JP2009086410A - 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置 - Google Patents

防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置 Download PDF

Info

Publication number
JP2009086410A
JP2009086410A JP2007257330A JP2007257330A JP2009086410A JP 2009086410 A JP2009086410 A JP 2009086410A JP 2007257330 A JP2007257330 A JP 2007257330A JP 2007257330 A JP2007257330 A JP 2007257330A JP 2009086410 A JP2009086410 A JP 2009086410A
Authority
JP
Japan
Prior art keywords
film
antiglare
acid
weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007257330A
Other languages
English (en)
Other versions
JP4924344B2 (ja
Inventor
Takaaki Morita
陽明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007257330A priority Critical patent/JP4924344B2/ja
Publication of JP2009086410A publication Critical patent/JP2009086410A/ja
Application granted granted Critical
Publication of JP4924344B2 publication Critical patent/JP4924344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】 液晶表示装置(LCD)等において、表面保護の点から最表面に設けられる防眩フィルムについて、防眩性、白濁防止性、写像性(画像鮮明度)、およびギラツキ防止性の全ての光学性能が、良好である防眩フィルムを提供する。
【解決手段】 表面全体に凹凸部を有する防眩フィルムの所定領域の凹凸部の分布について、3°以内の傾斜角を持つ単位領域の面積の合計が所定領域の全面積の95%以上であり、傾斜角0°を持つ単位領域の面積の合計をαとしたとき、αが所定領域の全面積の0.5〜10%である。かつ3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の面積の総合計が、所定領域の全面積の80%以上であるとともに、該頻出傾斜角の単位領域の凹凸部の分布は、凹凸部の傾斜角と凹凸部個数の分布グラフにおいて、略矩形に近い分布を有するものであるのが、好ましい。
【選択図】 図1

Description

本発明は、防眩フィルム、これを用いた防眩性反射防止フィルム、防眩フィルム及び/又は防眩性反射防止フィルムを用いた偏光板、及び該偏光板を用いた表示装置に関するものである。
一般に、陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、液晶表示装置(LCD)のような表示装置において、表面保護の点から、最表面に防眩フィルムを設けることが行なわれている。このような防眩フィルムは、セルロースアセテート系樹脂(主にトリアセチルセルロース)、ポリエチレンテレフタレート、アクリル系樹脂等の基材フィルム上に防眩層を設けることで作製される。
また、液晶表示用部材に防眩フィルムを用いる場合には、延伸配向した偏光膜基材フィルムにヨウ素や二色性染料を吸着させて偏光膜を形成した後、その両面に保護膜を形成した偏光フィルムの保護膜に用いられる。
具体的には、保護膜として一般的に用いられるトリアセテートフィルム等のセルロースエステルフィルムの最上層に、防眩層を設けることで用いられる。
偏光膜基材としては、主としてポリビニルアルコール(以下PVAとする)及びその誘導体フィルムが使用される。偏光フィルムは、生産工程において、高品質の製品をより効率的に、すなわち、高速性、量産性があり、歩留りよく、低コストで生産するため、防眩層を形成したトリアセテートフィルム等のセルロースエステルフィルムと偏光膜を積層形成するのではなく、先にトリアセテートフィルム等のセルロースエステルフィルムに防眩層を形成しておき、これを偏光膜に積層する方法が一般的に行なわれている。
また、偏光膜に積層する場合、偏光膜基材フィルムであるPVAとの密着性を向上するため、防眩層を形成したトリアセテートフィルム等のセルロースエステルフィルムをアルカリ鹸化処理しておいてから積層する。
一方、防眩フィルムは、最表面に用いられることから、ディスプレイ装置の保護膜としての機能が期待され、具体的には、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性等の光学性能を有し、及び、保存条件に関わらず、硬度や耐擦傷性が強いこと、が求められる。
従来、防眩フィルム表面の凹凸形状については、種々研究されて、多くの技術が提案されており、下記のような特許文献がある。
特開2007−108724号公報 特許文献1には、防眩フィルム表面の凹凸部の分布において、傾斜角が1°以下である凹凸部の割合が、全体の15%〜70%であり、傾斜角10°以上である凹凸部の割合が3%以下である防眩フィルムが開示されている。 特開2005−195819号公報 特許文献2には、防眩フィルム表面の凹凸部の分布において、傾斜角度が2.5°〜7.5°である凹凸部の面積割合が、全表面に対して20%以下であり、傾斜角度が2.5°未満である凹凸部の面積割合が、50%以上であり、傾斜角度が10°以上である凹凸部の面積割合が、1%以上である防眩フィルムが開示されている。 特開2005−92197号公報 特許文献3には、防眩フィルム表面の凹凸部の分布において、凹凸表面の傾斜角度が1°以下である面の割合が20%以下、傾斜角度が5°以上である面の割合が20%以下であり、高さの標準偏差が0.2μm以下である防眩フィルムが開示されている。
しかしながら、上記特許文献1〜3に記載の防眩フィルムでは、防眩性、画像鮮明度、白濁防止性、ギラツキ防止性という防眩フィルムにおける4つの性能を全て満足するような条件は、定まっておらず、画像鮮明度を損なわず、かつ白濁やギラツキが生じることなく、良好な防眩性を持つ防眩フィルムを得ることができないという問題があった。
本発明の目的は、上記の従来技術の問題を解決し、防眩性、白濁防止性、写像性(画像鮮明度)、およびギラツキ防止性の全ての光学性能が、良好である防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置を提供することにある。
本発明者は、上記の点に鑑み鋭意研究を重ねた結果、表面全体に凹凸部を有する防眩フィルムにおいて、3°以内の傾斜角を持つ単位領域の面積の総合計が、所定領域の全面積の95%以上であるとともに、3°以内のその他の傾斜角を持つ単位領域のうちの頻出傾斜角の単位領域の凹凸部の分布が、凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフにおいて、略矩形に近い分布を有するものとすることによって、画像鮮明度が良く、白濁とギラツキの発生を抑える得ることを見出し、本発明を完成するに至った。
上記の目的を達成するために、請求項1の発明は、表面全体に凹凸部を有する防眩フィルムであって、防眩フィルムの縦Lmm×横Lmmの所定の領域を任意に抽出し、該所定領域の凹凸部の分布について、一辺0.5μmの正方形の単位領域に分割し、その単位領域における平均傾斜角度を、該単位領域における傾斜角としたとき、3°以内の傾斜角を持つ単位領域の面積の総合計が、前記所定領域の全面積の95%以上であるとともに、傾斜角0°を持つ単位領域の面積の総合計をαとしたときに、αが前記所定領域の全面積の0.5〜10%であり、かつ3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の面積の総合計が、前記所定領域の全面積の80%以上であることを特徴としている。
本発明の防眩フィルムによれば、3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の凹凸部の分布が、凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフにおいて、略矩形に近い分布を有するものである。
請求項2の発明は、請求項1に記載の防眩フィルムであって、フィルムの凹凸表面の算術平均粗さ(Ra)が、0.03〜0.4μm、同平均山谷間隔(Sm)が、5〜100μmであることを特徴としている。
請求項3の発明は、透明フィルム基材の一方の面に、活性エネルギー線硬化樹脂を塗布して、塗布層を形成し、その塗布層に鋳型ロールを押し当てゝ、塗布層表面全体に凹凸部を形成し、その後、活性エネルギー線の照射により樹脂を硬化させて、塗布層表面全体の凹凸部を固化せしめる防眩フィルムの製造装置であって、鋳型ロールの表面凹凸層の形状が、該鋳型ロールの円周方向および幅手方向において凸部と凹部が並んでおり、これらの凸部と凹部の長さがそれぞれ2.5〜50μmの範囲内であり、かつ基準面からの凹凸部の高さをz(μm)、相互に隣り合う凸部の中央及び凹部の中央同士の間の距離をX(μm)とするとき、
z=aX
(式中、aは傾斜角が3°以下となるように設定された定数)
で表わされる二次関数式を満たす凹凸形状を有するものであることを特徴としている。
請求項4の防眩性反射防止フィルムの発明は、請求項1または2に記載の防眩フィルムを基材として、この防眩フィルム基材の両面のうちのいずれか少なくとも一方の面に反射防止層が形成されていることを特徴としている。
請求項5の偏光板の発明は、偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、請求項1または2に記載の防眩フィルムであることを特徴としている。
請求項6の偏光板の発明は、偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、請求項4に記載の防眩性反射防止フィルムであることを特徴としている。
請求項7の表示装置の発明は、請求項1または2に記載の防眩フィルムを具備することを特徴としている。
請求項8の表示装置の発明は、請求項4に記載の防眩性反射防止フィルムを具備することを特徴としている。
請求項9の表示装置の発明は、請求項5または6に記載の偏光板を具備することを特徴としている。
請求項1の発明は、表面全体に凹凸部を有する防眩フィルムであって、防眩フィルムの縦Lmm×横Lmmの所定の領域を任意に抽出し、該所定領域の凹凸部の分布について、一辺0.5μmの正方形の単位領域に分割し、その単位領域における平均傾斜角度を、該単位領域における傾斜角としたとき、3°以内の傾斜角を持つ単位領域の面積の総合計が、前記所定領域の全面積の95%以上であるとともに、傾斜角0°を持つ単位領域の面積の総合計をαとしたときに、αが前記所定領域の全面積の0.5〜10%であり、かつ3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の面積の総合計が、前記所定領域の全面積の80%以上である。従って、請求項1の防眩フィルムは、3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の凹凸部の分布が、凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフにおいて、略矩形に近い分布を有するものである。
このような請求項1の防眩フィルムによれば、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であり、ディスプレイ装置の保護膜としての機能を充分に果し得るという効果を奏する。
請求項2の発明は、請求項1に記載の防眩フィルムであって、フィルムの凹凸表面の算術平均粗さ(Ra)が、0.03〜0.4μm、同平均山谷間隔(Sm)が、5〜100μmであるもので、請求項2の発明によれば、写像性(画像鮮明度)、ギラツキ防止性の光学性能が良好であり、ディスプレイ装置の保護膜としての機能を充分に果し得るという効果を奏する。
請求項3の発明は、透明フィルム基材の一方の面に、活性エネルギー線硬化樹脂を塗布して、塗布層を形成し、その塗布層に鋳型ロールを押し当てゝ、塗布層表面全体に凹凸部を形成し、その後、活性エネルギー線の照射により樹脂を硬化させて、塗布層表面全体の凹凸部を固化せしめる防眩フィルムの製造装置であって、鋳型ロールの表面凹凸層の形状が、該鋳型ロールの円周方向および幅手方向において凸部と凹部が並んでおり、これらの凸部と凹部の長さがそれぞれ2.5〜50μmの範囲内であり、かつ基準面からの凹凸部の高さをz(μm)、相互に隣り合う凸部の中央及び凹部の中央同士の間の距離をX(μm)とするとき、
z=aX
(式中、aは傾斜角が3°以下となるように設定された定数)
で表わされる二次関数式を満たす凹凸形状を有するもので、請求項1の防眩フィルムの製造装置によれば、3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の凹凸部の分布が、凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフにおいて、略矩形に近い分布を有する防眩フィルムを製造することができ、本発明の装置によって製造された防眩フィルムは、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であり、ディスプレイ装置の保護膜としての機能を充分に果し得るという効果を奏する。
請求項4の防眩性反射防止フィルムの発明は、請求項1または2に記載の防眩フィルムを基材として、この防眩フィルム基材の両面のうちのいずれか少なくとも一方の面に反射防止層が形成されているもので、請求項4の発明によれば、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が、良好な防眩フィルムを基材としているから、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であるうえに、反射防止機能を具備しており、ディスプレイ装置の保護膜としての機能を充分に果し得るという効果を奏する。
請求項5の偏光板の発明は、偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、請求項1または2に記載の防眩フィルムであるもので、請求項5の偏光板は、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好な防眩フィルムを表面に具備しており、従って、請求項5の偏光板をディスプレイ装置に装備することにより、ディスプレイ装置の保護膜としての機能を充分に果し得るという効果を奏する。
請求項6の偏光板の発明は、偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、請求項4に記載の防眩性反射防止フィルムであるもので、請求項6の偏光板は、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であるうえに、反射防止機能を有する反射防止フィルムを表面に具備しており、従って、請求項6の偏光板をディスプレイ装置に装備することにより、ディスプレイ装置の保護膜としての機能を充分に果し得るという効果を奏する。
請求項7の表示装置の発明は、請求項1または2に記載の防眩フィルムを具備するもので、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好な防眩フィルムが、表示装置の鑑賞面側に組み込まれているから、本発明の表示装置は、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能を充分に具備するものであるという効果を奏する。
請求項8の表示装置の発明は、請求項4に記載の防眩性反射防止フィルムを具備するもので、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であるうえに、反射防止機能を有する反射防止フィルムが、表示装置の鑑賞面側に組み込まれているから、本発明の表示装置は、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能、反射防止機能を充分に具備するものであるという効果を奏する。
請求項9の表示装置の発明は、請求項5または6に記載の偏光板を具備するもので、本発明の表示装置は、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能、さらには、反射防止機能を充分に具備するものであるという効果を奏する。
つぎに、本発明の実施の形態を説明するが、本発明はこれらに限定されるものではない。
本発明による防眩フィルムは、表面全体に凹凸部を有する防眩フィルムであって、防眩フィルムの縦Lmm×横Lmmの所定の領域を任意に抽出し、該所定領域の凹凸部の分布について、一辺0.5μmの正方形の単位領域に分割し、その単位領域における平均傾斜角度を、該単位領域における傾斜角としたとき、3°以内の傾斜角を持つ単位領域の面積の総合計が、前記所定領域の全面積の95%以上であるとともに、傾斜角0°を持つ単位領域の面積の総合計をαとしたときに、αが前記所定領域の全面積の0.5〜10%であり、かつ3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の面積の総合計が、前記所定領域の全面積の80%以上である。
従って、本発明の防眩フィルムは、3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の凹凸部の分布が、凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフにおいて、例えば図1に示すように、略矩形に近い分布を有するものである。
このような本発明の防眩フィルムによれば、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であり、ディスプレイ装置の保護膜としての機能を充分に果し得るものである。
本発明による防眩フィルムの凹凸表面の状態を示すと、図2のように表わされる。なおこれは、一次元表面粗さ計(Mitutoyo社製 surftest SV−2000)による断面プロファイルである。
本発明による防眩フィルムでは、フィルムの凹凸表面の算術平均粗さ(Ra)が、0.03〜0.4μm、同平均山谷間隔(Sm)が、5〜100μmであることが好ましい。
これにより、良好な写像性(画像鮮明度)、ギラツキ防止性の光学性能が得られるという利点がある。
ここで、防眩性とは、フィルム基材表面に反射した像の輪郭をぼかすことによって反射像の視認性を低下させて、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイといった画像表示装置等の使用時に、反射像の映り込みが気にならないようにするものである。フィルム基材表面に適切な凹凸を設けることによって、このような性質を持たせることができる。
フィルム基材表面に、このような凹凸を形成する方法としては、透明フィルム基材への加工、防眩層の塗設等がある。
凹凸形状としては、直円錐、斜円錐、角錐、斜角錐、楔型、凸多角体、半球状等から選ばれる構造、並びにそれらの部分形状を有する構造が挙げられる。なお、半球状は、必ずしもその表面形状は真球形状である必要はなく、楕円体形状や、より変形した凸曲面形状であってもよい。また、凹凸形状の稜線が線状に伸びた、プリズム形状、レンチキュラーレンズ形状、フレネルレンズ形状も挙げられる。その稜線から谷線にかけての斜面は平面状、曲面状、もしくは両者の複合的形状であってもよい。
本発明による防眩フィルムの防眩層は、JIS B 0601:2001で規定される算術平均粗さ(Ra)が、50nmより大きく、かつ700nm以下のことであり、光学特性が良好な防弦性を示す凹凸形状から好ましくは80〜250nmである。Raが50nm未満では、防眩性の効果が弱く、700nmを超えると、目視で粗すぎる印象を受ける。算術平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えば光学干渉式表面粗さ計RST/PLUS(WYKO社製)を用いて測定することができる。
本発明による防眩フィルムの製造装置は、透明フィルム基材の一方の面に、活性エネルギー線硬化樹脂を塗布して、塗布層を形成し、その塗布層に鋳型ロールを押し当てゝ、塗布層表面全体に凹凸部を形成し、その後、活性エネルギー線の照射により樹脂を硬化させて、塗布層表面全体の凹凸部を固化せしめる防眩フィルムの製造装置であって、鋳型ロールの表面凹凸層の形状が、該鋳型ロールの円周方向および幅手方向において凸部と凹部が並んでおり、これらの凸部と凹部の長さがそれぞれ2.5〜50μmの範囲内であり、かつ基準面からの凹凸部の高さをz(μm)、相互に隣り合う凸部の中央及び凹部の中央同士の間の距離をX(μm)とするとき、
z=aX
(式中、aは傾斜角が3°以下となるように設定された定数)
で表わされる二次関数式を満たす凹凸形状を有するものである。
本発明の防眩フィルムの製造装置によれば、3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の凹凸部の分布が、凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフにおいて、略矩形に近い分布を有する防眩フィルムを製造することができ、本発明の装置によって製造された防眩フィルムは、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であり、ディスプレイ装置の保護膜としての機能を充分に果し得るものである。
つぎに、本発明において使用される活性エネルギー線硬化樹脂について説明する。
活性エネルギー線硬化樹脂とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、特に、本発明の目的効果の点から、紫外線硬化樹脂が好ましい。
紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号号公報に記載のものを用いることができる。例えば、ユニディック17−806(大日本インキ株式会社製)100部とコロネートL(日本ポリウレタン株式会社製)1部との混合物等が好ましく用いられる。
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59−151112号公報に記載のものを用いることができる。
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号公報に記載のものを用いることができる。
紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
これら紫外線硬化性樹脂の光重合開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光重合開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光重合開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光重合開始剤また光増感剤は該組成物100重量部に対して0.1〜15重量部であり、好ましくは1〜10重量部である。
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化株式会社製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学株式会社製);セイカビームPHC2210(S)、PHCX−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業株式会社製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー株式会社製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業株式会社製);オーレックスNo.340クリヤ(中国塗料株式会社製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業株式会社製);SP−1509、SP−1507(昭和高分子株式会社製);RCC−15C(グレース・ジャパン株式会社製)、アロニックスM−6100、M−8030、M−8060(東亞合成株式会社製)、NKハードB−420、NKエステルA−DOG、NKエステルA−IBD−2E(新中村化学工業株式会社製)等を適宜選択して利用できる。また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジオキサングリコールアクリレート、エトキシ化アクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。
また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行なうことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行なうことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによってさらに平面性に優れたフィルムを得ることができる。
(バックコート層)
本発明の防眩フィルムには、防眩層を設けた側と反対側の面にバックコート層を設けてもよい。バックコート層は、防眩層を設けることで生じるカールを矯正するために設けられる。
すなわち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。なお、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために無機化合物または有機化合物の粒子が添加されることが好ましい。
バックコート層に添加される粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。
これらの粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上、日本アエロジル株式会社製)、シーホスターKE−P10、同KE−P30、同KE−P50、同KE−P100、同KE−P150、同KE−P250(以上、日本触媒株式会社製)の商品名で市販されており、使用することができる。
有機化合物の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。
これらの中でもアエロジル200V、アエロジルR972V、シーホスターKE−P30、同KE−P50、及び同KE−P100がヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。バックコート層に含まれる粒子は、バインダーに対して0.1〜50重量%好ましくは0.1〜10重量%であることが好ましい。バックコート層を設けた場合のヘイズの増加は1.5%以下であることが好ましく0.5%以下であることが好ましく、特に0.0〜0.1%であることが好ましい。
バックコート層の塗布に用いられる塗布組成物には溶媒が含まれることが好ましい。溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム、水、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノン、シクロヘキサノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、または炭化水素類(トルエン、キシレン)等があげられ、適宜組み合わされて用いられる。
バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体または共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ウレタン樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることができるが、これらに限定されるものではない。
例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン株式会社製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン株式会社製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマー等が市販されており、この中から好ましいモノを適宜選択することもできる。
例えば、バインダーとして用いられる樹脂としてはセルロースジアセテート、セルロースアセテートプロピオネートなどのセルロースエステルとアクリル樹脂のブレンド物を用いることが好ましく、アクリル樹脂からなる粒子を用いて、粒子とバインダーとの屈折率差を0〜0.02未満とすることで透明性の高いバックコート層とすることができる。
また、バックコート層の動摩擦係数は0.9以下、特に0.1〜0.9であることが好ましい。
バックコート層を形成する方法としては、上記したバックコート層を形成するための塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて透明樹脂フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。
また、塗布後、加熱乾燥し、必要に応じて硬化処理することで、バックコート層は形成される。硬化処理は低屈折率層で記載した内容を用いることができる。
バックコート層は2回以上に分けて塗布することもできる。また、バックコート層は偏光子との接着性を改善するための易接着層を兼ねても良い。
(防眩性反射防止フィルム)
本発明の防眩フィルムを基材として、この防眩フィルム基材の両面のうちのいずれか少なくとも一方の面に反射防止層が形成されているものである。
すなわち、防眩フィルム基材の防眩層上に、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮した反射防止層を積層したものである。
本発明の防眩性反射防止フィルムによれば、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が、良好な防眩フィルムを基材としているから、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であるうえに、反射防止機能を具備しており、ディスプレイ装置の保護膜としての機能を充分に果し得るものである。
反射防止層は、透明フィルム基材よりも屈折率の高い高屈折率層と、透明フィルム基材よりも屈折率の低い低屈折率層等から構成される。また、防眩層が高屈折率層を兼ねても良い。
低屈折率層は、下記に記載する特に内部が多孔質または空洞である少なくとも1種の中空シリカ微粒子を含有することで、耐久試験後の密着に優れた防眩性反射防止フィルムを形成することができる。また、防眩性反射防止フィルムは防眩層と、低屈折率層との間に、高屈折率層が介在させられていることが好ましい。
防眩性反射防止フィルムの好ましい層構成の例を下記に示す。なお、ここでは積層配置されていることを示している。
バックコート層/透明フィルム基材/防眩層/低屈折率層
バックコート層/透明フィルム基材/防眩層/高屈折率層/低屈折率層
帯電防止層/透明フィルム基材/防眩層/高屈折率層/低屈折率層
バックコート層/透明フィルム基材/防眩層/高屈折率層/低屈折率層/高屈折率層/低屈折率層
(高屈折率層)
つぎに、高屈折率層について説明する。高屈折率層とは、透明フィルム基材の屈折率より高い層を言う。高屈折率層の好ましい屈折率としては、23℃、波長550nm測定で、1.5〜2.2の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、導電性粒子の種類、添加量が支配的であるため、以下に説明する導電性粒子の屈折率は1.60〜2.60であることが好ましく、1.65〜2.50であることがさらに好ましい。
また、高屈折率層の膜厚は、光学干渉層としての特性から、5nm〜1μmであることが好ましく、10nm〜0.3μmであることがさらに好ましく、30nm〜0.2μmであることが最も好ましい。
つぎに、高屈折率層の屈折率を調整するのに用いられる導電性粒子について説明する。
導電性粒子は、酸化アンチモン、酸化スズ、酸化亜鉛、インジウム酸スズ(ITO)、アンチモン酸スズ(ATO)、及びアンチモン酸亜鉛よりなる群の中から選ばれた少なくとも1種の導電性微粒子であるものである。
これら導電性粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、20〜150nmであることがより好ましく、30〜100nmであることが特に好ましい。導電性粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。また、動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。導電性粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状あるいは不定形状であることが好ましい。
導電性粒子は有機化合物により表面処理してもよい。導電性粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は導電性粒子に対して0.1〜5重量%、より好ましくは0.5〜3重量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が好ましい。2種以上の表面処理を組み合わせてもよい。
導電性微粒子の使用量は、高屈折率層中に5〜85重量%が好ましく、10〜80重量%であることがより好ましく、20〜75重量%が、最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られず、多すぎると膜強度の劣化などが発生する。
導電性粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、及びメタノール、エタノール、イソプロパノールが特に好ましい。
また導電性粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。分散剤を含有させることも好ましい。
さらに、コア/シェル構造を有する導電性粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性をさらに向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。また、高屈折率層には、エネルギー線硬化型樹脂を導電性粒子のバインダーとして、塗膜の製膜性や物理的特性の向上のために含有させることが好ましい。
エネルギー線硬化型樹脂としては、好ましくは紫外線硬化樹脂であり、炭素数1〜3のアルコキシ化した紫外線硬化樹脂および/またはジオキサン構造を有する紫外線硬化樹脂が特に好ましい。具体的には紫外線硬化樹脂の構造中にメチレンオキサイド、エチレンオキサイド、プロピレンオキサイドおよび/または1,3−ジオキサン、1,4−ジオキサン構造を含有するものである。
このような紫外線硬化樹脂としては、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールメタクリレート、エトキシ化フェニルアクリレート、エトキシ化フェニルメタクリレート、エトキシ化2−メチル−1,3プロパンジオールジアクリレート、エトキシ化2−メチル−1,3プロパンジオールジメタクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化プロポキシ化ビスフェノールAジメタクリレート、エトキシ化トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリメタクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、プロポキシ化ジトリメチロールプロパンテトラアクリレート、プロポキシ化ペンタエリスリトールテトラアクリレート、ジオキサングリコールジアクリレート、ジオキサングリコールジメタクリレートが好ましく挙げられる。
また、紫外線や電子線のようなエネルギー線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を1個ないし2個有するものが特に好ましい。
炭素数1〜3のアルコキシ化した紫外線硬化型樹脂および/またはジオキサン構造を有する紫外線硬化型樹脂はそれぞれ単体で用いてもよいが、混合して用いても良い。その際の混合比率は重量比で1:99〜99:1でもよく、より好ましくは20:80〜80:20であり、さらに好ましくは30:70〜70:30の範囲である。好ましい範囲内では特に湿熱試験後の耐溶剤性、及び密着性が向上する。また、紫外線や電子線のようなエネルギー線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることができる。官能基としては(メタ)アクリロイルオキシ基等のような不飽和二重結合を有する基、エポキシ基、シラノール基等が挙げられる。中でも不飽和二重結合を2個以上有するラジカル重合性のモノマーやオリゴマーを好ましく用いることができる。必要に応じて光重合開始剤を組み合わせてもよい。このような紫外線硬化樹脂としては、ポリオールアクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレートもしくはそれらの混合物が用いられる。例えば多官能アクリレート化合物等が挙げられ、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれる化合物であることが好ましい。ここで、多官能アクリレート化合物とは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
多官能アクリレート化合物のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
また、硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを、重量比で1:2〜1:10含有することが好ましい。エネルギー線硬化型樹脂の添加量は、高屈折率組成物では固形分中の15重量%以上50重量%未満であることが好ましい。エネルギー線硬化型樹脂と導電性粒子の混合比率は、固形分で、1:3〜5:3の範囲がよく、より好ましくは1:1.5〜1.6:1であり、さらに好ましくは1.5:1.2〜1.5:1である。この範囲外になると、例えば導電性粒子が少なすぎると、密着性がとれなくなって、帯電防止性が劣化したりする。導電性粒子が多すぎると、防眩性反射防止フィルムの生産時に、微粒子が脱落して、塗工中のフィルム表面に付着し、外観故障の原因となるので、好ましくない。
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
高屈折率層には、有機珪素化合物もしくはその加水分解物あるいはその重縮合物を、塗膜の製膜性や物理的特性の向上のために含有させても良い。
ここで、有機珪素化合物もしくはその加水分解物あるいはその重縮合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、及びβ−シアノエチルトリエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン、及びメチルビニルジエトキシシラン等が挙げられる。
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン、及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン、及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが、特に好ましい。
2種類以上の有機珪素化合物もしくはその加水分解物あるいはその重縮合物を併用してもよい。
上記に示される有機珪素化合物もしくはその加水分解物あるいはその重縮合物に加えて、他の有機珪素化合物もしくはその加水分解物あるいはその重縮合物を用いてもよい。他の有機珪素化合物もしくはその加水分解物あるいはその重縮合物には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
高屈折率層を塗布する際に有機溶媒が用いられることが好ましい。有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
また、高屈折率層は上記した組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて防眩層表面にウェット膜厚0.1〜100μmで塗布し、塗布後、加熱乾燥し、必要に応じて硬化して形成される。硬化工程は、後述する低屈折率層で記載した内容を用いることができる。また、ドライ膜厚が上記膜厚になるようにするのは塗布組成物の固形分濃度で調整する。
(低屈折率層)
つぎに、低屈折率層について説明する。低屈折率層は、透明フィルム基材の屈折率より低い層を低屈折率層という。具体的な屈折率としては、23℃、波長550nmで1.30〜1.45の範囲のものが好ましい。また、低屈折率層の膜厚は、光学干渉層としての特性から、5nm〜0.5μmが好ましく、10nm〜0.3μmがより好ましく、30nm〜0.2μmであることがさらに好ましい。低屈折率層には中空シリカ粒子を含有させることが、耐久試験後の密着、低屈折率化といった光学干渉層としての特性からも好ましい。中空シリカ粒子(以下、中空粒子とも言う)は、(1)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(2)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。
なお、空洞粒子は、内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空粒子の平均粒径は5〜200nm、好ましくは10〜70nmが望ましい。中空粒子の粒径は変動係数が1〜40%の単分散であることが好ましい。
中空粒子の平均粒径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
中空粒子の平均粒径は、形成される低屈折率層の透明被膜の厚さに応じて適宜選択され、透明被膜の膜厚の3/2〜1/10、好ましくは2/3〜1/10が望ましい。これらの中空粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。
分散媒としては、水、アルコール(例えばメタノール、エタノール、イソプロピルアルコール)、及びケトン(例えばメチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)、プロピレンモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が好ましい。
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜40nm、好ましくは1〜20nm、さらに好ましくは2〜15nmが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、塗布液成分が容易に複合粒子の内部に進入して内部の多孔性が減少し、低屈折率化の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、塗布液成分が内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率化の効果が十分得られなくなることがある。
また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率化の効果が十分に現れないことがある。
複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的にはAl、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。
シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WOとの1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MOx)で表わしたときのモル比:MOx/SiOが、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。
多孔質粒子のモル比:MOx/SiOが、0.0001未満のものは、得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また多孔質粒子のモル比:MOx/SiOが1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、さらに屈折率が低いものを得ることが難しいことがある。
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。
また多孔質物質としては、多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
このような中空粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1工程〜第3工程を実施するこれによって中空粒子を製造することができる。
(第1工程:多孔質粒子前駆体の調製)
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
これら水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類、及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。
当該シード粒子としては、特に制限はないが、SiO、Al、TiO、またはZrO等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。さらに上記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。
シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に上記化合物の水溶液を、アルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行なう必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
上記したシリカ原料、及び無機化合物原料は、アルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン、及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して粒子に成長したり、またはシード粒子上に析出して粒子成長が起る。従って、粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行なう必要がない。
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOx)に換算し、MOx/SiOのモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOx/SiOのモル比は、0.25〜2.0の範囲内にあることが望ましい。
(第2工程:多孔質粒子からのシリカ以外の無機化合物の除去)
第2工程では、第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または有機珪素化合物もしくはその加水分解物あるいはその重縮合物を添加して、シリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜40nm、好ましくは0.5〜15nmの厚さであればよい。なお、シリカ保護膜を形成しても、この工程での保護膜は多孔質であり、厚さが薄いので、上記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、上記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく、後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は、粒子が壊れることがないので、必ずしも保護膜を形成する必要はない。
また、空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多すぎると、シリカ保護膜が厚くなりすぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。
シリカ保護膜形成用に使用される有機珪素化合物もしくはその加水分解物あるいはその重縮合物としては、例えばアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、多孔質粒子の分散液に加え、アルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。
このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
(第3工程:シリカ被覆層の形成)
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。なお、ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜40nm、好ましくは1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。またシリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜40nm、好ましくは1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
ついで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率化の効果が得られないことがある。
このようにして得られた中空シリカ粒子の屈折率は、1.42未満と低い。このような中空シリカ微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。また、塗布組成物に添加したときの安定性の点から中空粒子としては、表面に炭化水素主鎖を有するポリマーが共有結合している中空粒子が好ましい。
つぎに、炭化水素主鎖を有するポリマーが共有結合している中空微粒子について説明する。炭化水素主鎖を有するポリマーとは、直接共有結合、または中空シリカ粒子の表面のシリカと炭化水素主鎖を有するポリマーとの間に結合剤を介在させ、シリカと結合剤とを共有結合し、結合剤とポリマーとが共有結合しているものも言う。結合剤としては、カップリング剤が好ましく用いられる。
炭化水素主鎖を有するポリマーが共有結合している中空微粒子は、(1)中空シリカ粒子表面を未処理、もしくはカップリング剤などで処理した状態で、中空シリカ粒子表面と共有結合を形成可能な官能基を有するポリマーを反応させ、中空シリカ粒子表面にポリマーをグラフトさせる方法、あるいは(2)中空シリカ粒子表面を未処理、もしくはカップリング剤などで処理した状態で、中空シリカ粒子表面から単量体を重合することでポリマー鎖を生長させ、表面グラフトさせる方法等により製造することができる。具体的な製造方法としては、特開2006−257308号公報に記載の方法を用いることができる。
上記製造方法では、表面修飾率向上の観点から、中空シリカ粒子表面から単量体を重合することでポリマー鎖を生長させ、表面グラフトさせる方法が好ましい。重合開始能、もしくは連鎖移動能を有する官能基を含むカップリング剤で中空シリカ粒子を表面処理し、そこから単量体を重合し、ポリマー鎖を生長させて表面グラフトさせる方法がさらに好ましい。重合開始能もしくは連鎖移動能を有する官能基を、中空シリカ粒子に導入するための表面処理剤(カップリング剤)としては、アルコキシ金属化合物(例えばチタンカップリング剤、アルコキシシラン化合物(シランカップリング剤))が好ましく用いられる。 中空シリカ粒子は平均粒径の異なる2種以上の中空シリカ微粒子を含有していてもよい。
つぎに、内部が多孔質または空洞である少なくとも中空シリカ粒子以外の低屈折率層を形成するための塗布組成物について説明する。
低屈折率層は、表面(膜面)pHを2〜7にコントロールすることで、低層折率層内での反応を抑制し、高温高湿環境下での防眩性反射防止フィルムの耐久性を向上させる点で好ましい。より好ましくは、低屈折率層の表面(膜面)pHは2〜4である。低屈折率層を形成する組成物には、低屈折率層の表面(膜面)pHをコントロールするため、pKa2〜7の範囲に少なくとも1つのpKa値を持つ化合物を添加することが好ましい。なお、pKaとは、下記の酸解離反応における酸解離定数で、Kaの対数値であり、pKa=−log10Kaで表わされる数値である。
HA←→[H+][A−]
Ka=[H+][A−]/[HA]
ここでいう、H+とは酸性種を表わし、A−とは共役塩基を表わす。
pKa2〜7の範囲に少なくとも1つのpKa値を持つ具体的化合物としては、脂肪族二塩基酸や、イミダゾールまたはその誘導体があげられる。イミダゾールまたはその誘導体としては、1−メチルイミダゾール2−メチルイミダゾール、4−メチルイミダゾール、4−(2−ヒドロキシエチル)イミダゾール、4−(2−アミノエチル)イミダゾール、2−(2−ヒドロキシエチル)イミダゾール、2−エチルイミダゾール2−ビニルイミダゾール、4−プロピルイミダゾール、2,4−ジメチルイミダゾール、2−クロロイミダゾール、4,5−ジ(2−ヒドロキシエチル)イミダゾール、イミダゾール等が挙げられる。
脂肪族二塩基酸としては、蟻酸、プロピオン酸、マロン酸、コハク酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、酢酸等が挙げられ、これらの中では、酢酸が好ましい。
脂肪族二塩基酸やイミダゾールまたはその誘導体は、低屈折率層塗布組成物中に0.05〜10.0重量%であることが、塗布組成物の安定性等の点から好ましい。
低屈折率層を形成する塗布組成物には、有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、及びブタノールが特に好ましい。
低屈折率層を形成する塗布組成物中の固形分濃度は、1〜4重量%であることが好ましく、固形分濃度を4重量%以下とすることによって、塗布ムラが生じにくくなり、1重量%以上とすることによって、乾燥負荷が軽減される。
低屈折率層を形成する塗布組成物には、フッ素系またはシリコーン系の界面活性剤を含有することが好ましい。上記界面活性剤を含有させることで、塗布ムラを低減したり膜表面の防汚性を向上させるのに有効である。
フッ素系界面活性剤としては、パーフルオロアルキル基を含有するモノマー、オリゴマー、ポリマーを母核としたもので、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン等の誘導体等が挙げられる。
フッ素系界面活性剤は市販品を用いることもでき、例えばサーフロンS−381、同S−382、同SC−101、同SC−102、同SC−103、同SC−104(旭硝子株式会社製)、フロラードFC−430、同FC−431同、同FC−173(フロロケミカル−住友スリーエム製)、エフトップEF352、同EF301、同EF303(新秋田化成株式会社製)、シュベゴーフルアー8035、同8036(シュベグマン株式会社製)、BM1000、BM1100(ビーエム・ヒミー株式会社製)、メガファックF−171、同F−470」(大日本インキ化学工業株式会社製)、等を挙げることができる。
フッ素系界面活性剤のフッ素含有割合は、0.05〜2重量%、好ましくは0.1〜1重量%である。上記のフッ素系界面活性剤は、1種または2種以上を併用することができる。
つぎに、シリコーン界面活性剤について説明する。
シリコーン界面活性剤は、ケイ素原子に結合した有機基の種類により、ストレートシリコーンオイルと変性シリコーンオイルに大別できる。
ここで、ストレートシリコーンオイルとは、メチル基、フェニル基、水素原子を置換基として結合したものをいう。変性シリコーンオイルとは、ストレートシリコーンオイルから二次的に誘導された構成部分をもつものである。一方、シリコーンオイルの反応性からも分類することができる。これらをまとめると、以下のようになる。
(シリコーンオイル)
1.ストレートシリコーンオイル
1−1.非反応性シリコーンオイル:ジメチル、メチルフェニル置換等
1−2.反応性シリコーンオイル:メチル水素置換等
2.変性シリコーンオイル
ジメチルシリコーンオイルに、さまざまな有機基を導入することで生まれたものが変性シリコーンオイルである
2−1.非反応性変性シリコーンオイル:アルキル、アルキル/アラルキル、アルキル/ポリエーテル、ポリエーテル、高級脂肪酸エステル置換等
アルキル/アラルキル変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を長鎖アルキル基あるいはフェニルアルキル基が置換したシリコーンオイルである。
ポリエーテル変性シリコーンオイルは、親水性のポリオキシアルキレンを疎水性のジメチルシリコーンを導入した界面活性剤である。
高級脂肪酸変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を高級脂肪酸エステルに置換えたシリコーンオイルである。
アミノ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をアミノアルキル基に置換えた構造をもつシリコーンオイルである。
エポキシ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をエポキシ基含有アルキル基に置換えた構造をもつシリコーンオイルである。
カルボキシル変性あるいはアルコール変性シリコーンオイルは、シリコーンオイルのメチル基の一部をカルボキシル基あるいは水酸基含有アルキル基に置換えた構造をもつシリコーンオイルである。
これらのうち、ポリエーテル変性シリコーンオイルが好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば1,000〜100,000、好ましくは2,000〜50,000が適当であり、数平均分子量が1,000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100,000を越えると、塗膜表面にブリードアウトしにくくなる。
具体的な商品としては、L−45、L−9300、FZ−3704、FZ−3703、FZ−3720、FZ−3786、FZ−3501、FZ−3504、FZ−3508、FZ−3705、FZ−3707、FZ−3710、FZ−3750、FZ−3760、FZ−3785、FZ−3785、Y−7499(日本ユニカー株式会社製)KF96L、KF96、KF96H、KF99、KF54、KF965、KF968、KF56、KF995、KF351、KF351A、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、FL100(信越化学工業株式会社製)、界面活性剤BYKシリーズ、BYK−300/302、BYK−306、BYK−307、BYK−310、BYK−315、BYK−320、BYK−322、BYK−323、BYK−325、BYK−330、BYK−331、BYK−333、BYK−337、BYK−340、BYK−344、BYK−370、BYK−375、BYK−377、BYK−352、BYK−354、BYK−355/356、BYK−358N/361N、BYK−357、BYK−390、BYK−392、BYK−UV3500、BYK−UV3510、BYK−UV3570、BYK−Silclean3700(ビックケミージャパン株式会社製)、XC96−723、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897(GE東芝シリコーン株式会社製)等が挙げられる。
また、シリコーン界面活性剤は、シリコーンオイルのメチル基の一部を親水性基に置換した界面活性剤である。置換の位置は、シリコーンオイルの側鎖、両末端、片末端、両末端側鎖等がある。親水性基としては、ポリエーテル、ポリグリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、4級塩等がある。
シリコーン界面活性剤としては、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤が好ましい。
非イオン界面活性剤は、水溶液中でイオンに解離する基を有しない界面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類の水酸基、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性水酸基の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤を用いると、低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し汚れにくい膜表面を形成するものと考えられる。
非イオン界面活性剤の具体例としては、例えばシリコーン界面活性剤SILWETL−77、L−720、L−7001、L−7002、L−7604、Y−7006、FZ−2101、FZ−2104、FZ−2105、FZ−2110、FZ−2118、FZ−2120、FZ−2122、FZ−2123、FZ−2130、FZ−2154、FZ−2161、FZ−2162、FZ−2163、FZ−2164、FZ−2166、FZ−2191、SUPERSILWETSS−2801、SS−2802、SS−2803、SS−2804、SS−2805(日本ユニカー株式会社製)等が挙げられる。
これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。低屈折率層を形成する塗布組成物を塗布した際のムラ抑制やレベリング性から好ましい。これらの具体例としては、例えばシリコーン界面活性剤ABNSILWETFZ−2203、FZ−2207、FZ−2208、FZ−2222(日本ユニカー株式会社製)等が挙げられる。
また、低屈折率層を形成する塗布組成物には、以下に説明する反応性変性シリコーン樹脂(反応性変性シリコーンオイルともいう)を含有しても良い。
2−2.反応性変性シリコーンオイル:アミノ、エポキシ、カルボキシル、アルコール置換等
反応性変性シリコーン樹脂としては、ポリシロキサンの側鎖、片末端または両末端にアミノ、エポキシ、カルボキシル、水酸基、メタクリル、メルカプト、フェノール等で置換された反応性タイプの変性シリコーン樹脂である。アミノ変性シリコーン樹脂として、具体的にはKF−860、KF−861、X−22―161A、X−22―161B(以上、信越化学工業株式会社製)、FM−3311、FM−3325(以上、チッソ株式会社製)、エポキシ変性シリコーン樹脂としては、KF―105、X−22−163A、X−22−163B、KF−101、KF−1001(以上、信越化学工業株式会社製)、ポリエーテル変性シリコーン樹脂としてはX−22−4272、X−22−4952、カルボキシル変性シリコーン樹脂としてはX−22−3701E、X−22−3710(以上、信越化学工業株式会社製)、カルビノール変性シリコーン樹脂としてはKF−6001、KF−6003(以上、信越化学工業株式会社製)、メタクリル変性シリコーン樹脂としてはX−22−164C(以上、信越化学工業株式会社製)、メルカプト変性シリコーン樹脂としてはKF−2001(以上、信越化学工業株式会社製)、フェノール変性シリコーン樹脂としてはX−22−1821(以上、信越化学工業株式会社製)等が挙げられる。水酸基変性シリコーン樹脂としては、FM−4411、FM−4421、FM−DA21、FM−DA26(以上、チッソ株式会社製)。その他、片末端反応性シリコーン樹脂のX−22−170DX、X−22−2426、X−22−176F(信越化学工業株式会社製)等も含まれる。
上記した界面活性剤は他の界面活性剤と併用して用いてもよく、また、適宜、例えばスルホン酸塩系、硫酸エステル塩系、リン酸エステル塩系等のアニオン界面活性剤、また、ポリオキシエチレン鎖親水基として有するエーテル型、エーテルエステル型等の非イオン界面活性剤等と併用しても良い。上記した界面活性剤の添加量は、低屈折率層塗布組成物中、0.05〜3.0重量%であることが、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮点から好ましい。
低屈折率層を形成する塗布組成物には、他のシリカ粒子を含有することもできる。ここで、他のシリカ粒子としては、特に限定されるものではないが、コロイダルシリカ等が挙げられる。コロイダルシリカの具体例としては、二酸化ケイ素をコロイド状に水または有機溶媒に分散させたものであり、特に限定はされないが球状、針状または数珠状である。
コロイダルシリカの平均粒径は50〜300nmの範囲が好ましく、変動係数が1〜40%の単分散であることが好ましい。平均粒径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
コロイダルシリカは、市販されており、例えば日産化学工業社のスノーテックスシリーズ、触媒化成工業社のカタロイド−Sシリーズ、バイエル社のレバシルシリーズ等が挙げられる。また、アルミナゾルや水酸化アルミニウムでカチオン変性したコロイダルシリカやシリカの一次粒子を2価以上の金属イオンで粒子間を結合し、数珠状に連結した数珠状コロイダルシリカも好ましく用いられる。数珠状コロイダルシリカは日産化学工業社のスノーテックス−AKシリーズ、スノーテックス−PSシリーズ、スノーテックス−UPシリーズ等があり、具体的にはIPS−ST−L(イソプロパノール分散、粒子径40〜50nm、シリカ濃度30%)、MEK−ST−MS(メチルエチルケトン分散、粒子径17〜23nm、シリカ濃度35%)等が挙げられる。低屈折率層形成塗布組成物にコロイダルシリカを含有させる場合、低屈折率層中の固形分に対し10〜60重量%、さらには30〜60重量%であることが膜強度の点から、好ましい。
また、その他の無機微粒子を含有してもよく、例えば、MgFが挙げられ、具体的には日産化学工業社製のMFS−10P(イソプロピルアルコール分散フッ化マグネシウムゾル、粒子系100nm)、NF−10P等が挙げられる。
また、低屈折率層形成塗布組成物には、低屈折率層中の固形分に対し、5〜80重量%のバインダーを含むことが好ましい。バインダーは、中空シリカ粒子等の粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく、低屈折率層の強度を維持できるように調整する。
バインダーとしては、アルコキシ金属化合物、及びその加水分解物あるいはその重縮合物、また、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂、フルオロアクリレート、含フッ素ポリマー等を挙げられる。フッ素ポリマーとしては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類〔例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等〕、完全または部分フッ素化ビニルエーテル類等が挙げられる。これらの中で好ましくは、パーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
また、アルコキシ金属化合物としては、特に前述の高屈折率層の項で説明した有機珪素化合物もしくはその加水分解物あるいはその重縮合物が、中空シリカ粒子に対するバインダーとしての特性が優れる点から好ましい。
低屈折率層には、下記の金属化合物またはそのキレート化合物を含有することができ、硬度などの物性を改善させることができる。
金属化合物には、例えば、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシド、アルミニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。
遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成できる。上記キレート化合物の添加量は、低屈折率層中に0.3〜5重量%であるように調整することが好ましい。キレート化合物の添加量が、0.3重量%未満では、耐擦傷性が不足し、5重量%を超えると、耐光性が劣化する傾向がある。
低屈折率層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、低屈折率層を形成する上記塗布組成物を塗布し、塗布後、加熱乾燥し、必要に応じて硬化処理することで形成される。
塗布量は、ウェット膜厚として0.05〜100μmが適当で、好ましくは、0.1〜50μmである。また、ドライ膜厚が上記膜圧となるように塗布組成物の固形分濃度は調整される。
また、低屈折率層を形成後、温度50〜160℃で加熱処理を行なう工程を含んでも良い。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば50℃であれば、好ましくは3日間以上30日未満の期間、160℃であれば10分以上1日以下の範囲が好ましい。硬化方法としては、加熱することによって熱硬化させる方法、紫外線等の光照射によって硬化させる方法などが挙げられる。熱硬化させる場合は、加熱温度は50〜300℃が好ましく、好ましくは60〜250℃、さらに好ましくは80〜150℃である。光照射によって硬化させる場合は、照射光の露光量は10mJ/cm〜10J/cmであることが好ましく、100mJ/cm〜500mJ/cmがより好ましい。
ここで、照射される光の波長域としては特に限定されないが、紫外線領域の波長を有する光が好ましく用いられる。具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。
上記のように各層を塗布により形成するに際して、透明フィルム基材の幅が1.4〜4mでロール状に巻き取られた状態から繰り出して、上記塗布を行ない、乾燥・硬化処理した後、ロール状に巻き取られることが好ましい。また、防眩性反射防止フィルムにおいては反射防止層を積層した後、ロール状に巻き取った状態で、50〜160℃の加熱処理を行なう製造方法によって製造されることが、防眩性反射防止フィルムを長尺塗布した際の効率性や安定性から好ましい。加熱処理期間は、設定される温度によって適宜決定すればよく、例えば、50℃であれば、好ましくは3日間以上30日未満の期間、160℃であれば10分以上1日以下の範囲が好ましい。通常は、巻外部、巻中央部、巻き芯部の加熱処理効果が偏らないように、比較的低温に設定することが好ましく、50〜60℃付近で7日間程度行なうことが好ましい。
加熱処理を安定して行なうためには、温湿度が調整可能な場所で行なうことが必要であり、塵のないクリーンルーム等の加熱処理室で行なうことが好ましい。
防眩フィルム、防眩性反射防止フィルムをロール状に巻き取る際の、巻きコアとしては、円筒上のコアであれは、特に限定されないが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度に耐える耐熱性プラスチックが好ましく、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂などの樹脂が挙げられる。またガラス繊維などの充填材により強化した熱硬化性樹脂が好ましい。これらの巻きコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることがさらに好ましく、巻き厚は5cm以上であることが好ましい。
(防眩性反射防止フィルムの反射率)
上記した防眩性反射防止フィルムの反射率は、分光光度計により測定を行なうことができる。その際、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行なってから、可視光領域(400〜700nm)の反射光を測定する。反射率は低いほど好ましいが、可視光領域の波長における平均値が2.5%以下であることが好ましく、最低反射率は1.5%以下であることが好ましい。可視光の波長領域において、平坦な形状の反射スペクトルを有することが好ましい。
また、反射防止処理を施した表示装置表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、薄型テレビ等の最表面に使用する場合にはニュートラルな色調が好まれる。
この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で、
0.17≦x≦0.27、
0.07≦y≦0.17 である。
高屈折率層と低屈折率層の膜厚は、各々の層の屈折率より反射率、反射光の色味を考慮して常法に従って計算で求められる。
(表面処理)
上記した各層を塗布する前に表面処理しても良い。表面処理方法としては、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられる。
コロナ処理とは、大気圧下、電極間に1kV以上の高電圧を印加し、放電することで行なう処理のことであり、春日電機株式会社や株式会社トーヨー電機などで市販されている装置を用いて行なうことができる。コロナ放電処理の強度は、電極間距離、単位面積当たりの出力、ジェネレーターの周波数に依存する。
コロナ処理装置の一方の電極(A電極)は、市販のものを用いることができるが、材質はアルミニウム、ステンレスなどから選択ができる。もう一方はプラスチックフィルムを抱かせるための電極(B電極)であり、コロナ処理が、安定かつ均一に実施されるように、前記A電極に対して一定の距離に設置されるロール電極である。これも通常市販されているものを用いることができ、材質は、アルミニウム、ステンレス、及びそれらの金属でできたロールに、セラミック、シリコン、EPTゴム、ハイパロンゴムなどがライニングされているロールが好ましく用いられる。コロナ処理に用いる周波数は、20kHz以上、100kHz以下の周波数であり、30kHz〜60kHzの周波数が好ましい。周波数が低下するとコロナ処理の均一性が劣化し、コロナ処理のムラが発生する。また、周波数が大きくなると、高出力のコロナ処理を行なう場合には、特に問題ないが、低出力のコロナ処理を実施する場合には、安定した処理を行なうことが難しくなり、結果として、処理ムラが発生する。コロナ処理の出力は、1〜5W・min./mであるが、2〜4W・min./mの出力が好ましい。電極とフィルムとの距離は、5mm以上、50mm以下であるが、好ましくは、10mm以上、35mm以下である。間隙が開いてくると、一定の出力を維持するためにより高電圧が必要になり、ムラが発生しやすくなる。また、間隙が狭くなりすぎると、印加する電圧が低くなりすぎ、ムラが発生しやすくなる。さらに、フィルムを搬送して連続処理する際に電極にフィルムが接触し傷が発生する。
アルカリ処理方法としては、アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液等が使用可能であり、中でも水酸化ナトリウム水溶液が好ましい。
アルカリ水溶液のアルカリ濃度、例えば水酸化ナトリウム濃度は0.1〜25重量%が好ましく、0.5〜15重量%がより好ましい。アルカリ処理温度は通常10〜80℃、好ましく20〜60℃である。
アルカリ処理時間は5秒〜5分、好ましくは30秒〜3分である。アルカリ処理後のフィルムは酸性水で中和した後、十分に水洗いを行なうことが好ましい。
(透明フィルム基材)
本発明に用いられる透明フィルム基材(透明樹脂フィルムとも言う)について、説明する。
透明フィルム基材としては、製造が容易であること、防眩層との接着性が良好である、光学的に等方性である、光学的に透明であること等が好ましい要件として挙げられる。
ここでいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。
上記の性質を有していれば特に限定はないが、例えば、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオノア(以上、日本ゼオン社製)、ポリビニルアセタール、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロン(登録商標)フィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることができる。中でも、セルロースエステル系フィルム、ポリカーボネート系フィルム、ポリスルホン(ポリエーテルスルホンを含む)系フィルム、シクロオレフィンポリマーフィルムが好ましく、本発明においては、特にセルロースエステル系フィルム(例えば、コニカミノルタタック、製品名KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、KC12UR(以上、コニカミノルタオプト株式会社製)が、製造上、コスト面、透明性、接着性等の観点から好ましく用いられる。
これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
透明フィルム基材としては、セルロースエステル系フィルム(以下セルロースエステルフィルムともいう)を用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。
特に、アセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースエステルフィルムを用いるのが、好ましい。
2.3≦X+Y≦3.0 0.1≦Y≦2.0
特に、2.5≦X+Y≦2.9 3.0≦Y≦1.2 であることが好ましい。
以下、好ましい透明樹脂フィルムであるセルロースエステルフィルムについて詳細に説明する。
セルロースエステルフィルムは、熱処理による基材変形が少なく、平面性に優れた防眩性反射防止フィルムを得る上で、陽電子消滅寿命法により求められる自由体積半径が0.250〜0.310nmであることが好ましい。さらに、全自由体積パラメータが1.0〜2.0であるセルロースエステルフィルムであることがより好ましい。
なお、上記自由体積とは、透明樹脂フィルムの分子鎖に占有されていない空隙部分を表している。これは、陽電子消滅寿命法を用いて測定することができる。具体的には、陽電子を試料に入射してから消滅するまでの時間を測定し、その消滅寿命から原子空孔や自由体積の大きさ、数濃度等に関する情報を非破壊的に観察することにより求めることができる。
(陽電子消滅寿命法による自由体積半径と全自由体積パラメータの測定)
下記測定条件にて陽電子消滅寿命と相対強度を測定した。
(測定条件)
陽電子線源:22NaCl(強度1.85MBq)
ガンマ線検出器:プラスチック製シンチレーター+光電子増倍管
装置時間分解能:290ps
測定温度:23℃
総カウント数:100万カウント
試料サイズ:20mm×15mm
20mm×15mmにカットした試料切片を、20枚重ねて約2mmの厚みにした。試料は測定前に24時間真空乾燥を行なった。
照射面積:約10mmφ
1チャンネルあたりの時間:23.3ps/ch
上記の測定条件に従って、陽電子消滅寿命測定を実施し、非線形最小二乗法により3成分解析して、消滅寿命の小さいものから、τ1、τ2、τ3とし、それに応じた強度をI1、I2、I3(I1+I2+I3=100%)とした。
最も寿命の長い平均消滅寿命τ3から、下記式を用いて自由体積半径R(nm)を求めた。τ3が空孔での陽電子消滅に対応し、τ3が大きいほど空孔サイズが大きいと考えられている。
τ3=(1/2)〔1−{R/(R+0.166)}
+(1/2π)sin{2πR/(R+0.166)}〕−1
ここで、0.166(nm)は、空孔の壁から浸出している電子層の厚さに相当する。
さらに、全自由体積パラメータVpは、下記式により求めた。
V3 ={(4/3)π(R}(nm
Vp=I3(%)×V3(nm
ここでI3(%)は、空孔の相対的な数濃度に相当するため、Vpは相対的な空孔量に相当する。
以上の測定を2回繰り返し、その平均値を求めた。
陽電子消滅寿命法は、例えばMATERIAL STAGEvol.4,No.5、2004、p21−25、東レリサーチセンターTHE TRCNEWS、No.80(Jul.2002)p20−22、「ぶんせき」(1988,pp.11−20)に「陽電子消滅法による高分子の自由体積の評価」が掲載されており、これらを参考にすることができる。
セルロースエステルフィルムにおける自由体積半径は、0.250〜0.315nm、好ましくは0.250〜0.310nmであり、さらに好ましい範囲は、0.285〜0.305nmである。自由体積半径が0.250nm未満である。自由体積半径が0.250〜0.315nmでは、熱処理に対する基材変形が小さく、平面性に優れた防眩フィルム、及び防眩性反射防止フィルムが得られる。
セルロースエステルフィルムを形成するセルロースエステルの原料としては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることができる。
アシル化剤が、酸クロライド(CHCOCl、CCOCl、CCOCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行なわれる。具体的には、特開平10−45804号公報に記載の方法等を参考にして合成することができる。
また、セルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。
アシル基の置換度の測定方法は、ASTM−D817−96の規定に準じて測定することができる。
セルロースエステルの数平均分子量は、50000〜250000が、成型した場合の機械的強度が強く、かつ適度なドープ粘度となり好ましく、さらに好ましくは、80000〜150000である。
セルロースエステルフィルムは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造される。
これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解でき、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることができるが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(すなわち、良溶媒)として挙げられる。
また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。
上記の良溶媒の中でも溶解性に優れるメチレンクロライド、あるいは酢酸メチルが好ましく用いられる。
上記有機溶媒の他に、0.1〜40重量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30重量%で前記アルコールが含まれることが好ましい。
これらは上記のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることができる。
これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70〜95重量%に対してエタノール5〜30重量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることもできる。このとき、冷却溶解法によりドープを調製してもよい。
セルロースエステルフィルムには、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、脂肪酸エステル系可塑剤、多価カルボン酸エステル系可塑剤等を好ましく用いることができる。
中でも、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等が好ましい。特に多価アルコールエステル系可塑剤を用いることが好ましく、防眩層の鉛筆硬度が4H以上を安定に得ることができるため、好ましい。
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができる。
アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、これに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることがさらに好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1〜3個を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることがさらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
多価カルボン酸エステル系可塑剤も好ましく用いることができる。具体的には特開2002−265639号公報の段落番号[0015]〜[0020]記載の多価カルボン酸エステルを可塑剤の一つとして添加することが好ましい。
また、他の可塑剤としてリン酸エステル系可塑剤を用いることもでき、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
このほか、特開2003−12859号記載のアクリルポリマーなどを含有させることも好ましい。
(アクリルポリマー)
セルロースエステルフィルムは、延伸方向に対して負の配向複屈折性を示す重量平均分子量が500以上30000以下であるアクリルポリマーを含有することが好ましい。
該ポリマーの重量平均分子量が500以上30000以下のもので該ポリマーの組成を制御することで、セルロースエステルと該ポリマーとの相溶性を良好にすることができる。
特に、アクリルポリマー、芳香環を側鎖に有するアクリルポリマーまたはシクロヘキシル基を側鎖に有するアクリルポリマーについて、好ましくは重量平均分子量が500以上10000以下のものであれば、上記に加え、製膜後のセルロースエステルフィルムの透明性が優れ、透湿度も極めて低く、防眩性反射防止フィルム
として優れた性能を示す。
該ポリマーは重量平均分子量が500以上30000以下であるから、オリゴマーから低分子量ポリマーの間にあると考えられるものである。このようなポリマーを合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。
かかる重合方法としては、クメンペルオキシドやt−ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000−128911号または同2000−344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、何れも好ましく用いられるが、特に、該公報に記載の方法が好ましい。
なお、アクリルポリマーとは、芳香環あるいはシクロヘキシル基を有するモノマー単位を有しないアクリル酸またはメタクリル酸アルキルエステルのホモポリマーまたはコポリマーを指す。芳香環を側鎖に有するアクリルポリマーというのは、必ず芳香環を有するアクリル酸またはメタクリル酸エステルモノマー単位を含有するアクリルポリマーである。
また、シクロヘキシル基を側鎖に有するアクリルポリマーというのは、シクロヘキシル基を有するアクリル酸またはメタクリル酸エステルモノマー単位を含有するアクリルポリマーである。
芳香環及びシクロヘキシル基を有さないアクリル酸エステルモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、アクリル酸(2−メトキシエチル)、アクリル酸(2−エトキシエチル)等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。
アクリルポリマーは上記モノマーのホモポリマーまたはコポリマーであるが、アクリル酸メチルエステルモノマー単位が30重量%以上を有していることが好ましく、また、メタクリル酸メチルエステルモノマー単位が40重量%以上有することが好ましい。特にアクリル酸メチルまたはメタクリル酸メチルのホモポリマーが好ましい。
芳香環を有するアクリル酸またはメタクリル酸エステルモノマーとしては、例えば、アクリル酸フェニル、メタクリル酸フェニル、アクリル酸(2または4−クロロフェニル)、メタクリル酸(2または4−クロロフェニル)、アクリル酸(2または3または4−エトキシカルボニルフェニル)、メタクリル酸(2または3または4−エトキシカルボニルフェニル)、アクリル酸(oまたはmまたはp−トリル)、メタクリル酸(oまたはmまたはp−トリル)、アクリル酸ベンジル、メタクリル酸ベンジル、アクリル酸フェネチル、メタクリル酸フェネチル、アクリル酸(2−ナフチル)等を挙げることができるが、アクリル酸ベンジル、メタクリル酸ベンジル、アクリル酸フェニチル、メタクリル酸フェネチルを好ましく用いることができる。
芳香環を側鎖に有するアクリルポリマーの中で、芳香環を有するアクリル酸またはメタクリル酸エステルモノマー単位が20〜40重量%を有し、且つアクリル酸またはメタクリル酸メチルエステルモノマー単位を50〜80重量%有することが好ましい。該ポリマー中、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位を2〜20重量%有することが好ましい。
シクロヘキシル基を有するアクリル酸エステルモノマーとしては、例えば、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル、アクリル酸(4−メチルシクロヘキシル)、メタクリル酸(4−メチルシクロヘキシル)、アクリル酸(4−エチルシクロヘキシル)、メタクリル酸(4−エチルシクロヘキシル)等を挙げることができるが、アクリル酸シクロヘキシル及びメタクリル酸シクロヘキシルを好ましく用いることができる。
シクロヘキシル基を側鎖に有するアクリルポリマー中、シクロヘキシル基を有するアクリル酸またはメタクリル酸エステルモノマー単位を20〜40重量%を有しかつ50〜80重量%有することが好ましい。また、該ポリマー中、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位を2〜20重量%有することが好ましい。
上述のエチレン性不飽和モノマーを重合して得られるポリマー、アクリルポリマー、芳香環を側鎖に有するアクリルポリマー及びシクロヘキシル基を側鎖に有するアクリルポリマーは何れもセルロース樹脂との相溶性に優れる。
これらの水酸基を有するアクリル酸またはメタクリル酸エステルモノマーの場合はホモポリマーではなく、コポリマーの構成単位である。この場合、好ましくは、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位がアクリルポリマー中2〜20重量%含有することが好ましい。
また、側鎖に水酸基を有するポリマーも好ましく用いることができる。水酸基を有するモノマー単位としては、前記したモノマーと同様であるが、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、アクリル酸−p−ヒドロキシメチルフェニル、アクリル酸−p−(2−ヒドロキシエチル)フェニル、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸−2−ヒドロキシエチル及びメタクリル酸−2−ヒドロキシエチルである。ポリマー中に水酸基を有するアクリル酸エステルまたはメタクリル酸エステルモノマー単位はポリマー中2〜20重量%含有することが好ましく、より好ましくは2〜10重量%である。
前記のようなポリマーが上記の水酸基を有するモノマー単位を2〜20重量%含有したものは、勿論セルロースエステルとの相溶性、保留性、寸法安定性が優れ、透湿度が小さいばかりでなく、偏光板保護フィルムとしての偏光子との接着性に特に優れ、偏光板の耐久性が向上する効果を有している。
アクリルポリマーの主鎖の少なくとも一方の末端に水酸基を有するようにする方法は、特に主鎖の末端に水酸基を有するようにする方法であれば限定ないが、アゾビス(2−ヒドロキシエチルブチレート)のような水酸基を有するラジカル重合開始剤を使用する方法、2−メルカプトエタノールのような水酸基を有する連鎖移動剤を使用する方法、水酸基を有する重合停止剤を使用する方法、リビングイオン重合により水酸基を末端に有するようにする方法、特開2000−128911号公報は2000−344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等により得ることができ、特に該公報に記載の方法が好ましい。
この公報記載に関連する方法で作られたポリマーは、綜研化学社製のアクトフロー・シリーズとして市販されており、好ましく用いることができる。上記の末端に水酸基を有するポリマー及び/または側鎖に水酸基を有するポリマーは相溶性、透明性を著しく向上する効果を有する。
さらに、延伸方向に対して負の配向複屈折性を示すエチレン性不飽和モノマーとして、スチレン類を用いたポリマーであることが負の屈折性を発現させるために好ましい。スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、クロロメチルスチレン、メトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ビニル安息香酸メチルエステルなどが挙げられるが、これらに限定されるものではない。
前記不飽和エチレン性モノマーとして挙げた例示モノマーと共重合してもよく、また複屈折性を制御する目的で、2種以上の上記ポリマーをもちいてセルロースエステルに相溶させて用いても良い。
セルロースエステルフィルム中の上記可塑剤の総含有量は、固形分総量に対し、5〜20重量%が好ましく、6〜16重量%がさらに好ましく、特に好ましくは8〜13重量%である。また、2種の可塑剤の含有量は各々少なくとも1重量%以上であり、好ましくは各々2重量%以上含有することである。
多価アルコールエステル系可塑剤は、1〜15重量%含有することが好ましく、特に3〜11重量%含有することが好ましい。多価アルコールエステル系可塑剤の含有量が、少ないと平面性の劣化が認められ、また多すぎると、ブリードアウトがしやすい。多価アルコールエステル系可塑剤とその他の可塑剤との重量比率は、1:4〜4:1の範囲であることが好ましく、1:3〜3:1であることがさらに好ましい。可塑剤の添加量が多すぎても、また少なすぎてもフィルムが変形しやすく好ましくない。
(溶液流延製膜法)
セルロースエステルフィルムの溶液流延製膜法による製造は、セルロースエステル及び添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、さらに乾燥する工程、仕上がったフィルムを巻取る工程により行なわれる。
まず、ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35重量%が好ましく、さらに好ましくは、15〜25重量%である。
ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70〜98重量%であり、貧溶剤が2〜30重量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。そのため、セルロースエステルのアシル基置換度によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。
良溶剤は、特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。
また、貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n−ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01〜2重量%含有していることが好ましい。
上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶
解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤または膨潤させた後、さらに良溶剤を添加して溶解する方法も好ましく用いられる。
加圧は、窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行なってもよい。加熱は外部から行なうことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高すぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45〜120℃であり、60〜110℃がより好ましく、70〜105℃がさらに好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
または冷却溶解法も、好ましく用いられ、これによって酢酸メチル等の溶媒にセルロースエステルを溶解させることができる。
つぎに、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると濾過材の目詰まりが発生しやすいという問題がある。このため、絶対濾過精度0.008mm以下の濾材が好ましく、0.001〜0.008mmの濾材がより好ましく、0.003〜0.006mmの濾材がさらに好ましい。
濾材の材質は、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にセルロースエステルフィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、さらに好ましくは50個/m以下であり、さらに好ましくは0〜10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
ドープの濾過は、通常の方法で行なうことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45〜120℃であり、45〜70℃がより好ましく、45〜55℃であることがさらに好ましい。
濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることがさらに好ましい。
つぎに、ドープの流延について説明する。
流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃がさらに好ましい。または、冷却することによって、ウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行なわれるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら、目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行なうことが好ましい。
セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150重量%が好ましく、さらに好ましくは20〜40重量%または60〜130重量%であり、特に好ましくは、20〜30重量%または70〜120重量%である。
本発明においては、残留溶媒量は、下記式で定義される。
残留溶媒量(重量%)={(M−N)/N}×100
ここで、Mは、ウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の重量で、Nは、Mを115℃で1時間の加熱後の重量である。
また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、さらに乾燥し、残留溶媒量を1重量%以下にすることが好ましく、さらに好ましくは0.1重量%以下であり、特に好ましくは0〜0.01重量%以下である。
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
本発明による防眩フィルム、防眩性反射防止フィルム用のセルロースエステルフィルムを作製するためには、金属支持体より剥離した直後のウェブの残留溶剤量の多いところで搬送方向に延伸し、さらにウェブの両端をクリップ等で把持するテンター方式で幅方向に延伸を行なうことが特に好ましい。縦方向、横方向ともに好ましい延伸倍率は1.01〜1.3倍であり、1.05〜1.15倍がさらに好ましい。縦方向及び横方向延伸により面積が1.12〜1.44倍となっていることが好ましく、1.15〜1.32倍となっていることが好ましい。これは縦方向の延伸倍率×横方向の延伸倍率で求めることができる。縦方向と横方向の延伸倍率のいずれかが1.01倍未満では防眩層を形成する際の紫外線照射による平面性の劣化が生じやすくなる。
剥離直後に縦方向に延伸するために、剥離張力及びその後の搬送張力によって延伸することが好ましい。例えば剥離張力を210N/m以上で剥離することが好ましく、特に好ましくは220〜300N/mである。
ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行なうことができるが、簡便さの点で熱風で行なうことが好ましい。
ウェブの乾燥工程における乾燥温度は30〜200℃で段階的に高くしていくことが好ましく、50〜180℃の範囲で段階的に高くすることが寸法安定性をよくするためさらに好ましい。
セルロースエステルフィルムの膜厚は、特に限定はされないが10〜200μmが好ましく用いられる。特に10〜70μmの薄膜フィルムでは平面性と耐擦傷性に優れた防眩性反射防止フィルムを得ることが困難であったが、平面性と耐擦傷性に優れた薄膜の防眩性反射防止フィルムが得られ、また生産性にも優れているため、セルロースエステルフィルムの膜厚は10〜70μmであることが特に好ましい。さらに好ましくは20〜60μmである。最も好ましくは35〜60μmである。また、共流延法によって多層構成としたセルロースエステルフィルムも好ましく用いることができる。セルロースエステルが多層構成の場合でも紫外線吸収剤と可塑剤を含有する層を有しており、それがコア層、スキン層、もしくはその両方であってもよい。
セルロースエステルフィルムの防眩層を設ける面の中心線平均粗さ(Ra)は0.001〜1μmのものを用いることができる。
(溶融流延製膜法)
セルロースエステルフィルムは、溶融流延製膜法によって形成することも、好ましい。
溶液流延製膜法において用いられる溶媒(例えば塩化メチレン等)を用いずに、加熱溶融する溶融流延による成形法は、さらに詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法等に分類できる。これらの中で、機械的強度及び表面精度等に優れるセルロースエステルフィルムを得るためには、溶融押し出し法が優れている。
セルロースエステル及び添加剤の混合物を熱風乾燥または真空乾燥した後、溶融押出し、T型ダイよりフィルム状に押出して、静電印加法等により冷却ドラムに密着させ、冷却固化させ、未延伸フィルムを得る。冷却ドラムの温度は90〜150℃に維持されていることが好ましい。
セルロースエステルと、その他、必要により添加される安定化剤等の添加剤は、溶融する前に混合しておくことが好ましく、セルロースエステルと添加剤を加熱前に混合することが、さらに好ましい。混合は、混合機等により行なってもよく、また、セルロースエステル調製過程において混合してもよい。混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、ヘンシェルミキサー、リボンミキサー一般的な混合機を用いることができる。
上記のようにフィルム構成材料を混合した後に、その混合物を押出し機を用いて直接溶融して製膜するようにしてもよいが、一旦、フィルム構成材料をペレット化した後、該ペレットを押出し機で溶融して製膜するようにしてもよい。また、フィルム構成材料が、融点の異なる複数の材料を含む場合には、融点の低い材料のみが溶融する温度で一旦、いわゆるおこし状の半溶融物を作製し、半溶融物を押出し機に投入して製膜することも可能である。フィルム構成材料に熱分解しやすい材料が含まれる場合には、溶融回数を減らす目的で、ペレットを作製せずに直接製膜する方法や、上記のようなおこし状の半溶融物を作ってから製膜する方法が好ましい。
押出し機は、市場で入手可能な種々の押出し機を使用可能であるが、溶融混練押出し機が好ましく、単軸押出し機でも2軸押出し機でもよい。フィルム構成材料からペレットを作製せずに、直接製膜を行なう場合、適当な混練度が必要であるため2軸押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック型、ユニメルト、ダルメージ等の混練型のスクリューに変更することにより、適度の混練が得られるので、使用可能である。フィルム構成材料として、一旦、ペレットやおこし状の半溶融物を使用する場合は、単軸押出し機でも2軸押出し機でも使用可能である。
押出し機内及び押出した後の冷却工程は、窒素ガス等の不活性ガスで置換するか、あるいは減圧することにより、酸素の濃度を下げることが好ましい。
押出し機内のフィルム構成材料の溶融温度は、フィルム構成材料の粘度や吐出量、製造するシートの厚み等によって好ましい条件が異なるが、一般的には、フィルムのガラス転移温度(Tg)に対して、Tg以上、Tg+100℃以下、好ましくはTg+10℃以上、Tg+90℃以下である。具体的には、溶融押出し時の温度は、150〜300℃であることが好ましく、特に180〜270℃の範囲であることが好ましい。さらに200〜250℃の範囲であることが好ましい。押出し時の溶融粘度は、10〜100000ポイズ、好ましくは100〜10000ポイズである。
また、押出し機内でのフィルム構成材料の滞留時間は、短い方が好ましく、5分以内、好ましくは3分以内、より好ましくは2分以内である。滞留時間は、押出し機1の種類、押出す条件にも左右されるが、材料の供給量やL/D、スクリュー回転数、スクリューの溝の深さ等を調整することにより短縮することが可能である。
上記押出し機でフィルム状に押出して、静電印加法等により冷却ドラムに密着させ、冷却固化させ、未延伸フィルムを得る。冷却ドラムの温度は90〜150℃に維持されていることが好ましい。
セルロースエステルフィルムは、幅手方向もしくは製膜方向に延伸製膜されたフィルムであることが特に好ましい。
前述の冷却ドラムから剥離され、得られた未延伸フィルムを複数のロール群及び/または赤外線ヒーター等の加熱装置を介して、セルロースエステルのガラス転移温度(Tg)から、Tg+100℃の範囲内に加熱し、一段または多段縦延伸することが好ましい。
つぎに、上記のようにして得られた縦方向に延伸されたセルロースエステルフィルムを横延伸し、ついで熱処理することが好ましい。
熱処理は、ガラス転移温度(Tg)−20℃〜延伸温度の範囲内で、通常0.5〜300秒間搬送しながら行なうことが好ましい。
熱処理されたフィルムは、通常、ガラス転移温度(Tg)以下まで冷却され、フィルム両端のクリップ把持部分をカットし巻き取られる。また冷却は、最終熱処理温度からガラス転移温度(Tg)までを、毎秒100℃以下の冷却速度で徐冷することが好ましい。
冷却する手段は特に限定はなく、従来公知の手段で行なえるが、特に複数の温度領域で順次冷却しながら、これらの処理を行なうことがフィルムの寸法安定性向上の点で好ましい。なお、冷却速度は、最終熱処理温度をT1、フィルムが最終熱処理温度からTgに達するまでの時間をtとしたとき、(T1−Tg)/tで求めた値である。
セルロースエステルフィルムには、紫外線吸収剤が好ましく用いられる。紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。
紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。
ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、これらに限定されない。
UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、これらに限定されない。
UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。また、市販品として、チヌビン(TINUVIN)326、チヌビン109、チヌビン171、チヌビン900、チヌビン928、チヌビン360(いずれもチバ・スペシャルティ・ケミカルズ社製)、LA31(旭電化社製)、Sumisorb250(住友化学社製)、RUVA−100(大塚化学製)が挙げられる。
また、特開2001−187825号公報に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。
また、セルロースエステルフィルムには滑り性を付与するため、微粒子を用いることができる。
微粒子としては、無機化合物の例としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。
微粒子は、珪素を含むものが濁度が低くなる点で好ましく、特に、二酸化珪素が好ましい。
微粒子の一次粒子の平均粒子径は5〜50nmが好ましく、さらに好ましいのは7〜20nmである。これらは、主に粒子径0.05〜0.3μmの2次凝集体として含有されることが好ましい。含有量は0.05〜1重量%であることが好ましく、特に0.1〜0.5重量%が好ましい。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、これらの微粒子を使用することができる。
酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上、日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
微粒子としてポリマー粒子を用いることもでき、ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。
これらの中でもアエロジル200V、アエロジルR972Vが濁度を低く保ちながら、摩擦係数を下げる効果が大きいため、特に好ましく用いられる。
また、セルロースエステルフィルムには、以下に説明する劣化防止剤を含有することが好ましい。
つぎに劣化防止剤について説明する。
(劣化防止剤)
劣化防止剤とは、高分子が熱や酸素、水分、酸などによって分解されることを化学的な作用によって抑制する材料のことである。本発明に用いられる透明基材フィルムは、溶融流延法の場合、特に200℃以上の高温下で成形されるため、高分子の分解・劣化が起きやすい系であり、劣化防止剤をフィルム形成材料中に含有させることが好ましい。
フィルム形成材料の酸化防止、分解して発生した酸の捕捉、光または熱によるラジカル種基因の分解反応を抑制または禁止する等、解明できていない分解反応を含めて、着色や分子量低下に代表される変質や材料の分解による揮発成分の生成を抑制するために劣化防止剤を用いる。
劣化防止剤としては、例えば、酸化防止剤、ヒンダードアミン光安定剤、酸捕捉剤、金属不活性化剤などが挙げられるが、これらに限定されない。これらは、特開平3−199201号公報、特開平5−1907073号公報、特開平5−194789号公報、特開平5−271471号公報、特開平6−107854号公報などに記載がある。これらの中でも、フィルム形成材料中に劣化防止剤として酸化防止剤を含むことが好ましく、本発明の目的効果の点から、上記一般式(Z)で表わされる酸化防止剤を含有することが好ましい。フィルム形成材料中の劣化防止剤は、少なくとも1種以上選択でき、フィルムの透明性から添加する量は、透明基材フィルムを形成する透明基材樹脂100重量%に対して、劣化防止剤の添加量は0.01重量%以上、10重量%以下が好ましく、より好ましくは0.1重量%以上、5.0重量%以下であり、さらに好ましくは0.2重量%以上、2.0重量%以下である。
フィルム形成材料は、材料の変質や吸湿性を回避する目的で、構成する材料が1種または複数種のペレットに分割して保存することができる。ペレット化は、加熱時の溶融物の混合性または相溶性が向上でき、または得られたフィルムの光学的な均一性が確保できることもある。
(酸化防止剤)
セルロースエステルフィルムには、以下に示す酸化防止剤を含有することも好ましい。ここで、酸化防止剤としては、酸素によるフィルム形成材料の劣化を抑制する化合物であれば制限なく用いることができる。
中でも、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アルキルラジカル捕捉剤、過酸化物分解剤、酸素スカベンジャー等が挙げられる。これらの中でもフェノール系酸化防止剤、リン系酸化防止剤、アルキルラジカル捕捉剤が好ましいが、フェノール系酸化防止剤とリン系酸化防止剤の2者の組み合わせを用いることがより好ましく、フェノール系酸化防止剤とリン系酸化防止剤とアルキルラジカル捕捉剤の3者の組み合わせを用いることが最も好ましい。これらの酸化防止剤を配合することにより、透明性、耐熱性等を低下させることなく、溶融成型時の熱や熱酸化劣化等による成形体の着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、セルロースエステルの重量に対して、0.01重量%以上、10重量%以下が好ましく、より好ましくは0.1重量%以上、5.0重量%以下であり、さらに好ましくは0.2重量%以上、2.0重量%以下である。
フェノール系酸化防止剤は既知の化合物であり、パラ−t−ブチルフェノール、パラ−(1,1,3,3−テトラメチルブチル)フェノール等のアルキル基置換フェノールの他、例えば、米国特許第4,839,405号明細書の第12〜14欄に記載の、2,6−ジアルキルフェノール誘導体化合物、いわゆるヒンダードフェノール系化合物が挙げられるが、これらの中で、ヒンダードフェノール系化合物が好ましい。
リン系酸化防止剤として、ホスファイト系化合物、及びホスホナイト系化合物が挙げられる。
リン系酸化防止剤として、ホスホナイト系化合物が好ましく、中でも、テトラキス(2,4−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト等の4,4′−ビフェニレンジホスホナイト化合物が好ましく、特に好ましいものはテトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイトである。
セルロースエステルフィルムには、アルキルラジカル捕捉剤を含有することが好ましい。ここでいうアルキルラジカル捕捉剤とは、アルキルラジカルが速やかに反応しうる基を有し、かつアルキルラジカルと反応後に後続反応が起こらない安定な生成物を与える化合物を意味する。
また、セルロースエステルフィルムには、フィルム形成材料の熱溶融時の劣化防止剤、また製造後に偏光子保護フィルムとして晒される外光や液晶ディスプレイのバックライトからの光に対する劣化防止剤として、ヒンダードアミン光安定剤(HALS)化合物を添加することが好ましい。ヒンダードアミン光安定剤としては、例えば、米国特許第4,619,956号明細書の第5〜11欄及び米国特許第4,839,405号明細書の第3〜5欄に記載されているように、2,2,6,6−テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が含まれる。
ヒンダードアミン光安定剤は、セルロースエステルの重量に対して、0.1〜10重量%添加することが好ましく、さらに0.2〜5重量%添加することが好ましく、さらに0.5〜2重量%添加することが好ましい。これらは2種以上を併用してもよい。
(酸捕捉剤)
セルロースエステルフィルムには、酸捕捉剤が、高温環境下では酸による分解を抑制することから、含有されることが好ましい。酸捕捉剤としては、酸と反応して酸を不活性化する化合物であれば制限なく用いることができるが、中でも米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物が好ましい。
このような酸捕捉剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8〜40モルのエチレンオキシド等の縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテル等、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(すなわち、4,4′−ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2〜22個の炭素原子の脂肪酸の4〜2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)等)、及び種々のエポキシ化長鎖脂肪酸トリグリセリド等(例えば、エポキシ化大豆油、エポキシ化亜麻仁油等)の組成物によって代表わされ例示され得るエポキシ化植物油及び他の不飽和天然油(これらはときとしてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12〜22個の炭素原子を含有している)が含まれる。また、市販のエポキシ基含有エポキシド樹脂化合物として、EPON 815Cやその他のエポキシ化エーテルオリゴマー縮合生成物も好ましく用いることができる。
さらに上記以外に用いることが可能な酸捕捉剤としては、オキセタン化合物やオキサゾリン化合物、あるいはアルカリ土類金属の有機酸塩やアセチルアセトナート錯体、特開平5−194788号公報の段落番号[0068]〜[0105]に記載されているものが含まれる。
酸捕捉剤は、セルロースエステルの重量に対して、0.1〜10重量%添加することが好ましく、さらに0.2〜5重量%添加することが好ましく、さらに0.5〜2重量%添加することが好ましい。これらは2種以上を併用してもよい。
なお酸捕捉剤は、酸掃去剤、酸捕獲剤、酸キャッチャー等と称されることもあるが、これらの呼称による差異なく用いることができる。
(金属不活性剤)
セルロースエステルフィルムには、金属不活性剤も含まれることも好ましい。金属不活性剤とは、酸化反応において開始剤あるいは触媒として作用する金属イオン不活性化する化合物を意味し、ヒドラジド系化合物、シュウ酸ジアミド系化合物、トリアゾール系化合物等が挙げられ、例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン、2−ヒドロキシエチルシュウ酸ジアミド、2−ヒドロキシ−N−(1H−1,2,4−トリアゾール−3−イル)ベンズアミド、N−(5−tert−ブチル−2−エトキシフェニル)−N′−(2−エチルフェニル)シュウ酸アミド等が挙げられる。
金属不活性剤は、透明基材フィルムの樹脂100重量%に対して、0.0002〜2重量%添加することが好ましく、さらに0.0005〜2重量%添加することが好ましく、さらに0.001〜1重量%添加することが好ましい。これらは2種以上を併用してもよい。
(その他の添加剤)
セルロースエステルフィルムには、その他の添加剤として、例えば、染料、顔料、蛍光体、二色性色素、リターデーション制御剤、屈折率調整剤、ガス透過抑制剤、抗菌剤、生分解性付与剤などを添加しても良い。
そして、これらの添加剤をセルロースエステルフィルムに含有させる方法としては、各々の材料を固体あるいは液体のまま混合し、加熱溶融し混練して均一な溶融物とした後、流延して、セルロースエステルフィルムを形成する方法であっても、予め全ての材料を溶媒等を用いて、溶解して均一溶液とした後、溶媒を除去して、添加剤とセルロースエステルフィルムの混合物で含有させても良い。
(偏光板)
本発明の防眩フィルムを用いた偏光板について述べる。
本発明の偏光板は、偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、本発明の上記防眩フィルムであるものである。
従って、本発明の偏光板は、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好な防眩フィルムを表面に具備しているから、この偏光板をディスプレイ装置に装備することにより、ディスプレイ装置の保護膜としての機能を充分に果し得るものである。
偏光板は、一般的な方法で作製することができる。本発明の防眩フィルムの裏面側をアルカリ鹸化処理し、処理した防眩フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面に該防眩フィルムを用いても、別の偏光板保護フィルムを用いてもよい。
本発明の防眩フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは、面内リタデーション(Ro)が、20〜70nm、厚み方向リタデーション(Rt)が100〜400nmの位相差を有する光学補償フィルム(位相差フィルム)であることが好ましい。
なお、リタデーション値Ro、Rtは、自動複屈折率計を用いて測定することができる。例えば、KOBRA−21ADH(王子計測機器株式会社製)を用いて、温度23℃、湿度55%RHの環境下で、波長が590nmで求めることができる。
これらは例えば、特開2002−71957号公報、特開2003−170492号公報記載の方法で作製することができる。または、さらにディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348号公報記載の方法で光学異方性層を形成することができる。あるいは面内リタデーション(Ro)が、0〜5nm、厚み方向リタデーション(Rt)が−20〜+20nmの無配向フィルムも好ましく用いられる。
本発明の防眩フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。裏面側に用いられる偏光板保護フィルムとしては、市販のセルロースエステルフィルムとして、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC4FR−1、KC4FR−2(コニカミノルタオプト株式会社製)等が好ましく用いられる。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行なったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本発明の反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
また、本発明による偏光板は、偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、本発明の上記防眩性反射防止フィルムであるものである。
従って、本発明の偏光板は、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能が良好であるうえに、反射防止機能を有する反射防止フィルムを表面に具備しており、この偏光板をディスプレイ装置に装備することにより、ディスプレイ装置の保護膜としての機能を充分に果し得るものである。
(表示装置)
本発明の防眩フィルム面及び/又は防眩性反射防止フィルム面を表示装置の鑑賞面側に組み込むことによって、防眩性、白濁防止性、写像性(画像鮮明度)、ギラツキ防止性の全ての光学性能、さらには、反射防止機能に優れた本発明の表示装置を作製することができる。
本発明の防眩フィルム及び/又は防眩性反射防止フィルムは、偏光板に組み込まれ、反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明の防眩フィルム及び/又は防眩性反射防止フィルムは防眩層の反射光の色ムラが著しく少なく、また、反射率が低く、平面性に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。
特に、本発明の防眩フィルム及び/又は防眩性反射防止フィルムを、プラズマディスプレイの前面板フイルターとして加工し、装着したプラズマディスプレイは、光干渉ムラもなく優れた視認性を有する表示装置である。また、30型以上の大画面のプラズマディスプレイ表示装置でも、色ムラや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果がある。
以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
実施例1
本発明による防眩フィルムを製造するために、まず鋳型ロールを製作した。
鋳型ロールの製作
直径500mm、ロール幅2000mのアルミロール上にレーザー描写を行ない、ロール表面全面が凸部と凹部が並んでいる二次関数形状で覆われ、凹凸の傾斜角が3°以内となるように加工をした。
鋳型ロールの表面凹凸層の形状は、鋳型ロールの円周方向および幅手方向において凸部と凹部が並んでおり、これらの凸部と凹部の長さがそれぞれ2.5〜50μmの範囲内であり、かつ基準面からの凹凸部の高さをz(μm)、相互に隣り合う凸部の中央及び凹部の中央同士の間の距離(横方向変位)をX(μm)とするとき、
z=aX
(式中、aは傾斜角が3°以下となるように設定された定数)
で表わされる二次関数式を満たす凹凸形状を有するものである。
本実施例において、具体的には、
z=0.0025×X
であった。
そして、X=−10〜10(μm)の領域における関数を繋げることによって、凹凸形状のプロファイルを作成し、プロファイル形状をレーザー描写によって作製した。
比較例1
直径500mm、ロール幅2000mのアルミロール上にマット加工を施し、算術平均粗さ:Ra=0.2μm,十点平均粗さ:Rz=1.2μm,平均山谷間隔:Sm=40μmの表面凹凸を持った鋳型ロールを作製した。
比較例2
直径500mm、ロール幅2000mのアルミロール上にレーザー描写を行ない、ロール表面全面が凸部と凹部が並んでいるコサイン関数形状で覆われ、凹凸の傾斜角が3°以内となるように加工をした。具体的には、
z=40.3×cosX
であった。
そして、X=−10〜10(μm)の領域における関数を繋げることによって、凹凸形状のプロファイルを作成し、プロファイル形状をレーザー描写によって作製した。
(凹凸表面の評価方法)
二次元表面粗さ計で10mm×10mmの領域で、加工前のアルミロールと、加工した鋳型ロールの同じ箇所を0.5μmピッチで測定した。鋳型のプロファイルからアルミロールのプロファイルを引き、鋳型の凹凸表面とした。
計測した鋳型の凹凸表面の最近接点同士の4つの傾斜ベクトルを求め、その足し合わせベクトルから、水平面と成す角を求め、0.5μm×0.5μmの単位領域における傾斜角とした。なお、角度は0.1刻みとし、傾斜角0°は−0.05°〜0.05°の範囲の角度領域とした。
評価項目A:3°以内の傾斜角を持つ単位領域の総計が任意領域の全面積に
占める割合
評価項目B:傾斜角0°を持つ単位領域の総計をαとした時にαが任意領域の
全面積に占める割合
評価項目C:単位領域の総計が0.9α〜1.1αとなる傾斜角の全領域の
総合計が任意領域の全面積に占める割合
Figure 2009086410
上記表1の結果から判るように、本発明の実施例1の鋳型ロールでは、評価項目A、B、Cのすべての項目を満たす鋳型ロールを製作することができた。
これに対し、比較例1と2の鋳型ロールでは、評価項目A、B、Cのすべての項目を満たすことができなかった。
実施例2
本発明による防眩フィルムを作製するために、まず透明フィルム基材を製造した。
透明フィルム基材(セルロースエステルフィルム)の製造
(ドープ液Aの調製)
セルローストリアセテート(アセチル基置換度2.9) 100重量部
トリメチロールプロパントリベンゾエート 5重量部
エチルフタリルエチルグリコレート 5重量部
酸化ケイ素微粒子 0.1重量部
(アエロジルR972V、日本アエロジル株式会社製)
チヌビン109(チバ・スペシャルティ・ケミカルズ社製) 1重量部
チヌビン171(チバ・スペシャルティ・ケミカルズ社製) 1重量部
メチレンクロライド 400重量部
エタノール 40重量部
ブタノール 5重量部
上記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行なって、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液Aを得た。
ついで、得られたドープ液Aを、温度35℃に保温した流延ダイを通より、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。
つぎに、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が80重量%になった段階で、剥離ロールによりウェブを支持体から剥離した。
さらに、ウェブを上下に複数配置したロールによる搬送乾燥工程で90℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、130℃で幅方向に延伸前の1.1倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で135℃の乾燥風にて乾燥させた。乾燥工程の雰囲気置換率15(回/時間)とした雰囲気内で15分間熱処理した後、室温まで冷却して巻き取り、幅2000mm、膜厚80μm、長さ4000m、屈折率1.49の長尺のセルロースエステルフィルムを作製した。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のウェブ搬送方向の延伸倍率は1.1倍であった。
防眩フィルムの作製
上記のようにして製造した膜厚80μm、フィルム幅2000mmのセルローストリアセテート(TAC)フィルム基材上に、下記の紫外線硬化樹脂組成物を塗布した。すなわち、孔径0.4μmのポリプロピレン製フィルターで濾過して紫外線硬化樹脂層塗布液を調製し、これをマイクログラビアコーターを用いてTACフィルム基材上に塗布し、温度90℃で乾燥の後、上記実施例1で作製した鋳型ロールに塗布面を接触させた後、紫外線ランプを用い照射部の照度が100mW/cm で、照射量を0.2J/cm としてフィルム側から塗布層を硬化させた。その後、鋳型ロールからフィルムを剥離し、ドライ膜厚10μmの紫外線硬化樹脂層を形成し、防眩フィルムを得た。
(紫外線硬化樹脂組成物)
下記材料を攪拌、混合し紫外線硬化樹脂組成物とした。
ペンタエリスリトールトリアクリレート 20重量部
ペンタエリスリトールテトラアクリレート 60重量部
ウレタンアクリレート 50重量部
(新中村化学工業社製 商品名U−4HA)
イルガキュア184 20重量部
(チバスペシャルティケミカルズ株式会社製)
イルガキュア907 12重量部
(チバスペシャルティケミカルズ株式会社製)
ポリエーテル変性シリコーンオイル 0.8重量部
(信越化学社製 KF−351)
ポリオキシアルキルエーテル 1.0重量部
(花王社製 エマルゲン1108)
プロピレングリコールモノメチルエーテル 110重量部
酢酸エチル 110重量部
実施例3
防眩性反射防止フィルムの作製
実施例2で得られた防眩フィルムの紫外線硬化樹脂層上に、下記のように高屈折率層、ついで低屈折率層の順に反射防止層を塗設し、防眩性反射防止フィルムを得た。
(反射防止層の作製:高屈折率層)
実施例1の防眩フィルムの紫外線硬化樹脂層上に、下記高屈折率層塗布組成物を押し出しコーターで塗布し、温度80℃で1分間乾燥させ、ついで紫外線を、0.15J/cm 照射して硬化させ、厚さが78nmとなるように高屈折率層を設けた。この高屈折率層の屈折率は、1.6であった。
(高屈折率層塗布組成物)
(粒子分散液Aの作製)
メタノール分散アンチモン複酸化物コロイド(固形分60%、日産化学工業株式会社製 アンチモン酸亜鉛ゾル、商品名:セルナックスCX−Z610M−F2)6.0kgに、イソプロピルアルコール12.0kgを攪拌しながら徐々に添加し、粒子分散液Aを調製した。
PGME(プロピレングリコールモノメチルエーテル) 40重量部
イソプロピルアルコール 25重量部
メチルエチルケトン 25重量部
ペンタエリスリトールトリアクリレート 0.9重量部
ペンタエリスリトールテトラアクリレート 1.0重量部
ウレタンアクリレート 0.6重量部
(商品名:U−4HA 新中村化学工業社製)
粒子分散液A 20重量部
イルガキュア184 0.4重量部
(チバ・スペシャルティ・ケミカルズ社製)
イルガキュア907 0.2重量部
(チバ・スペシャルティ・ケミカルズ社製)
シリコーン系界面活性剤 0.4重量部
〔FZ−2207(日本ユニカー株式会社製)の
10%プロピレングリコールモノメチルエーテル液〕
(反射防止層の作製:低屈折率層)
上記の高屈折率層上に、下記の低屈折率層塗布組成物を押し出しコーターで塗布し、温度100℃で1分間乾燥させた後、紫外線を0.15J/cm 照射して硬化させ、さらに温度120℃で、5分間熱硬化させ、厚さ95nmとなるように低屈折率層を設け、防眩性反射防止フィルムを得た。
なお、この低屈折率層の屈折率は1.37であった。
(低屈折率層塗布組成物)
〈テトラエトキシシラン加水分解物Aの調製〉
テトラエトキシシラン230gと、エタノール440gを混合し、これに2%酢酸水溶液120gを添加した。ついで、この溶液を、室温(25℃)にて18時間攪拌することで、テトラエトキシシラン加水分解物Aを調製した。
プロピレングリコールモノメチルエーテル 430重量部
イソプロピルアルコール 430重量部
テトラエトキシシラン加水分解物A 120重量部
γ−メタクリロキシプロピルトリメトキシシラン 4重量部
(商品名:KBM503、信越化学工業社製)
イソプロピルアルコール分散中空シリカ微粒子ゾル 45重量部
(固形分20%、商品名:ELCOM V−8209、触媒化成工業社製)
アルミニウムエチルアセトアセテート・ジイソプロピレート 3重量部
シリコーン系界面活性剤(FZ−2207、日本ユニカー株式会社製)の10% シリコーン系界面活性剤 3重量部
〔FZ−2207(日本ユニカー株式会社製)の
10%プロピレングリコールモノメチルエーテル液〕
酢酸 4重量部
比較例3
実施例2と同条件で、使用する鋳型ロールを、比較例1で得たロールに変更した。
比較例4
実施例2と同条件で、使用する鋳型ロールを、比較例2で得たロールに変更した。
(凹凸表面の評価方法)
二次元表面粗さ計で10mm×10mmの領域で得られた防眩フィルムを、0.5μmピッチで測定した。フィルムの凹凸表面の最近接点同士の4つの傾斜ベクトルを求め、その足し合わせベクトルから水平面と成す角を求め、0.5μm×0.5μmの単位領域における傾斜角とした。なお、角度は0.1刻みとし、傾斜角0°は−0.05°〜0.05°の範囲の角度領域とした。
評価項目A:3°以内の傾斜角を持つ単位領域の総計が任意領域の全面積に占める割合。
評価項目B:傾斜角0°を持つ単位領域の総計をαとした時にαが任意領域の全面積に占める割合。
評価項目C:単位領域の総計が0.9α〜1.1αとなる傾斜角の全領域の総合計が任意領域の全面積に占める割合。
Figure 2009086410
上記表2の結果から明らかなように、本発明の実施例2の防眩フィルムおよび本発明の実施例3の防眩性反射防止フィルムによれば、図1に示すように、いずれも、いわゆる頻出傾斜角の単位領域の凹凸部の分布が、凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフにおいて、略矩形に近い分布を有するものであった。
これに対し、比較例3と4の防眩フィルムでは、略矩形に近い分布を得ることができなかった。
算術平均粗さ(Ra)の結果は、どのような評価になりますか?
実施例4と5、及び比較例5と6
上記実施例2で作製した防眩フィルム、実施例3で作製した防眩性反射防止フィルム、及び比較例3と4で作製した防眩フィルムを用いて、下記のようにして偏光板を作製し、さらに、それら偏光板を液晶表示パネル(画像表示装置)に組み込み、視認性を評価した。
下記の方法に従って、実施例2の防眩フィルム、実施例3の防眩性反射防止フィルム、及び比較例3と4の防眩フィルムと、セルロースエステル系光学補償フィルムであるKC8UCR5(コニカミノルタオプト株式会社製)各々1枚とを偏光板保護フィルムとして用いて本発明の偏光板、及び比較例の偏光板を作製した。
(a)偏光膜の作製
けん化度99.95モル%、重合度2400のポリビニルアルコール(以下PVAと略す)100重量部に、グリセリン10重量部、及び水170重量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理してPVAフィルムを得た。得られたPVAフィルムは平均厚みが40μm、水分率が4.4%、フィルム幅が3mであった。
つぎに前記PVAフィルムを以下に記載する予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で連続的に処理して偏光膜フィルムを作製した。
PVAフィルムを30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で6倍に一軸延伸を行ない、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの30℃の水溶液中に5分間浸漬して固定処理を行なった。その後、PVAフィルムを取り出し、40℃で熱風乾燥し、さらに100℃で5分間熱処理を行なった。得られた偏光膜は、平均厚みが13μm、偏光性能については、透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。
(b)偏光板の作製
ついで、下記工程1〜5に従って、偏光膜フィルムと偏光板用保護フィルムとを貼り合わせて本発明の偏光板、及び比較例の偏光板を作製した。
工程1:光学補償フィルムと防眩フィルムを3mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、ついで水洗、乾燥させた。
同様に光学補償フィルムを3mol/Lの水酸化ナトリウム溶液に、温度60℃で90秒間浸漬し、ついで水洗、乾燥させた。
工程2:前述の偏光膜フィルムを固形分2重量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
工程3:工程2で偏光膜フィルムに付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理した光学補償フィルムと防眩フィルムで挟み込んで、積層配置した。
工程4:2つの回転するローラにて20〜30N/cm の圧力で約2m/minの速度で貼り合わせた。このとき気泡が入らないように注意して実施した。
工程5:温度80℃の乾燥機中にて、工程4で作製した試料を2分間乾燥処理し、偏光板を作製した。
市販の液晶表示パネル(VA型)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた本発明の偏光板、及び比較例の偏光板を張り付けた。
(防眩性の評価方法)
30°の角度から蛍光灯の光をフィルム上に入射させ、その反射像を正反射する30°の位置から目視評価を行った。
防眩性の評価ランク
◎:蛍光灯の像が全く見えない
○:蛍光灯の像がぼやけて見える
△:蛍光灯の像が結像するが、わずかにぼやけてクッキリとは見えない
×:蛍光灯の像がクッキリ見える
ギラツキの評価方法
フィルムを20inchのLCDモニター上に実装し、モニターを白表示したときに20cmの距離からた目視しギラツキを評価した。尚、ギラツキとは、防眩フィルム上のランダムな凸凹によってディスプレイの輝度が見る場所によって変化するために画像がチラついて見える現象を言う。
(ギラツキの評価ランク)
○:ギラツキが全く見えない
△:僅かにギラツキが見える
×:ギラツキが見える
透過像鮮明度の評価方法
フィルムを20inchのLCDモニター上に実装し、モニターを白表示した上で、フォント10の黒文字表示をしたときに20cmの距離から目視評価した。
(透過像鮮明度の評価ランク)
○:全く文字ボケが見られない
△:わずかに文字ボケが見られる
×:文字ボケがあり、視認性に影響を及ぼす
(白濁の評価方法)
フィルムを20inchのLCDモニター上に実装し、ディスプレイを黒表示した時に20cmの距離から目視評価した。
白濁の評価ランク
○:ディスプレイに白さを感じない
△:ディスプレイがわずかに白い
×:ディスプレイが白い
Figure 2009086410
上記表3の結果から明らかなように、本発明の実施例2の防眩フィルム、および実施例3の防眩性反射防止フィルムを用いた偏光板を組み込んだ液晶表示パネルは、何れも防眩性、白濁防止性、写像性(画像鮮明度)、およびギラツキ防止性の全ての光学性能が、良好であった。
これに対し、比較例5と6で作製したの防眩フィルムを用いた偏光板を組み込んだ液晶表示パネルは、防眩性、白濁防止性、写像性(画像鮮明度)、およびギラツキ防止性のうち、いずれかの性能が劣るものであり、視認性、表示性に劣るものであった。
本発明の実施例で得られた防眩フィルム表面の凹凸部の傾斜角(傾き)と凹凸部個数の分布グラフである。 本発明の実施例で得られた防眩フィルムの表面の一次元表面粗さ計による断面プロファイルである。

Claims (9)

  1. 表面全体に凹凸部を有する防眩フィルムであって、防眩フィルムの縦Lmm×横Lmmの所定の領域を任意に抽出し、該所定領域の凹凸部の分布について、一辺0.5μmの正方形の単位領域に分割し、その単位領域における平均傾斜角度を、該単位領域における傾斜角としたとき、3°以内の傾斜角を持つ単位領域の面積の総合計が、前記所定領域の全面積の95%以上であるとともに、傾斜角0°を持つ単位領域の面積の総合計をαとしたときに、αが前記所定領域の全面積の0.5〜10%であり、かつ前記3°以内のその他の傾斜角を持つ単位領域のうち、単位領域面積の総合計が0.9α〜1.1αの範囲に属する頻出傾斜角の単位領域の面積の総合計が、前記所定領域の全面積の80%以上であることを特徴とする、防眩フィルム。
  2. フィルムの凹凸表面の算術平均粗さ(Ra)が、0.03〜0.4μm、同平均山谷間隔(Sm)が、5〜100μmであることを特徴とする、請求項1に記載の防眩フィルム。
  3. 透明フィルム基材の一方の面に、活性エネルギー線硬化樹脂を塗布して、塗布層を形成し、その塗布層に鋳型ロールを押し当てゝ、塗布層表面全体に凹凸部を形成し、その後、活性エネルギー線の照射により樹脂を硬化させて、塗布層表面全体の凹凸部を固化せしめる防眩フィルムの製造装置であって、前記鋳型ロールの表面凹凸層の形状が、該鋳型ロールの円周方向および幅手方向において凸部と凹部が並んでおり、これらの凸部と凹部の長さが、それぞれ2.5〜50μmの範囲内であり、かつ基準面からの凹凸部の高さをz(μm)、相互に隣り合う凸部の中央及び凹部の中央同士の間の距離をX(μm)とするとき、
    z=aX
    (式中、aは傾斜角が3°以下となるように設定された定数)
    で表わされる二次関数式を満たす凹凸形状を有するものであることを特徴とする、請求項1または2に記載の防眩フィルムの製造装置。
  4. 請求項1または2に記載の防眩フィルムを基材として、この防眩フィルム基材の両面のうちのいずれか少なくとも一方の面に反射防止層が形成されていることを特徴とする、防眩性反射防止フィルム。
  5. 偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、請求項1または2に記載の防眩フィルムであることを特徴とする、偏光板。
  6. 偏光膜の両面に保護フィルムを有する偏光板であって、両保護フィルムのうちの少なくとも一方が、請求項4に記載の防眩性反射防止フィルムであることを特徴とする、偏光板。
  7. 請求項1または2に記載の防眩フィルムを具備することを特徴とする、表示装置。
  8. 請求項4に記載の防眩性反射防止フィルムを具備することを特徴とする、表示装置。
  9. 請求項5または6に記載の偏光板を具備することを特徴とする、表示装置。
JP2007257330A 2007-10-01 2007-10-01 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置 Active JP4924344B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257330A JP4924344B2 (ja) 2007-10-01 2007-10-01 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257330A JP4924344B2 (ja) 2007-10-01 2007-10-01 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置

Publications (2)

Publication Number Publication Date
JP2009086410A true JP2009086410A (ja) 2009-04-23
JP4924344B2 JP4924344B2 (ja) 2012-04-25

Family

ID=40659887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257330A Active JP4924344B2 (ja) 2007-10-01 2007-10-01 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置

Country Status (1)

Country Link
JP (1) JP4924344B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227148A (ja) * 2010-04-15 2011-11-10 Mitsubishi Rayon Co Ltd 防眩フィルターの製造方法
JP2012047929A (ja) * 2010-08-26 2012-03-08 Sumitomo Chemical Co Ltd 画像表示装置用光学部材
JP2012068474A (ja) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd 液晶表示装置
JP2012068472A (ja) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd 液晶表示装置
JP2012529079A (ja) * 2009-06-02 2012-11-15 スリーエム イノベイティブ プロパティズ カンパニー マイクロ構造化表面を有するアンチグレアフィルム
JP2013113943A (ja) * 2011-11-25 2013-06-10 Fujifilm Corp 偏光板保護フィルム、偏光板および液晶表示装置
KR20150106345A (ko) 2014-03-11 2015-09-21 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 광학 시트의 선별 방법 및 광학 시트의 제조 방법
KR20150106344A (ko) 2014-03-11 2015-09-21 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 광학 시트의 선별 방법 및 광학 시트의 제조 방법
WO2015174132A1 (ja) * 2014-05-14 2015-11-19 旭硝子株式会社 透明基体の光学特性を評価する方法および透明基体
US9229239B2 (en) 2009-06-02 2016-01-05 3M Innovative Properties Company Light redirecting film and display system incorporating same
WO2016038853A1 (ja) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 反射防止部材およびその製造方法
WO2016047059A1 (ja) * 2014-09-22 2016-03-31 パナソニックIpマネジメント株式会社 反射防止部材
JP2016053601A (ja) * 2014-09-02 2016-04-14 富士フイルム株式会社 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板、及び画像表示装置
KR20160046844A (ko) * 2013-08-22 2016-04-29 도요 고한 가부시키가이샤 편광자 보호 필름의 제조 방법 및 편광자 보호 필름
US9383482B2 (en) 2010-05-07 2016-07-05 3M Innovative Properties Company Antireflective films comprising microstructured surface
KR20170122189A (ko) 2015-02-26 2017-11-03 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 그리고 광학 시트의 선별 방법 및 광학 시트의 제조 방법
KR101915284B1 (ko) 2012-09-26 2018-11-05 동우 화인켐 주식회사 방현 필름, 이를 이용한 편광판 및 표시 장치
KR20230006913A (ko) 2020-05-15 2023-01-11 다이니폰 인사츠 가부시키가이샤 방현 필름 및 화상 표시 장치
KR20240089048A (ko) 2021-10-28 2024-06-20 다이니폰 인사츠 가부시키가이샤 방현 필름, 그리고, 그것을 사용한 편광판, 표면판, 화상 표시 패널 및 화상 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333976A (ja) * 2003-05-09 2004-11-25 Konica Minolta Opto Inc 防眩性反射防止フィルムとその製造方法、及びそれを用いた偏光板と表示装置
JP2005092197A (ja) * 2003-08-13 2005-04-07 Sumitomo Chemical Co Ltd 防眩性光学フィルム
JP2005195819A (ja) * 2004-01-06 2005-07-21 Daicel Chem Ind Ltd 防眩性膜
JP2005227407A (ja) * 2004-02-10 2005-08-25 Daicel Chem Ind Ltd 防眩シート
JP2007108724A (ja) * 2005-09-16 2007-04-26 Fujifilm Corp 防眩性反射防止フィルム、これを用いた偏光板および液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333976A (ja) * 2003-05-09 2004-11-25 Konica Minolta Opto Inc 防眩性反射防止フィルムとその製造方法、及びそれを用いた偏光板と表示装置
JP2005092197A (ja) * 2003-08-13 2005-04-07 Sumitomo Chemical Co Ltd 防眩性光学フィルム
JP2005195819A (ja) * 2004-01-06 2005-07-21 Daicel Chem Ind Ltd 防眩性膜
JP2005227407A (ja) * 2004-02-10 2005-08-25 Daicel Chem Ind Ltd 防眩シート
JP2007108724A (ja) * 2005-09-16 2007-04-26 Fujifilm Corp 防眩性反射防止フィルム、これを用いた偏光板および液晶表示装置

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529079A (ja) * 2009-06-02 2012-11-15 スリーエム イノベイティブ プロパティズ カンパニー マイクロ構造化表面を有するアンチグレアフィルム
US9229239B2 (en) 2009-06-02 2016-01-05 3M Innovative Properties Company Light redirecting film and display system incorporating same
US9625640B2 (en) 2009-06-02 2017-04-18 3M Innovative Properties Company Optical film and display system incorporating same
JP2011227148A (ja) * 2010-04-15 2011-11-10 Mitsubishi Rayon Co Ltd 防眩フィルターの製造方法
US9383482B2 (en) 2010-05-07 2016-07-05 3M Innovative Properties Company Antireflective films comprising microstructured surface
JP2012047929A (ja) * 2010-08-26 2012-03-08 Sumitomo Chemical Co Ltd 画像表示装置用光学部材
JP2012068474A (ja) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd 液晶表示装置
JP2012068472A (ja) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd 液晶表示装置
JP2013113943A (ja) * 2011-11-25 2013-06-10 Fujifilm Corp 偏光板保護フィルム、偏光板および液晶表示装置
KR101915284B1 (ko) 2012-09-26 2018-11-05 동우 화인켐 주식회사 방현 필름, 이를 이용한 편광판 및 표시 장치
KR20160046844A (ko) * 2013-08-22 2016-04-29 도요 고한 가부시키가이샤 편광자 보호 필름의 제조 방법 및 편광자 보호 필름
KR102001290B1 (ko) 2013-08-22 2019-07-17 도요 고한 가부시키가이샤 편광자 보호 필름의 제조 방법 및 편광자 보호 필름
KR20150106344A (ko) 2014-03-11 2015-09-21 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 광학 시트의 선별 방법 및 광학 시트의 제조 방법
US9535194B2 (en) 2014-03-11 2017-01-03 Dai Nippon Printing Co., Ltd. Optical sheet for reducing scintillation effects in touch panels and display panels
KR20150106345A (ko) 2014-03-11 2015-09-21 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 광학 시트의 선별 방법 및 광학 시트의 제조 방법
CN106461502A (zh) * 2014-05-14 2017-02-22 旭硝子株式会社 评价透明基体的光学特性的方法及透明基体
WO2015174132A1 (ja) * 2014-05-14 2015-11-19 旭硝子株式会社 透明基体の光学特性を評価する方法および透明基体
JPWO2015174132A1 (ja) * 2014-05-14 2017-04-20 旭硝子株式会社 透明基体の光学特性を評価する方法および透明基体
KR102321551B1 (ko) 2014-05-14 2021-11-03 에이지씨 가부시키가이샤 투명 기체의 광학 특성을 평가하는 방법 및 투명 기체
KR20170008224A (ko) * 2014-05-14 2017-01-23 아사히 가라스 가부시키가이샤 투명 기체의 광학 특성을 평가하는 방법 및 투명 기체
JP2018163160A (ja) * 2014-05-14 2018-10-18 Agc株式会社 透明基体の光学特性を評価する方法および透明基体
JP2016053601A (ja) * 2014-09-02 2016-04-14 富士フイルム株式会社 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板、及び画像表示装置
WO2016038853A1 (ja) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 反射防止部材およびその製造方法
JPWO2016038853A1 (ja) * 2014-09-08 2017-06-15 パナソニックIpマネジメント株式会社 反射防止部材およびその製造方法
WO2016047059A1 (ja) * 2014-09-22 2016-03-31 パナソニックIpマネジメント株式会社 反射防止部材
JPWO2016047059A1 (ja) * 2014-09-22 2017-07-06 パナソニックIpマネジメント株式会社 反射防止部材
KR20170122189A (ko) 2015-02-26 2017-11-03 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 그리고 광학 시트의 선별 방법 및 광학 시트의 제조 방법
KR20230006913A (ko) 2020-05-15 2023-01-11 다이니폰 인사츠 가부시키가이샤 방현 필름 및 화상 표시 장치
KR20230096141A (ko) 2020-05-15 2023-06-29 다이니폰 인사츠 가부시키가이샤 방현 필름 및 화상 표시 장치
US11960162B2 (en) 2020-05-15 2024-04-16 Dai Nippon Printing Co., Ltd. Anti-glare film and image display device
KR20240089048A (ko) 2021-10-28 2024-06-20 다이니폰 인사츠 가부시키가이샤 방현 필름, 그리고, 그것을 사용한 편광판, 표면판, 화상 표시 패널 및 화상 표시 장치

Also Published As

Publication number Publication date
JP4924344B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924344B2 (ja) 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置
JP5321456B2 (ja) クリアーハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
KR101182002B1 (ko) 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및표시 장치
JP5218411B2 (ja) 光学フィルム、偏光板及び液晶表示装置
JP5038625B2 (ja) 延伸セルロースエステルフィルム、ハードコートフィルム、反射防止フィルム及び光学補償フィルム、並びにそれらを用いた偏光板及び表示装置
JP5332607B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、ハードコートフィルム、偏光板及び表示装置
JP4992122B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP2009036818A (ja) 防眩性フィルム、防眩性反射防止フィルム、偏光板および画像表示装置
JP4747769B2 (ja) 凹凸パターンフイルムの製造方法
JP4857801B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP2009042351A (ja) 光学フィルム、偏光板及び表示装置
JP2009196202A (ja) ハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JP5158075B2 (ja) 反射防止フィルム、それを用いた偏光板、及び表示装置
JP4935393B2 (ja) 反射防止フィルム、及びそれを用いた偏光板、表示装置
JPWO2008105117A1 (ja) 防眩性フィルム、防眩性反射防止フィルム、これらを用いた偏光板、及び表示装置
JP5168278B2 (ja) 防眩性フィルム、これを用いた防眩性反射防止フィルム、偏光板、及び表示装置
JP2010097005A (ja) 反射防止フィルム、その製造方法、反射防止フィルムを用いた偏光板、及び表示装置
JP2006227162A (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JPWO2008123101A1 (ja) 反射防止フィルム、それを用いた偏光板、及び画像表示装置
JP2007025329A (ja) 反射防止フィルム、その製造方法、偏光板及び表示装置
JP2009036817A (ja) 反射防止フィルム、それを用いた偏光板、及び画像表示装置
JP2005338549A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2005134609A (ja) 反射防止フィルム及び反射防止フィルムの製造方法並びに偏光板及び表示装置
JP2005157037A (ja) 反射防止フィルム、偏光板および画像表示装置
JP2009186773A (ja) 反射防止フィルム、これを用いた偏光板、及び表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350