JP2009129955A - 光学系及び原子発振器 - Google Patents

光学系及び原子発振器 Download PDF

Info

Publication number
JP2009129955A
JP2009129955A JP2007300183A JP2007300183A JP2009129955A JP 2009129955 A JP2009129955 A JP 2009129955A JP 2007300183 A JP2007300183 A JP 2007300183A JP 2007300183 A JP2007300183 A JP 2007300183A JP 2009129955 A JP2009129955 A JP 2009129955A
Authority
JP
Japan
Prior art keywords
light
gas cell
optical system
atomic oscillator
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007300183A
Other languages
English (en)
Other versions
JP2009129955A5 (ja
Inventor
Hiroshi Nomura
博 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007300183A priority Critical patent/JP2009129955A/ja
Priority to US12/271,057 priority patent/US20090128820A1/en
Publication of JP2009129955A publication Critical patent/JP2009129955A/ja
Publication of JP2009129955A5 publication Critical patent/JP2009129955A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】受光素子を発光素子と同一側に併置することが可能となり、受光素子を電気的に接続するボンディングワイヤを短くしてモジュール実装を容易とし、且つ、S/Nを改善した光学系を備えた原子発振器を提供する。
【解決手段】この光学系1は、波長が異なるコヒーレント光としての2種類の共鳴光を入射したときの量子干渉効果による光吸収特性を利用して発振周波数を制御する原子発振器100の光学系1であって、ガスセル8中の金属原子に共鳴光3を供給するコヒーレント光源2と、共鳴光3に含まれるp偏光5を通過させs偏光13を光路変換する偏光分離手段4と、円偏光を直線偏光に若しくはこの逆に変換する1/4λ波長板6と、ガス状の金属原子を封入したガスセル8と、ガスセル8を通過した光9を再びガスセル8に導く導光手段10と、偏光分離手段4により光路変換されたs偏光14を検出する光検出器15と、を備えている。
【選択図】図1

Description

本発明は、原子発振器の光学系に関し、さらに詳しくは、原子発振器を構成する光学系に含まれる光源と受光素子の実装技術に関するものである。
ルビジウム、セシウム等のアルカリ金属を用いた原子発振器は、原子のエネルギ遷移を利用する際に、原子をガス状態に保つ必要があるため、原子を気密封入したガスセルを高温に保って動作させている。原子発振器の動作原理は、光とマイクロ波を利用した二重共鳴法と、2種類のレーザ光による量子干渉効果(以下CPT:Coherent Population Trappingと記す)を利用する方法に大別されるが、両者共にガスセルに入射した光が、原子ガスにどれだけ吸収されたかを反対側に設けられた検出器で検出することにより、原子共鳴を検知して制御系にて水晶発振器などの基準信号をこの原子共鳴に同期させて出力を得ている。ここで、CPTを利用した原子発振器は、発光素子、ガスセル、及び受光素子を一体的に構成して光学系を形成している(特許文献1参照)。
US6806784B2
しかし、特許文献1に開示されている従来の光学系の構成では、図5に示すように発光素子93、ガスセル95、及び受光素子90が縦積みに配置されている。このため、最上面に配置した受光素子90を電気的に接続するボンディングワイヤ91が長くなり、モジュールの実装構造が複雑となるばかりでなく、受光素子90から得られる信号が微弱なためにワイヤに重畳するノイズの影響を受けやすくなりS/N特性が良くないといった問題もある。
また、同一出願人による発明として、図6のように、発光素子102と受光素子104を同一基板112に実装した光学系の場合、ガスセル103の上に反射ミラー110を備え、発光素子102から発光された共鳴光113が、ガスセル103を透過して反射ミラー110により反射されて再びガスセル103に入射して受光素子104により受光される光学系がある。
しかし、構造上、発光素子102と受光素子104を同一基板上に離して配置する必要があるため、反射ミラー110に所定の傾斜角度を設けなければならない。その結果、反射ミラー110の角度調整が必要であり調整に手間がかかるといった問題がある。また、反射ミラー110が傾斜するために、光学系全体が高くなり、小型化に対して不利となるといった問題がある。
本発明は、かかる課題に鑑み、発光素子から発光した光の波長を偏光素子で1/4λずらして折り返すことにより、ガスセル中を光が往復通過して直交する偏光状態に変換し、偏光分離素子で光路変換されることにより、受光素子と発光素子とをガスセルに対して同一側に近接して併置することが可能となり、受光素子を電気的に接続するボンディングワイヤを短くしてモジュール実装を容易とし、且つ、S/Nを改善した光学系を備えた原子発振器を提供することを目的とする。
本発明はかかる課題を解決するために、波長が異なるコヒーレント光としての2種類の共鳴光を入射したときの量子干渉効果による光吸収特性を利用して発振周波数を制御する原子発振器の光学系であって、前記共鳴光を出射するコヒーレント光源と、前記コヒーレント光源の出射側に配置され前記共鳴光に含まれるp偏光、或いはs偏光のうち何れか一方の偏光を通過させ、他方の偏光を光路変換して出射する偏光分離手段と、前記偏光分離手段の出射側に配置され円偏光を直線偏光に、若しくはこの逆に変換する1/4λ波長板と、ガス状の金属原子を封入したガスセルと、前記ガスセルを通過した光を折り返し光として再び該ガスセルに導く導光手段と、前記ガスセル及び前記1/4λ波長板を通過し前記偏光分離手段により光路変換された前記折り返し光を検出する光検出手段と、を備えたことを特徴とする。
本発明の原子発振器は、レーザ光などのコヒーレント光の量子干渉効果を利用したものである。この方式は、2つの基底準位が共鳴光を受けて、共通の励起準位と共鳴結合している3準位系(例えばΛ型準位系)において、同時に照射される2つの共鳴光の周波数が正確に基底準位1と基底準位2のエネルギ差に一致すると、3準位系は2つの基底準位の重ね合わせの状態になり、励起準位3への励起が停止する。CPTはこの原理を利用して、2つの共鳴光の一方或いは両方の波長を変化させたときに、ガスセルでの光吸収が停止する状態を検出して利用するものである。
そして、本発明の光学系は、コヒーレント光源と光検出手段とをガスセルに対して同一側に実装し、コヒーレント光源からの共鳴光に含まれるp偏光が偏光分離手段を通過して1/4λ波長板により円偏光に変換される。その円偏光はガスセルを通過して導光手段により折り返されて再びガスセルを通過して、1/4λ波長板により直線偏光に変換されてs偏光となり、そのs偏光が光検出手段により検出される。これにより、1つの偏光分離手段により共鳴光をガスセルに往復させることができる。
また、前記導光手段は、前記ガスセルを通過した円偏光が前記導光手段により反射して同一光路を折り返すように構成されていることを特徴とする。
光がガスセルを通過するときに、ドップラ拡がりという現象が発生する。この現象は、同じ光路を光が往復することでキャンセルすることが期待できる。そこで本発明では、ガスセルを通過した光が同一光路を通過するように導光手段を構成する。これにより、ドップラ拡がりをキャンセルすることが期待できる。
また、前記光検出手段と前記コヒーレント光源とをガスセルに対して同一側に併置したことを特徴とする。
本発明の光学系は、コヒーレント光源と光検出手段とをガスセルに対して同一側に実装し、透過光が光検出手段により受光されるように偏光分離手段を構成した。これにより、ボンディングワイヤが短くなり、信号のS/N特性を改善すると共に、光学系全体の実装も容易にすることができる。
また、少なくとも前記ガスセル、又は/及び、導光手段が前記同一光路上に配置されていることを特徴とする。
ガスセルと導光手段は、光が通過する光路にのみ構成されていれば十分である。従って、光が通過しない場所にあるガスセルと導光手段は特に必要ではない。そこで本発明では、光路になる部分のみにガスセル、又は/及び、導光手段を配置するように構成する。これにより、ガスセルと導光手段の大きさを最小限にして、部品コストを低減することができる。
また、前記導光手段は、反射部材により構成されていることを特徴とする。
導光手段に入射した円偏光を同じ光路に折り返すにはミラー等の反射部材が最適である。これにより、円偏光が入射した光路と同じ光路に戻ることができる。
また、前記コヒーレント光は、レーザ光であることを特徴とする。
普通の光は、いろいろな波長が混ざり位相がランダムな光である。これに対してレーザ光は波長の単色性が良く、位相の揃った光である。このような光の波長や位相の安定性の尺度としてコヒーレンスが定義されている。コヒーレンスが良い、すなわち波長や位相が安定な光は量子干渉効果を起こすことができる。その点ではレーザ光は最適である。
また、前記ガス状の金属原子は、ルビジウム、又はセシウムであることを特徴とする。
セシウム原子を使えば、精度の高い原子発振器を実現できる。また、ルビジウム原子は手軽に広く普及している。よって、原子発振器の要求性能とコストを考慮して、いずれかの金属原子を選ぶことができる。
また、前記コヒーレント光源から出射した光を集光し、且つ平行光に補正する受動光学素子を前記コヒーレント光源と前記ガスセルとの間に配置したことを特徴とする。
光学系には、コヒーレント光源から出射した光を集光して、平行光になるように補正するためにレンズや波長板といった受動光学素子が使用される。この受動光学素子は、ガスセルに入射する前であればどこに配置しても構わない。そこで本発明では、受動光学素子をコヒーレント光源とガスセルとの間に配置する。これにより、光を正確に導光手段に入射させることができる。
また、上記構成による光学系を原子発振器に備えたことを特徴とする。
ガスセルを複数回通過する構造としたことで、より大きなEIT信号を得る光学系とすることができるので、S/Nが向上した高性能な原子発振器を提供することができる。
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の実施形態に係る原子発振器の光学系の要部構成図である。この光学系1は、波長が異なるコヒーレント光としての2種類の共鳴光を入射したときの量子干渉効果による光吸収特性を利用して発振周波数を制御する原子発振器100の光学系1であって、共鳴光3を出射するコヒーレント光源2と、コヒーレント光源2の出射側に配置され共鳴光3に含まれるp偏光(直線偏光)を通過させs偏光(直線偏光)を光路変換する偏光分離手段4と、偏光分離手段4の出射側に配置され直線偏光を円偏光に若しくはこの逆に変換する1/4λ波長板6と、ガス状の金属原子を封入したガスセル8と、ガスセル8を通過した光を再びガスセル8に導く導光手段10と、偏光分離手段4により光路変換されたs偏光を検出する光検出器(光検出手段)15と、を備えている。
原子発振器100は光検出器15の出力信号により、発振周波数を制御する周波数制御回路11を更に備えて構成されている。
尚、導光手段10により反射された円偏光11は折り返し光として再びガスセル8に入射されて円偏光12となり、1/4λ波長板6によりs偏光13(直線偏光)に変換されて、偏光分離手段4に入射される。また、本発明の主旨は、原子発振器を構成する光学系の構成にあるので、原子発振器の周波数制御についての詳細な説明は省略する。
即ち、本実施形態の原子発振器100は、レーザ光などのコヒーレント光の量子干渉効果を利用したものである。この方式は、2つの基底準位が共鳴光を受けて、共通の励起準位と共鳴結合している3準位系(例えばΛ型準位系)において、同時に照射される2つの共鳴光の周波数が正確に基底準位1と基底準位2のエネルギ差に一致すると、3準位系は2つの基底準位の重ね合わせの状態になり、励起準位3への励起が停止する。
CPTはこの原理を利用して、2つの共鳴光の一方或いは両方の波長を変化させたときに、ガスセルでの光吸収が停止する状態を検出して利用するものである。
そして、本発明の光学系1は、コヒーレント光源2と光検出器15とをガスセルに対して同一側に実装し、コヒーレント光源2からの共鳴光3に含まれるp偏光5が偏光分離手段4を通過して1/4λ波長板6により円偏光7に変換される。その円偏光7はガスセル8を通過して導光手段10により折り返されて、折り返し光として再びガスセル8を通過して、1/4λ波長板6により直線偏光に変換されてs偏光13となり、そのs偏光13が偏光分離手段4で分離され光検出器15により検出される。これにより、1つの偏光分離手段4により共鳴光3をガスセル8に往復させることができる。
図2はCPT方式による原子の3準位系を説明する一例である。原子発振器に用いられるルビジウムやセシウムの基底準位は、核スピン−電子スピン相互作用による超微細構造により2種類の基底準位に分かれている。これらの基底準位の原子は光を吸収して、よりエネルギーの高い準位へ励起する。
また、図2の様に2つの基底準位が光を受けて、共通の励起準位と共鳴結合している状態を2光子共鳴と言う。
図2において、基底準位1(23)と基底準位2(24)は準位のエネルギが若干異なるため、共鳴光もそれぞれ共鳴光1(20)と共鳴光2(22)と波長が若干異なる。同時に照射される共鳴光1(20)と共鳴光2(22)の周波数差(波長の差)が正確に基底準位1(23)と基底準位2(24)のエネルギ差に一致すると、図2の系は2つの基底準位の重ね合わせ状態になり、励起準位21への励起が停止する。CPTはこの原理を利用して、共鳴光1(20)と共鳴光2(22)のどちらかまたは両方の波長を変化させたときに、ガスセル3での光吸収(つまり励起準位21への転換)が停止する状態を検出、利用する方式である。この光吸収が停止する状態でガスセル3を通過する透過光をEIT信号と呼ぶ。
図3は本発明の第1の実施形態に係る光学系の構成を模式化した図である。この光学系1Aは、基板38上に発光素子(図1のコヒーレント光源2)30と受光素子(図1の光検出器15)37を併置し、夫々の素子がボンディングワイヤ25により基板38に電気的に接続されている。そして、スペーサ31a、31bにより所定の距離を確保して、その上に発光素子30から発光されたコヒーレント光40を集光したり、平行光に変換したり、或いは偏光状態を変える受動光学素子32を備え、その上にビームスプリッタ33と、ビームスプリッタ33により光路変換されたs偏光を基板38に導く第2ミラー39が備えられている。そして、スペーサ45a、45bにより所定の距離を確保して、その上に1/4λ波長板36とガスセル34と第1ミラー35を重ね合わせている。
次に、図3により概略動作について説明する。発光素子30から発光されたコヒーレント光40は、受動光学素子32により集光されて平行光に補正されてビームスプリッタ(偏光分離手段)33に入射する。コヒーレント光40には、p偏光とs偏光が含まれているが、ビームスプリッタ33はp偏光のみを通過させる。通過したp偏光41は、1/4λ波長板36により円偏光に変換され、ガスセル34に入射する。
ガスセル34は2つの波長を有するp偏光41の一方或いは両方の波長を変化させたときに、光吸収が停止するように動作する。ガスセル34を通過したp偏光41は第1ミラー35により反射され、同じ光路を通って再びガスセル34に入射する。ここで、光がガスセル34を通過するときに、ドップラ拡がりという現象が発生することが知られているが、これについて補足する。セル内の原子には速度の速いものから遅いものまで色々の速度のものが混在して分布している。このうち速度の速い原子(励起状態の原子)がEIT現象に寄与すると、ドップラー効果により原子から見た光の波長が見かけ上変化するため、EIT現象における検出幅(ガスセルでの光吸収が停止する波長の範囲)を広げてしまうことが知られている。なお、この現象は、同じ光路を光が往復することでキャンセルすることが期待できる。
そこで本実施形態では、ガスセル34を通過した円偏光42が同一光路を通過するように第1ミラー35をp偏光41の光路と直交するように構成する。これにより、p偏光41は全反射されてドップラ拡がりをキャンセルすることが期待できる。ガスセル34を通過した円偏光42は、1/4λ波長板36によりs偏光(直線偏光)に変換されて再びビームスプリッタ33に入射する。ビームスプリッタ33はp偏光は通過させるが、s偏光は通過させないで光路変換する特性をもったもの(PBS)を使用し、s偏光43は直角に光路変換されて第2ミラー39に入射して、直角に反射されて受光素子37により受光される。尚、発光素子30として面発光型レーザ(VCSEL)、受光素子37としてフォトダイオードが良く使用される。
尚、光学系1Aは、コヒーレント光源30と受光素子37とをガスセルに対し同一側に実装し、透過光が受光素子37により受光されるようにビームスプリッタ33と第2ミラー39を構成した。これにより、ボンディングワイヤ25が短くなり、信号のS/N特性を改善すると共に、光学系1A全体の実装も容易にすることができる。
また、共鳴光40に含まれるp偏光はビームスプリッタ33をそのまま通過するが、s偏光はビームスプリッタ33により光路が変換される。そこで本発明では、ビームスプリッタ33を通過したp偏光が1/4λ波長板36を通過することにより円偏光に変換し、その円偏光41がガスセル34を通過して第1ミラー35により反射されて同じ光路を折り返して、再びガスセル34を通過して1/4λ波長板36によりs偏光に変換されてビームスプリッタ33により光路変換される。これにより、1つのビームスプリッタ33により光路を分離することができる。
尚、本実施形態のコヒーレント光源30は、レーザ光を使用している。レーザ光は波長の単色性が良く、位相の揃った光である。このような光の波長や位相の安定性の尺度としてコヒーレンスが定義されている。コヒーレンスが良い、すなわち波長や位相が安定な光は量子干渉効果を起こすことができる。その点ではレーザ光は最適である。
また、ガスセル34に使用するガス状の金属原子は、ルビジウム、又はセシウムである。1次原子標準器に使われるセシウム原子を使えば、精度の高い原子発振器を実現できる。また、2次標準器で使われるルビジウム原子は手軽に広く普及しているため、これを使えば一般的には小型で低価格な原子発振器を実現できる。
従って、金属原子に何を用いるかは、使用目的により選択すればよい。なお、本実施形態ではルビジウム、セシウムを用いたがΛ型準位系等の3準位系を持った原子であればどのような原子であっても構わない。
また、偏光分離手段によりp偏光を通過し、s偏光を光路変換するとしているが、s偏光を通過し、p偏光を光路変換しても構わない。
図4は本発明の第2の実施形態に係る光学系の構成を模式化した図である。同じ構成要素には図3と同じ参照番号を付して説明する。この光学系1Bは、ガスセル46と第1ミラー47が、光路をカバーする範囲内に構成している点である。即ち、ガスセル46と第1ミラー47は、光が通過する光路にのみ構成されていれば十分である。
従って、光が通過しない場所にあるガスセル46と第1ミラー47は特に必要ではない。そこで本実施形態では、光路になる部分のみにガスセル46、又は/及び、第1ミラー47を配置するように構成する。これにより、ガスセル46と第1ミラー47の大きさを最小限にして、部品コストを低減することができる。また、1/4λ波長板36も光路にあれば十分であるので、同じように大きさを最小限にすることができる。
本発明の実施形態に係る原子発振器の光学系の要部構成図である。 CPT方式による原子の3準位系を説明する図である。 本発明の第1の実施形態に係る光学系の構成を模式化した図である。 本発明の第2の実施形態に係る光学系の構成を模式化した図である。 特許文献1に開示されている従来の光学系の構成を示す図である。 同一出願人による光学系の構成を示す図である。
符号の説明
1 光学系、2 コヒーレント光源、3 共鳴光、4 偏光分離手段、5 p偏光、6 1/4λ波長板、7円偏光、8 ガスセル、10 導光手段、14 s偏光、15 光検出器、16 周波数制御回路、100 原子発振器

Claims (9)

  1. 波長が異なるコヒーレント光としての2種類の共鳴光を入射したときの量子干渉効果による光吸収特性を利用して発振周波数を制御する原子発振器の光学系であって、
    前記共鳴光を出射するコヒーレント光源と、
    前記コヒーレント光源の出射側に配置され前記共鳴光に含まれるp偏光、或いはs偏光のうち何れか一方の偏光を通過させ、他方の偏光を光路変換して出射する偏光分離手段と、
    前記偏光分離手段の出射側に配置され円偏光を直線偏光に、若しくはこの逆に変換する1/4λ波長板と、
    ガス状の金属原子を封入したガスセルと、
    前記ガスセルを通過した光を折り返し光として再び該ガスセルに導く導光手段と、
    前記ガスセル及び前記1/4λ波長板を通過し前記偏光分離手段により光路変換された前記折り返し光を検出する光検出手段と、を備えたことを特徴とする原子発振器の光学系。
  2. 前記導光手段は、前記ガスセルを通過した光が前記導光手段により反射して同一光路を折り返すように構成されていることを特徴とする請求項1に記載の原子発振器の光学系。
  3. 前記光検出手段と前記コヒーレント光源とを、前記ガスセルに対して同一側に併置したことを特徴とする請求項1に記載の原子発振器の光学系。
  4. 少なくとも前記ガスセル、又は/及び、導光手段が前記同一光路上に配置されていることを特徴とする請求項2に記載の原子発振器の光学系。
  5. 前記導光手段は、反射部材により構成されていることを特徴とする請求項1、2又は4に記載の原子発振器の光学系。
  6. 前記コヒーレント光は、レーザ光であることを特徴とする請求項1に記載の原子発振器の光学系。
  7. 前記ガス状の金属原子は、ルビジウム、又はセシウムであることを特徴とする請求項1に記載の原子発振器の光学系。
  8. 前記コヒーレント光源から発光された光を集光し、且つ平行光に補正する受動光学素子を前記コヒーレント光源と前記ガスセルとの間に配置したことを特徴とする請求項1乃至7の何れか一項に記載の原子発振器の光学系。
  9. 請求項1乃至8の何れか一項に記載の光学系を備えたことを特徴とする原子発振器。
JP2007300183A 2007-11-20 2007-11-20 光学系及び原子発振器 Withdrawn JP2009129955A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007300183A JP2009129955A (ja) 2007-11-20 2007-11-20 光学系及び原子発振器
US12/271,057 US20090128820A1 (en) 2007-11-20 2008-11-14 Optical system and atomic oscillator background

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300183A JP2009129955A (ja) 2007-11-20 2007-11-20 光学系及び原子発振器

Publications (2)

Publication Number Publication Date
JP2009129955A true JP2009129955A (ja) 2009-06-11
JP2009129955A5 JP2009129955A5 (ja) 2011-01-13

Family

ID=40641594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300183A Withdrawn JP2009129955A (ja) 2007-11-20 2007-11-20 光学系及び原子発振器

Country Status (2)

Country Link
US (1) US20090128820A1 (ja)
JP (1) JP2009129955A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035402A (ja) * 2009-08-03 2011-02-17 Northrop Grumman Systems Corp 原子時計システムおよび方法
JP2011237401A (ja) * 2010-02-04 2011-11-24 Honeywell Internatl Inc チップスケール原子時計のvcselを安定化させる設計および方法
JP2011257375A (ja) * 2010-02-04 2011-12-22 Honeywell Internatl Inc 2つの熱領域をそなえるチップスケール原子時計
KR20120126035A (ko) * 2010-07-14 2012-11-20 세이코 엡슨 가부시키가이샤 광학 모듈 및 원자 발진기
US9136851B2 (en) 2013-02-14 2015-09-15 Ricoh Company, Ltd. Atomic oscillator, method of detecting coherent population trapping resonance and magnetic sensor
JP2018085719A (ja) * 2016-10-11 2018-05-31 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation 原子時計システム
JP2018146310A (ja) * 2017-03-02 2018-09-20 株式会社リコー 磁気センサ、生体磁気測定装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH703111A1 (fr) * 2010-05-07 2011-11-15 Suisse Electronique Microtech Dispositif pour horloge atomique.
WO2011026252A1 (fr) 2009-09-04 2011-03-10 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Dispositif pour horloge atomique
US8816783B2 (en) 2009-09-04 2014-08-26 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Device for an atomic clock
JP2011158384A (ja) * 2010-02-02 2011-08-18 Seiko Epson Corp 微粒子検出装置
EP2738628B1 (fr) * 2011-03-09 2016-01-06 Rolex Sa Montre bracelet avec oscillateur atomique
EP2498150A1 (fr) 2011-03-09 2012-09-12 CSEM Centre Suisse D'electronique Et De Microtechnique SA Horloge atomique
US20140028405A1 (en) * 2012-07-27 2014-01-30 Qualcomm Incorporated Low power microfabricated atomic clock
JP2015088622A (ja) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 光学モジュールおよび原子発振器
CN105515580B (zh) * 2014-10-14 2020-07-14 精工爱普生株式会社 量子干涉装置、原子振荡器、电子设备以及移动体
JP2017183377A (ja) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 量子干渉装置、原子発振器、電子機器および移動体
WO2020113147A1 (en) * 2018-11-29 2020-06-04 Rydberg Technologies Inc. A waveguide etalon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263321A (ja) * 1988-08-30 1990-03-02 Yokogawa Electric Corp 周波数標準器
JPH07193499A (ja) * 1993-12-27 1995-07-28 Anritsu Corp 原子発振器
US6320472B1 (en) * 1999-01-26 2001-11-20 Kernco, Inc. Atomic frequency standard
JP2003141771A (ja) * 2001-11-06 2003-05-16 Sharp Corp 光ピックアップ装置
JP2004062934A (ja) * 2002-07-25 2004-02-26 Olympus Corp 光学ヘッド
JP2005522887A (ja) * 2002-04-09 2005-07-28 カリフォルニア インスティテュート オブ テクノロジー 光−電子発振器に基づく原子時計
JP2007178274A (ja) * 2005-12-28 2007-07-12 Seiko Epson Corp 原子周波数取得装置および原子時計

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469443A (en) * 1982-06-01 1984-09-04 The United States Of America As Represented By The Secretary Of The Navy Atmospheric transmissometer
EP0132370B1 (en) * 1983-07-22 1989-03-29 Oki Electric Industry Company, Limited Apparatus for measuring optical transmission factor
JPH0315742A (ja) * 1989-03-23 1991-01-24 Anritsu Corp ガス検出装置
US5327105A (en) * 1991-12-31 1994-07-05 Westinghouse Electric Corp. Gas cell for a miniaturized atomic frequency standard
US6015969A (en) * 1996-09-16 2000-01-18 The Regents Of The University Of California Multiple-wavelength spectroscopic quantitation of light-absorbing species in scattering media
US6806784B2 (en) * 2001-07-09 2004-10-19 The National Institute Of Standards And Technology Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel
US7098744B2 (en) * 2002-12-18 2006-08-29 Hrl Laboratories, Llc Method and apparatus for generating two frequencies having a frequency separation equal to the atomic frequency of an atomic species
DE10336097B3 (de) * 2003-08-06 2005-03-10 Testo Ag Visiereinrichtung für ein Radiometer sowie Verfahren
US7064835B2 (en) * 2003-09-02 2006-06-20 Symmetricom, Inc. Miniature gas cell with folded optics
US7521928B2 (en) * 2006-11-07 2009-04-21 Trustees Of Princeton University Subfemtotesla radio-frequency atomic magnetometer for nuclear quadrupole resonance detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263321A (ja) * 1988-08-30 1990-03-02 Yokogawa Electric Corp 周波数標準器
JPH07193499A (ja) * 1993-12-27 1995-07-28 Anritsu Corp 原子発振器
US6320472B1 (en) * 1999-01-26 2001-11-20 Kernco, Inc. Atomic frequency standard
JP2003141771A (ja) * 2001-11-06 2003-05-16 Sharp Corp 光ピックアップ装置
JP2005522887A (ja) * 2002-04-09 2005-07-28 カリフォルニア インスティテュート オブ テクノロジー 光−電子発振器に基づく原子時計
JP2004062934A (ja) * 2002-07-25 2004-02-26 Olympus Corp 光学ヘッド
JP2007178274A (ja) * 2005-12-28 2007-07-12 Seiko Epson Corp 原子周波数取得装置および原子時計

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035402A (ja) * 2009-08-03 2011-02-17 Northrop Grumman Systems Corp 原子時計システムおよび方法
JP2011237401A (ja) * 2010-02-04 2011-11-24 Honeywell Internatl Inc チップスケール原子時計のvcselを安定化させる設計および方法
JP2011257375A (ja) * 2010-02-04 2011-12-22 Honeywell Internatl Inc 2つの熱領域をそなえるチップスケール原子時計
KR101658264B1 (ko) 2010-07-14 2016-09-20 세이코 엡슨 가부시키가이샤 광학 모듈 및 원자 발진기
KR101336453B1 (ko) 2010-07-14 2013-12-04 세이코 엡슨 가부시키가이샤 광학 모듈 및 원자 발진기
KR20120126035A (ko) * 2010-07-14 2012-11-20 세이코 엡슨 가부시키가이샤 광학 모듈 및 원자 발진기
KR20160111350A (ko) * 2010-07-14 2016-09-26 세이코 엡슨 가부시키가이샤 광학 모듈 및 원자 발진기
KR101690467B1 (ko) 2010-07-14 2016-12-27 세이코 엡슨 가부시키가이샤 광학 모듈 및 원자 발진기
US9136851B2 (en) 2013-02-14 2015-09-15 Ricoh Company, Ltd. Atomic oscillator, method of detecting coherent population trapping resonance and magnetic sensor
US9917592B2 (en) 2013-02-14 2018-03-13 Ricoh Company, Ltd. Atomic oscillator, method of detecting coherent population trapping resonance and magnetic sensor
JP2018085719A (ja) * 2016-10-11 2018-05-31 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation 原子時計システム
US10539929B2 (en) 2016-10-11 2020-01-21 Northrop Grumman Systems Corporation Atomic clock system
US10725431B2 (en) 2016-10-11 2020-07-28 Northrop Grumman Systems Corporation Atomic clock system
JP2018146310A (ja) * 2017-03-02 2018-09-20 株式会社リコー 磁気センサ、生体磁気測定装置

Also Published As

Publication number Publication date
US20090128820A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP2009129955A (ja) 光学系及び原子発振器
JP4952603B2 (ja) 原子発振器
WO2015015628A1 (ja) 磁場計測装置
US20160313417A1 (en) Magnetic Field Measuring Apparatus
CN105515580B (zh) 量子干涉装置、原子振荡器、电子设备以及移动体
US7911611B2 (en) Optical system of atomic oscillator and atomic oscillator
JP6741072B2 (ja) 原子発振器および電子機器
JP2012510609A (ja) 小型核磁気共鳴ジャイロスコープのための小型光学セル
JP2009089116A (ja) 原子発振器用の光学モジュール
JP5892321B2 (ja) 原子発振器用の光学モジュールおよび原子発振器
JP4941249B2 (ja) 光学系及び原子発振器
JP2009231688A (ja) 光学系及び原子発振器
JP2009141048A (ja) 光学系及び原子発振器
JP2009049623A (ja) 原子発振器
US20150116046A1 (en) Optical module and atomic oscillator
JP2001036189A (ja) レーザー発振周波数安定化装置
JP2009123729A (ja) 光学系及び原子発振器
KR102254828B1 (ko) 증기셀을 이용한 분광 장치에서의 신호 증대 방법 및 이를 이용한 분광 장치
CN102736510A (zh) 带有原子振荡器的手表
JP5181815B2 (ja) 光学系及び原子発振器
JP2009283810A (ja) 光学系及び原子発振器
JP5315983B2 (ja) 光モジュールおよび波長制御方法
JP6069886B2 (ja) 量子干渉装置、原子発振器、電子機器及び量子干渉方法
JP2009182562A (ja) 光学系及び原子発振器
JP2009232335A (ja) 光学系及び原子発振器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120411