学系30は、その前段部分の分割導波路アレイ40と、後段部分の合成導波路アレイ50とによって構成されている。
分割導波路アレイ40は、N個(Nは2以上の整数、本構成例ではN=7)の分割導波路部材41〜47によって、入力ビームを7個のビーム成分に分割する分割光学系として構成されている。具体的には、分割導波路アレイ40は、入力ビームにおけるスロー方向及びファースト方向に対して、第1〜第7分割導波路部材41〜47がスロー方向に配列され、また、各導波路部材の内部でのレーザ光の伝搬方向となる光軸方向が入力ビームでのファースト方向となるように構成されている。
本実施形態においては、図7(a)に示すように、第1導波路部材41は、その光軸方向(図中の上下方向)について入力側にある端面(図中の上面)41aが、光軸に対して角度θ=45°で傾いて設けられた入力反射面となっており、また、入力ビームの光軸方向に沿って反射面41aを投影した上流側の側面上の領域(図中の斜線の領域)が入力ビームの入力面41cとなっている。また、第1導波路部材41は、その光軸方向について出力側にある端面(図中の下面)41bが、光軸に対して角度θ=45°で傾いて設けられた分割反射面となっており、また、反射面41bを投影した下流側の側面上の領域が分割されたビーム成分を出力する出力面41dとなっている。
入力反射面41aは、上流側側面の入力面41cを介してレーザ光源ユニット10から入力されたビーム成分を反射して、光軸に沿って部材内部を伝搬するようにビーム成分の光路を変更する。また、分割反射面41bは、光軸に沿って部材内部を伝搬するビーム成分を反射して、下流側側面の出力面41dを介して合成導波路アレイ50での対応する合成導波路部材51へと出力されるようにビーム成分の光路を変更する。
第2〜第7導波路部材42〜47についても、第1導波路部材41と同様の構成を有しており、その入力側端面42a〜47aが入力反射面、入力反射面を投影した上流側側面上の領域が入力面42c〜47c、出力側端面42b〜47bが分割反射面、分割反射面を投影した下流側側面上の領域が出力面42d〜47dとなっている。また、導波路部材41〜47は、矩形状で互いに同一、かつ光軸方向で一定の断面形状を有している。
また、導波路部材41〜47は、そのそれぞれの内部でのレーザ成分の光路長(分割光路長)が、第1分割導波路部材41から第7分割導波路部材47まで一定の光路長増加量で順に長くなるように設定されている。また、導波路部材41〜47の入力側端部は位置が揃うように配置されており、出力側端部は上記した光路長の相違により順に位置がずれるように配置されている。
以上の構成により、分割導波路アレイ40では、レーザ光源ユニット10からのレーザビームがスロー方向に延びるビームパターンS40で入力面41c〜47cから分割導波路部材41〜47へと入力され、入力反射面41a〜47aで反射されることで入力ビームがスロー方向に沿って7個のビーム成分に分割される。そして、7個の分割導波路部材41〜47の内部をそれぞれ光軸方向に伝搬した7個のビーム成分は、分割反射面41b〜47bで反射された後、出力面41d〜47dからそれぞれ出力される。
合成導波路アレイ50は、7個の合成導波路部材51〜57によって、分割導波路アレイ40で分割された7個のビーム成分を合成して出力ビームを形成する合成光学系として構成されている。具体的には、合成導波路アレイ50は、出力ビームにおけるスロー方向及びファースト方向に対して、第1〜第7合成導波路部材51〜57がファースト方向に配列され、また、各導波路部材の内部でのレーザ光の伝搬方向となる光軸方向が出力ビームでの光軸方向となるように構成されている。ここで、前段の分割導波路アレイ40での光軸方向と、後段の合成導波路アレイ50での光軸方向とは互いに直交している。
本実施形態においては、図7(b)に示すように、第1導波路部材51は、その光軸方向(図中の左右方向)について入力側にある端面(図中の左面)51aが、光軸に対して角度θ=45°で傾いて設けられた合成反射面となっており、また、反射面51aを投影した上流側の側面上の領域がレーザビームの入力面51cとなっている。ここで、この入力面51cは、対応する分割導波路部材41の出力面41dに光学的に接続されている。また、第1導波路部材51は、その光軸方向について出力側にある端面(図中の右面)51bが、光軸に対して直交するように設けられた出力面となっている。
合成反射面51aは、上流側側面の入力面51cを介して分割導波路部材41から入力されたビーム成分を反射して、光軸に沿って部材内部を伝搬するようにビーム成分の光路を変更する。また、出力面51bは、光軸に沿って部材内部を伝搬するビーム成分を外部へと出力する。
第2〜第7導波路部材52〜57についても、第1導波路部材51と同様の構成を有しており、その入力側端面52a〜57aが合成反射面、合成反射面を投影した上流側側面上の領域が入力面52c〜57c、出力側端面52b〜57bが出力面となっている。また、合成導波路部材の入力面52c〜57cは、それぞれ対応する分割導波路部材の出力面42d〜47dに光学的に接続されている。また、導波路部材51〜57は、矩形状で互いに同一、かつ光軸方向で一定の断面形状を有している。
また、導波路部材51〜57は、そのそれぞれの内部でのレーザ成分の光路長(合成光路長)が、第1合成導波路部材51から第7合成導波路部材57まで一定の光路長減少量で順に短くなるように設定されている。また、導波路部材51〜57の出力側端部は位置が揃うように配置されており、入力側端部は上記した光路長の相違により、分割導波路アレイ40での出力側端部に対応して順に位置がずれるように配置されている。また、導波路アレイ40、50からなるレーザ光整形光学系30の全体としては、導波路部材内部を伝搬される7個のビーム成分のそれぞれについて、分割導波路部材41〜47での分割光路長と合成導波路部材51〜57での合成光路長とを合わせた整形光路長が、7個のビーム成分で互いに等しくなるように構成されている。
以上の構成により、合成導波路アレイ50では、分割導波路アレイ40の導波路部材41〜47から分割された状態で出力されるビーム成分が入力面51c〜57cから対応する合成導波路部材51〜57へと入力され、合成反射面51a〜57aで反射される。そして、7個の合成導波路部材51〜57の内部をそれぞれ光軸方向に伝搬した7個のビーム成分は、ファースト方向に配列された出力面51b〜57bからそれぞれ出力される。これにより、分割導波路アレイ40でスロー方向に分割された7個のビーム成分が、合成導波路アレイ50においてファースト方向に整列するように合成され、ファースト方向に延びるビームパターンS50に整形された出力ビームが出力される。
分割導波路アレイ40及び合成導波路アレイ50を含むレーザ光整形光学系30の後段には、ファイバ入射光学系60が配置されている。このファイバ入射光学系60は、整形光学系30から出力される整形後の出力ビームに対して設けられ、レーザ光供給装置1Aの後段に設置された光ファイバ80の入射端面81へと出力ビームを集光しつつ供給するための光学系である。本構成例においては、入射光学系60は、スロー方向拡大光学系61と、非球面レンズ64とによって構成されている。拡大光学系61は、整形光学系30からの出力ビームをスロー方向について拡大する。また、非球面レンズ64は、拡大光学系61によってスロー方向に拡大された出力ビームを、スロー方向及びファースト方向の両方向について集光して、光ファイバ80の入射端面81へと供給する。
スロー方向拡大光学系61は、スロー方向拡大レンズ62と、スロー方向コリメートレンズ63とによって構成されている。拡大レンズ62は、例えば平凹シリンドリカルレンズからなり、整形光学系30から入射された出力ビームのパターンS62(図2参照)をスロー方向に拡大する。また、コリメートレンズ63は、例えば平凸シリンドリカルレンズからなり、パターンS63までスロー方向に拡大されたレーザビームを平行光ビームに戻す。この出力ビームは、パターンS64で非球面レンズ64へと入射し、非球面レンズ64によって、光ファイバ80の入射端面81へとパターンS80で集光される。
上記実施形態によるレーザ光整形光学系30、及びレーザ光供給装置1Aの効果について説明する。
図6〜図8に示したレーザ光整形光学系30においては、半導体レーザアレイを含むレーザ光源11、13から出射されるスロー方向に延びるレーザビームをスロー方向でN個(上記構成例では7個)のビーム成分に分割し、それらのビーム成分をファースト方向に整列させることでレーザ光のビーム形状を整形している。このように、レーザビームをスロー方向で分割してファースト方向に整列させる構成によれば、スロー方向とファースト方向とでレーザ光の出力条件を好適にバランスさせることができる。
また、このような構成において、レーザビームをスロー方向で分割する前段の分割光学系を、それぞれ分割反射面41b〜47bを有する導波路部材41〜47からなる分割導波路アレイ40によって構成するとともに、分割されたビーム成分をファースト方向に整列させて合成する後段の合成光学系を、それぞれ合成反射面51a〜57aを有する導波路部材51〜57からなる合成導波路アレイ50によって構成している。このように、2個の導波路アレイ40、50を組み合わせることにより、上記のようにレーザ光のビーム形状を整形する光学系30を好適に実現することができる。また、このように整形光学系30の全体で導波路部材を用いる構成では、光学系30内でのレーザビームの拡がりの発生が抑制される。以上により、上記構成の整形光学系30によれば、レーザ光源からのレーザビームの形状を好適に整形することが可能となる。
また、図1に示したレーザ光供給装置1Aにおいては、レーザ光源11、13に含まれる半導体レーザアレイに対して、レーザビームのファースト方向の拡がり角度を小さくするファースト方向コリメートレンズアレイ12、14を設置するとともに、上記構成の整形光学系30を用いてレーザ光のビーム形状を整形する構成としている。これにより、スロー方向とファースト方向とでレーザ光の出力条件を好適にバランスさせて、ビーム形状が好適に整形されたレーザビームを出力ビームとして供給することが可能となる。
本実施形態のレーザ光整形光学系30による上記効果について具体的に説明する。図1に示したレーザ光供給装置1Aでは、半導体レーザ光源として、半導体レーザアレイを含むレーザ光源11、13を用いている。半導体レーザアレイでは、上述したように、一般に、個々の発光部Eのスロー方向の発光幅W(図4参照)は100〜200μm程度、ファースト方向の発光幅は1μm程度である。また、発光部Eから出射されるレーザ光の発散角は、スロー方向で8°程度、ファースト方向で40°程度である。
また、レーザビームの品質は、ビームサイズとビーム発散角の積で表されるが、上記構成では、発光部Eのスロー方向の発光幅をW=200μmとした場合に、スロー方向でのビーム品質はファースト方向に比べて40倍悪い。また、ファースト方向については、ファースト方向コリメートレンズを適用することによって発散角を0.2°程度に抑えることができ、光ファイバにレーザ光を入射させる場合でも充分な品質が得られる。
レーザビームのビーム品質の良し悪しは直接、ビームの集光径の大きさに影響する。したがって、上記条件では、光ファイバへのレーザ光の入射等においてファースト方向よりもスロー方向のビーム品質が問題となる。また、スロー方向について発散角を抑えるためのコリメートレンズもあるが、このようなコリメートレンズの効果は、半導体レーザアレイでのフィリングファクターによって限界がある。ここで、半導体レーザアレイでの発光面積割合を示すフィリングファクターは、発光幅Wと、発光部Eの配列ピッチPとの比率W/Pによって定義される。例えば、発光幅がW=150μm、配列ピッチがP=300μmであれば、フィリングファクターは50%である。
発光部Eの発光幅をW=150μm、配列ピッチをP=500μmとし、フィリングファクターを30%とした場合、スロー方向コリメートレンズでは、スロー方向の発散角を8°から4°程度に抑えるのが限界である。さらに、フィリングファクターが50%以上と高くなるとコリメートレンズの効果は低くなり、例えばフィリングファクターが80%程度になると、コリメートレンズの効果はほとんどなくなる。特に、パルス光動作をする半導体レーザアレイでは、発光部Eが高密度に配置されてフィリングファクターが大きくなる傾向があり、スロー方向の発散角の問題が生じやすい。光ファイバへのレーザ光の集光を効率良く行うためには、スロー方向の発散角を1°程度とすることが好ましい。しかしながら、発散角1°をスロー方向コリメートレンズのみで実現しようとすると、フィリングファクターは10%程度とする必要があり、出力が著しく低下してしまう。
光ファイバ80等に対してレーザビームを供給する場合、上記のようにビーム品質が異なるスロー方向及びファースト方向について、レーザ光の出力条件をバランスさせることが好ましい。これに対して、上記した整形光学系30では、レーザ光源11、13から出射されるレーザビームを、発散角が問題となるスロー方向で分割し、分割されたビーム成分をファースト方向に整列させるビーム整形を行っている(図8参照)。このとき、整形後のパターンS50では、スロー方向の幅はレーザビームの分割によって小さくなり、ファースト方向の幅はビーム成分の整列によって大きくなる。これにより、スロー方向とファースト方向とでレーザ光の出力条件を好適にバランスさせることができる。
また、レーザビームのビーム形状の整形等を行う場合、その間に、コリメートの有無に関わらずレーザビームがスロー方向に拡がり続けることとなる。例えば、半導体レーザアレイの全体での発光幅を10mm、スロー方向の発散角を8°とすると、レーザビームが10mm進むとビーム幅は11.4mmまで拡がる。また、例えば図1に示したように2個のレーザ光源からのレーザビームの合成、ファースト方向でのレーザビームの圧縮等を行う場合、そのための光学系では進行方向に50mm程度は必要となるが、このとき、レーザビームのスロー方向のビーム幅は17mm程度まで拡がることとなる。
レーザビームのビーム幅が大きくなることは、後段の光ファイバとの結合損失の点でも問題となる。すなわち、集光レンズによってレーザ光を集光する場合、光ファイバのNAと集光レンズの焦点距離とによってレーザビームに対する許容開口径が決まる。例えば、光ファイバのNAを0.2、集光レンズの焦点距離を15mmとすると、許容開口径はφ6.12mmとなり、この開口径以内で集光レンズに到達したレーザ光は光ファイバに入射するが、それ以外のレーザ光は光ファイバに入射できず結合損失が発生する。
これに対して、上記したレーザ光整形光学系30によれば、スロー方向のレーザビームのパターン幅を小さくするビーム整形を行うことにより、ビーム幅が大きくなることによる上記問題を解消することが可能となる。また、図6に示したレーザ光整形光学系30では、前段の分割光学系及び後段の合成光学系の両者において、複数の導波路部材による導波路アレイ40、50を用いている。このような構成では、レーザ光の光路が部材内部に制限されることにより、整形光学系30内でのレーザビームの拡がりの発生が抑制され、スロー方向のビーム幅の増大をさらに抑制することができる。
また、例えば上記したレーザビームの分割、合成によるビーム整形を、レーザ光が空間を伝搬する光学系によって行った場合、各ビーム成分の光路長の違いなどによってそれぞれのビーム幅やビーム形状が不揃いになる可能性がある。このように、複数のビーム成分を合成して出力ビームとする際に各成分のビーム形状が不揃いになると、得られた出力ビームの集光性能が低下するなどの問題がある。
これに対して、本実施形態のレーザ光整形光学系30では、その光学系の全体を導波路部材41〜47、51〜57から構成することにより、出力面51b〜57bから出力される整形後のレーザビームにおいて、各ビーム成分でビーム形状が不揃いとなることはない。また、整形光学系30を、分割導波路アレイ40と合成導波路アレイ50との2段階に分けた構成により、3次元的で複雑な光学系の構成が不要となり、光学系の設計が容易になるとともに、その製造コストを低減することが可能となる。
ここで、整形光学系30内でレーザビームが伝搬する光路長については、上記したように、分割されたビーム成分のそれぞれについて、分割導波路部材41〜47での分割光路長と合成導波路部材51〜57での合成光路長とを合わせた整形光路長が、各ビーム成分で互いに等しいように構成されていることが好ましい。これにより、ビーム形状が整形された出力ビームとして、良好な特性のレーザビームを得ることができる。
具体的な構成としては、上記実施形態の整形光学系30では、分割導波路アレイ40において、スロー方向に配列された導波路部材を、それぞれの導波路部材での分割光路長が第1導波路部材から第7導波路部材まで順に長くなるように第1〜第7分割導波路部材41〜47としたときに、合成導波路アレイ50において、分割導波路部材41〜47にそれぞれ光学的に接続される第1〜第7合成導波路部材51〜57がファースト方向に配列されて、それぞれの導波路部材での合成光路長が第1導波路部材から第7導波路部材まで順に短くなる構成としている。このような構成によれば、例えば上記したように複数のビーム成分で整形光路長が互いに等しくなる構成等、整形光学系30の構成を好適に実現することが可能となる。また、これらの構成条件は、N=7の場合に限らず、一般に2以上の整数Nの場合に有効である。
また、合成導波路アレイ50の出力端での出力ビームの出力面積は、分割導波路アレイ40の入力端でのレーザビームの入力面積と等しく設定されていることが好ましい。これにより、整形光学系30に入力された段階でのレーザビームのビーム品質を保持したままでビーム形状の整形を行って、良好な品質の出力ビームを供給することが可能となる。具体的には、図7に示した構成では、分割導波路部材41〜47での入力面41c〜47cの面積と、合成導波路部材51〜57での出力面51b〜57bの面積とを等しく設定することにより、上記条件を満たすことができる。
分割導波路アレイ40及び合成導波路アレイ50を含むレーザ光整形光学系30の具体的な構成については、分割導波路部材41〜47での分割反射面41b〜47b、及び合成導波路部材51〜57での合成反射面51a〜57aは、それぞれ導波路部材の光軸に対して角度45°で傾いて設けられていることが好ましい。これにより、整形光学系30において導波路部材内部を伝搬するビーム成分に対する反射光学系を好適に構成することができる。例えば、上記実施形態の整形光学系30では、このような反射光学系により、分割導波路アレイ40と合成導波路アレイ50とで、光軸が互いに直交する構成となっている。このような構成は、整形光学系30の全体の構造を簡単化する上で有効である。
また、上記実施形態の整形光学系30では、分割導波路アレイ40において、分割導波路部材41〜47のそれぞれが、導波路部材の光軸に対して所定角度で傾いて設けられ、部材の側面を介して入力されたビーム成分を反射して、光軸に沿って部材内部を伝搬するようにビーム成分の光路を変更する入力反射面41a〜47aを有する構成としている。このような構成によっても、上記した整形光学系30を好適に構成することができる。
また、反射面の傾き角度については、上記した分割反射面41b〜47b及び合成反射面51a〜57aと同様に、この分割導波路部材41〜47での入力反射面41a〜47aについても、それぞれの導波路部材の光軸に対して角度45°で傾いて設けられていることが好ましい。これにより、整形光学系30において導波路部材内部を伝搬するビーム成分に対する反射光学系を好適に構成することができる。
また、このように、導波路部材41〜47において、入力側端面である入力反射面41a〜47a、及び出力側端面である分割反射面41b〜47bの両者が等しい角度(例えば45°)で光軸に対して傾いた構成は、導波路部材を作製する上でも有効である。すなわち、このような構成では、導波路部材の側面形状が平行四辺形状となるため、図9に導波路部材41の形成方法を例として模式的に示すように、平行平面基板から、上面、下面が反射面41a、41bとなるように導波路部材41を切り出して形成することが可能となる。この場合、導波路部材から構成される整形光学系30の製造を容易化して、その製造コストを低減することができる。
整形光学系30を含むレーザ光供給装置1Aから外部へのレーザ光の供給については、図1に示したように光ファイバ80が用いられる場合、レーザ光供給装置1Aは、レーザ光整形光学系30から出力される出力ビームに対して設けられ、後段に設置された光ファイバ80の入射端面81へと出力ビームを集光しつつ供給するファイバ入射光学系60を備えることが好ましい。
具体的には、ファイバ入射光学系60として、整形光学系30からの出力ビームをスロー方向について拡大するスロー方向拡大光学系61と、スロー方向に拡大された出力ビームをスロー方向及びファースト方向の両方向について集光して光ファイバ80の入射端面81へと供給する非球面レンズ64とを有する構成を用いることができる。
ここで、整形光学系30から出力される整形後の出力ビームでは、そのビームパターンS50はファースト方向に延びる形状になっている。このため、出力ビームをこのまま光ファイバ80へと集光すると、ファースト方向についてのレーザ光の集光角がスロー方向に比べて大きくなる。これに対して、上記したようにスロー方向拡大光学系61を用いる構成では、ビームパターンS63に示すように出力ビームをスロー方向に拡大して、光ファイバ80に対するレーザ光の集光角をスロー方向とファースト方向とで好適にバランスさせることが可能となる。
また、整形光学系30に対してレーザビームを供給するレーザ光源については、図1に示したレーザ光源11、13のように、複数の半導体レーザアレイがファースト方向に積層された半導体レーザアレイスタックを含む構成としても良い。このような構成のレーザ光源を用いた場合においても、上記構成のレーザ光整形光学系30によってビーム形状を好適に整形することができる。
また、レーザ光供給装置1Aは、レーザ光源11、13からファースト方向コリメートレンズを介して出射されたレーザビームをファースト方向に圧縮するファースト方向圧縮光学系20を備えることとしても良い。このような構成は、例えば上記した半導体レーザアレイスタックがレーザ光源として用いられている場合等に有効である。ただし、このような圧縮光学系20については、不要であれば設けない構成としても良い。また、レーザ光源としては、上記した半導体レーザアレイスタックに限らず、単一の半導体レーザアレイからなるレーザ光源を用いても良い。
レーザ光供給装置1A及び整形光学系30の具体的な構成の一例について説明する。まず、レーザ光源11、13について、半導体レーザアレイのチップサイズをファースト方向に100μm、スロー方向に10mmとする。また、ヒートシンクを含む半導体レーザアレイのサイズをファースト方向に1〜2mm、スロー方向に10mmとする。このときのファースト方向のサイズ1〜2mmは、アレイスタックを構成する際の積層間隔(スタックピッチ)となる。
また、整形光学系30については、図8に示したように分割導波路アレイ40、合成導波路アレイ50ともに7個の導波路部材によって構成するとともに、それぞれの導波路部材の断面形状を、ファースト方向に1mm、スロー方向に1.9mmの矩形状とする。このとき、分割導波路部材41〜47の入力面41c〜47cによって構成されるレーザビームの入力開口は、ファースト方向に1mm、スロー方向に13.3mmでスロー方向に延びる矩形状となる。また、合成導波路部材51〜57の出力面51b〜57bによって構成される整形後のレーザビームの出力開口は、ファースト方向に7mm、スロー方向に1.9mmでファースト方向に延びる矩形状となる。
整形光学系30のプリズムアレイを構成するプリズム状の導波路部材については、部材内部においてレーザ光を伝搬可能な材料を用いれば良く、例えばガラス、プラスチックなどの材料を用いることができる。また、導波路部材の材料の屈折率については、例えば波長808nmで屈折率1.6の材料を用いることができる。また、導波路部材の反射面でのレーザ光の反射、及びレーザ光が部材内部を伝搬する際の側面でのレーザ光の反射については、部材内外での屈折率差による反射を利用することができる。あるいは、導波路部材の必要な面上に反射膜等を形成する構成としても良い。
また、上記構成において、レーザ光供給装置1A内の各段階でのビームパターン(図2参照)については、ファースト方向コリメート及びレーザビーム合成後のパターンS21において、ファースト方向に6mm、スロー方向に10mmのビームが得られる。また、ファースト方向圧縮後のパターンS40において、ファースト方向に1mm、スロー方向に13mmのビームが得られる。また、ビーム整形後のパターンS50において、ファースト方向に7mm、スロー方向に1.9mmのビームが得られる。また、スロー方向拡大後のパターンS63において、ファースト方向に7mm、スロー方向に7mmのビームが得られる。また、集光後のパターンS80において、ファースト方向に0.5mm、スロー方向に0.5mmのビームが得られる。また、このレーザビームが入射される光ファイバ80としては、例えばファイバ径がφ0.6mmの光ファイバが用いられる。
本発明によるレーザ光整形光学系について、さらに説明する。
図10は、レーザ光整形光学系30の第2実施形態の構成を示す斜視図である。また、図11は、整形光学系30の構成及び各ビーム成分の光路を示す図である。本実施形態による整形光学系30は、導波路部材41〜47を有する分割導波路アレイ40と、導波路部材51〜57を有する合成導波路アレイ50とによって構成されている。また、これらの導波路アレイ40、50の構成は、合成導波路アレイ50における導波路部材51〜57の出力端の構成を除き、図6に示した第1実施形態と同様である。
本実施形態においては、合成導波路アレイ50の第1導波路部材51は、その光軸方向について出力側にある端面51bが、光軸に対して角度45°で傾いて設けられた出力反射面となっている。この出力反射面51bに対し、反射面51bを投影した下流側の側面上の領域が、出力ビームとなるビーム成分を出力する出力面となっている。出力反射面51bは、光軸に沿って部材内部を伝搬するビーム成分を反射して、導波路部材51の下流側側面の出力面を介して外部へと出力されるようにビーム成分の光路を変更する。第2〜第7導波路部材52〜57についても、基本的には第1導波路部材51と同様の構成を有しており、その出力側端面52b〜57bが出力反射面、出力反射面を投影した下流側側面上の領域が出力面となっている。
このような導波路部材の構成によっても、上記したようにレーザビームのビーム整形を行うレーザ光整形光学系30を好適に構成することができる。特に、本実施形態では、分割導波路アレイ40の導波路部材41〜47のそれぞれにおいて、その入力側端面を光軸に対して所定角度で傾く入力反射面41a〜47aとするとともに、合成導波路アレイ50の導波路部材51〜57のそれぞれにおいて、その出力側端面を光軸に対して所定角度で傾く出力反射面51b〜57bとしている。
また、本実施形態では、前段の導波路部材41〜47に加えて、後段の導波路部材51〜57についても、入力側端面である合成反射面51a〜57a、及び出力側端面である出力反射面51b〜57bの両者が等しい角度(例えば45°)で光軸に対して傾いた構成としている。このような構成では、図9に示したように、整形光学系30を構成する導波路部材41〜47、51〜57のすべてについて、平行平面基板から、上面、下面が反射面となるように平行四辺形状の導波路部材を切り出して形成することが可能となる。この場合、導波路部材から構成される整形光学系30の製造を容易化して、その製造コストをさらに低減することができる。
図12は、レーザ光整形光学系30の第3実施形態の構成を示す斜視図である。また、図13は、整形光学系30の構成及び各ビーム成分の光路を示す図である。本実施形態による整形光学系30は、導波路部材41〜47を有する分割導波路アレイ40と、導波路部材51〜57を有する合成導波路アレイ50とによって構成されている。また、これらの導波路アレイ40、50の構成は、分割導波路アレイ40における導波路部材41〜47の入力端の構成を除き、図10に示した第2実施形態と同様である。
本実施形態においては、分割導波路アレイ40の第1導波路部材41は、その光軸方向について入力側にある端面41aが、光軸に対して直交するように設けられた入力面となっている。入力面41aは、レーザ光源ユニット10からのビーム成分を、光軸に沿って部材内部を伝搬するように入力する。第2〜第7導波路部材42〜47についても、基本的には第1導波路部材41と同様の構成を有しており、その入力側端面42a〜47aが入力面となっている。
このような導波路部材の構成によっても、上記したようにレーザビームのビーム整形を行うレーザ光整形光学系30を好適に構成することができる。一般に、分割導波路アレイ40及び合成導波路アレイ50における導波路部材の構成については、第1〜第3実施形態に示すように、分割導波路アレイ40を構成する導波路部材41〜47の入力側端面、及び合成導波路アレイ50を構成する導波路部材51〜57の出力側端面の少なくとも一方を、光軸に対して所定角度で傾いた反射面とすることが好ましい。
また、特に、整形光学系30の製造の容易さ及び製造コストなどの点では、第2実施形態に示すように、分割導波路アレイ40を構成する導波路部材41〜47の入力側端面、及び合成導波路アレイ50を構成する導波路部材51〜57の出力側端面の両者を光軸に対して傾いた反射面とすることが好ましい。なお、分割導波路アレイ40の導波路部材の入力側端面、及び合成導波路アレイ50の導波路部材の出力側端面の両者を光軸に直交する入力面、出力面として整形光学系30を構成することも可能である。
本発明によるレーザ光整形光学系、及びレーザ光供給装置は、上記実施形態及び構成例に限られるものではなく、様々な変形が可能である。例えば整形光学系30の導波路アレイ40、50における導波路部材の個数、及び整形光学系30におけるビーム成分の分割数については、上記実施形態では7個とした場合を例示したが、一般には、N個(Nは2以上の整数)の導波路部材から導波路アレイ40、50をそれぞれ構成し、レーザビームをN個のビーム成分に分割してビーム整形を行う構成であれば良い。また、導波路部材の形状についても、具体的には様々な構成を用いて良い。
また、整形光学系30を含むレーザ光供給装置1Aの構成についても、図1に示した構成以外にも様々な構成を用いて良い。図14は、半導体レーザアレイを含むレーザ光源の構成の他の例を示す斜視図である。本構成例では、レーザ光源11の前方には、半導体レーザアレイ111〜115に対応するファースト方向コリメートレンズからなるコリメートレンズアレイ12が設置されるとともに、さらにその前方に、半導体レーザアレイ111〜115の個々の発光部Eに対応するスロー方向コリメートレンズ19が2次元に配列されたスロー方向コリメートレンズアレイ18が設置されている。
このように、ファースト方向コリメートレンズに加えてスロー方向コリメートレンズを設置した場合でも、フィリングファクターなどにより、スロー方向についてはレーザ光の発散角がある程度の大きさを持つ。したがって、このような構成においても、上記構成を有するレーザ光整形光学系30を適用することが有効である。なお、レーザ光源については、図1では2個のレーザ光源11、13を有するレーザ光源ユニット10を用いる構成を例示したが、レーザビームの合成を行わずに単一のレーザ光源を用いる構成としても良い。また、レーザ光源の構成についても、一般には、単一または複数の半導体レーザアレイを含むレーザ光源として構成されていれば良い。
また、整形光学系30以外の光学系の構成についても、様々な構成を用いることが可能である。例えば、図1では、後段の光ファイバ80に対してスロー方向拡大光学系61、及び非球面レンズ64によってファイバ入射光学系60を構成する例を示したが、光ファイバ80の入射端面81に対して充分な結合効率でレーザ光を入射可能なものであれば、様々な構成を用いて良い。
図15は、ファイバ入射光学系の構成の他の例を示す斜視図である。本構成例では、整形光学系30からの出力ビームをファースト方向について集光するファースト方向縮小レンズ66と、スロー方向について集光するスロー方向縮小レンズ67とによってファイバ入射光学系60を構成している。このような構成によっても、光ファイバ80の入射端面81に対して充分な結合効率でレーザ光を入射することが可能である。
本発明は、半導体レーザアレイを含むレーザ光源から出射されるレーザビームの形状を好適に整形することが可能なレーザ光整形光学系、及びそれを用いたレーザ光供給装置として利用可能である。
レーザ光供給装置の第1実施形態の構成を示す斜視図である。 図1に示したレーザ光供給装置におけるレーザビームの光路及びビーム形状について示す斜視図である。 半導体レーザアレイを含むレーザ光源の構成の一例を示す斜視図である。 半導体レーザアレイの構成を示す拡大斜視図である。 2個のレーザ光源からのレーザビームの合成について示す模式図である。 レーザ光整形光学系の第1実施形態の構成を示す斜視図である。 分割導波路アレイ及び合成導波路アレイの構成を示す斜視図である。 レーザ光整形光学系の構成及びビーム成分の光路を示す図である。 導波路部材の形成方法について示す図である。 レーザ光整形光学系の第2実施形態の構成を示す斜視図である。 レーザ光整形光学系の構成及びビーム成分の光路を示す図である。 レーザ光整形光学系の第3実施形態の構成を示す斜視図である。 レーザ光整形光学系の構成及びビーム成分の光路を示す図である。 レーザ光源の構成の他の例を示す斜視図である。 ファイバ入射光学系の構成の他の例を示す斜視図である。
符号の説明
1A…レーザ光供給装置、10…レーザ光源ユニット、11、13…レーザ光源、111〜115、131〜135…半導体レーザアレイ、12、14…ファースト方向コリメートレンズアレイ、15…レーザビーム合成用の光学部材、16…透過領域、17…反射領域、18…スロー方向コリメートレンズアレイ、
20…ファースト方向圧縮光学系、21…ファースト方向縮小レンズ、22…ファースト方向コリメートレンズ、60…ファイバ入射光学系、61…スロー方向拡大光学系、62…スロー方向拡大レンズ、63…スロー方向コリメートレンズ、64…非球面レンズ、66…ファースト方向縮小レンズ、67…スロー方向縮小レンズ、80…光ファイバ、81…入射端面、
30…レーザ光整形光学系、40…分割導波路アレイ、41〜47…分割導波路部材、41a〜47a…入力側端面(入力面、入力反射面)、41b〜47b…出力側端面(分割反射面)、50…合成導波路アレイ、51〜57…合成導波路部材、51a〜57a…入力側端面(合成反射面)、51b〜57b…出力側端面(出力面、出力反射面)。

Claims (12)

  1. それぞれレーザ光を出射する複数の発光部がスロー方向に配列された半導体レーザアレイを含むレーザ光源からのレーザビームの形状を整形する整形光学系であって、
    N個(Nは2以上の整数)の分割導波路部材を前記スロー方向に配列して構成され、前記レーザ光源から入力された前記レーザビームを前記スロー方向に沿ってN個のビーム成分に分割し、前記N個の分割導波路部材をそれぞれ伝搬した前記N個のビーム成分を出力する分割導波路アレイと、
    前記N個の分割導波路部材にそれぞれ光学的に接続されるN個の合成導波路部材を前記スロー方向に直交するファースト方向に配列して構成され、前記分割導波路アレイから入力され、前記N個の合成導波路部材をそれぞれ伝搬した前記N個のビーム成分を前記ファースト方向に整列したビーム形状に合成して、整形された出力ビームとして出力する合成導波路アレイとを備え、
    前記分割導波路アレイの前記N個の分割導波路部材のそれぞれは、前記分割導波路部材の光軸に対して所定角度で傾いて設けられ、光軸に沿って部材内部を伝搬する前記ビーム成分を反射して、部材の側面を介して前記合成導波路アレイでの対応する合成導波路部材へと出力されるように前記ビーム成分の光路を変更する分割反射面を有し、
    前記合成導波路アレイの前記N個の合成導波路部材のそれぞれは、前記合成導波路部材の光軸に対して所定角度で傾いて設けられ、部材の側面を介して前記分割導波路アレイでの対応する分割導波路部材から入力された前記ビーム成分を反射して、光軸に沿って部材内部を伝搬するように前記ビーム成分の光路を変更する合成反射面を有する
    ことを特徴とするレーザ光整形光学系。
  2. 前記N個のビーム成分のそれぞれについて、前記分割導波路部材での分割光路長と前記合成導波路部材での合成光路長とを合わせた整形光路長が、前記N個のビーム成分で互いに等しいように構成されていることを特徴とする請求項1記載のレーザ光整形光学系。
  3. 前記分割導波路アレイにおいて、前記スロー方向に配列された前記N個の分割導波路部材を、それぞれの分割導波路部材での分割光路長が第1分割導波路部材から第N分割導波路部材まで順に長くなるように第1〜第N分割導波路部材としたときに、
    前記合成導波路アレイは、前記N個の合成導波路部材として前記第1〜第N分割導波路部材にそれぞれ光学的に接続される第1〜第N合成導波路部材が前記ファースト方向に配列されて、それぞれの合成導波路部材での合成光路長が第1合成導波路部材から第N合成導波路部材まで順に短くなるように構成されていることを特徴とする請求項1または2記載のレーザ光整形光学系。
  4. 前記合成導波路アレイの出力端での前記出力ビームの出力面積は、前記分割導波路アレイの入力端での前記レーザビームの入力面積と等しく設定されていることを特徴とする請求項1〜3のいずれか一項記載のレーザ光整形光学系。
  5. 前記分割導波路部材での前記分割反射面、及び前記合成導波路部材での前記合成反射面は、それぞれ導波路部材の光軸に対して角度45°で傾いて設けられていることを特徴とする請求項1〜4のいずれか一項記載のレーザ光整形光学系。
  6. 前記分割導波路アレイの前記N個の分割導波路部材のそれぞれは、前記分割導波路部材の光軸に対して所定角度で傾いて設けられ、部材の側面を介して前記レーザ光源から入力された前記ビーム成分を反射して、光軸に沿って部材内部を伝搬するように前記ビーム成分の光路を変更する入力反射面を有し、
    前記合成導波路アレイの前記N個の合成導波路部材のそれぞれは、前記合成導波路部材の光軸に対して所定角度で傾いて設けられ、光軸に沿って部材内部を伝搬する前記ビーム成分を反射して、部材の側面を介して外部へと出力されるように前記ビーム成分の光路を変更する出力反射面を有する
    ことを特徴とする請求項1〜5のいずれか一項記載のレーザ光整形光学系。
  7. 前記分割導波路部材での前記分割反射面、前記入力反射面、及び前記合成導波路部材での前記合成反射面、前記出力反射面は、それぞれ導波路部材の光軸に対して角度45°で傾いて設けられていることを特徴とする請求項6記載のレーザ光整形光学系。
  8. それぞれレーザ光を出射する複数の発光部がスロー方向に配列された半導体レーザアレイを含み、所定の形状のレーザビームを出射するレーザ光源と、
    前記半導体レーザアレイからの前記レーザビームを前記スロー方向に直交するファースト方向についてコリメートするファースト方向コリメートレンズと、
    前記レーザ光源から前記ファースト方向コリメートレンズを介して入力された前記レーザビームの形状を、前記レーザビームが前記スロー方向に沿って分割されたN個のビーム成分を前記ファースト方向に整列したビーム形状に合成して、整形された出力ビームとして出力する請求項1〜7のいずれか一項記載のレーザ光整形光学系と
    を備えることを特徴とするレーザ光供給装置。
  9. 前記レーザ光整形光学系から出力される前記出力ビームに対して設けられ、後段に設置された光ファイバの入射端面へと前記出力ビームを集光しつつ供給するファイバ入射光学系を備えることを特徴とする請求項8記載のレーザ光供給装置。
  10. 前記ファイバ入射光学系は、
    前記レーザ光整形光学系からの前記出力ビームを前記スロー方向について拡大するスロー方向拡大光学系と、
    前記スロー方向に拡大された前記出力ビームを前記スロー方向及び前記ファースト方向の両方向について集光して前記光ファイバの入射端面へと供給する非球面レンズと
    を有することを特徴とする請求項9記載のレーザ光供給装置。
  11. 前記レーザ光源は、複数の前記半導体レーザアレイが前記ファースト方向に積層された半導体レーザアレイスタックを含んで構成されていることを特徴とする請求項8〜10のいずれか一項記載のレーザ光供給装置。
  12. 前記レーザ光源から前記ファースト方向コリメートレンズを介して出射された前記レーザビームを前記ファースト方向について圧縮するファースト方向圧縮光学系を備えることを特徴とする請求項8〜11のいずれか一項記載のレーザ光供給装置。
JP2008119890A 2008-05-01 2008-05-01 レーザ光整形光学系及びそれを用いたレーザ光供給装置 Pending JP2009271206A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119890A JP2009271206A (ja) 2008-05-01 2008-05-01 レーザ光整形光学系及びそれを用いたレーザ光供給装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008119890A JP2009271206A (ja) 2008-05-01 2008-05-01 レーザ光整形光学系及びそれを用いたレーザ光供給装置

Publications (1)

Publication Number Publication Date
JP2009271206A true JP2009271206A (ja) 2009-11-19

Family

ID=41437831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119890A Pending JP2009271206A (ja) 2008-05-01 2008-05-01 レーザ光整形光学系及びそれを用いたレーザ光供給装置

Country Status (1)

Country Link
JP (1) JP2009271206A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047766A (ja) * 2010-08-24 2012-03-08 Mitsubishi Electric Corp 光ビーム再配置光学系、光学素子および光源装置
CN102520523A (zh) * 2011-12-20 2012-06-27 西安炬光科技有限公司 一种半导体激光器光束切割重排的方法及其光束耦合系统
JP2017508182A (ja) * 2014-02-26 2017-03-23 フォルシュングスフェアブント ベルリン エー ファウForschungsverbund Berlin e.V. 光伝導装置、光伝導装置を含む装置及び 直線状に配列された平行光ビームを出射するための手段
JP2017215570A (ja) * 2016-05-26 2017-12-07 セイコーエプソン株式会社 光源装置およびプロジェクター
FR3061963A1 (fr) * 2017-01-18 2018-07-20 Safran Dispositif optique pour le traitement par laser de surfaces internes d'une piece de recouvrement
JP2018175896A (ja) * 2012-12-21 2018-11-15 カール ツアイス メディテック アクチエンゲゼルシャフト Oct光源および走査光学系を使用する2次元の共焦点撮像
WO2019138476A1 (ja) * 2018-01-10 2019-07-18 三菱電機株式会社 平行光発生装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510933A (ja) * 1995-10-06 1998-10-20 イェノプティック アクチェン ゲゼルシャフト 複数のダイオードレーザアレイの放射光の集束及び整形のための装置
JPH1172743A (ja) * 1997-08-27 1999-03-16 Hamamatsu Photonics Kk 集光装置
JP2002239773A (ja) * 2000-12-11 2002-08-28 Matsushita Electric Ind Co Ltd 半導体レーザー加工装置および半導体レーザー加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510933A (ja) * 1995-10-06 1998-10-20 イェノプティック アクチェン ゲゼルシャフト 複数のダイオードレーザアレイの放射光の集束及び整形のための装置
JPH1172743A (ja) * 1997-08-27 1999-03-16 Hamamatsu Photonics Kk 集光装置
JP2002239773A (ja) * 2000-12-11 2002-08-28 Matsushita Electric Ind Co Ltd 半導体レーザー加工装置および半導体レーザー加工方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047766A (ja) * 2010-08-24 2012-03-08 Mitsubishi Electric Corp 光ビーム再配置光学系、光学素子および光源装置
CN102520523A (zh) * 2011-12-20 2012-06-27 西安炬光科技有限公司 一种半导体激光器光束切割重排的方法及其光束耦合系统
JP2018175896A (ja) * 2012-12-21 2018-11-15 カール ツアイス メディテック アクチエンゲゼルシャフト Oct光源および走査光学系を使用する2次元の共焦点撮像
JP2017508182A (ja) * 2014-02-26 2017-03-23 フォルシュングスフェアブント ベルリン エー ファウForschungsverbund Berlin e.V. 光伝導装置、光伝導装置を含む装置及び 直線状に配列された平行光ビームを出射するための手段
JP2017215570A (ja) * 2016-05-26 2017-12-07 セイコーエプソン株式会社 光源装置およびプロジェクター
FR3061963A1 (fr) * 2017-01-18 2018-07-20 Safran Dispositif optique pour le traitement par laser de surfaces internes d'une piece de recouvrement
US11311971B2 (en) 2017-01-18 2022-04-26 Safran Optical device for laser treatment of the internal surfaces of a covering part
WO2019138476A1 (ja) * 2018-01-10 2019-07-18 三菱電機株式会社 平行光発生装置

Similar Documents

Publication Publication Date Title
KR101993300B1 (ko) 레이저 광원, 파장 변환 광원, 합광 광원 및 프로젝션 시스템
JP6285650B2 (ja) レーザ装置
JP2009271206A (ja) レーザ光整形光学系及びそれを用いたレーザ光供給装置
JP6395357B2 (ja) 光モジュール
US5877898A (en) Arrangement for combining and shaping the radiation of a plurality of laser diode lines
JP6157194B2 (ja) レーザ装置および光ビームの波長結合方法
JP5082316B2 (ja) 集光ブロック
JP6393466B2 (ja) 発光装置
JP5507837B2 (ja) レーザビームを形成するための装置
JP2019102517A (ja) 光源装置
US7424044B2 (en) Semiconductor laser device
JP2016224376A (ja) レーザ装置
JP2003344721A (ja) 集光用光回路及び光源装置
US20170299875A1 (en) Single-emitter line beam system
TWI237429B (en) Laser light coupler device
JP4040934B2 (ja) 集光装置
WO2005013446A1 (ja) 半導体レーザ装置
US20170292679A1 (en) Light-emitting device
JP2006301234A (ja) 均一化光学装置及びそれを用いた平行光源装置
JP2004271743A (ja) 光学装置
JPWO2005010592A1 (ja) レーザ装置
WO2023017644A1 (ja) 光学系及びレーザ装置、コリメータレンズ
JP4899543B2 (ja) 光路変換装置、光路変換装置の製造方法及びレーザモジュール
JP2004361837A (ja) 光導波路、光導波路アレイ、及びレーザ発光装置
CN102520526A (zh) 多波长激光器融合发射光学系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A02