JP2008027210A - 加工設備及び加工設備の制御方法 - Google Patents

加工設備及び加工設備の制御方法 Download PDF

Info

Publication number
JP2008027210A
JP2008027210A JP2006199342A JP2006199342A JP2008027210A JP 2008027210 A JP2008027210 A JP 2008027210A JP 2006199342 A JP2006199342 A JP 2006199342A JP 2006199342 A JP2006199342 A JP 2006199342A JP 2008027210 A JP2008027210 A JP 2008027210A
Authority
JP
Japan
Prior art keywords
processing
machining
detection means
interrupted
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006199342A
Other languages
English (en)
Inventor
Terukazu Fukaya
輝和 深谷
Kazuto Kato
和人 加藤
Michio Kameyama
美知夫 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006199342A priority Critical patent/JP2008027210A/ja
Publication of JP2008027210A publication Critical patent/JP2008027210A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

【課題】数値制御装置と、少なくとも数値制御された2軸の移動軸とを備えてなる加工設備において、μm以下の超高精度の加工を実現可能にする。
【解決手段】本発明の加工設備1は、数値制御装置3と、少なくとも数値制御された2軸の移動軸とを備えてなるものにおいて、外乱変動要因の変化量を検出する検出手段13〜15を備え、検出手段13〜15で検出した検出情報を解析し、予め設定された外乱変動要因の規格の外であるか否かを判断し、外乱変動要因の規格の外であると判断されたときには、加工を一時的に中断するように制御するものである。
【選択図】図1

Description

本発明は、加工対象物の形状をμm以下の領域の寸法精度で加工する、即ち、超高精度に仕上げることが可能な加工設備及び加工設備の制御方法に関する。
現在、半導体基盤や光学部品などの平面または曲面もしくは段差、深さなどの形状を、寸法精度がμm以下の領域となるような加工、即ち、超高精度に仕上げる必要がある加工を行う場合、一般的には、次のような方法が用いられている。要求される精度を確保することが可能な運動分解能を有した加工設備を用意すると共に、この加工設備を設置する環境について、加工設備の周囲の温度変化等の外乱要因を排除するように環境整備する。更に、加工設備自体の外乱要因による物理的変化(例えば伸縮等)を補正する機構を加工設備に設け、該加工設備において、加工を実施することにより、超高精度の加工を実現することが可能である。
上記補正する機構を備えた加工設備の一例として、例えば特許文献1に記載されている構成が知られている。この構成においては、制御装置に、予め変位量の許容値を設定し、工具長を定期的に測定し、その測定結果と前回の測定結果を比較し、その差が前記許容値内であるとき、制御装置に登録された工具長もしくは補正値を最新の測定により求められた工具長に更新するように構成されている。
加工設備を設置する環境を整備する方法としては、加工設備の周囲を断熱構造体で囲み、この断熱構造体の内部を空調設備などを用いて恒温化することにより、外乱変動を抑制する方法がある。
特開平6−335844号公報
本発明者らは、加工の寸法精度を更に高くすること、1μm以下例えば0.01μm程度の寸法精度の加工を実行できる加工設備を発明しようと考えた。そこで、最小制御単位が0.01μmの超精密NCフライス盤を使用した加工設備を組み立てると共に、この加工設備の周囲を断熱構造体と空調設備などを用いて恒温化するように構成した。この構成により光学部品の曲面を切削する加工を実行したところ、加工精度が0.01μmの寸法精度に達せず、加工した曲面に縞や筋のような模様が発生してしまった。この場合、特許文献1のような補正する機構を加工設備に設けても、やはり加工精度は0.01μmに達せず、加工した曲面に模様が発生した。
そこで、本発明の目的は、数値制御装置と、少なくとも数値制御された2軸の移動軸とを備えてなる加工設備において、μm以下の超高精度の加工を実現することができる加工設備を提供することにある。
本発明の加工設備は、数値制御装置と、少なくとも数値制御された2軸の移動軸とを備えてなるものにおいて、外乱変動要因の変化量を検出する検出手段と、前記検出手段で検出した検出情報を解析し、予め設定された外乱変動要因の規格の外であるか否かを判断する判断手段と、外乱変動要因の規格の外であると判断されたときには、加工を一時的に中断する制御手段とを備えたところに特徴を有する。
上記構成によれば、外乱変動要因の変化量を検出し、この検出情報が予め設定された外乱変動要因の規格の外であるか否かを判断し、外乱変動要因の規格の外であると判断されたときには、加工を一時的に中断するように構成したので、マイクロメートル以下例えば0.01μm程度の超高精度の加工を実現することができる。
また、上記構成の場合、前記制御手段は、加工プログラムの1サイクル分の加工を完了した時点で加工を中断するように制御することが好ましい。更に、前記制御手段は、加工を中断するに際して、切り込み方向に対してマイナス方向に位置させた状態でサイクル運転する空運転をさせるように制御することが良い構成である。
更にまた、前記検出手段は、温度を計測する計測器、振動を計測する計測器、気圧を計測する計測器、または、加工テーブルに設けられた基準ブロックとの間の距離を計測する計測器で構成されていることが好ましい。
また、前記制御手段は、加工を再開するに際して、切り込み方向に対して中断時の位置に戻してから加工を実行するように制御することがより一層好ましい。更に、前記外乱変動要因の規格は、加工プログラムのサイクル毎に設定可能なように構成されていることが良い構成である。
一方、本発明の加工設備の制御方法は、数値制御装置と、少なくとも数値制御された2軸の移動軸とを備えてなる加工設備を制御する制御方法において、外乱変動要因の変化量を検出する検出手段を備え、前記検出手段で検出した検出情報を解析し、予め設定された外乱変動要因の規格の外であるか否かを判断し、外乱変動要因の規格の外であると判断されたときには、加工を一時的に中断するように制御するところに特徴を有する。
以下、本発明の第1の実施例について、図1ないし図3を参照しながら説明する。図1は、本実施例の加工設備の全体の概略構成を示す斜視図である。この図1に示すように、加工設備1は、超精密NCフライス盤2と、この超精密NCフライス盤2を制御するNC制御装置3と、エアードライヤ4と、冷却水装置5と、超精密NCフライス盤2を収容するブース6とを備えて構成されている。
超精密NCフライス盤2は、3個の移動軸d,e,fを有しており、このうち、移動軸dは左右方向に沿って移動する軸であり、移動軸eは前後方向に沿って移動する軸であり、移動軸fは上下方向に沿って移動する軸(いわゆる主軸)である。超精密NCフライス盤2には、加工対象物7を治具8を介して載置固定する加工テーブル9が移動軸d及び移動軸e方向に移動可能に設けられていると共に、該加工テーブル9を移動軸d及び移動軸e方向にそれぞれ移動駆動するテーブル駆動装置(図示しない)が設けられている。上記テーブル駆動装置は、最小制御単位が0.01μm(10nm)で加工テーブル9を移動軸d及び移動軸e方向にそれぞれ移動駆動可能な駆動装置である。
また、超精密NCフライス盤2には、加工用の工具10が工具支持装置11を介して移動軸f方向に移動可能に設けられていると共に、該工具10(及び工具支持装置11)を移動軸f方向に移動駆動する工具駆動装置(図示しない)が設けられている。工具10は、工具支持装置11に工具固定具12を介して着脱可能に固定されている。上記工具駆動装置は、最小制御単位が0.01μm(10nm)で工具10を移動軸f方向に移動駆動可能な駆動装置である。
NC制御装置3は、設定された加工プログラムに従って超精密NCフライス盤2のテーブル駆動装置及び工具駆動装置を駆動制御する機能を有している。このNC制御装置3が、判断手段及び制御手段としての各機能を有している。
エアードライヤ4は、主軸の空気静圧軸受け等にエアーを供給する装置である。冷却水装置5は、主軸や加工液の温度を調節する装置である。NC制御装置3、エアードライヤ4及び冷却水装置5は、これらからの排熱による温度環境変化を抑制するために、ブース6の外部に配設されている。
そして、上記した構成の加工設備1は、空調装置(図示しない)により室温が設定温度の±1.0℃で管理された恒温室の中に設置されている。更に、超精密NCフライス盤2を収容するブース6は、断熱シートで構成されており、このブース6の内部は、設定温度の±0.3℃で管理されている。
また、ブース6の中外の複数箇所例えば4箇所には、外乱変動要因である例えば温度を検出する測定器13〜15(3個のみ図示)が設置されている。これら測定器13〜15は、例えば熱電対で構成されていると共に、検出手段を構成している。ブース6の内部において、1つの測定器13は、超精密NCフライス盤2の加工点付近に配設されている。他の1つの測定器14は、ブース6内の床部付近に配設されている。また、他の1つの測定器15は、ブース6内の天井付近に配設されている。更に、他の1つの測定器(図示しない)は、ブース6の外部に配設されている。
各測定器13〜15は、各配設部付近の温度を例えば2Hzの周期間隔にて(0.5秒毎に)計測し、各温度検出信号をNC制御装置3へ与えるように構成されている。
NC制御装置3においては、各測定器12〜15から収集した温度測定データに基づいて加工の中断・再開を指令するように構成されている。この場合、温度測定データから加工設備1の伸縮量を予測すると共に、温度測定データを加工規格から設定された温度領域にて加工の中断・再開を指令するための定量的な数値データとして用いる。そのために所望する加工表面形状規格値が数nmレベルの時には、ブース6内の温度変化量の規格値を形状規格に合わせて設定し、加工(の中断・再開)を実施する。
本実施例においては、加工規格を±0.04μm(40nm)とし、±0.02℃の温度変化で加工位置が±0.04μm(40nm)変化するように超精密NCフライス盤2(加工設備1)を制御している。この制御による検出温度の変化と加工の中断・再開との関係を、図2のグラフに示す。尚、図2のグラフにおいては、検出温度の変化は模式的に示されており、実際には、ブース6内の温度が±0.3℃で管理されていることから、上記検出温度はもっと大きく(ほぼ±0.3℃の範囲で)ゆっくり変化する。
図2に示すように、検出温度が上昇して、時刻t1において検出温度が0.02℃に達したら、外乱変動要因の規格外であると判断し、加工を中断する。この後、時刻t2において検出温度が0.02℃未満に低下したら、外乱変動要因の規格内であると判断し、加工を再開する。
そして、時刻t3において検出温度が−0.02℃まで低下したら、外乱変動要因の規格外であると判断し、加工を中断する。更にこの後、時刻t4において検出温度が−0.02℃よりも高くなるまで上昇したら、外乱変動要因の規格内であると判断し、加工を再開する。
続いてこの後、時刻t5において検出温度が上昇して0.02℃に達したら、外乱変動要因の規格外であると判断し、加工を中断する。それから、時刻t6において検出温度が0.02℃未満に低下したら、外乱変動要因の規格内であると判断し、加工を再開する。以下、このような検出温度に応じた加工の中断・再開を繰り返し実行するように制御される。
尚、本実施例では、検出温度としては、4個の測定器12〜15からの4つの検出温度があるが、これら4つの検出温度のいずれか1つでも、外乱変動要因の規格外となったら、上記した加工の中断を行なうように制御しても良いし、4つの検出温度の中の特定の1つ(2つまたは3つのいずれか)の検出温度が、外乱変動要因の規格外となったら、上記した加工の中断を行なうように制御しても良い。
ここで、NC制御装置3による上記した加工の中断・再開制御の一例を、図3のフローチャートに示す。以下、このフローチャートについて簡単に説明する。
まず、ステップS10においては、加工プログラムを実行して超精密NCフライス盤2を駆動し、加工を開始する。これと共に、測定器13〜15により各部分の温度を計測する。この場合、加工プログラムの1サイクルを実行するのに6秒程度の時間がかかり、また、温度計測は0.5秒毎に実行されるように構成されている。
続いて、ステップS20へ進み、検出温度が外乱変動要因の規格内(具体的には、−0.02℃<検出温度<0.02℃)であるか否かを判断する。ここで、規格内であれば、ステップS20にて「YES」へ進み、ステップS30へ進み、加工を続ける(実行する)と共に、ステップS20へ戻り、上記判断も続ける。
一方、ステップS20において、規格外と判断されたときには、「NO」へ進み、ステップS40へ進み、加工の中断は「その場停止」であるか否かを判断する。ここで、ユーザーが、加工の中断を「その場停止」で行なうと予め設定していたときには、ステップS40にて「YES」へ進み、ステップS50へ進む。このステップS50では、実行中の1サイクル分の加工を完了してから、その場で停止して、加工を中断する。この後は、ステップS20へ戻り、上記判断を続ける。
尚、上記「その場停止」の加工の中断を行なった後、ステップS20の判断にて、検出温度が規格内になったときには、「YES」へ進み、ステップS30へ進み、中断時のその場から、加工を再開する。
さて、ステップS40において、加工の中断を「その場停止」で行なうと設定されていないとき(即ち、中断時に空運転を行なうように設定されているとき)には、「NO」へ進み、ステップS60へ進む。このステップS60では、加工を止め、切り込み(加工)方向に対してマイナス側に移動させる。そして、ステップS70へ進み、サイクル運転(未切削状態で運転、即ち、空運転)しながら、加工を中断する。この後は、ステップS20へ戻り、上記判断を続ける。
尚、上記空運転の加工中断を行なった後、ステップS20の判断にて、検出温度が規格内になったときには、「YES」へ進み、ステップS30へ進み、中断時の加工位置まで移動(正規の切り込み位置までプラス側に移動)させてから、加工を再開する。
このような構成の本実施例によれば、外乱変動要因の変化量(例えば温度の変化)を検出し、この検出情報が予め設定された外乱変動要因の規格の外であるか否かを判断し、外乱変動要因の規格の外であると判断されたときには、加工を一時的に中断するように構成したので、マイクロメートル以下例えば0.04μm程度の超高精度の加工を実現することができる。
具体的には、加工対象物7として、映像を反射するための凹面ミラーを加工する場合の例を説明する。この場合、アルミ材を用いて加工を行った。凹面ミラーの表面には、加工表面の反射性能と加工形状が必要になってくる。特に、数時間から数日を要するような長時間加工を実行する中では、微小な温度変化にともなう超精密NCフライス盤2の機械伸縮によって、微小なうねり変化が発生し、凹面ミラーの表面に縞模様のような不具合が発生する。
即ち、上記した図2に示すような加工の中断・再開制御を実行しない場合、つまり、ブース6内を±0.3℃で恒温温度制御するだけの構成の場合には、サブμmレベルの形状変化が発生することが懸念され、しかも温度変化が1時間〜数分の短時間に発生した場合には、加工表面に数10nm以上の形状変化が発生してしまう(例えば凹面ミラーの表面に縞や筋等の模様が発生してしまう)ことがわかった。
これに対して、本実施例では、検出温度が上昇して0.02℃に達したら(または下降して−0.02℃まで低下したら)、外乱変動要因の規格外であると判断し、加工を中断するように制御した。そしてこの後、検出温度が下降して0.02℃未満に低下したら(または上昇して−0.02℃に達したら)、外乱変動要因の規格内であると判断し、加工を再開する。以下、このような加工の中断・再開を繰り返し実行するように制御したので、本実施例によれば、凹面ミラーの表面に模様が発生することを防止でき大幅に低減できる。
また、上記実施例においては、NC制御装置3により加工を中断する場合に、加工プログラムの1サイクル分の加工を完了した時点で、その場停止させて、加工を中断するように制御している。このため、中断時または再開時に、加工対象物7の加工面等に不具合が発生することを防止できる。
更に、上記実施例においては、加工の中断時に、切り込み方向に対してマイナス側に移動させて、空運転を実行するように構成したので、運転を停止する場合に比べて、温度変化(外乱変動要因)に対する影響を極力少なくすることができる。
尚、上記実施例において、外乱変動要因の規格を、加工プログラムのサイクル毎に設定可能なように構成しても良い。このように構成すると、外乱変動要因に起因する加工の不具合をより一層確実に防止することができる。
図4は、本発明の第2の実施例を示すものである。第1の実施例と同一構成には、同一符号を付している。この第2の実施例においては、加工テーブル上に基準ブロック16を設けると共に、移動軸f側に基準ブロック16との間の距離を計測する計測器(検出手段)17を設けた。基準ブロック16は、室温での熱膨張率が小さいガラス−セラミック複合材料(例えばゼロデュアー:熱膨張係数±0.15×10-6/℃)で構成されている。計測器17としては、例えば静電容量型変位計(測定分解能1nm)やレーザー変位計等を用いている。
上記構成の場合、加工サイクルを開始する前に、基準ブロック16と計測器17とを数十μmの距離隔てた位置に位置決めするプログラムを運転サイクルに設け、ここで得られた数値を、予め設定した加工既定値(外乱変動要因の規格)内か否かを判断し、規格外であれば、加工を中断するように制御するように構成されている。
そして、上述した以外の第2の実施例の構成は、第1の実施例の構成と同じ構成となっている。従って、第2の実施例においても、第1の実施例とほぼ同じ作用効果を得ることができる。
尚、第1の実施例に上記第2の実施例の構成(基準ブロック16及び計測器17並びに加工中断制御)を組み合わせるように構成しても良い。
また、第1の実施例では、外乱変動要因として環境温度を検出するように構成したが、これに代えて、振動を検出するように構成しても良い。ここで、振動発生要因としては、プレスやマシングセンタなどの加工機から発生する振動や、工場周辺で電車が走っている場合には、その走行振動などがあり、超精密の加工においては、それらの振動が加工面に悪影響を及ぼす。尚、超精密NCフライス盤2の周辺近くを作業者が歩くことでも、そのときに発生する振動が加工に悪影響を与えることがある。
これらの振動を抑制するためには、加工設備の周りに溝を掘り、周辺の床と縁切りする、大型の除振台などに加工設備を設置するなどの対策を行うことが一般的であるが、費用が多く掛る上に完全な振動防止を行うことは困難である。
これに対して、振動を検出する例えばPZTを用いた振動計(計測器(検出手段))を、超精密NCフライス盤2周辺の床面に設置し、その振動計から出力される検出信号をNC制御装置3に与えるように構成すれば良い。そして、NC制御装置3においては、予め判定用基準値(外乱変動要因の規格)を、振動値の上限もしくは、振動値から設備剛性を鑑みて影響を受ける加工精度を規定して、設定している。
この場合、1μm以上で設備を停止する設定としている。ただし、超精密NCフライス盤2(加工機)自体から発生する振動を加味する必要がある。超精密NCフライス盤2自体から発生する振動は、自体の加工の振動である主軸回転や、被加工材の除去により発生する振動、または設備が位置決め等で移動する際に発生する振動などがある。このため、加工の状態においても、荒加工、仕上げ加工に含まれるそれぞれのサイクル毎に、判定用基準値を設定するように構成することが好ましい。例えば、荒加工の領域のサイクルでは10μm、仕上げ加工のサイクルでは1μmの設定とすることが好ましい。
また、加工テーブル9等が早送りなど、局部的に振動が大きくなる動きでは、予めNC制御装置3のプグラム設定から、その間の大きな振動をキャンセルする必要がある。このような設定をして、実際に振動が起こった場合、加工を中断し、振動が判定用基準値より下がった場合、加工を再開するように制御する。
更に、振動が発生した際に、加工の中断を1サイクル終了後に中断するか、即座に中断するかについは、振動の場合、温度変化と異なり、振動が発生した時点で加工面に大きな影響が出やすい。また、地震等で即座に振動が大きくなるような場合は、加工設備1を傷めてしまう場合が多いため、即座に加工を中断し、加工点から切り込み方向に対してマイナス方向に逃げた状態で待機するサイクル(空運転)を選んで実施するように制御することが好ましい。
このように構成すると、加工面の精度だけで無く、地震による加工設備の被害(損傷)を抑える効果も得ることが可能になる。
尚、振動を計測する計測器(検出手段)として、振動計を用いているが、地震や大型設備の稼働時の振動を抑制することが目的であれば、Gセンサなどを用いても良い。
また、第1の実施例、または、第2の実施例、または、第1の実施例に第2の実施例を組み合わせた構成に、上記構成(振動を計測する振動計やGセンサなど並びに加工中断制御)を組み合わせるように構成することが好ましい。
また、外乱変動要因として、例えば気圧の変化も考慮にいれなければならない場合がある。特に、加工の位置決めの位置検出にレーザ測長ユニットを用いている場合には、例えば、10hPaで約1μm(L:300mm)の変化を生じるなど、気圧の変化が長さの変化につながる。
このため、第1の実施例または第2の実施例(または上記した振動対策を組み合わせた構成)において、気圧計(計測器(検出手段))をブース6内に設置し、NC制御装置3において、予め気圧の判定用基準値を、気圧の上限、下限、もしくは、気圧から影響を受ける加工精度を規定して、設定するように構成することが好ましい。
尚、レーザ測長の場合、測長誤差は、気圧以外に温度と湿度も屈折率変化としての影響を受ける。温度については前述(第1の実施例)の通りであるが、ブース6内の湿度も計測し、判定用基準値を設けることで、更に高精度の加工を実現することができる。
尚、上記した各実施例や変形例においては、測定器13〜15や計測器17等からの検出信号に基づいて加工の中断・再開を制御する制御手段の機能を、NC制御装置3内に組み込むように構成したが、これに限られるものではなく、上記制御手段の機能を有する専用の端末(情報処理装置)をNC制御装置3とは別に設置するように構成しても良い。
また、上記した各実施例や変形例においては、3軸の移動軸d,e,fを備えた加工設備に適用したが、これに限られるものではなく、2軸または4軸以上の移動軸を備えた加工設備に適用しても良い。
本発明の第1の実施例を示す加工設備の斜視図 検出温度の変化と加工の中断・再開との関係を示す図 フローチャート 本発明の第2の実施例を示す図1相当図
符号の説明
図面中、1は加工設備、2は超精密NCフライス盤、3はNC制御装置(判断手段、制御手段)、4はエアードライヤ、5は冷却水装置、6はブース、7は加工対象物、9は加工テーブル、10は工具、13、14、15は測定器(検出手段)、16は基準ブロック、17は計測器(検出手段)を示す。

Claims (18)

  1. 数値制御装置と、少なくとも数値制御された2軸の移動軸とを備えてなる加工設備において、
    外乱変動要因の変化量を検出する検出手段と、
    前記検出手段で検出した検出情報を解析し、予め設定された外乱変動要因の規格の外であるか否かを判断する判断手段と、
    外乱変動要因の規格の外であると判断されたときには、加工を一時的に中断する制御手段とを備えたことを特徴とする加工設備。
  2. 前記制御手段は、加工プログラムの1サイクル分の加工を完了した時点で加工を中断するように制御することを特徴とする請求項1記載の加工設備。
  3. 前記制御手段は、加工を中断するに際して、切り込み方向に対してマイナス方向に位置させた状態で空運転させるように制御することを特徴とする請求項1記載の加工設備。
  4. 前記検出手段は、温度を計測する計測器で構成されていることを特徴とする請求項1ないし3のいずれかに記載の加工設備。
  5. 前記検出手段は、振動を計測する計測器で構成されていることを特徴とする請求項1ないし3のいずれかに記載の加工設備。
  6. 前記検出手段は、気圧を計測する計測器で構成されていることを特徴とする請求項1ないし3のいずれかに記載の加工設備。
  7. 前記検出手段は、加工テーブルに設けられた基準ブロックとの間の距離を計測する計測器で構成されていることを特徴とする請求項1ないし3のいずれかに記載の加工設備。
  8. 前記制御手段は、加工を再開するに際して、切り込み方向に対して中断時の位置に戻してから加工を実行するように制御することを特徴とする請求項3記載の加工設備。
  9. 前記外乱変動要因の規格は、加工プログラムのサイクル毎に設定可能なように構成されていることを特徴とする請求項1ないし8のいずれかに記載の加工設備。
  10. 数値制御装置と、少なくとも数値制御された2軸の移動軸とを備えてなる加工設備を制御する加工設備の制御方法において、
    外乱変動要因の変化量を検出する検出手段を備え、
    前記検出手段で検出した検出情報を解析し、予め設定された外乱変動要因の規格の外であるか否かを判断し、外乱変動要因の規格の外であると判断されたときには、加工を一時的に中断するように制御することを特徴とする加工設備の制御方法。
  11. 加工プログラムの1サイクル分の加工を完了した時点で加工を中断するように制御することを特徴とする請求項10記載の加工設備の制御方法。
  12. 加工を中断するに際して、切り込み方向に対してマイナス方向に位置させた状態で空運転させるように制御することを特徴とする請求項10記載の加工設備の制御方法。
  13. 前記検出手段は、温度を計測する計測器で構成されていることを特徴とする請求項10ないし12のいずれかに記載の加工設備の制御方法。
  14. 前記検出手段は、振動を計測する計測器で構成されていることを特徴とする請求項10ないし12のいずれかに記載の加工設備の制御方法。
  15. 前記検出手段は、気圧を計測する計測器で構成されていることを特徴とする請求項10ないし12のいずれかに記載の加工設備の制御方法。
  16. 前記検出手段は、加工テーブルに設けられた基準ブロックとの間の距離を計測する計測器で構成されていることを特徴とする請求項10ないし12のいずれかに記載の加工設備の制御方法。
  17. 加工の中断後、加工を再開するに際して、切り込み方向に対して中断時の位置に戻してから加工を実行するように制御することを特徴とする請求項12記載の加工設備の制御方法。
  18. 前記外乱変動要因の規格は、加工プログラムのサイクル毎に設定可能なように構成されていることを特徴とする請求項10ないし17のいずれかに記載の加工設備の制御方法。

JP2006199342A 2006-07-21 2006-07-21 加工設備及び加工設備の制御方法 Pending JP2008027210A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199342A JP2008027210A (ja) 2006-07-21 2006-07-21 加工設備及び加工設備の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199342A JP2008027210A (ja) 2006-07-21 2006-07-21 加工設備及び加工設備の制御方法

Publications (1)

Publication Number Publication Date
JP2008027210A true JP2008027210A (ja) 2008-02-07

Family

ID=39117777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199342A Pending JP2008027210A (ja) 2006-07-21 2006-07-21 加工設備及び加工設備の制御方法

Country Status (1)

Country Link
JP (1) JP2008027210A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155325A (ja) * 2008-12-30 2010-07-15 Yutaka Shimada 高精度加工工作機械
CN103737432A (zh) * 2013-10-17 2014-04-23 浙江工业大学 球头铣刀精密铣削拼接淬硬钢倾斜表面的振动测试装置
US20180079460A1 (en) * 2016-09-20 2018-03-22 Honda Motor Co., Ltd Assembly apparatus
JP2018094686A (ja) * 2016-12-14 2018-06-21 ファナック株式会社 工作機械における工具のビビり発生の予兆を検知する機械学習装置、cnc装置および機械学習方法
DE102018006024A1 (de) 2017-08-07 2019-02-07 Fanuc Corporation Controller und maschinelle Lernvorrichtung
CN114714137A (zh) * 2022-05-18 2022-07-08 广东鸿图南通压铸有限公司 一种加工高精度汽车曲轴箱平衡轴安装面的机加工工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761463A (en) * 1980-09-30 1982-04-13 Mitsubishi Electric Corp Cylindrical grinder
JPS6188301A (ja) * 1984-10-05 1986-05-06 Mitsubishi Electric Corp 産業用ロボツト装置
JPS6294246A (ja) * 1985-10-17 1987-04-30 Mitsubishi Electric Corp 産業用ロボツト装置
JPS63102854A (ja) * 1986-10-20 1988-05-07 Nippon Pneumatic Kogyo Kk 異常工具交換方法
JPH06226587A (ja) * 1993-02-01 1994-08-16 Murata Mach Ltd 切削機械の軸トルク制御方法
JPH06335841A (ja) * 1993-03-31 1994-12-06 Yaskawa Electric Corp 数値制御装置および数値制御加工方法
JPH0885044A (ja) * 1994-09-19 1996-04-02 Fanuc Ltd 加工負荷監視方式
JPH08263113A (ja) * 1995-03-23 1996-10-11 Honda Motor Co Ltd 異常処理制御装置
JPH10253462A (ja) * 1997-03-12 1998-09-25 Olympus Optical Co Ltd 空気屈折率測定装置
JP2000220384A (ja) * 1999-01-29 2000-08-08 Gesuido Shingijutsu Suishin Kiko シールド余掘り部の先行充填置換工法
JP2000233353A (ja) * 1999-02-10 2000-08-29 Nikon Corp 研削方法および研削装置
JP2004255494A (ja) * 2003-02-25 2004-09-16 Fanuc Ltd 機械の温度調節システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761463A (en) * 1980-09-30 1982-04-13 Mitsubishi Electric Corp Cylindrical grinder
JPS6188301A (ja) * 1984-10-05 1986-05-06 Mitsubishi Electric Corp 産業用ロボツト装置
JPS6294246A (ja) * 1985-10-17 1987-04-30 Mitsubishi Electric Corp 産業用ロボツト装置
JPS63102854A (ja) * 1986-10-20 1988-05-07 Nippon Pneumatic Kogyo Kk 異常工具交換方法
JPH06226587A (ja) * 1993-02-01 1994-08-16 Murata Mach Ltd 切削機械の軸トルク制御方法
JPH06335841A (ja) * 1993-03-31 1994-12-06 Yaskawa Electric Corp 数値制御装置および数値制御加工方法
JPH0885044A (ja) * 1994-09-19 1996-04-02 Fanuc Ltd 加工負荷監視方式
JPH08263113A (ja) * 1995-03-23 1996-10-11 Honda Motor Co Ltd 異常処理制御装置
JPH10253462A (ja) * 1997-03-12 1998-09-25 Olympus Optical Co Ltd 空気屈折率測定装置
JP2000220384A (ja) * 1999-01-29 2000-08-08 Gesuido Shingijutsu Suishin Kiko シールド余掘り部の先行充填置換工法
JP2000233353A (ja) * 1999-02-10 2000-08-29 Nikon Corp 研削方法および研削装置
JP2004255494A (ja) * 2003-02-25 2004-09-16 Fanuc Ltd 機械の温度調節システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155325A (ja) * 2008-12-30 2010-07-15 Yutaka Shimada 高精度加工工作機械
CN103737432A (zh) * 2013-10-17 2014-04-23 浙江工业大学 球头铣刀精密铣削拼接淬硬钢倾斜表面的振动测试装置
US20180079460A1 (en) * 2016-09-20 2018-03-22 Honda Motor Co., Ltd Assembly apparatus
CN107839789A (zh) * 2016-09-20 2018-03-27 本田技研工业株式会社 组装装置
JP2018047511A (ja) * 2016-09-20 2018-03-29 本田技研工業株式会社 組立装置
CN107839789B (zh) * 2016-09-20 2020-02-14 本田技研工业株式会社 组装装置
US10940904B2 (en) 2016-09-20 2021-03-09 Honda Motor Co., Ltd. Assembly apparatus
JP2018094686A (ja) * 2016-12-14 2018-06-21 ファナック株式会社 工作機械における工具のビビり発生の予兆を検知する機械学習装置、cnc装置および機械学習方法
US10496055B2 (en) 2016-12-14 2019-12-03 Fanuc Corporation Machine learning device, CNC device and machine learning method for detecting indication of occurrence of chatter in tool for machine tool
DE102018006024A1 (de) 2017-08-07 2019-02-07 Fanuc Corporation Controller und maschinelle Lernvorrichtung
CN114714137A (zh) * 2022-05-18 2022-07-08 广东鸿图南通压铸有限公司 一种加工高精度汽车曲轴箱平衡轴安装面的机加工工艺

Similar Documents

Publication Publication Date Title
US8131385B2 (en) Positioning device and positioning method with non-contact measurement
JP2008027210A (ja) 加工設備及び加工設備の制御方法
JP5870143B2 (ja) 上下ガイドの熱変位補正機能を有するワイヤ放電加工機
JP5698798B2 (ja) 熱変位量補正機能を有する工作機械
JP5754971B2 (ja) 形状測定装置及び形状測定方法
US6757581B2 (en) Offset apparatus for NC machine tool
WO2015098126A1 (ja) 低剛性ワーク機械加工支援システム
JP4803491B2 (ja) 工作機械における位置補正装置
KR100976899B1 (ko) 수치 제어 공작 기계에 있어서의 가공 오차 보정 방법 및이를 이용한 연삭반
JP2011161519A (ja) 工作機械の制御方法および制御装置
US20090281652A1 (en) Controller of three-axis tool unit and working machine
JP2566345B2 (ja) 加工機械
KR20120069056A (ko) 공작기계의 공구계측을 이용한 열변위 보정장치 및 방법
WO2015063912A1 (ja) 位置決め精度の設定方法、位置決め精度設定装置および位置決め精度の設定プログラム
JPH08229774A (ja) 工作機械の変形補正加工法
JP7103136B2 (ja) 工作機械及び加工方法
JP2003136370A (ja) Nc工作機械
JP2017045314A (ja) 加工装置の制御方法及び加工装置
JP6590487B2 (ja) 部品の製造方法、光学部品の製造方法、金型の製造方法、及び加工装置
JP4818626B2 (ja) レーザ加工装置およびノッチフィルタの設定方法
JP4762194B2 (ja) 加工装置、および加工方法
US11992886B2 (en) Controller for a tool drive and methods for using a tool drive
JP2002331439A (ja) 工作機械
JP5400190B2 (ja) 位置決め精度の設定方法、位置決め精度設定装置および位置決め精度の設定プログラム
JP2000205816A (ja) 測定装置および測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Effective date: 20100517

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005