JP2004361837A - 光導波路、光導波路アレイ、及びレーザ発光装置 - Google Patents
光導波路、光導波路アレイ、及びレーザ発光装置 Download PDFInfo
- Publication number
- JP2004361837A JP2004361837A JP2003162568A JP2003162568A JP2004361837A JP 2004361837 A JP2004361837 A JP 2004361837A JP 2003162568 A JP2003162568 A JP 2003162568A JP 2003162568 A JP2003162568 A JP 2003162568A JP 2004361837 A JP2004361837 A JP 2004361837A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- axis direction
- light emitting
- laser light
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
- Semiconductor Lasers (AREA)
Abstract
【課題】半導体レーザアレイの複数の発光部から出射された各レーザ光を、より効率良く集光でき、且つより容易に実現できる光導波路、光導波路アレイ、及びレーザ発光装置を提供する。
【解決手段】光導波路(20)は、入射されるレーザ光の進行方向に対して2層構造(20X、20Y)に形成されており、1層目と2層目との境界部には入射されたレーザ光を長軸方向に対して屈折させるレンズ部(Le)が形成されており、入射されるレーザ光の進行方向に対して垂直な平面状の入射面(20c)が形成されており、短軸方向の幅はほぼ均一の幅(WD1)に形成されている。更に、長軸方向に第1所定間隔で配置された複数の発光部から出射される複数のレーザ光を集光するために、各発光部に対応させた複数のレンズ部を備え、入射された各レーザ光が、出射面(20e)上の所定位置に、長軸方向に対して各々集光されるように各レンズ部が形成されている。
【選択図】 図2
【解決手段】光導波路(20)は、入射されるレーザ光の進行方向に対して2層構造(20X、20Y)に形成されており、1層目と2層目との境界部には入射されたレーザ光を長軸方向に対して屈折させるレンズ部(Le)が形成されており、入射されるレーザ光の進行方向に対して垂直な平面状の入射面(20c)が形成されており、短軸方向の幅はほぼ均一の幅(WD1)に形成されている。更に、長軸方向に第1所定間隔で配置された複数の発光部から出射される複数のレーザ光を集光するために、各発光部に対応させた複数のレンズ部を備え、入射された各レーザ光が、出射面(20e)上の所定位置に、長軸方向に対して各々集光されるように各レンズ部が形成されている。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
本発明は、レーザ光を集光する光導波路、光導波路アレイ、及びレーザ光を集光して出力するレーザ発光装置に関する。
【0002】
【従来の技術】
図9に、従来の半導体レーザ集光装置の概略構成の例を示す。半導体レーザ(レーザダイオード等)の活性層14の発光部12から出射される半導体レーザ光(以下、「レーザ光」と記載する)は、レーザ光2の進行方向に対して垂直な面においてほぼ楕円状であり、当該楕円状のレーザ光2は、長軸方向と、短軸方向とを有する。また、当該楕円は、発光部12からの距離が長くなるほど大きくなる。そして、長軸方向(X軸方向)と短軸方向(Y軸方向)に2次元的に配列した複数の発光部12を持つ半導体レーザアレイ10から出射されるレーザ光を、光ファイバ30に集光してレーザ光の出力を増大させる半導体レーザ集光装置が知られている。
例えば、半導体レーザをレーザ加工装置の光源として用いる場合、加工に用いるレーザ光の高出力化が必要であるが、単一の発光部から出射されるレーザ光では、出力強度に限界がある。そこで、レンズ群等を用いて複数の発光部から出射されるレーザ光を集光して、レーザ光の出力を増大させている。
従来の半導体レーザ集光装置の技術として、図9に示すように、レンズ群と光ファイバ30を備え、レーザ光の発光部12から光ファイバ30までの間に、長軸方向コリメートレンズアレイ70、長軸方向集光レンズ80、短軸方向集光レンズアレイ90、の順にレンズを配置してレーザ光を光ファイバ30に集光し、レーザ光の出力を増大させることを提案している(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−98191号公報
【0004】
【発明が解決しようとする課題】
半導体レーザの発光部12から出射されるレーザ光を効率良く光ファイバ30に集光してレーザ光の出力を増大させるには、より細い光ファイバに、より多くの発光部からのレーザ光を入射して密度を高めることと、より小さな入射角で入射端面に入射して、入射したレーザ光を外部に反射させることなく、効率よく光ファイバに入射する(入射端面に対して、より直角に近い角度で入射する)ことが必要である。これにより、光ファイバ内におけるレーザ光の進行方向と、光ファイバの長手方向とのなす角度がより小さくなり、レーザ光が光ファイバ内で全反射しながら進行し、光ファイバ外部への漏れによる損失を抑制できる。
ここで、発光部12から出射されたレーザ光は、長軸方向及び短軸方向に拡がりながら進行する。拡がりながら進行するレーザ光を集光する場合、レンズ自身に非常に高い精度が要求され、そのレンズの配置位置も、非常に高い精度が要求される。
従来の半導体レーザ集光装置(例えば、特開2000−98191号公報)は、発光部の間隔が比較的広い長軸方向においては、一旦、平行光に変換してから集光しているが、発光部の間隔が比較的狭い短軸方向においては、レンズの径が非常に小さく、配置も困難であるため、平行光にしてから集光することをせず、集光のみを行っている。
【0005】
従来の半導体レーザ集光装置(例えば、特開2000−98191号公報)では、図9に示すように、半導体レーザアレイ10の各発光部12(m,n)(m行n列、図9の例では、5行16列)から出射されるレーザ光を、長軸方向コリメートレンズアレイ70を透過させ、長軸方向集光レンズ80を透過させ、更に、短軸方向集光レンズアレイ90を透過させて光ファイバ30(s,t)(s行t列、図9の例では、1行8列)に入射している。
なお、全ての図面において、座標軸は、レーザ光の進行方向をZ軸、長軸方向をX軸、短軸方向をY軸としている。
なお、全ての図面は、説明を容易にするため、あるいは比較等を容易にするために、実際の寸法とは異なる寸法で記載している部分を含んでいる。
【0006】
また、図9(従来の半導体レーザ集光装置)の構成における、各レンズ及びレーザ光の様子を図10(A)及び(B)に示す。図10(A)は、短軸方向に配列された2個の発光部から出射される2本のレーザ光と、長軸方向に配列された5個の発光部から出射される5本のレーザ光の合計10本のレーザ光を、1本の光ファイバに集光している。図10(A)は、図9をX軸方向から見た図(上から見た図)であり、図10(B)は、図9をY軸方向から見た図(横から見た図)である。
一般的によく用いられる半導体レーザアレイでは、短軸方向においては、各発光部12の幅(図10(A)中のDw)は約0.15mmであり、発光部と発光部の間隔(図10(A)中のDp)は約0.25mmである。また、各発光部から出射されるレーザ光の短軸方向の拡がり角(図10(A)中のθiny)は約3.5°である。
また、長軸方向において隣り合う発光部の間隔(図10(B)中のDh)は約1.75mmであり、各発光部の厚さ(図10(B)中のDt)は約0.002mmである。また、各発光部から出射されるレーザ光の長軸方向の拡がり角(図10(B)中のθinx)は約40°である。
【0007】
例えば、このレーザ光を、光ファイバ30に、短軸方向において2本のレーザ光を集光し、長軸方向において5本のレーザ光を集光する。また、短軸方向の入射角(図10(A)中のθouty)が約10°以下になるように(より小さな入射角で)集光する。
この場合、最も効率良く集光するためには、図10(A)において、短軸方向に隣り合う発光部12から出射されるレーザ光が重なる前に短軸方向集光レンズアレイ90を配置する必要がある。レーザ光が重なる位置は、上記の数値の場合は、発光部12から約1.6mmの位置である。
しかし、発光部12から約1.6mmまでの距離の間に、長軸方向コリメートレンズアレイ70と短軸方向集光レンズアレイ90を配置する必要があり、事実上、配置は非常に困難である。
【0008】
また、この場合、短軸方向集光レンズアレイ90の焦点距離(f90)を、発光部12から短軸方向集光レンズアレイ90までの距離(この場合、約1.6mm)に設定すると、短軸方向における集光の効率がほぼ最適になり、発光部12から光ファイバ30までの距離(図10(A)中のL)は、約3.2mmとなる。
しかし、例えば長軸方向に1.75mm間隔で配列された5個の発光部から出射されるレーザ光を、長軸方向の入射角(図10(B)中のθoutx)を10°未満とするためには、約19.85mm以上の距離が必要であり、必要な数のレーザ光を集光することが非常に困難である。
【0009】
従って、以下の課題を解決する必要がある。
短軸方向集光レンズアレイ90と発光部12との間の距離が短い。このため、所定距離の間に、長軸方向コリメートレンズアレイ70と短軸方向集光レンズアレイ90を適切に配置することが困難である。また、光ファイバ30の位置も発光部12から短い距離になり、長軸方向の入射角(θoutx)を小さく設定すると、長軸方向に集光できるレーザ光の本数が少なくなる。
本発明は、このような点に鑑みて創案されたものであり、半導体レーザアレイの複数の発光部から出射された各レーザ光を、より効率良く集光でき、且つより容易に実現できる光導波路、光導波路アレイ、及びレーザ発光装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの光導波路である。
請求項1に記載の光導波路は、入射されるレーザ光の進行方向に対して垂直な平面状の入射面が形成されている。また、短軸方向の幅はほぼ均一の幅に形成されており、短軸方向に対してはレーザ光を集光することなく、全反射させながら透過領域を透過させる。また、長軸方向に対してはレンズ部(1層目と2層目との境界部に形成)にてレーザ光を集光する。
請求項1に記載の光導波路を用いれば、光導波路の入射面が平面状であるため、レーザ光の発光部に入射面をほぼ当接させることができる。このため、集光することなく全反射させる短軸方向において、発光部から出射されてから入射面に到達するまでの距離をより短くすることができ、レーザ光の短軸方向への拡散を抑制することができ、より効率良く集光することができる。
【0011】
また、本発明の第2発明は、請求項2に記載されたとおりの光導波路である。
請求項2に記載の光導波路では、請求項1に記載の光導波路であって、更に長軸方向に第1所定間隔で配置された複数の発光部から出射される複数のレーザ光を集光するために、各発光部に対応させた複数のレンズ部を備えている。そして、各レンズ部は、入射された各レーザ光が、光導波路の出射面上の所定位置に、長軸方向に対して各々集光されるように形成されている(レンズの中心位置、焦点距離等が設定されている)。
これにより、請求項1に加えて、光導波路の出射面上の所定位置に、長軸方向に対して複数のレーザ光を集光することができ、より効率良く集光することができる。なお、光導波路の入射面から出射面までの距離は任意に設定することが可能であるため、出射面上の所定位置に長軸方向に対して集光されるレーザ光の角度を任意に設定することができ、より効率良く集光することができる。
【0012】
また、本発明の第3発明は、請求項3に記載されたとおりの光導波路アレイである。
請求項3に記載の光導波路アレイは、請求項2に記載の光導波路を短軸方向に積層したものである。長軸方向に第1所定間隔で配置され且つ短軸方向に第2所定間隔で配置された複数の発光部から出射される複数のレーザ光を集光する場合、長軸方向の発光部のグループ毎に、複数の光導波路を順次位置を調整しながら配置するより、予め短軸方向における各発光部の位置に対応させて積層された1個の光導波路アレイを配置する方が、位置調整等が非常に容易である。
【0013】
また、本発明の第4発明は、請求項4に記載されたとおりのレーザ発光装置である。
請求項4に記載のレーザ発光装置では、長軸方向に第1所定間隔で配置されているとともに短軸方向に第2所定間隔で配置されている複数の発光部を有する半導体レーザアレイは、長軸と短軸を有する楕円状に拡がりながら進行するレーザ光を各発光部から出射する。また、光導波路アレイは、短軸方向に各光導波路が積層されるように配置されるとともに、各光導波路の各レンズ部が各発光部に対応するように配置され、且つ発光部と平面状の入射面とをほぼ当接させるように配置されている。そして、各光ファイバの入射面を各光導波路の出射面上の所定位置に配置し、各光ファイバの出射面からレーザ光を出射する。
これにより、半導体レーザアレイの複数の発光部から出射された各レーザ光を、より効率良く集光できるレーザ発光装置を容易に実現することができる。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。図1は、本発明の光導波路20を用いた光導波路アレイ200を、レーザ発光装置に適用した一実施の形態の概略構成図を示している。
図1に示す本実施の形態では、図9に示す従来のレーザ集光装置に対して、半導体レーザアレイ10と光ファイバ30との距離を非常に大きくできる(従来では約3.2mmのところを、本実施の形態ではレーザ光の進行方向に対する光導波路アレイ200の長さに応じて、数cm〜数10cm以上に設定することも可能である)。このため、光ファイバ30への入射角を小さくできるので、より効率良くレーザ光を集光することができる。
また、図9に示す従来のレーザ集光装置に対して、長軸方向コリメートレンズアレイ70、長軸方向集光レンズ80、短軸方向集光レンズアレイ90とを省略し、その代わりに光導波路アレイ200を設けているので、構成が簡素化され、組み付け時の調整等(各レンズ等の配置位置の微調整等)が従来のレーザ集光装置に比して、非常に容易である。
【0015】
●[全体構成(図1)]
図1に示す本実施の形態では、発光部12(m,n)(m行n列、図1の例では5行8列)を、長軸方向毎の複数のグループ(Grp)に分割し、各グループ毎のレーザ光を各光導波路20(s,t)(s行t列、図1の例では1行8列)で集光して、各光ファイバ30(s,t)(s行t列、図1の例では1行8列)に入射する。
【0016】
半導体レーザアレイ10は、複数の発光部12を有し、単一の発光部を有する半導体レーザを2次元的に配列して、あるいは一列に複数の発光部を有するアレイ型半導体レーザを積層または配列して、あるいは2次元配列されたスタック型半導体レーザで、構成されている。本実施の形態では、スタック型レーザダイオードを用いている。
光導波路アレイ200は、発光部12(m,n)の長軸方向毎の各グループ(Grp)毎に対応する光導波路20(s,t)が、短軸方向に複数配列されて構成されている。各光導波路20(s,t)内に入射されたレーザ光は、入射された光導波路20(s,t)内を、短軸方向においてはほぼ全反射しながら進行する(詳細は後述する)。
光導波路アレイ200は、半導体レーザアレイ10の各発光部12から入射された複数のレーザ光を、長軸方向に対して各光ファイバ30(s,t)の入射面に集まるように、長軸方向に集光(束ね、あるいは集約)する。
なお、以下、「束ねる」とは、各レーザ光の径をほぼ縮めることなく複数のレーザ光を集めることをいい、「集約する」とは、各レーザ光の径を縮めるあるいは径を縮めるとともに複数のレーザ光を集めることをいう。また、「集光する」とは、「束ねる」あるいは「集約する」方法を用いて、レーザ光の出力を高めることをいう。
【0017】
各光ファイバ30(s,t)の入射面には、各光導波路20(s,t)の出射面上の所定位置(レーザ光が集光される位置)から、各光導波路20(s,t)にて集光されたレーザ光が入射される。そして、集光レンズ100は、バンドル部100aにて任意の形状に束ねられた光ファイバ30(s,t)の出射面から出射されたレーザ光を、各々所定の位置に集光する。これにより、半導体レーザアレイ10の複数の発光部12(m,n)から出射された複数のレーザ光は、所定の位置に集光され、レーザ加工等に用いることができるように、レーザ光の出力を増大させることができる。
【0018】
●[光導波路20の構成(図2)]
次に、図2を用いて光導波路20の構成について説明する。光導波路20は、第1導波路20Xと第2導波路20Yとで構成されており、入射されるレーザ光の進行方向に対して2層構造を有している。
第1導波路20X(1層目)は入射側であり、第1導波路20Xの入射面20cは、入射されるレーザ光の進行方向に対して垂直な平面状に形成されている。また、第1導波路20Xの出射面には、レーザ光の発光部12(1,1)〜(5,1)に対応するように(または発光部12(1,n)〜(5,n)に対応するように)レンズLe(1,1)〜Le(5,1)を備えている。レンズLe(1,1)〜レンズLe(5,1)は、各々短軸方向に平行な軸を持つシリンドリカル状のレンズであり、各々入射されたレーザ光を長軸方向に集光する(図5(B)参照)。
【0019】
なお、この例では、第1導波路20Xの屈折率をn1、第2導波路20Yの屈折率をn2とすると、n1>n2に設定しているため、レンズLe(1,1)〜Le(5,1)は、レーザ光の進行方向に対して凸形状としている(図2(B)参照)。これにより、入射されたレーザ光を、長軸方向に対して出射面20e上の所定位置Poutに集光することができる(図5(B)参照)。
なお、n1<n2に設定した場合は、図2(C)の例に示すように、レーザ光の進行方向に対して凹形状とすればよい。
また、レーザ光の透過領域の短軸方向の幅はほぼ均一であり、WD1に設定されている。
第2導波路20Yは出射側であり、第2導波路20Yの入射面は、第1導波路20Xの出射面と一致する形状に形成されている。
そして、光導波路20を、第1導波路20Xの出射面と第2導波路20Yの入射面を当接させて構成する。
【0020】
本実施の形態では、第1導波路20Xには屈折率n1が約1.8の材質の石英ガラスを使用し、第2導波路20Yには屈折率n2が約1.5〜1.6の材質の石英ガラスを使用したが、これらの屈折率及び材質に限定されるものではない。
また、レンズLe(1,1)〜Le(5,1)は、入射されたレーザ光を長軸方向に対して出射面20e上の所定位置Pout(図5(B)参照)に集光できればよく、屈折率及び形状の設定は本実施の形態に限定されない。
【0021】
●[光導波路の入射面を平面状に設定した場合の効果(図3)]
次に、図3を用いて、光導波路20の入射面にレンズを設けずに、平面とした場合の効果について説明する。
図3(A)及び(B)は、各々光導波路20の入射面にレンズを設けた場合の側面図及び平面図を示している。半導体レーザアレイ10の発光部12(1,1)から出射されたレーザ光2(1,1)は、図3(A)及び(B)に示すように、光導波路20の入射面に到達する。
例えば、図3(A)において、発光部12(1,1)から入射面までの最短距離はP1までの距離L1であり、最長距離はP2までの距離L2である。光導波路20の短軸方向の幅WD1(図2(A)及び(B)参照)は、この最長距離である距離P2の場合における短軸方向への拡散(図2(B)における幅Ws)を見込んで設定している。
なお、図3(B)におけるレーザ光の広がり角θyは、約3.5[°]である。
【0022】
距離L1をできるだけ小さくすれば、レーザ光2(1,1)の短軸方向への拡散幅を最小に抑制することができることは明らかである。また、一方で発光部とレンズ面との距離が小さくなると、レンズの位置誤差による集光位置の誤差が大きくなることがシミュレーションでわかっている。このため、光導波路20の入射面にレンズを形成した場合、距離L1は、ある一定寸法以上にする必要がある。
しかし、本実施の形態における光導波路20では、入射面を発光部に近づけ、距離L1を小さくしても、発光部とレンズ面との距離を十分長くすることが可能である。
本実施の形態における光導波路20では、入射面にレンズを形成した場合の距離L1が約0.50[mm]である(図3(A)の例)ことに対して、距離L1を約0.05[mm]〜0.10[mm]まで小さくできる(図3(C)の例)ことを確認した。これにより、レーザ光2(1,1)の短軸方向への拡散が進む前に、光導波路20に入射させることができ、より効率良くレーザ光2(1,1)を集光することができる。
【0023】
●[レンズの中心位置と、レンズの焦点距離(図4)]
次に、図4(A)〜(C)を用いて、レンズLe(1,1)の中心P(1,1)の位置と、焦点距離fと、レンズLe(1,1)を透過したレーザ光2(1,1)の状態との関係について説明する。
図4(A)は、レンズLe(1,1)の中心P(1,1)を、発光部12(1,1)から出射されるレーザ光2(1,1)の光軸ZL上に配置し、且つ発光部12(1,1)の虚像部d12(1,1)から焦点距離fの位置に配置した場合の例である。レーザ光2(1,1)は、光導波路20の入射面に入射した時点で一旦屈折する。この屈折したレーザ光2(1,1)がレンズLe(1,1)に到達する前の角度に基づいて虚像部d12(1,1)を求める。そして、この虚像部d12(1,1)を基準として焦点距離fと中心P(1,1)の位置の設定を行う。
図4(A)の場合、レンズLe(1,1)を透過したレーザ光2(1,1)は、光軸ZLと平行、且つ均一の幅の平行光となる。
【0024】
図4(B)は、レンズLe(1,1)の中心P(1,1)を、発光部12(1,1)から出射されるレーザ光2(1,1)の光軸ZL上に配置し、且つ発光部12(1,1)の虚像部d12(1,1)から焦点距離fよりも遠い位置に配置した場合(f<Sb)の例である。
虚像部d12(1,1)から中心P(1,1)までの距離をSb、中心P(1,1)からレーザ光12(1,1)が集束する集束位置Pspotまでの距離をTbとすると、以下の式が成立する。
1/Sb+1/Tb=1/f (式1)
【0025】
図4(C)は、レンズLe(1,1)の中心P(1,1)を、発光部12(1,1)から出射されるレーザ光2(1,1)の光軸ZLから長軸方向に距離Lx1の位置に配置し、且つ発光部12(1,1)の虚像部d12(1,1)から焦点距離fよりも遠い距離Lz1の位置に配置した場合(f<Lz1)の例である。ここで、レンズLe(1,1)の中心をP(1,1)、中心P(1,1)から虚像部d12(1,1)までの距離をSc、中心P(1,1)からレーザ光12(1,1)の集束位置Pspotまでの距離をTc、虚像部d12(1,1)から集束位置Pspotまでの距離をLcとする。また、虚像部12(1,1)と集束位置Pspotを結ぶ線とZ軸とのなす角をθ、虚像部d12(1,1)と集束位置PspotとのX軸方向の距離をd、虚像部d12(1,1)と集束位置PspotとのZ軸方向の距離をLとする。この場合、以下の式が成立する。
1/Sc+1/Tc=1/f (式2)
Lc=Sc+Tc (式3)
Lx1=Sc*sinθ (式4)
Lz1=Sc*cosθ (式5)
d=Lc*sinθ (式6)
L=Lc*cosθ (式7)
Sc=[Lc−√(Lc2−4*Lc*f)]/2 (式8)
Tc=[Lc+√(Lc2−4*Lc*f)]/2 (式9)
上記の式に基づいて、レーザ光12(m,n)の集束位置Pspotが、Poutの位置(図5(B)参照)になるように、各レンズの中心P(m,n)の配置位置と、焦点距離fとを設定する。
【0026】
●[各構成要素の配置と、光ファイバまでのレーザ光の集光状態(図5)]
次に、図5(A)及び(B)を用いて、発光部12(1,1)〜(1,8)、光導波路20(1,1)〜(1,8)、光ファイバ30(1,1)〜(1,8)の配置位置と、発光部から光ファイバまでのレーザ光の集光状態について説明する。
図5(A)は長軸方向(X軸方向)から見た図であり、レーザ光を短軸方向(Y軸方向)に集光する様子を示している。各発光部12(m,n)から出射された各レーザ光は、長軸方向毎の発光部のグループGrp(図1参照)に対応させて配置した光導波路20(s,t)の入射面に入射される。入射された各レーザ光は、短軸方向においては各光導波路20(s,t)内を全反射しながら当該光導波路20(s,t)からほとんど外部に漏れることなく進行して当該光導波路20(s,t)の出射面20e(図5(B)参照)に到達し、出射面20e上の所定位置(レーザ光を長軸方向に集光する位置:Pout、図5(B)参照)に配置された光ファイバ30(s,t)の入射面に入射される。
なお、既に説明したように、光導波路20(s,t)の入射面を平面に形成しており、発光部12(m,n)との距離L1を後述する図7(A)の距離L1より小さくしているため、光導波路20(s,t)の短軸方向の幅WD1を後述する図7(A)の幅WD2より狭くしている。
このため、光ファイバ30(s,t)の径Df1を後述する図7(A)の径Dfより小さくすることができる。
【0027】
図5(B)は短軸方向から見た図であり、レーザ光を長軸方向に集光する様子を示している。
図5(B)において、光導波路20(s,t)の各レンズLe(1,1)〜(5,1)の焦点距離f1〜f5(図示せず)、各レンズLe(1,1)〜(5,1)の中心P(1,1)〜(5,1)は、図4(C)で説明したように設定されている。
これにより、各発光部12(1,1)〜(5,1)から出射されたレーザ光2(1,1)〜(5,1)は、対応するレンズLe(1,1)〜(5,1)を透過すると、光導波路20(1,1)の出射面20e上の所定位置Poutに集光される。
なお、光導波路20(s,t)の入射面から出射面までの長さLdhは、任意の長さに設定することが可能である。発光部12(m,n)の長軸方向の数(この例では5個)、及び発光部の長軸方向の間隔Dhより、光ファイバ30(s,t)への入射角θoutが適切な値となるように、長さLdhを適切に設定することが可能である。
【0028】
また、光導波路20(s,t)の入射面をZ軸に垂直な平面状としているため、発光部12(m,n)から光導波路20(s,t)の入射面までの距離L1を約0.05[mm]〜0.10[mm]へと、より小さくすることができる。これにより、光導波路20(s,t)の短軸方向の幅WD1を約0.25[mm]へとより狭くすることができ、光ファイバ30(s,t)の径Df1を約0.30[mm]へとより小さくすることができる。
【0029】
そして、光導波路20(1,1)の出射面20e上の所定位置Poutに、光ファイバ30(1,1)の入射面を配置し、集光したレーザ光を光ファイバ30(1,1)に入射する。
光ファイバ30(1,1)に入射されたレーザ光は、光ファイバ30(1,1)内を全反射しながら進行して光ファイバ30(1,1)の出射面から出射される。そして図1に示すように、光ファイバ30(s,t)の各出射面をバンドル部100aにて束ね、各光ファイバ30(s,t)の出射面から出射されるレーザ光を集光レンズ100にて集光し、レーザ加工等に利用する。なお、光ファイバ30(s,t)の出射面を束ねたバンドル部100aは、光ファイバ30(s,t)の長さの範囲内であれば任意の位置に配置することができる。
【0030】
●[光導波路のアレイ化と、光ファイバの入射面側のアレイ化(図6)]
次に図6を用いて、光導波路20(s,t)と光ファイバ30(s,t)とを適切な位置に配置することをより容易に実現可能な光導波路アレイ200と光ファイバアレイ300の例を説明する。
図6に示すように、光導波路20(s,t)は等間隔に配置され、各光導波路20(1,1)〜(1,8)の入射面が、対応する発光部12(1,1)〜(1,8)と向き合うように配置される。そして、各光導波路をクラッド材、全反射材等の充填材22にて充填し、光導波路アレイ200を形成する。なお、充填材22を充填せず、クラッド部を含んだ略直方体の形状に各光導波路を形成して各光導波路を固着するようにしてもよい。
このようにして、光導波路20(s,t)を短軸方向に積層し、光導波路アレイ200を形成する。
【0031】
また、図6に示すように、光ファイバ30(s,t)も等間隔に配置され、各光ファイバ30(1,1)〜(1,8)の入射面が、対応する光導波路20(1,1)〜(1,8)の出射面20e上の所定位置と当接するように配置される。そして、各光ファイバをクラッド材、全反射材等の充填材23にて充填し、光ファイバアレイ300を形成する。
この場合、光ファイバアレイ300は、光ファイバの入射面近傍のみを充填材23にて充填すればよく、光ファイバの出射面側まで充填材23を充填する必要はない。
【0032】
●[光導波路の入射面にレンズを形成した場合(図7)]
次に図7を用いて、入射面にレンズを形成した光導波路25を用いた場合の例を、上記に説明した本実施の形態の効果と比較するために説明する。
図7に示すレーザ発光装置は、本実施の形態(図1)に示すレーザ発光装置に対して、光導波路25(s,t)の入射面にレンズLe(1,1)〜(5,1)を形成している。この場合、レンズLeの位置誤差による集光位置(Pout)の誤差を小さくするために、距離L1を約0.50[mm]に設定している。これにより、光導波路25(s,t)の短軸方向の幅WD2は、約0.35[mm]になり、光ファイバ35(s,t)の径Dfは、約0.40[mm]になる。
このように、光ファイバ35の径Dfが図5に示した本実施の形態の光ファイバ30の径Df1より大きくなるので、単位面積あたりのレーザ光の密度が低下する。
【0033】
●[本実施の形態の効果(図8)]
次に図8を用いて、本実施の形態におけるレーザ発光装置(図1〜図6)と、比較用に説明した上記のレーザ発光装置(図7)との差を説明することで、本実施の形態の効果を説明する。
図8(A)は、比較用に説明したレーザ発光装置(図7)における、光ファイバ35(s,t)の径Df、及び当該光ファイバ35(s,t)の入射面に到達したレーザ光2(m,n)の形状を示している。
この場合、当該光ファイバ35(s,t)の入射面に到達したレーザ光2(m,n)の長軸方向(X軸方向)の長さWfは約0.10[mm]であり、短軸方向(Y軸方向)の長さWsは約0.35[mm](光導波路25の出射面における短軸方向の幅、つまり幅WD2)である。当該レーザ光2(m,n)を入射させるための光ファイバ35(s,t)の径Dfは約0.40[mm]となる。
【0034】
これに対し、図8(B)は、本実施の形態で説明したレーザ発光装置(図1〜図6)における、光ファイバ30(s,t)の径Df1、及び当該光ファイバ30(s,t)の入射面に到達したレーザ光2(m,n)の形状を示している。
この場合、当該光ファイバ30(s,t)の入射面に到達したレーザ光2(m,n)の長軸方向(X軸方向)の長さWfは約0.10[mm]であり、短軸方向(Y軸方向)の長さWs1は約0.25[mm](光導波路20の出射面における短軸方向の幅、つまり幅WD1)である。当該レーザ光2(m,n)を入射させるための光ファイバ30(s,t)の径Df1は約0.30[mm]となる。
従って、光ファイバ30(s,t)の径Df1を約0.75倍(0.30/0.40=0.75)にすることができ、図1に示すバンドル部100aの径も約0.75倍にすることができる。この場合、集光したレーザ光のビーム半径と広がり角(半角)との積で表されるBeam Parameter Product(ビーム品質)を約30%向上(1/0.75=1.333)させることができる。
【0035】
本発明の光導波路20、光導波路アレイ200、及びレーザ発光装置は、本実施の形態で説明した形状、構成等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
本発明の光導波路20、光導波路アレイ200、及びレーザ発光装置は、レーザ加工装置等、レーザ光を用いた種々の装置に適用することが可能である。
また、光導波路20及び光ファイバ30の形状、サイズ等は、実施の形態の説明及び図に限定されるものではない。また、石英ガラス等、種々の材質を用いることができる。
また、各実施の形態における光導波路20における全体形状は、図2に示す略直方体に限定されるものではない。
本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
【0036】
【発明の効果】
以上説明したように、請求項1または2に記載の光導波路を用いれば、複数の発光部から出射された各レーザ光を、短軸方向の幅がより狭い光導波路にて集光することができるので、より効率良く集光でき、且つより容易に実現できる。
また、請求項3に記載の光導波路アレイを用いれば、発光部に対して光導波路アレイを適切な位置に配置することがより容易である。
また、請求項4に記載のレーザ発光装置を用いれば、長軸方向及び短軸方向に2次元状に配置された発光部(レーザ光の発光部)から出射されたレーザ光を、長軸方向及び短軸方向に、より効率良く集光することができる。
【図面の簡単な説明】
【図1】本発明の光導波路20を用いた光導波路アレイ200を、レーザ発光装置に適用した一実施の形態の概略構成図である。
【図2】本実施の形態における、光導波路20の構成を説明する図である。
【図3】光導波路20の入射面にレンズを設けずに、平面とした場合の効果について説明する図である。
【図4】レンズLe(1,1)の中心P(1,1)の位置と、焦点距離fと、レンズLe(1,1)を透過したレーザ光2(1,1)の状態との関係について説明する図である。
【図5】本実施の形態における、各構成要素の配置と、光ファイバまでのレーザ光の集光状態を説明する図である。
【図6】本実施の形態における、光導波路のアレイ化と、光ファイバの入射面側のアレイ化を説明する図である。
【図7】本実施の形態の効果を比較するために、本実施の形態とは異なるレーザ発光装置における、各構成要素の配置と、光ファイバまでのレーザ光の集光状態を説明する図である。
【図8】本実施の形態の効果を説明する図である。
【図9】従来の半導体レーザ集光装置の概略構成を説明する図である。
【図10】従来の半導体レーザ集光装置において、各レンズの配置位置と、各レンズを通過したレーザ光が集光される様子を説明する図である。
【符号の説明】
2(m,n) レーザ光
10 半導体レーザアレイ
12(m,n) 発光部
20(s,t) 光導波路
20a 透過領域
20c 入射面
20e 出射面
200 光導波路アレイ
Le(m,n) レンズ
30(s,t) 光ファイバ
100 集光レンズ
100a バンドル部
【発明の属する技術分野】
本発明は、レーザ光を集光する光導波路、光導波路アレイ、及びレーザ光を集光して出力するレーザ発光装置に関する。
【0002】
【従来の技術】
図9に、従来の半導体レーザ集光装置の概略構成の例を示す。半導体レーザ(レーザダイオード等)の活性層14の発光部12から出射される半導体レーザ光(以下、「レーザ光」と記載する)は、レーザ光2の進行方向に対して垂直な面においてほぼ楕円状であり、当該楕円状のレーザ光2は、長軸方向と、短軸方向とを有する。また、当該楕円は、発光部12からの距離が長くなるほど大きくなる。そして、長軸方向(X軸方向)と短軸方向(Y軸方向)に2次元的に配列した複数の発光部12を持つ半導体レーザアレイ10から出射されるレーザ光を、光ファイバ30に集光してレーザ光の出力を増大させる半導体レーザ集光装置が知られている。
例えば、半導体レーザをレーザ加工装置の光源として用いる場合、加工に用いるレーザ光の高出力化が必要であるが、単一の発光部から出射されるレーザ光では、出力強度に限界がある。そこで、レンズ群等を用いて複数の発光部から出射されるレーザ光を集光して、レーザ光の出力を増大させている。
従来の半導体レーザ集光装置の技術として、図9に示すように、レンズ群と光ファイバ30を備え、レーザ光の発光部12から光ファイバ30までの間に、長軸方向コリメートレンズアレイ70、長軸方向集光レンズ80、短軸方向集光レンズアレイ90、の順にレンズを配置してレーザ光を光ファイバ30に集光し、レーザ光の出力を増大させることを提案している(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−98191号公報
【0004】
【発明が解決しようとする課題】
半導体レーザの発光部12から出射されるレーザ光を効率良く光ファイバ30に集光してレーザ光の出力を増大させるには、より細い光ファイバに、より多くの発光部からのレーザ光を入射して密度を高めることと、より小さな入射角で入射端面に入射して、入射したレーザ光を外部に反射させることなく、効率よく光ファイバに入射する(入射端面に対して、より直角に近い角度で入射する)ことが必要である。これにより、光ファイバ内におけるレーザ光の進行方向と、光ファイバの長手方向とのなす角度がより小さくなり、レーザ光が光ファイバ内で全反射しながら進行し、光ファイバ外部への漏れによる損失を抑制できる。
ここで、発光部12から出射されたレーザ光は、長軸方向及び短軸方向に拡がりながら進行する。拡がりながら進行するレーザ光を集光する場合、レンズ自身に非常に高い精度が要求され、そのレンズの配置位置も、非常に高い精度が要求される。
従来の半導体レーザ集光装置(例えば、特開2000−98191号公報)は、発光部の間隔が比較的広い長軸方向においては、一旦、平行光に変換してから集光しているが、発光部の間隔が比較的狭い短軸方向においては、レンズの径が非常に小さく、配置も困難であるため、平行光にしてから集光することをせず、集光のみを行っている。
【0005】
従来の半導体レーザ集光装置(例えば、特開2000−98191号公報)では、図9に示すように、半導体レーザアレイ10の各発光部12(m,n)(m行n列、図9の例では、5行16列)から出射されるレーザ光を、長軸方向コリメートレンズアレイ70を透過させ、長軸方向集光レンズ80を透過させ、更に、短軸方向集光レンズアレイ90を透過させて光ファイバ30(s,t)(s行t列、図9の例では、1行8列)に入射している。
なお、全ての図面において、座標軸は、レーザ光の進行方向をZ軸、長軸方向をX軸、短軸方向をY軸としている。
なお、全ての図面は、説明を容易にするため、あるいは比較等を容易にするために、実際の寸法とは異なる寸法で記載している部分を含んでいる。
【0006】
また、図9(従来の半導体レーザ集光装置)の構成における、各レンズ及びレーザ光の様子を図10(A)及び(B)に示す。図10(A)は、短軸方向に配列された2個の発光部から出射される2本のレーザ光と、長軸方向に配列された5個の発光部から出射される5本のレーザ光の合計10本のレーザ光を、1本の光ファイバに集光している。図10(A)は、図9をX軸方向から見た図(上から見た図)であり、図10(B)は、図9をY軸方向から見た図(横から見た図)である。
一般的によく用いられる半導体レーザアレイでは、短軸方向においては、各発光部12の幅(図10(A)中のDw)は約0.15mmであり、発光部と発光部の間隔(図10(A)中のDp)は約0.25mmである。また、各発光部から出射されるレーザ光の短軸方向の拡がり角(図10(A)中のθiny)は約3.5°である。
また、長軸方向において隣り合う発光部の間隔(図10(B)中のDh)は約1.75mmであり、各発光部の厚さ(図10(B)中のDt)は約0.002mmである。また、各発光部から出射されるレーザ光の長軸方向の拡がり角(図10(B)中のθinx)は約40°である。
【0007】
例えば、このレーザ光を、光ファイバ30に、短軸方向において2本のレーザ光を集光し、長軸方向において5本のレーザ光を集光する。また、短軸方向の入射角(図10(A)中のθouty)が約10°以下になるように(より小さな入射角で)集光する。
この場合、最も効率良く集光するためには、図10(A)において、短軸方向に隣り合う発光部12から出射されるレーザ光が重なる前に短軸方向集光レンズアレイ90を配置する必要がある。レーザ光が重なる位置は、上記の数値の場合は、発光部12から約1.6mmの位置である。
しかし、発光部12から約1.6mmまでの距離の間に、長軸方向コリメートレンズアレイ70と短軸方向集光レンズアレイ90を配置する必要があり、事実上、配置は非常に困難である。
【0008】
また、この場合、短軸方向集光レンズアレイ90の焦点距離(f90)を、発光部12から短軸方向集光レンズアレイ90までの距離(この場合、約1.6mm)に設定すると、短軸方向における集光の効率がほぼ最適になり、発光部12から光ファイバ30までの距離(図10(A)中のL)は、約3.2mmとなる。
しかし、例えば長軸方向に1.75mm間隔で配列された5個の発光部から出射されるレーザ光を、長軸方向の入射角(図10(B)中のθoutx)を10°未満とするためには、約19.85mm以上の距離が必要であり、必要な数のレーザ光を集光することが非常に困難である。
【0009】
従って、以下の課題を解決する必要がある。
短軸方向集光レンズアレイ90と発光部12との間の距離が短い。このため、所定距離の間に、長軸方向コリメートレンズアレイ70と短軸方向集光レンズアレイ90を適切に配置することが困難である。また、光ファイバ30の位置も発光部12から短い距離になり、長軸方向の入射角(θoutx)を小さく設定すると、長軸方向に集光できるレーザ光の本数が少なくなる。
本発明は、このような点に鑑みて創案されたものであり、半導体レーザアレイの複数の発光部から出射された各レーザ光を、より効率良く集光でき、且つより容易に実現できる光導波路、光導波路アレイ、及びレーザ発光装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの光導波路である。
請求項1に記載の光導波路は、入射されるレーザ光の進行方向に対して垂直な平面状の入射面が形成されている。また、短軸方向の幅はほぼ均一の幅に形成されており、短軸方向に対してはレーザ光を集光することなく、全反射させながら透過領域を透過させる。また、長軸方向に対してはレンズ部(1層目と2層目との境界部に形成)にてレーザ光を集光する。
請求項1に記載の光導波路を用いれば、光導波路の入射面が平面状であるため、レーザ光の発光部に入射面をほぼ当接させることができる。このため、集光することなく全反射させる短軸方向において、発光部から出射されてから入射面に到達するまでの距離をより短くすることができ、レーザ光の短軸方向への拡散を抑制することができ、より効率良く集光することができる。
【0011】
また、本発明の第2発明は、請求項2に記載されたとおりの光導波路である。
請求項2に記載の光導波路では、請求項1に記載の光導波路であって、更に長軸方向に第1所定間隔で配置された複数の発光部から出射される複数のレーザ光を集光するために、各発光部に対応させた複数のレンズ部を備えている。そして、各レンズ部は、入射された各レーザ光が、光導波路の出射面上の所定位置に、長軸方向に対して各々集光されるように形成されている(レンズの中心位置、焦点距離等が設定されている)。
これにより、請求項1に加えて、光導波路の出射面上の所定位置に、長軸方向に対して複数のレーザ光を集光することができ、より効率良く集光することができる。なお、光導波路の入射面から出射面までの距離は任意に設定することが可能であるため、出射面上の所定位置に長軸方向に対して集光されるレーザ光の角度を任意に設定することができ、より効率良く集光することができる。
【0012】
また、本発明の第3発明は、請求項3に記載されたとおりの光導波路アレイである。
請求項3に記載の光導波路アレイは、請求項2に記載の光導波路を短軸方向に積層したものである。長軸方向に第1所定間隔で配置され且つ短軸方向に第2所定間隔で配置された複数の発光部から出射される複数のレーザ光を集光する場合、長軸方向の発光部のグループ毎に、複数の光導波路を順次位置を調整しながら配置するより、予め短軸方向における各発光部の位置に対応させて積層された1個の光導波路アレイを配置する方が、位置調整等が非常に容易である。
【0013】
また、本発明の第4発明は、請求項4に記載されたとおりのレーザ発光装置である。
請求項4に記載のレーザ発光装置では、長軸方向に第1所定間隔で配置されているとともに短軸方向に第2所定間隔で配置されている複数の発光部を有する半導体レーザアレイは、長軸と短軸を有する楕円状に拡がりながら進行するレーザ光を各発光部から出射する。また、光導波路アレイは、短軸方向に各光導波路が積層されるように配置されるとともに、各光導波路の各レンズ部が各発光部に対応するように配置され、且つ発光部と平面状の入射面とをほぼ当接させるように配置されている。そして、各光ファイバの入射面を各光導波路の出射面上の所定位置に配置し、各光ファイバの出射面からレーザ光を出射する。
これにより、半導体レーザアレイの複数の発光部から出射された各レーザ光を、より効率良く集光できるレーザ発光装置を容易に実現することができる。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。図1は、本発明の光導波路20を用いた光導波路アレイ200を、レーザ発光装置に適用した一実施の形態の概略構成図を示している。
図1に示す本実施の形態では、図9に示す従来のレーザ集光装置に対して、半導体レーザアレイ10と光ファイバ30との距離を非常に大きくできる(従来では約3.2mmのところを、本実施の形態ではレーザ光の進行方向に対する光導波路アレイ200の長さに応じて、数cm〜数10cm以上に設定することも可能である)。このため、光ファイバ30への入射角を小さくできるので、より効率良くレーザ光を集光することができる。
また、図9に示す従来のレーザ集光装置に対して、長軸方向コリメートレンズアレイ70、長軸方向集光レンズ80、短軸方向集光レンズアレイ90とを省略し、その代わりに光導波路アレイ200を設けているので、構成が簡素化され、組み付け時の調整等(各レンズ等の配置位置の微調整等)が従来のレーザ集光装置に比して、非常に容易である。
【0015】
●[全体構成(図1)]
図1に示す本実施の形態では、発光部12(m,n)(m行n列、図1の例では5行8列)を、長軸方向毎の複数のグループ(Grp)に分割し、各グループ毎のレーザ光を各光導波路20(s,t)(s行t列、図1の例では1行8列)で集光して、各光ファイバ30(s,t)(s行t列、図1の例では1行8列)に入射する。
【0016】
半導体レーザアレイ10は、複数の発光部12を有し、単一の発光部を有する半導体レーザを2次元的に配列して、あるいは一列に複数の発光部を有するアレイ型半導体レーザを積層または配列して、あるいは2次元配列されたスタック型半導体レーザで、構成されている。本実施の形態では、スタック型レーザダイオードを用いている。
光導波路アレイ200は、発光部12(m,n)の長軸方向毎の各グループ(Grp)毎に対応する光導波路20(s,t)が、短軸方向に複数配列されて構成されている。各光導波路20(s,t)内に入射されたレーザ光は、入射された光導波路20(s,t)内を、短軸方向においてはほぼ全反射しながら進行する(詳細は後述する)。
光導波路アレイ200は、半導体レーザアレイ10の各発光部12から入射された複数のレーザ光を、長軸方向に対して各光ファイバ30(s,t)の入射面に集まるように、長軸方向に集光(束ね、あるいは集約)する。
なお、以下、「束ねる」とは、各レーザ光の径をほぼ縮めることなく複数のレーザ光を集めることをいい、「集約する」とは、各レーザ光の径を縮めるあるいは径を縮めるとともに複数のレーザ光を集めることをいう。また、「集光する」とは、「束ねる」あるいは「集約する」方法を用いて、レーザ光の出力を高めることをいう。
【0017】
各光ファイバ30(s,t)の入射面には、各光導波路20(s,t)の出射面上の所定位置(レーザ光が集光される位置)から、各光導波路20(s,t)にて集光されたレーザ光が入射される。そして、集光レンズ100は、バンドル部100aにて任意の形状に束ねられた光ファイバ30(s,t)の出射面から出射されたレーザ光を、各々所定の位置に集光する。これにより、半導体レーザアレイ10の複数の発光部12(m,n)から出射された複数のレーザ光は、所定の位置に集光され、レーザ加工等に用いることができるように、レーザ光の出力を増大させることができる。
【0018】
●[光導波路20の構成(図2)]
次に、図2を用いて光導波路20の構成について説明する。光導波路20は、第1導波路20Xと第2導波路20Yとで構成されており、入射されるレーザ光の進行方向に対して2層構造を有している。
第1導波路20X(1層目)は入射側であり、第1導波路20Xの入射面20cは、入射されるレーザ光の進行方向に対して垂直な平面状に形成されている。また、第1導波路20Xの出射面には、レーザ光の発光部12(1,1)〜(5,1)に対応するように(または発光部12(1,n)〜(5,n)に対応するように)レンズLe(1,1)〜Le(5,1)を備えている。レンズLe(1,1)〜レンズLe(5,1)は、各々短軸方向に平行な軸を持つシリンドリカル状のレンズであり、各々入射されたレーザ光を長軸方向に集光する(図5(B)参照)。
【0019】
なお、この例では、第1導波路20Xの屈折率をn1、第2導波路20Yの屈折率をn2とすると、n1>n2に設定しているため、レンズLe(1,1)〜Le(5,1)は、レーザ光の進行方向に対して凸形状としている(図2(B)参照)。これにより、入射されたレーザ光を、長軸方向に対して出射面20e上の所定位置Poutに集光することができる(図5(B)参照)。
なお、n1<n2に設定した場合は、図2(C)の例に示すように、レーザ光の進行方向に対して凹形状とすればよい。
また、レーザ光の透過領域の短軸方向の幅はほぼ均一であり、WD1に設定されている。
第2導波路20Yは出射側であり、第2導波路20Yの入射面は、第1導波路20Xの出射面と一致する形状に形成されている。
そして、光導波路20を、第1導波路20Xの出射面と第2導波路20Yの入射面を当接させて構成する。
【0020】
本実施の形態では、第1導波路20Xには屈折率n1が約1.8の材質の石英ガラスを使用し、第2導波路20Yには屈折率n2が約1.5〜1.6の材質の石英ガラスを使用したが、これらの屈折率及び材質に限定されるものではない。
また、レンズLe(1,1)〜Le(5,1)は、入射されたレーザ光を長軸方向に対して出射面20e上の所定位置Pout(図5(B)参照)に集光できればよく、屈折率及び形状の設定は本実施の形態に限定されない。
【0021】
●[光導波路の入射面を平面状に設定した場合の効果(図3)]
次に、図3を用いて、光導波路20の入射面にレンズを設けずに、平面とした場合の効果について説明する。
図3(A)及び(B)は、各々光導波路20の入射面にレンズを設けた場合の側面図及び平面図を示している。半導体レーザアレイ10の発光部12(1,1)から出射されたレーザ光2(1,1)は、図3(A)及び(B)に示すように、光導波路20の入射面に到達する。
例えば、図3(A)において、発光部12(1,1)から入射面までの最短距離はP1までの距離L1であり、最長距離はP2までの距離L2である。光導波路20の短軸方向の幅WD1(図2(A)及び(B)参照)は、この最長距離である距離P2の場合における短軸方向への拡散(図2(B)における幅Ws)を見込んで設定している。
なお、図3(B)におけるレーザ光の広がり角θyは、約3.5[°]である。
【0022】
距離L1をできるだけ小さくすれば、レーザ光2(1,1)の短軸方向への拡散幅を最小に抑制することができることは明らかである。また、一方で発光部とレンズ面との距離が小さくなると、レンズの位置誤差による集光位置の誤差が大きくなることがシミュレーションでわかっている。このため、光導波路20の入射面にレンズを形成した場合、距離L1は、ある一定寸法以上にする必要がある。
しかし、本実施の形態における光導波路20では、入射面を発光部に近づけ、距離L1を小さくしても、発光部とレンズ面との距離を十分長くすることが可能である。
本実施の形態における光導波路20では、入射面にレンズを形成した場合の距離L1が約0.50[mm]である(図3(A)の例)ことに対して、距離L1を約0.05[mm]〜0.10[mm]まで小さくできる(図3(C)の例)ことを確認した。これにより、レーザ光2(1,1)の短軸方向への拡散が進む前に、光導波路20に入射させることができ、より効率良くレーザ光2(1,1)を集光することができる。
【0023】
●[レンズの中心位置と、レンズの焦点距離(図4)]
次に、図4(A)〜(C)を用いて、レンズLe(1,1)の中心P(1,1)の位置と、焦点距離fと、レンズLe(1,1)を透過したレーザ光2(1,1)の状態との関係について説明する。
図4(A)は、レンズLe(1,1)の中心P(1,1)を、発光部12(1,1)から出射されるレーザ光2(1,1)の光軸ZL上に配置し、且つ発光部12(1,1)の虚像部d12(1,1)から焦点距離fの位置に配置した場合の例である。レーザ光2(1,1)は、光導波路20の入射面に入射した時点で一旦屈折する。この屈折したレーザ光2(1,1)がレンズLe(1,1)に到達する前の角度に基づいて虚像部d12(1,1)を求める。そして、この虚像部d12(1,1)を基準として焦点距離fと中心P(1,1)の位置の設定を行う。
図4(A)の場合、レンズLe(1,1)を透過したレーザ光2(1,1)は、光軸ZLと平行、且つ均一の幅の平行光となる。
【0024】
図4(B)は、レンズLe(1,1)の中心P(1,1)を、発光部12(1,1)から出射されるレーザ光2(1,1)の光軸ZL上に配置し、且つ発光部12(1,1)の虚像部d12(1,1)から焦点距離fよりも遠い位置に配置した場合(f<Sb)の例である。
虚像部d12(1,1)から中心P(1,1)までの距離をSb、中心P(1,1)からレーザ光12(1,1)が集束する集束位置Pspotまでの距離をTbとすると、以下の式が成立する。
1/Sb+1/Tb=1/f (式1)
【0025】
図4(C)は、レンズLe(1,1)の中心P(1,1)を、発光部12(1,1)から出射されるレーザ光2(1,1)の光軸ZLから長軸方向に距離Lx1の位置に配置し、且つ発光部12(1,1)の虚像部d12(1,1)から焦点距離fよりも遠い距離Lz1の位置に配置した場合(f<Lz1)の例である。ここで、レンズLe(1,1)の中心をP(1,1)、中心P(1,1)から虚像部d12(1,1)までの距離をSc、中心P(1,1)からレーザ光12(1,1)の集束位置Pspotまでの距離をTc、虚像部d12(1,1)から集束位置Pspotまでの距離をLcとする。また、虚像部12(1,1)と集束位置Pspotを結ぶ線とZ軸とのなす角をθ、虚像部d12(1,1)と集束位置PspotとのX軸方向の距離をd、虚像部d12(1,1)と集束位置PspotとのZ軸方向の距離をLとする。この場合、以下の式が成立する。
1/Sc+1/Tc=1/f (式2)
Lc=Sc+Tc (式3)
Lx1=Sc*sinθ (式4)
Lz1=Sc*cosθ (式5)
d=Lc*sinθ (式6)
L=Lc*cosθ (式7)
Sc=[Lc−√(Lc2−4*Lc*f)]/2 (式8)
Tc=[Lc+√(Lc2−4*Lc*f)]/2 (式9)
上記の式に基づいて、レーザ光12(m,n)の集束位置Pspotが、Poutの位置(図5(B)参照)になるように、各レンズの中心P(m,n)の配置位置と、焦点距離fとを設定する。
【0026】
●[各構成要素の配置と、光ファイバまでのレーザ光の集光状態(図5)]
次に、図5(A)及び(B)を用いて、発光部12(1,1)〜(1,8)、光導波路20(1,1)〜(1,8)、光ファイバ30(1,1)〜(1,8)の配置位置と、発光部から光ファイバまでのレーザ光の集光状態について説明する。
図5(A)は長軸方向(X軸方向)から見た図であり、レーザ光を短軸方向(Y軸方向)に集光する様子を示している。各発光部12(m,n)から出射された各レーザ光は、長軸方向毎の発光部のグループGrp(図1参照)に対応させて配置した光導波路20(s,t)の入射面に入射される。入射された各レーザ光は、短軸方向においては各光導波路20(s,t)内を全反射しながら当該光導波路20(s,t)からほとんど外部に漏れることなく進行して当該光導波路20(s,t)の出射面20e(図5(B)参照)に到達し、出射面20e上の所定位置(レーザ光を長軸方向に集光する位置:Pout、図5(B)参照)に配置された光ファイバ30(s,t)の入射面に入射される。
なお、既に説明したように、光導波路20(s,t)の入射面を平面に形成しており、発光部12(m,n)との距離L1を後述する図7(A)の距離L1より小さくしているため、光導波路20(s,t)の短軸方向の幅WD1を後述する図7(A)の幅WD2より狭くしている。
このため、光ファイバ30(s,t)の径Df1を後述する図7(A)の径Dfより小さくすることができる。
【0027】
図5(B)は短軸方向から見た図であり、レーザ光を長軸方向に集光する様子を示している。
図5(B)において、光導波路20(s,t)の各レンズLe(1,1)〜(5,1)の焦点距離f1〜f5(図示せず)、各レンズLe(1,1)〜(5,1)の中心P(1,1)〜(5,1)は、図4(C)で説明したように設定されている。
これにより、各発光部12(1,1)〜(5,1)から出射されたレーザ光2(1,1)〜(5,1)は、対応するレンズLe(1,1)〜(5,1)を透過すると、光導波路20(1,1)の出射面20e上の所定位置Poutに集光される。
なお、光導波路20(s,t)の入射面から出射面までの長さLdhは、任意の長さに設定することが可能である。発光部12(m,n)の長軸方向の数(この例では5個)、及び発光部の長軸方向の間隔Dhより、光ファイバ30(s,t)への入射角θoutが適切な値となるように、長さLdhを適切に設定することが可能である。
【0028】
また、光導波路20(s,t)の入射面をZ軸に垂直な平面状としているため、発光部12(m,n)から光導波路20(s,t)の入射面までの距離L1を約0.05[mm]〜0.10[mm]へと、より小さくすることができる。これにより、光導波路20(s,t)の短軸方向の幅WD1を約0.25[mm]へとより狭くすることができ、光ファイバ30(s,t)の径Df1を約0.30[mm]へとより小さくすることができる。
【0029】
そして、光導波路20(1,1)の出射面20e上の所定位置Poutに、光ファイバ30(1,1)の入射面を配置し、集光したレーザ光を光ファイバ30(1,1)に入射する。
光ファイバ30(1,1)に入射されたレーザ光は、光ファイバ30(1,1)内を全反射しながら進行して光ファイバ30(1,1)の出射面から出射される。そして図1に示すように、光ファイバ30(s,t)の各出射面をバンドル部100aにて束ね、各光ファイバ30(s,t)の出射面から出射されるレーザ光を集光レンズ100にて集光し、レーザ加工等に利用する。なお、光ファイバ30(s,t)の出射面を束ねたバンドル部100aは、光ファイバ30(s,t)の長さの範囲内であれば任意の位置に配置することができる。
【0030】
●[光導波路のアレイ化と、光ファイバの入射面側のアレイ化(図6)]
次に図6を用いて、光導波路20(s,t)と光ファイバ30(s,t)とを適切な位置に配置することをより容易に実現可能な光導波路アレイ200と光ファイバアレイ300の例を説明する。
図6に示すように、光導波路20(s,t)は等間隔に配置され、各光導波路20(1,1)〜(1,8)の入射面が、対応する発光部12(1,1)〜(1,8)と向き合うように配置される。そして、各光導波路をクラッド材、全反射材等の充填材22にて充填し、光導波路アレイ200を形成する。なお、充填材22を充填せず、クラッド部を含んだ略直方体の形状に各光導波路を形成して各光導波路を固着するようにしてもよい。
このようにして、光導波路20(s,t)を短軸方向に積層し、光導波路アレイ200を形成する。
【0031】
また、図6に示すように、光ファイバ30(s,t)も等間隔に配置され、各光ファイバ30(1,1)〜(1,8)の入射面が、対応する光導波路20(1,1)〜(1,8)の出射面20e上の所定位置と当接するように配置される。そして、各光ファイバをクラッド材、全反射材等の充填材23にて充填し、光ファイバアレイ300を形成する。
この場合、光ファイバアレイ300は、光ファイバの入射面近傍のみを充填材23にて充填すればよく、光ファイバの出射面側まで充填材23を充填する必要はない。
【0032】
●[光導波路の入射面にレンズを形成した場合(図7)]
次に図7を用いて、入射面にレンズを形成した光導波路25を用いた場合の例を、上記に説明した本実施の形態の効果と比較するために説明する。
図7に示すレーザ発光装置は、本実施の形態(図1)に示すレーザ発光装置に対して、光導波路25(s,t)の入射面にレンズLe(1,1)〜(5,1)を形成している。この場合、レンズLeの位置誤差による集光位置(Pout)の誤差を小さくするために、距離L1を約0.50[mm]に設定している。これにより、光導波路25(s,t)の短軸方向の幅WD2は、約0.35[mm]になり、光ファイバ35(s,t)の径Dfは、約0.40[mm]になる。
このように、光ファイバ35の径Dfが図5に示した本実施の形態の光ファイバ30の径Df1より大きくなるので、単位面積あたりのレーザ光の密度が低下する。
【0033】
●[本実施の形態の効果(図8)]
次に図8を用いて、本実施の形態におけるレーザ発光装置(図1〜図6)と、比較用に説明した上記のレーザ発光装置(図7)との差を説明することで、本実施の形態の効果を説明する。
図8(A)は、比較用に説明したレーザ発光装置(図7)における、光ファイバ35(s,t)の径Df、及び当該光ファイバ35(s,t)の入射面に到達したレーザ光2(m,n)の形状を示している。
この場合、当該光ファイバ35(s,t)の入射面に到達したレーザ光2(m,n)の長軸方向(X軸方向)の長さWfは約0.10[mm]であり、短軸方向(Y軸方向)の長さWsは約0.35[mm](光導波路25の出射面における短軸方向の幅、つまり幅WD2)である。当該レーザ光2(m,n)を入射させるための光ファイバ35(s,t)の径Dfは約0.40[mm]となる。
【0034】
これに対し、図8(B)は、本実施の形態で説明したレーザ発光装置(図1〜図6)における、光ファイバ30(s,t)の径Df1、及び当該光ファイバ30(s,t)の入射面に到達したレーザ光2(m,n)の形状を示している。
この場合、当該光ファイバ30(s,t)の入射面に到達したレーザ光2(m,n)の長軸方向(X軸方向)の長さWfは約0.10[mm]であり、短軸方向(Y軸方向)の長さWs1は約0.25[mm](光導波路20の出射面における短軸方向の幅、つまり幅WD1)である。当該レーザ光2(m,n)を入射させるための光ファイバ30(s,t)の径Df1は約0.30[mm]となる。
従って、光ファイバ30(s,t)の径Df1を約0.75倍(0.30/0.40=0.75)にすることができ、図1に示すバンドル部100aの径も約0.75倍にすることができる。この場合、集光したレーザ光のビーム半径と広がり角(半角)との積で表されるBeam Parameter Product(ビーム品質)を約30%向上(1/0.75=1.333)させることができる。
【0035】
本発明の光導波路20、光導波路アレイ200、及びレーザ発光装置は、本実施の形態で説明した形状、構成等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
本発明の光導波路20、光導波路アレイ200、及びレーザ発光装置は、レーザ加工装置等、レーザ光を用いた種々の装置に適用することが可能である。
また、光導波路20及び光ファイバ30の形状、サイズ等は、実施の形態の説明及び図に限定されるものではない。また、石英ガラス等、種々の材質を用いることができる。
また、各実施の形態における光導波路20における全体形状は、図2に示す略直方体に限定されるものではない。
本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
【0036】
【発明の効果】
以上説明したように、請求項1または2に記載の光導波路を用いれば、複数の発光部から出射された各レーザ光を、短軸方向の幅がより狭い光導波路にて集光することができるので、より効率良く集光でき、且つより容易に実現できる。
また、請求項3に記載の光導波路アレイを用いれば、発光部に対して光導波路アレイを適切な位置に配置することがより容易である。
また、請求項4に記載のレーザ発光装置を用いれば、長軸方向及び短軸方向に2次元状に配置された発光部(レーザ光の発光部)から出射されたレーザ光を、長軸方向及び短軸方向に、より効率良く集光することができる。
【図面の簡単な説明】
【図1】本発明の光導波路20を用いた光導波路アレイ200を、レーザ発光装置に適用した一実施の形態の概略構成図である。
【図2】本実施の形態における、光導波路20の構成を説明する図である。
【図3】光導波路20の入射面にレンズを設けずに、平面とした場合の効果について説明する図である。
【図4】レンズLe(1,1)の中心P(1,1)の位置と、焦点距離fと、レンズLe(1,1)を透過したレーザ光2(1,1)の状態との関係について説明する図である。
【図5】本実施の形態における、各構成要素の配置と、光ファイバまでのレーザ光の集光状態を説明する図である。
【図6】本実施の形態における、光導波路のアレイ化と、光ファイバの入射面側のアレイ化を説明する図である。
【図7】本実施の形態の効果を比較するために、本実施の形態とは異なるレーザ発光装置における、各構成要素の配置と、光ファイバまでのレーザ光の集光状態を説明する図である。
【図8】本実施の形態の効果を説明する図である。
【図9】従来の半導体レーザ集光装置の概略構成を説明する図である。
【図10】従来の半導体レーザ集光装置において、各レンズの配置位置と、各レンズを通過したレーザ光が集光される様子を説明する図である。
【符号の説明】
2(m,n) レーザ光
10 半導体レーザアレイ
12(m,n) 発光部
20(s,t) 光導波路
20a 透過領域
20c 入射面
20e 出射面
200 光導波路アレイ
Le(m,n) レンズ
30(s,t) 光ファイバ
100 集光レンズ
100a バンドル部
Claims (4)
- 長軸と短軸を有する楕円状に拡がりながら進行するレーザ光が入射される入射面と、入射されたレーザ光を出射する出射面と、入射面から入射されたレーザ光が出射面に向かって透過する透過領域とを有する光導波路であって、
光導波路は、
入射されるレーザ光の進行方向に対して2層構造に形成されており、
1層目と2層目との境界部には入射されたレーザ光を長軸方向に対して屈折させるレンズ部が形成されており、
入射されるレーザ光の進行方向に対して垂直な平面状の入射面が形成されており、
短軸方向の幅はほぼ均一の幅に形成されている、
ことを特徴とする光導波路。 - 請求項1に記載の光導波路であって、長軸方向に第1所定間隔で配置された複数の発光部から出射される複数のレーザ光を集光する光導波路であって、
光導波路は、更に、
各発光部に対応させた複数のレンズ部を備え、
入射された各レーザ光が、出射面上の所定位置に、長軸方向に対して各々集光されるように各レンズ部が形成されている、
ことを特徴とする光導波路。 - 請求項2に記載の光導波路を短軸方向に積層した光導波路アレイであって、
光導波路アレイに入射される複数のレーザ光は、長軸方向に第1所定間隔で配置されているとともに短軸方向に第2所定間隔で配置されている複数の発光部から出射され、
各光導波路が、短軸方向における各発光部の位置に対応させて積層されている、
ことを特徴とする光導波路アレイ。 - 請求項3に記載の光導波路アレイと、長軸方向に第1所定間隔で配置されているとともに短軸方向に第2所定間隔で配置されている複数の発光部を有する半導体レーザアレイと、光ファイバとを備えたレーザ発光装置であって、
半導体レーザアレイは、長軸と短軸を有する楕円状に拡がりながら進行するレーザ光を各発光部から出射し、
光導波路アレイは、
短軸方向に各光導波路が積層されるように配置されるとともに、各光導波路の各レンズ部が各発光部に対応するように配置され、且つ発光部と平面状の入射面とをほぼ当接させるように配置され、
各光導波路毎に、長軸方向毎の発光部のグループから出射される複数のレーザ光を、各光導波路の出射面上の所定位置に、長軸方向に対して集光し、前記出射面上の所定位置から集光したレーザ光を出射し、
各光ファイバの入射面を各光導波路の出射面上の所定位置に配置し、各光ファイバの出射面からレーザ光を出射する、
ことを特徴とするレーザ発光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003162568A JP2004361837A (ja) | 2003-06-06 | 2003-06-06 | 光導波路、光導波路アレイ、及びレーザ発光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003162568A JP2004361837A (ja) | 2003-06-06 | 2003-06-06 | 光導波路、光導波路アレイ、及びレーザ発光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004361837A true JP2004361837A (ja) | 2004-12-24 |
Family
ID=34054682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003162568A Pending JP2004361837A (ja) | 2003-06-06 | 2003-06-06 | 光導波路、光導波路アレイ、及びレーザ発光装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004361837A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022259986A1 (ja) * | 2021-06-07 | 2022-12-15 | ヌヴォトンテクノロジージャパン株式会社 | 発光装置 |
CN118412731A (zh) * | 2024-07-02 | 2024-07-30 | 联创电子科技股份有限公司 | 光发射装置、光发射方法、激光雷达及车辆 |
-
2003
- 2003-06-06 JP JP2003162568A patent/JP2004361837A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022259986A1 (ja) * | 2021-06-07 | 2022-12-15 | ヌヴォトンテクノロジージャパン株式会社 | 発光装置 |
CN118412731A (zh) * | 2024-07-02 | 2024-07-30 | 联创电子科技股份有限公司 | 光发射装置、光发射方法、激光雷达及车辆 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3917491B2 (ja) | レンズアレイ及びレーザ集光装置 | |
JP5717714B2 (ja) | 合波装置、合波方法、及び、ldモジュール | |
JP2008501144A (ja) | 光ファイバへの2次元のレーザアレイスタックの出力の最適な整合 | |
JP6285650B2 (ja) | レーザ装置 | |
JP5507837B2 (ja) | レーザビームを形成するための装置 | |
JP2007115729A (ja) | レーザ照射装置 | |
JP2008028019A (ja) | 集光ブロック | |
CN107991739A (zh) | 用于耦合光的光栅和透镜系统 | |
JP7252198B2 (ja) | ビーム重ね機構を備えた光ファイババンドル | |
CN106461923A (zh) | 具有二极管激光条平面阵列的光源 | |
JP6093388B2 (ja) | 合波装置、合波装置の製造方法、及び、ldモジュール | |
JP2009271206A (ja) | レーザ光整形光学系及びそれを用いたレーザ光供給装置 | |
JP3932982B2 (ja) | 集光用光回路及び光源装置 | |
JP3994961B2 (ja) | 光導波路アレイ及びレーザ発光装置 | |
JP2008064994A (ja) | 光源装置および光学装置 | |
JP2008203598A (ja) | レーザー集光装置 | |
JP7097372B2 (ja) | 光ビームをコリメートするための装置、高出力レーザおよび集光光学ユニット、並びに光ビームをコリメートするための方法 | |
JP2004361837A (ja) | 光導波路、光導波路アレイ、及びレーザ発光装置 | |
JP4211837B2 (ja) | 光導波路、光導波路アレイ及びレーザ集光装置 | |
JP2003344803A (ja) | レンズアレイ、光整列器及びレーザ集光装置 | |
JP2004354597A (ja) | 光導波路、光導波路アレイ、及びレーザ発光装置 | |
JP2004287181A (ja) | 光導波路、光導波路アレイ及びレーザ集光装置 | |
JP3952894B2 (ja) | レーザ発光装置 | |
JP2007041623A5 (ja) | ||
JP3802456B2 (ja) | 積層型光導波路及びレーザ発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060301 |