JP2008305852A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2008305852A
JP2008305852A JP2007149481A JP2007149481A JP2008305852A JP 2008305852 A JP2008305852 A JP 2008305852A JP 2007149481 A JP2007149481 A JP 2007149481A JP 2007149481 A JP2007149481 A JP 2007149481A JP 2008305852 A JP2008305852 A JP 2008305852A
Authority
JP
Japan
Prior art keywords
nmos
semiconductor device
wiring
mos transistor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007149481A
Other languages
English (en)
Inventor
Shumei Sai
秀明 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007149481A priority Critical patent/JP2008305852A/ja
Priority to US12/127,907 priority patent/US7863687B2/en
Publication of JP2008305852A publication Critical patent/JP2008305852A/ja
Priority to US12/956,248 priority patent/US8115257B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】ESDから出力用のCMOS回路を確実に保護することができる半導体装置を提供する。
【解決手段】半導体装置1において、出力パッド6をNMOS5のドレインに接続する配線12に抵抗Rを付加する。これにより、出力パッド6からNMOS5を経由して低電位電源配線VSSに至る出力用NMOS経路の抵抗を、保護用NMOS7がスナップバックするような電圧が出力パッド6と低電位電源配線VSSとの間に印加されたときに、出力用NMOS経路に流れる電流がNMOS5の破壊電流よりも小さくなるような値とする。
【選択図】図1

Description

本発明は、半導体装置に関し、特に、出力用のCMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)回路が設けられた半導体装置に関する。
従来より、半導体装置において、内部回路の出力信号を外部に取り出すための出力回路として、CMOS回路を設ける技術が知られている。CMOS回路は、Pチャネル型MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属酸化物半導体電界効果トランジスタ)及びNチャネル型MOSFETからなる回路であり、Pチャネル型MOSFETのソースが半導体装置の高電位電源配線(VDD)に接続され、Nチャネル型MOSFETのソースが低電位電源配線(VSS)に接続され、これらのMOSFETのゲートに内部回路の出力信号が印加され、ドレインが半導体装置の出力端子に接続されている。これにより、内部回路の出力信号に応じて、VDD電位又はVSS電位が出力端子に印加される(例えば、特許文献1参照。)。
そして、このような半導体装置において、出力端子にESD(Electro Static Discharge:静電気放電)が入力されたときに、このESDからCMOS回路のMOSFETを保護するために、出力端子と高電位電源配線との間又は出力端子と低電位電源配線との間に、MOSFETに対して並列にESD保護素子を接続する技術が知られている。このESD保護素子には、例えば、MOSFETが用いられている。例えば、CMOS回路を構成するNチャネル型MOSFET(以下、「出力用NMOS」という)を保護するために、この出力用NMOSに対して並列に、出力端子と低電位電源配線との間にNチャネル型MOSFET(以下、「保護用NMOS」という)を接続する。そして、この保護用NMOSのゲートを低電位電源配線に接続することにより、この保護用NMOSを通常はオフ状態とし、出力端子にESDが入力されるとオン状態となるようにする(例えば、特許文献2参照。)。
しかしながら、このような半導体装置においては、以下に示すような問題点がある。すなわち、保護用NMOSのゲートには低電位側電源電位(VSS電位)が常時印加されており、完全にオフ状態となっている。これに対して、出力用NMOSのゲートには、内部回路によってVDD電位とVSS電位との間の不定電位が印加されているため、保護用NMOSと比較して、チャネルが誘起されている。このため、出力用NMOSがオン状態となるためのドレイン−ソース間の電圧は、保護用NMOSがオン状態となるためのドレイン−ソース間の電圧よりも低く、出力端子にESDが入力されると、出力用NMOSが保護用NMOSよりも先にオン状態となり、ESD電流が集中的に流れてしまう。このため、保護用NMOSを出力用NMOSに対して並列に接続しただけでは、十分な保護効果を得ることができず、入力されるESD電流の大きさによっては、出力用NMOSが破壊されてしまうことがある。
特開平5−3173号公報(図11) 特開2007−96211号公報(図9)
本発明の目的は、ESDから出力用のCMOS回路を確実に保護することができる半導体装置を提供することである。
本発明の一態様によれば、内部回路と、ソースが高電位電源配線に接続されゲートが前記内部回路に接続されたPチャネル型MOSトランジスタ及びソースが低電位電源配線に接続されゲートが前記内部回路に接続されたNチャネル型MOSトランジスタからなるCMOSと、前記Pチャネル型MOSトランジスタのドレイン及び前記Nチャネル型MOSトランジスタのドレインに接続された出力端子と、ソース及びゲートが前記高電位電源配線及び前記低電位電源配線のうち一方の電源配線に接続され、ドレインが前記出力端子に接続され、導電型が前記Pチャネル型MOSトランジスタ及び前記Nチャネル型MOSトランジスタのうちソースが前記一方の電源配線に接続された一方のMOSトランジスタの導電型と同じである保護用トランジスタと、を備え、前記出力端子から前記一方のMOSトランジスタを経由して前記一方の電源配線に至る電流経路の抵抗は、前記保護用トランジスタがスナップバックするような電圧が前記出力端子と前記一方の電源配線との間に印加されたときに、前記電流経路に流れる電流が前記一方のMOSトランジスタの破壊電流よりも小さくなるような値となっていることを特徴とする半導体装置が提供される。
本発明によれば、ESDから出力用のCMOS回路を確実に保護することができる半導体装置を実現することができる。
以下、図面を参照しつつ、本発明の実施形態について説明する。
先ず、本発明の第1の実施形態について説明する。
図1は、本実施形態に係る半導体装置を例示する回路図であり、
図2(a)は出力用MOSを例示する断面図であり、(b)は保護用MOSを例示する断面図であり、
図3は、この半導体装置を例示する平面図である。
図1に示すように、本実施形態に係る半導体装置1においては、内部回路2が設けられている。内部回路2は、半導体装置1の本来の機能を担保する回路であり、例えば、演算を行う論理回路及びデータを記憶するメモリなどから構成されている。また、半導体装置1には、内部回路2に対して高電位側及び低電位側の電源電位をそれぞれ供給する高電位電源配線VDD及び低電位電源配線VSSが設けられている。
また、半導体装置1には、内部回路2の出力信号を外部に取り出すための出力回路として、CMOS3が設けられている。CMOS3にはPチャネル型MOSFET(以下、「PMOS」という)4及びNチャネル型MOSFET(以下、「NMOS」という)5が設けられている。PMOS4のドレインとNMOS5のドレインとは相互に接続されており、PMOS4のゲート及びNMOS5のゲートは内部回路2の出力配線2aに接続されている。また、PMOS4のソースは高電位電源配線VDDに接続されており、NMOS5のソースは低電位電源配線VSSに接続されている。
更に、半導体装置1には、出力端子としての出力パッド6が設けられている。出力パッド6は、配線11及び12を介して、PMOS4のドレイン及びNMOS5のドレインに接続されている。なお、出力端子の態様はパッドには限定されず、内部回路2の出力信号を半導体装置1の外部に取り出せるようなものであればよい。
更にまた、半導体装置1には、保護用のNチャネル型MOSFET(以下、「保護用NMOS」という)7が設けられている。保護用NMOS7のソース及びゲートは低電位電源配線VSSに接続されており、ドレインは配線13及び11を介して、出力パッド6に接続されている。すなわち、出力パッド6から引き出された配線11は、ノードNにて配線12と配線13とに分岐し、配線12はPMOS4のドレイン及びNMOS5のドレインに接続され、配線13は保護用NMOS7のドレインに接続されている。これにより、保護用NMOS7は、出力パッド6と低電位電源配線VSSとの間に、NMOS5に対して並列に接続されている。
図2(a)及び(b)に示すように、出力用のNMOS5及び保護用NMOS7においては、半導体装置1の基板であるシリコン基板15上に複数本のストライプ状のゲート電極16が相互に平行に設けられており、シリコン基板15とゲート電極16との間にはゲート絶縁膜17が形成されている。また、シリコン基板15の上面にはP型ウェル18が形成されており、P型ウェル18におけるゲート電極16の直下域間の領域には、N型領域19が形成されている。NMOS5及び保護用NMOS7において、このN型領域19はソース領域又はドレイン領域として機能し、P型ウェル18におけるN型領域19間の領域はチャネル領域として機能する。そして、NMOS5におけるドレイン−ソース間隔A、すなわち、N型領域19の配列周期は、保護用NMOS7におけるドレイン−ソース間隔Aよりも小さい。これは、NMOS5におけるドレイン−ソース間の寄生抵抗を可及的に小さくし、NMOS5の電流駆動能力を向上させるためである。
次に、図3を参照して、半導体装置1の平面レイアウトについて説明する。なお、図3においては、説明の便宜上、XY直交座標を設定してある。
図3に示すように、半導体装置1においては、チップの+X−Y側の角部に、出力パッド6が配置されている。半導体装置1の上面側から見て、出力パッド6の形状は例えば正方形である。出力パッド6は半導体装置1の多層配線層(図示せず)の最上層に形成されている。
また、出力パッド6から見て−X側には、保護用NMOS7が配置されている。更に、出力パッド6から見て+Y側には、出力用のNMOS5が配置されている。上面側から見て、保護用NMOS7及びNMOS5の形状は、それぞれ矩形である。保護用NMOS7及びNMOS5は、半導体装置1のシリコン基板15の上面及び多層配線層の下層部分に形成されている。なお、内部回路2も、シリコン基板15の上面及び多層配線層の下層部分に形成されている。
そして、保護用NMOS7の直上域を含む領域には、矩形の金属膜からなる配線11が配置されている。配線11は出力パッド6に接続されており、出力パッド6の−X側の端部から−X方向に延出している。また、配線11と保護用NMOS7との間にはコンタクトが形成されており、このコンタクトが配線13となっている。なお、図を簡略化するために、図3においては、コンタクト(配線13)は1個のみ模式的に示しているが、実際には複数個形成されている。
更に、配線11と出力用のNMOS5との間には、金属膜からなる配線12が接続されている。配線12は、配線11を形成する金属膜の+Y側の端部の−X側の部分から一旦+Y方向に引き出されて内部回路2の直上域に進入し、屈曲部12aにて−X方向に略直角に屈曲して内部回路2の直上域内を−X方向に延び、屈曲部12bにて+Y方向に略直角に屈曲して内部回路2の直上域内を+Y方向に延び、屈曲部12cにて+X方向に略直角に屈曲して内部回路2の直上域内を+X方向に延び、内部回路2の直上域から出てNMOS5の直上域に至っている。そして、コンタクト12dを介してNMOS5のドレインに接続されている。
このように、金属膜からなる配線12は、配線11から分岐した後、内部回路2が形成されている領域内を通過して、NMOS5に至っている。これにより、配線12は、出力パッド6をNMOS5に接続している。そして、配線12は、屈曲部12a、12b及び12cにて3回屈曲することにより、内部回路2が形成されている領域内で引き回されて、大きな抵抗が付加されている。この配線12に付加された抵抗は、図1においては、抵抗Rとして表されている。配線12の抵抗はコンタクトからなる配線13よりも大きく、この結果、出力パッド6からNMOS5に至る配線の抵抗は、出力パッド6から保護用NMOS7に至る配線の抵抗よりも大きくなっている。
次に、本実施形態の作用効果について説明する。
本実施形態の作用効果を説明するために、先ず、比較例に係る半導体装置について説明する。
図4は、この半導体装置を例示する回路図であり、
図5は、本比較例に係る半導体装置を例示する平面図である。
図4に示すように、本比較例に係る半導体装置61は、本実施形態に係る半導体装置1(図1参照)と比較して、出力パッド6から出力用のNMOS5に至る電流経路に抵抗Rが付加されていない点が異なっている。半導体装置61における上記以外の構成は、前述の半導体装置1と同じである。
半導体装置1及び61における上述の等価回路上の相違点は、半導体装置のレイアウトの違いに起因している。すなわち、図5に示すように、比較例に係る半導体装置61においては、出力パッド6をNMOS5及び保護用NMOS7に接続する配線として、配線11乃至13(図3参照)の替わりに配線71乃至73が設けられている。
配線71は矩形の金属膜からなり、出力パッド6の+Y側の端部から+Y方向に引き出されている。配線71の幅は、出力パッド6の幅と略等しく、太く短い配線である。また、配線72は、配線71よりも細く短い矩形の金属膜からなり、配線71の+Y側の端部から更に+Y側に引き出され、そのままNMOS5の直上域に至っている。そして、コンタクト(図示せず)を介してNMOS5のドレインに接続されている。配線72の長さは配線12(図3参照)の長さよりも短く、従って、配線72の抵抗は、配線12の抵抗よりも小さい。このように、配線71及び72は、内部回路2の直上域には進入せずに、出力パッド6からNMOS5まで直線的に延びることにより、出力パッド6をNMOS5に最短距離で接続している。
更に、配線73は、L字形の金属膜によって形成されている。配線73は、配線71の−X側の端部における+Y側の部分から−X方向に引き出され、屈曲部73aにて−Y方向に略直角に屈曲して−Y方向に延び、保護用NMOS7の直上域に至っている。そして、コンタクト(図示せず)を介して、保護用NMOS7のドレインに接続されている。
次に、上述の如く構成された本実施形態に係る半導体装置1の動作を、比較例に係る半導体装置61の動作と比較して説明する。
以下の説明において、「出力用NMOS経路」とは、図1及び図5に示す出力パッド6から配線11、ノードN、配線12、抵抗R及びNMOS5を経由して低電位電源配線VSSに至る電流経路全体をいう。また、「保護用NMOS経路」とは、出力パッド6から配線11、ノードN及び保護用NMOS7を経由して低電位電源配線VSSに至る電流経路全体をいう。
図6は、横軸に出力パッドと低電位電源配線との間の電圧Vをとり、縦軸に出力用NMOS経路及び保護用NMOS経路にそれぞれ流れる電流Iをとって、出力用NMOS経路及び保護用NMOS経路の動作特性を例示するグラフ図である。
図7は、横軸に出力パッドと低電位電源配線との間の電圧Vをとり、縦軸に出力用NMOS経路及び保護用NMOS経路に流れる合計の電流Itotalをとって、半導体装置の動作特性を例示するグラフ図である。
すなわち、図6は、出力用NMOS経路及び保護用NMOS経路のそれぞれの動作特性を示し、図7は、これらの経路が並列に接続された回路の動作特性を示している。図7に示すグラフ図は、例えば、TLP(Transmission Line Pulse)試験器を用いて半導体装置1を評価することにより、取得することができる。なお、図6においては、本実施形態の出力用NMOS経路の動作特性は実線で示し、比較例に出力用NMOS経路の動作は破線で示している。また、保護用NMOS経路の動作特性は一点鎖線で示している。一方、図7においては、本実施形態に係る半導体装置の動作特性は実線で示し、比較例に係る半導体装置の動作特性は破線で示している。
図6及び図7において、NMOS5がスナップバックするような電圧Vの値をVとし、保護用NMOS7がスナップバックするような電圧Vの値をVとする。また、NMOS5が破壊される電流の大きさをIとする。保護用NMOS7が破壊される電流の大きさも、同じくIとする。NMOS5のゲートには内部回路2によりVDD電位とVSS電位との間の不定電位が印加されているため、NMOS5がスナップバックする電圧Vは、保護用NMOS7がスナップバックする電圧Vよりも低い。
そして、出力用NMOS経路の動作特性は、本実施形態と比較例とで異なっている。すなわち、本実施形態の出力用NMOS経路は抵抗Rを含んでいるため、電圧の増加に対する電流の増加の比率が比較例におけるこの比率よりも小さい。従って、図6に示すV−Iグラフの傾きが比較例よりも大きい。一方、保護用NMOS7の動作は、本実施形態と比較例とで同じである。この結果、比較例においては、NMOS5に破壊電流Iが流れるときの電圧Vの値Vは、保護用NMOS7がスナップバックする電圧Vよりも低くなっている。これに対して、本実施形態においては、NMOS5に破壊電流Iが流れるときの電圧は、保護用NMOS7がスナップバックする電圧Vよりも高く、例えば、保護用NMOS7に破壊電流Iが流れるときの電圧Vと同じである。換言すれば、保護用NMOS7がスナップバックする電圧Vが出力用NMOS経路に印加されたときに、この出力用NMOS経路に流れる電流Iは、NMOS5の破壊電流Iよりも小さい。
これにより、出力パッド6と低電位電源配線VSSとの間に印加される電圧Vが連続的に増加していくと、半導体装置は以下のような動作を示す。なお、便宜上、以下の説明における各時点の各経路の状態を、図6及び図7に状態S乃至Sとして示す。
先ず、比較例に係る半導体装置61の動作について説明する。
出力パッド6と低電位電源配線VSSとの間に電圧が印加されていないときは、電圧Vは0であり、電流Iも0である(状態S)。この状態から、例えば出力パッド6にESDが入力し、電圧Vが増加していくと、電圧VがVに達したときに(状態S)、NMOS5がスナップバックする。これにより、出力用NMOS経路に電流が流れ、電圧VがVまで低下する。このときの電流Iの大きさはIとする。一方、このとき、保護用NMOS7はスナップバックしないため、保護用NMOS経路には電流はほとんど流れない(状態S)。
更に、電圧Vが増加していくと、出力用NMOS経路に流れる電流も増加する。このとき、保護用NMOS経路に流れる電流も増加するが、保護用NMOS7はスナップバックしていないため、その増加量は僅かである。そして、電圧Vが電圧Vに達すると、出力用NMOS経路に電流Iが流れ、NMOS5が破壊されてしまう。一方、この段階に至っても、電圧VはVには達せず、従って、保護用NMOS7はスナップバックしないため、保護用NMOS回路にはほとんど電流が流れない(状態S)。このため、比較例に係る半導体装置61においては、出力端子6と低電位電源配線VSSとの間のESD耐量はほぼNMOS5の特性によって決まってしまい、保護用NMOS7による保護効果はほとんど発揮されない。
次に、本実施形態に係る半導体装置1の動作について説明する。
本実施形態に係る半導体装置1においても、状態Sから状態Sまでの動作は、前述の比較例に係る半導体装置61の動作と同様である。そして、状態Sから電圧Vが増加し、電圧Vに達すると、保護用NMOS7もスナップバックし、保護用NMOS経路にも電流が流れるようになる(状態S)。その後、更に電圧Vが増加しても、出力用NMOS経路及び保護用NMOS経路の双方に電流が流れるため(状態S)、全体の抵抗は低い。この結果、出力パッド6入力されたESD電流を、低電位電源配線VSSに効果的に流すことができる。そして、理想的には、電圧VがVに達し、出力用NMOS経路及び保護用NMOS経路のそれぞれに破壊電流Iが流れる状態(状態S)になるまで、半導体装置1が破壊されることはない。
以下、上述の動作が実現できるような抵抗Rの大きさについて、定量的に説明する。
出力用のNMOS5のオン抵抗をRNMOS−ONとし、出力用NMOS経路全体のオン抵抗をRONとする。なお、配線12によって付加された抵抗の大きさはRである。すると、下記数式1が成立する。
Figure 2008305852
また、上述の如く、保護用NMOS7がスナップバックする電圧Vが出力用NMOS経路に印加されたときに出力用NMOS経路に流れる電流Iは、NMOS5の破壊電流Iよりも小さくなくてはならないため、下記数式2が成立する。
Figure 2008305852
一方、抵抗RONの大きさは、図6における状態Sと状態Sとの間の線分の傾きの逆数となるため、図6より、下記数式3が成立する。そして、上記数式2及び下記数式3より下記数式4が成立し、これを変形すると、下記数式5が得られる。
Figure 2008305852
Figure 2008305852
Figure 2008305852
従って、出力用NMOS経路全体のオン抵抗RONは、下記数式5を満たすように設定すればよい。また、上記数式1及び下記数式5より、下記数式6が成立する。従って、配線によって実現する抵抗Rは、下記数式6を満たすように設定すればよい。
Figure 2008305852
次に、本実施形態に効果について説明する。
上述の如く、本実施形態においては、出力用のNMOS5が破壊される前に、保護用NMOS7をスナップバックさせることができるため、出力用NMOS経路及び保護用NMOS経路の双方に並列に電流を流すことができる。この結果、本実施形態に係る半導体装置1は、ESD耐量が高い。
また、本実施形態においては、出力用NMOS経路に対する抵抗Rの付加を、配線の引き回しによって行っているため、従来の半導体装置に対して、MOSFET等の能動素子の設計を変更する必要がない。このため、能動素子の特性が変化することがなく、設計が容易である。更に、配線を内部経路2が形成されている領域内で引き回しているため、配線を引き回すための専用の領域を設ける必要がなく、チップサイズが増加することがない。
なお、ESD耐量を向上させるためには、NMOS5におけるドレイン・ソース領域(図2(a)に示すN型領域19)の総面積を増大させて、ESD電流の密度を低減する方法も考えられる。しかしながら、この方法では、NMOS5の面積が増加してしまい、チップサイズが大型化する。また、NMOS5のドレイン−ソース間隔を大きくして、NMOS5のスナップバック電圧Vを向上させる方法も考えられる。しかしながら、この場合も、NMOS5の面積が増加してしまう。また、これらの方法では、出力用のNMOS5の電流駆動能力及び寄生容量といった特性が変化してしまうため、半導体装置1全体の特性に影響を及ぼすという問題がある。
更に、保護用NMOS7のスナップバック電圧Vを出力用のNMOS5のスナップバック電圧Vよりも低くすることによって、保護用NMOS7のみをスナップバックさせてNMOS5を保護することも考えられる。しかしながら、この場合は、ESD電流が流れる電流経路が保護用NMOS経路のみとなってしまい、流すことができるESD電流の総量が小さくなってしまう。更にまた、出力パッド6とNMOS5との間にポリシリコン層を介在させることにより、抵抗Rを実現することも考えられる。しかしながら、この場合は、ポリシリコン層を配置するための領域が必要となり、チップサイズが増加する。
これに対して、本実施形態によれば、チップサイズが拡大することなく、また、出力用のMOSFETの特性を変化させることもなく、ESD耐量を大幅に向上させることができる。これにより、本実施形態によれば、ESDから出力用のCMOS回路を確実に保護することができる半導体装置を実現することができる。
なお、本実施形態においては、配線12を3回屈曲させて引き回す例を示したが、本発明はこれに限定されない。例えば、屈曲回数は2回でもよい。例えば、図3において、配線12を配線11の−X側の端部から−X方向に引き出し、直角に屈曲させて+Y方向に延ばし、もう一度直角に屈曲させて+X方向に延ばして、NMOS5の直上域に到達させてもよい。また、屈曲回数は4回以上であってもよい。
また、配線12を引き回さずに、抵抗Rを付加してもよい。例えば、配線12の幅を細くするか、又は厚さを薄くすることにより、配線を屈曲させることなく、所望の抵抗を付与することができる。また、出力用のNMOS5を出力パッド6及び保護用NMOS7から遠く離れた位置に配置することにより、配線12の幅及び厚さを特別なサイズとすることなく、配線12を長くして、所望の抵抗を付与することもできる。一方、上述の如く、配線12を2回以上屈曲させて引き回せば、配線12の幅及び厚さを特別なサイズとすることなく、また、NMOS5を出力パッド6及び保護用NMOS7から離隔させることなく、所望の抵抗を付与することができる。
以下、本実施形態の効果の一例を具体的に説明する。
本具体例に係る半導体装置の構成は、上述の本実施形態と同様である。この半導体装置において、抵抗Rを付加する前の構成(図4参照)における出力用NMOS経路全体のオン抵抗RONは、1,85Ωであった。一方、図6に示す状態Sと状態Sとを結ぶ線分の傾きに基づいて算出すると、オン抵抗RONが上記数式5を満たすためには、2.14Ω以上とすることが必要であった。この場合、出力用NMOS経路に0.33Ωの抵抗Rを付加すれば、オン抵抗RONの大きさは1.85+0.33=2.18Ωとなり、2.14Ωよりも大きくなる。そこで、本具体例においては、ノードNとNMOS5との間に、シート抵抗が0.03Ω/□であり、幅が20μmであり、長さが200μmであるメタル配線を挿入した。この結果、マシンモデルのESD耐量は170Vから340Vに増加した。なお、本具体例においては、NMOS5のデザインは変更しておらず、従って、NMOS5の特性は変化していない。また、メタル配線のレイアウトは変更しているが、チップサイズの拡大は伴っていない。
次に、本発明の第2の実施形態について説明する。
図8は、本実施形態に係る半導体装置を例示する回路図である。
図8に示すように、本実施形態に係る半導体装置21においては、保護用のPチャネル型MOSFET(以下、「保護用PMOS」という)22が設けられている。保護用PMOS22のソース及びゲートは高電位電源配線VDDに接続されており、ドレインは配線23及び配線11を介して、出力パッド6に接続されている。すなわち、出力パッド6から引き出された配線11は、ノードNにて配線12と配線23とに分岐し、配線12はPMOS4のドレイン及びNMOS5のドレインに接続され、配線23は保護用PMOS22のドレインに接続されている。これにより、保護用PMOS22は、出力パッド6と高電位電源配線VDDとの間に、PMOS4に対して並列に接続されている。そして、配線12が引き回されることにより、ノードNと出力用のPMOS4との間に、抵抗Rが付加されている。本実施形態によれば、PMOS4を出力パッド6に入力されたESDから保護することができる。本実施形態における上記以外の構成、動作及び効果は、前述の第1の実施形態と同様である。
次に、本発明の第3の実施形態について説明する。
図9は、本実施形態に係る半導体装置を例示する回路図である。
図9に示すように、本実施形態に係る半導体装置31においては、保護用NMOS7及び保護用PMOS22の双方が設けられている。保護用NMOS7及び保護用PMOS22の構成及び接続状態は、前述の第1又は第2の実施形態と同様である。そして、配線12が引き回されることにより、ノードNとNMOS5との間、及びノードNとPMOS4との間にそれぞれ、抵抗Rが付加されている。本実施形態によれば、NMOS5及びPMOS4の双方をESDから保護することができる。本実施形態における上記以外の構成、動作及び効果は、前述の第1の実施形態と同様である。
以上、実施形態を参照して本発明を説明したが、本発明はこの実施形態に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
本発明の第1の実施形態に係る半導体装置を例示する回路図である。 (a)は出力用MOSを例示する断面図であり、(b)は保護用MOSを例示する断面図である。 第1の実施形態に係る半導体装置を例示する平面図である。 比較例に係る半導体装置を例示する回路図である。 本比較例に係る半導体装置を例示する平面図である。 横軸に出力パッドと低電位電源配線との間の電圧Vをとり、縦軸に出力用NMOS経路及び保護用NMOS経路にそれぞれ流れる電流Iをとって、出力用NMOS経路及び保護用NMOS経路の動作特性を例示するグラフ図である。 横軸に出力パッドと低電位電源配線との間の電圧Vをとり、縦軸に出力用NMOS経路及び保護用NMOS経路に流れる合計の電流Itotalをとって、半導体装置の動作特性を例示するグラフ図である。 本発明の第2の実施形態に係る半導体装置を例示する回路図である。 本発明の第3の実施形態に係る半導体装置を例示する回路図である。
符号の説明
1、21、31、61 半導体装置、2 内部回路、2a 出力配線、3 CMOS、4 PMOS、5 NMOS、6 出力パッド、7 保護用NMOS、11、12、13、23、71、72、73 配線、15 シリコン基板、16 ゲート電極、17 ゲート絶縁膜、18 P型ウェル、19 N型領域、22 保護用PMOS、N ノード、R 抵抗、VDD 高電位電源配線、VSS 低電位電源配線

Claims (5)

  1. 内部回路と、
    ソースが高電位電源配線に接続されゲートが前記内部回路に接続されたPチャネル型MOSトランジスタ及びソースが低電位電源配線に接続されゲートが前記内部回路に接続されたNチャネル型MOSトランジスタからなるCMOSと、
    前記Pチャネル型MOSトランジスタのドレイン及び前記Nチャネル型MOSトランジスタのドレインに接続された出力端子と、
    ソース及びゲートが前記高電位電源配線及び前記低電位電源配線のうち一方の電源配線に接続され、ドレインが前記出力端子に接続され、導電型が前記Pチャネル型MOSトランジスタ及び前記Nチャネル型MOSトランジスタのうちソースが前記一方の電源配線に接続された一方のMOSトランジスタの導電型と同じである保護用トランジスタと、
    を備え、
    前記出力端子から前記一方のMOSトランジスタを経由して前記一方の電源配線に至る電流経路の抵抗は、前記保護用トランジスタがスナップバックするような電圧が前記出力端子と前記一方の電源配線との間に印加されたときに、前記電流経路に流れる電流が前記一方のMOSトランジスタの破壊電流よりも小さくなるような値となっていることを特徴とする半導体装置。
  2. 前記出力端子を前記一方のMOSトランジスタに接続する配線の抵抗は、前記出力端子を前記保護用トランジスタに接続する配線の抵抗よりも大きいことを特徴とする請求項1記載の半導体装置。
  3. 前記出力端子を前記一方のMOSトランジスタに接続する配線には、2ヶ所以上の屈曲部が形成されていることを特徴とする請求項2記載の半導体装置。
  4. 前記出力端子を前記一方のMOSトランジスタに接続する配線は、前記内部回路が形成されている領域内を通過していることを特徴とする請求項2または3に記載の半導体装置。
  5. ソース及びゲートが前記高電位電源配線及び前記低電位電源配線のうち他方の電源配線に接続され、ドレインが前記出力端子に接続され、導電型が前記Pチャネル型MOSトランジスタ及び前記Nチャネル型MOSトランジスタのうち前記他方の電源配線に接続された他方のMOSトランジスタの導電型と同じである他の保護用トランジスタをさらに備え、
    前記出力端子から前記他方のMOSトランジスタを経由して前記他方の電源配線に至る他の電流経路の抵抗は、前記他の保護用トランジスタがスナップバックするような電圧が
    前記出力端子と前記一方の電源配線との間に印加されたときに、前記他の電流経路に流れる電流が前記他方のMOSトランジスタの破壊電流よりも小さくなるような値となっていることを特徴とする請求項1〜4のいずれか1つに記載の半導体装置。
JP2007149481A 2007-06-05 2007-06-05 半導体装置 Pending JP2008305852A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007149481A JP2008305852A (ja) 2007-06-05 2007-06-05 半導体装置
US12/127,907 US7863687B2 (en) 2007-06-05 2008-05-28 Semiconductor apparatus
US12/956,248 US8115257B2 (en) 2007-06-05 2010-11-30 Semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149481A JP2008305852A (ja) 2007-06-05 2007-06-05 半導体装置

Publications (1)

Publication Number Publication Date
JP2008305852A true JP2008305852A (ja) 2008-12-18

Family

ID=40095056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149481A Pending JP2008305852A (ja) 2007-06-05 2007-06-05 半導体装置

Country Status (2)

Country Link
US (2) US7863687B2 (ja)
JP (1) JP2008305852A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147282A (ja) 2008-12-19 2010-07-01 Renesas Technology Corp 半導体集積回路装置
CN102347326B (zh) * 2010-07-28 2014-03-12 立锜科技股份有限公司 具有静电防护的功率晶体管元件与使用该功率晶体管元件的低压差稳压器
JP6266485B2 (ja) 2014-09-26 2018-01-24 株式会社東芝 半導体装置
CN107466426B (zh) * 2017-06-14 2021-03-16 深圳市汇顶科技股份有限公司 一种基于mos场效应晶体管的滤波电路及芯片
US20210408786A1 (en) * 2020-06-30 2021-12-30 Qualcomm Incorporated Circuit techniques for enhanced electrostatic discharge (esd) robustness

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775803B2 (ja) 1990-08-09 2006-05-17 Necエレクトロニクス株式会社 半導体集積回路装置およびその製造方法
JP3102391B2 (ja) * 1997-10-27 2000-10-23 日本電気株式会社 半導体集積回路
JP3380465B2 (ja) * 1998-06-29 2003-02-24 松下電器産業株式会社 半導体装置
JP2001060663A (ja) 1999-08-20 2001-03-06 Nec Corp 半導体集積回路装置
JP2001339046A (ja) 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd 半導体装置
JP4667559B2 (ja) 2000-05-30 2011-04-13 ルネサスエレクトロニクス株式会社 半導体装置、フォトマスクおよび半導体装置の製造方法
JP2004304136A (ja) 2003-04-01 2004-10-28 Oki Electric Ind Co Ltd 半導体装置
JP4170210B2 (ja) 2003-12-19 2008-10-22 Necエレクトロニクス株式会社 半導体装置
TWI224391B (en) * 2004-02-10 2004-11-21 Univ Nat Chiao Tung Electrostatic discharge protection circuit
JP2006332144A (ja) 2005-05-24 2006-12-07 Pioneer Electronic Corp 集積回路
JP2007036029A (ja) * 2005-07-28 2007-02-08 Oki Electric Ind Co Ltd 半導体装置
JP2007096211A (ja) 2005-09-30 2007-04-12 Ricoh Co Ltd 半導体装置
US7706114B2 (en) * 2007-10-04 2010-04-27 Ememory Technology Inc. ESD avoiding circuits based on the ESD detectors in a feedback loop

Also Published As

Publication number Publication date
US8115257B2 (en) 2012-02-14
US20110073949A1 (en) 2011-03-31
US7863687B2 (en) 2011-01-04
US20080303093A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
US20080135940A1 (en) Semiconductor Device
US8373231B2 (en) Semiconductor device
US7750409B2 (en) Semiconductor device
JP6333672B2 (ja) 半導体装置
JP5008840B2 (ja) 半導体装置
JP2010016177A (ja) 静電気放電保護素子
JP2008535268A (ja) シリコン制御整流素子に基づいた半導体デバイス
JP2008305852A (ja) 半導体装置
JP2006269835A (ja) 半導体装置
JP5241109B2 (ja) 半導体集積回路装置
US20070246737A1 (en) Electrostatic discharge protection apparatus for integrated circuits
JP6100026B2 (ja) 半導体装置
JP5131814B2 (ja) 半導体装置
US7129546B2 (en) Electrostatic discharge protection device
JP2017212295A (ja) 半導体装置
JP2008193019A (ja) 半導体集積回路装置
KR101279186B1 (ko) 반도체 장치
JP2003347412A (ja) 半導体装置の静電破壊防止保護回路
JP6622352B2 (ja) 半導体装置
JP5581907B2 (ja) 半導体集積回路及び半導体集積回路装置
KR102082643B1 (ko) 반도체 장치
JP2010087341A (ja) 半導体装置
JP2014041986A (ja) 半導体装置
JP2009146976A (ja) 半導体装置
JP2008227078A (ja) 半導体集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091022