JP4762194B2 - 加工装置、および加工方法 - Google Patents

加工装置、および加工方法 Download PDF

Info

Publication number
JP4762194B2
JP4762194B2 JP2007125113A JP2007125113A JP4762194B2 JP 4762194 B2 JP4762194 B2 JP 4762194B2 JP 2007125113 A JP2007125113 A JP 2007125113A JP 2007125113 A JP2007125113 A JP 2007125113A JP 4762194 B2 JP4762194 B2 JP 4762194B2
Authority
JP
Japan
Prior art keywords
tool
axis
actuator
machining
triaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007125113A
Other languages
English (en)
Other versions
JP2008279535A (ja
Inventor
正行 高橋
功 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007125113A priority Critical patent/JP4762194B2/ja
Publication of JP2008279535A publication Critical patent/JP2008279535A/ja
Application granted granted Critical
Publication of JP4762194B2 publication Critical patent/JP4762194B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)
  • Machine Tool Units (AREA)
  • Numerical Control (AREA)

Description

本発明は、工具を独立に3軸方向に微小動作させることのできる3軸工具ユニットを搭載した加工装置、および加工方法に関する。
従来の工具の高速位置決め機構としては、圧電素子、ボイスコイルモータ、電磁力により、1軸方向にダイレクトに工具台を位置決めするものがあった(例えば、非特許文献1参照。)。図10に、その従来の1軸高速位置決め機構の内部構造図を示す。
この従来の1軸高速位置決め機構は、図10に示すように、ケーシング100に円筒形圧電素子101が装着され、可動部である工具ホルダ102がダイヤフラム103により支持され、工具ホルダ102の変位を容量型変位センサ104により直接測定する構造となっている。また、工具ホルダ102、容量型変位センサ104、およびダイヤモンド工具105は中心線が一致するように配置されている。
図11に、上記した1軸高速位置決め機構の1軸動作を制御する位置制御ループ回路のブロック図を示す。この位置制御ループ回路は、容量型変位センサ104からの信号と指令値との偏差を、積分器110とノッチフィルタ111で構成される補償回路により位相補償し、アンプ(ブロック112に含まれる)により電力増幅して、円筒形圧電素子101を駆動することで、工具ホルダ102(ダイヤモンド工具105)の位置を変位させる。
以上のような構成の従来の1軸高速位置決め機構は、例えば、互いに直交する2軸(X、Y軸)方向にそれぞれ動作する2つのスライド軸と、いずれか一方のスライド軸上に設置された被加工物を回転させる回転軸と、NC制御装置とで構成された加工装置上に、1軸動作の動作方向がZ軸方向となるように搭載され、容量型変位センサ104からの信号(ダイヤモンド工具105のZ軸方向の現在位置を示す信号)とNC制御装置からのZ軸方向の指令値との偏差が‘0’になるように、1軸高速位置決め機構の軸の伸縮が制御される。
このように1軸高速位置決め機構を用いることで、加工装置のみによる旋盤加工よりも加工精度が向上する。すなわち、加工装置のスライド軸を動作させるだけでは、高速回転する被加工物に対して工具を高速高精度に相対移動させることは困難であり、機械系の誤差が発生するが、1軸高速位置決め機構を用いることで、その機械系の誤差を精度補償できる。
よって、以上のような1軸高速位置決め機構を搭載した加工装置を、光学部品等のサブミクロン以下の精度が求められる加工に用いた場合、加工精度を向上させることができるが、その動作は基本的に1軸動作であり、比較的単純な軸対称形状が加工対象となる。
一方、近年、光学設計技術、加工技術の進展に伴い、非軸対称非球面(回転対称でなく、いずれの象限においても対称面が無いため、通称“自由曲面”と呼ばれることもある)形状が実現できるようになってきた。
一般的に非軸対称非球面の加工には、ラスターフライカット法と呼ばれる加工方法が用いられる。図12にラスターフライカット法の模式図を示す。この加工方法では、高速回転する回転軸200に取り付けた工具201を、NCデータに基づいて、ラスタ走査のように1ラインごとにゆっくり走査させる。1ラインの走査が終わると、工具201を元の位置に戻し、所定の距離分だけピッチをずらして、次のラインを走査する。要するに片道走査して加工面を仕上げる。なぜならば、往復走査すると、アップカットの面とダウンカットの面が交互に繰り返された加工面となり、加工面の状態が一定にならないためである。よって、往復走査は、粗加工で使われることはあっても、仕上げ加工では使用しない。また往復走査は工具摩耗の点で望ましくない。以上の理由により、ラスターフライカット法では片道走査が一般的である。
このラスターフライカット法は制約が比較的少なく、3軸動作する加工装置上で高速回転する回転軸にホルダを介して工具を取り付ければ実現できる。しかしながら、この加工方法は、加工時間が長いという問題がある。例えば200mm×10mm程度の非軸対称非球面の加工に概ね20時間程度を要する。このように加工時間が長時間に及ぶと、加工精度が悪化する。すなわち、加工中に加工環境(温度や気圧、湿度、振動等の外乱など)が変化する可能性が高く、この加工環境の変化が高精度化を阻む要因となっている。またそれらの環境変化の要因を小さくするには膨大なコストがかかり、その割に効果が小さい。またこの加工方法は、NCデータを作製するのにかかる時間やデータの容量が膨大になるという問題もある。
そこで、非軸対称非球面の加工においても、上記した従来の1軸高速位置決め機構を使用することが考えられる。この機構を使用する場合、被加工物をあたかも旋盤で加工するかのごとく回転させながら1軸高速位置決め機構を移動させるとともに、その1軸動作を高速制御すればよい。この加工を実現できれば、加工時間を、回転対称面の加工にかかる時間と同等にできる可能性がある。すなわち加工時間を、従来のラスターフライカット法による加工時間と比較して、1/10〜1/100程度に短縮できる。
しかしながら、上記した1軸高速位置決め機構は、可動軸の動作方向と直交する方向の剛性が低いという欠点がある。図10に示す構成例では、可動軸の動作方向と直交する方向は、ダイヤフラム103でのみ支持されている。このような支持方法で工具を保持しても、可動軸の動作方向と直交する方向の剛性が低く、加工抵抗によって工具が不要に動くので良好な加工面を得ることができなかった。
加えて、上記した1軸高速位置決め機構を用いて加工を行う場合、工具の刃先が有限の大きさを有するので、工具刃先の被加工物に接触する部分を事前に算出して、工具の位置を制御する必要がある。この課題を図13を用いて説明すると、以下のようになる。なお、ここでは、1軸高速位置決め機構の上記課題を容易に理解するために、関数Z=f(X)で定義される回転対称面の加工を例に、説明を行う。
この1軸高速位置決め機構は、一定半径rの刃先を有する工具300をZ軸方向にのみ動作させる。また、被加工物はZ軸を中心に旋回させる。この例では、軸対称面の加工なので、工具300を、回転している被加工物の外周側から回転中心に向けて、X−Z面の形状をなぞるように走査させる。
図13に示すように、関数Z=f(X)で定義される曲面の加工を行う場合、工具300の刃先の先端部と関数Z=f(X)で定義される加工面上の加工点(制御点)Pとが一致するように工具300を動作させるが、このとき、刃先の先端部とは異なる部分が、被加工物の既に加工された部分に接触してしまい、刃先が干渉する干渉点(実際の加工点)Mと制御点Pとが一致しない。その結果、関数Z=f(X)で定義される加工面より削り過ぎてしまい、良好な加工面とならない。
この削り過ぎの問題を回避するために、加工中にリアルタイムで干渉点を算出できればよいが、実際の加工速度、コンピュータの算出能力を鑑みた場合、今日の技術では困難である。そこで、加工動作を始める前に、工具のたどるべき位置を事前に算出しておき、そのNCデータに基づいて加工を行う必要がある。回転対称面の加工の場合、その計算量は少なく、大きな手間はかからないが、対称形状を有しない非軸対称非球面の加工の場合、例えば10mm角の小さな面であっても、NCデータの算出点が100万点にもなる。NCデータの算出をするには収束計算を伴うため、計算量が多くなり計算時間が多大になる(例えば、特許文献1参照。)。また、製作したNCデータの容量も100メガバイトを超えることも珍しくない。また実際の加工では、刃先の半径が異なる工具に変換した場合、その都度NCデータを作製する必要がある。
要するに従来の1軸高速位置決め機構による非軸対称非球面の加工を実現できたとしても、加工時間は短縮されるが、NCデータの製作に膨大な時間がかかり、総合的にみて実用的でない。そのため従来、このような方法は実用手的に用いられることは無かった。
「光学ガラスの微細切削における加工モードのインプロセス認識に関する研究」、精密工学会誌、67巻、5号、2001年、P844〜849 特許第3021156号
本発明は、上記問題点に鑑み、互いに直交する3軸(u、v、w軸)方向に動作する3つのアクチュエータと、各アクチュエータの変位量を測定する3つのセンサを有し、工具を独立に3軸(u、v、w軸)方向に微小動作させることのできる3軸工具ユニットを、3つのセンサのセンシング方向の交点に工具刃先が位置する構成にして、その3軸(u、v、w軸)方向が加工装置の3軸(X、Y、Z軸)方向と異なる方向となるように加工装置上に搭載することにより、加工装工具を保持する剛性を高めることができ、加工時間の短縮化および加工精度の向上を図ることができる加工装置を提供することを目的とする。
本発明の請求項1記載の加工装置は、
工具と、
前記工具が固定される工具ホルダと、
互いに直交する第1の3軸方向にそれぞれ動作して前記工具ホルダの位置を変位させる3つのアクチュエータと、
前記各アクチュエータの動作方向への変位量を示す信号を生成する3つのセンサと、を有し、前記工具ホルダが、前記各アクチュエータの動作方向の軸線上の交点に設けられ、前記3つのセンサが、それぞれのセンシング方向の延長線が一点に交わるように配置され、前記工具が、前記3つのセンサのセンシング方向の延長線上の交点に刃先が位置するように配置された3軸工具ユニットと、
被加工物に対して前記3軸工具ユニットを互いに直交する第2の3軸方向に相対移動させるリニアステージと、
前記被加工物に対して前記3軸工具ユニットを相対的に円運動させる回転ステージと、
前記リニアステージの3軸座標および前記回転ステージの角度座標に応じて前記各アクチュエータの変位量の目標値を求め、記各アクチュエータへの指令信号を生成する目標値演算処理部と、
前記各センサからの信号と前記各指令信号との偏差を基に前記各アクチュエータの動作を制御する信号を生成する3つの位置制御ループ回路と、
を備え、前記リニアステージにより前記3軸工具ユニットの前記被加工物に対する相対位置を調整しながら、前記回転ステージにより前記3軸工具ユニットを前記被加工物に対して相対的に円運動させるとともに、前記各位置制御ループ回路により前記各アクチュエータを駆動して、前記工具の刃先を前記被加工物に接触させて加工を行う加工装置であって、前記3軸工具ユニットは、前記第1の3軸方向が前記第2の3軸方向と異なる方向となるように配置されていることを特徴とする。
また、本発明の請求項2記載の加工装置は、請求項1記載の加工装置であって、前記目標値演算処理部は、前記リニアステージの3軸座標および前記回転ステージの角度座標に応じた加工点の座標を算出するとともに、前記加工点における法線ベクトルを算出して、前記法線ベクトル上の前記加工点から前記工具の刃先の半径分離れた位置に前記工具の刃先の半径の中心点が位置するように前記各アクチュエータの変位量の目標値を求めることを特徴とする。
また、本発明の請求項3記載の加工装置は、請求項1もしくは2のいずれかに記載の加工装置であって、前記3軸工具ユニットが前記3つのアクチュエータおよび前記3つのセンサを覆うカバー部を有することを特徴とする。
また、本発明の請求項4記載の加工方法は、
工具と、
前記工具が固定される工具ホルダと、
互いに直交する第1の3軸方向にそれぞれ動作して前記工具ホルダの位置を変位させる3つのアクチュエータと、
前記各アクチュエータの動作方向への変位量を示す信号を生成する3つのセンサと、を有し、前記工具ホルダが、前記各アクチュエータの動作方向の軸線上の交点に設けられ、前記3つのセンサが、それぞれのセンシング方向の延長線が一点に交わるように配置され、前記工具が、前記3つのセンサのセンシング方向の延長線上の交点に刃先が位置するように配置された3軸工具ユニットを用いた加工方法であって、
前記第1の3軸方向とは異なる互いに直交する第2の3軸方向に動作可能なリニアステージにより前記3軸工具ユニットの被加工物に対する相対位置を調整しながら、回転ステージにより前記3軸工具ユニットを前記被加工物に対して相対的に円運動させるとともに、前記リニアステージの3軸座標および前記回転ステージの角度座標に応じて前記各アクチュエータの変位量の目標値を求め、前記各アクチュエータへの指令信号を生成し、その各指令信号と前記各センサからの信号との偏差を基に前記各アクチュエータの動作を制御する信号を生成して、前記各アクチュエータを駆動し、前記工具の刃先を前記被加工物に接触させて加工を行うことを特徴とする。
また、本発明の請求項5記載の加工方法は、請求項4記載の加工方法であって、前記各アクチュエータの変位量の目標値を求めるに際し、前記リニアステージの3軸座標および前記回転ステージの角度座標に応じた加工点の座標を算出するとともに、前記加工点における法線ベクトルを算出して、前記法線ベクトル上の前記加工点から前記工具の刃先の半径分離れた位置に前記工具の刃先の半径の中心点が位置するように前記各アクチュエータの変位量の目標値を求めることを特徴とする。
本発明の好ましい形態によれば、3軸工具ユニットにおいて、各アクチュエータの3軸(u、v、w軸)方向への変位量を測定する3つのセンサを、それぞれのセンシング方向の延長線が一点に交わるように配置し、その交点に工具の刃先を配置したので、工具の刃先の位置決め誤差を抑制することができ、加工精度を向上させることができる。
また、各アクチュエータの3軸(u、v、w軸)方向への変位量の目標値をリアルタイムに算出して、工具を3次元的に微小動作させることができるので、旋盤加工に代表される軸対称加工法での加工を実現でき、加工時間およびNCデータの製作にかかる時間の短縮化を図ることができる。また、加工時間を短くできるので、加工環境の変化に伴う加工誤差を抑制することができ、加工精度を向上させることができる。よって、非軸対称非球面を高速高精度に加工できる。
また、3軸工具ユニットのセンサやアクチュエータをカバー部で覆うことで、切削油をミスト状にして噴霧しながら加工しても3軸工具ユニットの誤動作や破損の防止を図ることができ、信頼性を向上することができる。
以下、本発明の実施の形態における3軸工具ユニットを搭載した加工装置、およびその加工装置を用いた加工方法について、図面を参照しながら説明する。図1は本発明の実施の形態における3軸工具ユニットの鳥瞰図、図2は本発明の実施の形態における3軸工具ユニットの側面図である。
図1、図2に示すように、3軸工具ユニット1の支持体2には、互いに直交する3軸(u、v、w軸)方向にそれぞれ動作可能な3つのアクチュエータ3、4、5の一端が、取り付け部材6、7、8を介して固定されている。また、アクチュエータ3、4、5の支持体2に固定された端とは異なる他端には、工具9が固定された工具ホルダ10が取り付けられている。
アクチュエータ3、4、5は、u、v、w軸方向にそれぞれ動作して工具ホルダ10の位置を変位させる。本実施の形態では、アクチュエータを圧電素子で構成している。圧電素子としては、例えば、PZT(PbZrO−PbTiO)を主成分とする積層型のものなどを用いることができる。
また、支持体2には、センサ11、12、13がセンサホルダ14、15、16を介して取り付けられている。センサ11、12、13としては、よく知られた静電容量型センサ、渦電流型センサ、光センサなどを用いることができる。より高精度にアクチュエータを動作させるためには静電容量型センサで構成することが望ましい。
また、センサ11、12、13の測定対象であるセンサターゲット17、18、19が、工具ホルダ10と一体となって設けられている。なお、センサターゲットは、工具ホルダ10の変位に従って変位するのであれば、工具ホルダ10と別異に設けてもよい。
センサ11、12、13は、それぞれの先端部から、工具ホルダ10の変位に従って変位するセンサターゲット17、18、19までの距離をセンシングして、アクチュエータ3、4、5のu、v、w軸方向(動作方向)への変位量(工具9の位置情報)を示す変位信号を生成する。
以上のようにアクチュエータ3、4、5の動作方向の軸線上の交点に工具ホルダ10を設けることで、工具ホルダ10に対していずれの方向から外力がかかっても、3軸のアクチュエータ3、4、5が補助しあって、その外力による軸の変動を抑えることができるので、工具9を保持する剛性が向上し、良好な加工面を得ることができる。
なお、センサホルダ14、15、16は、弾性変形を利用した微動機構を有する構成とするのが好適である。すなわち、センサ取り付け時に、調整ネジによってセンサ11、12、13のセンシング方向に弾性変形を生じさせて、センサ11、12、13の先端部とセンサターゲット17、18、19との間隔が所定の間隔となるように調整することが可能な構成とするのがよい。
また、精密加工を行う場合、環境温度の変化による3軸工具ユニットの構成部材の伸縮が加工精度に影響するので、支持体2、工具ホルダ10、およびセンサホルダ14、15、16は低熱膨張材料で構成することが望ましい。
続いて、センサ11、12、13および工具9の刃先の配置について、図3を用いて説明する。図3に示すように、センサ11、12、13は、アクチュエータ3、4、5の動作方向の軸線上とは異なる位置に、それぞれのセンシング方向の延長線が一点に交わるように配置される。また、その各センシング方向の延長線上の交点に工具9の刃先が配置される。
アクチュエータ3、4、5に圧電素子を用いた場合、圧電素子に電圧を印加して圧電素子を伸縮させることで、アクチュエータ3、4、5をu、v、w軸方向へ動作させるが、圧電素子はヒステリシスをもった素子であるため、アクチュエータ3、4、5のu、v、w軸方向への変位量の目標値に即した電圧を圧電素子に印加するだけでは、精度良くアクチュエータ3、4、5を駆動することはできない。そこで、一般的に、センサ11、12、13が生成する変位信号を基に、センサ11、12、13とセンサターゲット17、18、19との間隔を一定に保つフィードバック制御を行うことで、ヒステリシスの無い特性を実現している。
また、3軸のアクチュエータ3、4、5を動作させると、工具ホルダ10が各軸から押し引きされ、3軸に弾性ひずみ(弾性変形)が生じ、その3軸の弾性ひずみによる力に起因して工具ホルダ10(工具9)が3軸まわりに回転運動する。よって、工具9の刃先は、u、v、w軸方向へ直進運動するとともに、u、v、w軸まわりに回転運動するが、上記した3つのセンサ11、12、13だけでは、その直進運動による工具ホルダ10の変位と回転運動による工具ホルダ10の変位を分離して測定できないので、上記したようにフィードバック制御を行っても、工具9の刃先に位置決め誤差が生ずる。光学部品の加工においては、ナノメータオーダの位置決め精度が求められるので、わずかな誤差も問題となる。
そこで、本実施の形態では、上記したように、センサ11、12、13を、アクチュエータ3、4、5の動作方向の軸線上とは異なる位置に、それぞれのセンシング方向の延長線が一点に交わるように配置するとともに、その各センシング方向の延長線上の交点に工具9の刃先を配置している。このように配置してフィードバック制御を行えば、3軸まわりの回転運動は工具9の刃先(センサ11、12、13の各センシング方向の延長線上の交点)を中心に行われるので、位置決め精度は悪化しない。よって、刃先の位置決め誤差を最小にすることができ、高精度な加工が可能となる。
また、アクチュエータ3、4、5として圧電素子を使用する場合、圧電素子は引張り力に弱く、引張り力が加わると破損するおそれがある。そのために、圧電素子は、一般的にプリロードを付与して使用する。
図4は、本実施の形態におけるプリロードの構造を示す断面図である。図4に示すように、本実施の形態では、3軸のアクチュエータ3、4、5に対して、1本のプリロードロッド20により、3軸(u、v、w軸)のいずれの軸とも平行でない方向からプリロードを付与する構造としている。具体的には、3軸工具ユニット1は3軸の対象構造であるので、互いに直交するu、v、w軸の各々と45度をなす方向からプリロードを付与している。このような構造とすることで、3軸のアクチュエータ3、4、5に対して均等にプリロードを付与することができる。その結果、3軸のアクチュエータ3、4、5の機械的特性および制御特性を同等にすることができる。
続いて、上記した3軸工具ユニット1を搭載した加工装置について、図5、図6を用いて説明する。図5は3軸工具ユニット1を搭載した加工装置を説明するための要部構成を示す図である。また、図6は3軸工具ユニット1を搭載した加工装置による加工動作を説明するための一部拡大図である。但し、図5には、w軸のアクチュエータ5の動作を制御するための位置制御ループ回路を例示している。
図5に示すように、この加工装置は、被加工物(例えば光学部品や光学部品用金型)21に対して3軸工具ユニット1を互いに直交する3軸(X、Y、Z軸)方向に相対移動させるリニアステージとして、3軸工具ユニット1をX軸方向へ移動させるX軸テーブル22と、3軸工具ユニット1をY軸方向へ移動させるY軸テーブル23と、3軸工具ユニット1をZ軸方向へ移動させるZ軸テーブル24を具備する。また、被加工物21に対して3軸工具ユニット1を相対的に円運動させる回転ステージとして、被加工物21を回転させる回転テーブル25を具備する。このリニアステージと回転ステージは、そのX、Y、Z軸の座標と中心軸の角度座標が数値制御(NC制御)されるNCテーブルである。
なお、ここでは、Y軸テーブル23上に回転テーブル25を設置し、Z軸テーブ24上に3軸工具ユニット1を設置する場合について説明するが、無論、この構成に限られるものではない。また、3軸工具ユニット1を移動させる場合について説明するが、被加工物21を移動させてもよい。また、被加工物21を円運動させる場合について説明するが、3軸工具ユニット1を円運動させてもよい。また、回転テーブル25が1軸を有する場合について説明するが、2軸以上を有してもよい。
図5、図6に示すように、本実施の形態では、3軸工具ユニット1は、アクチュエータ3、4、5の動作方向であるu、v、w軸方向(第1の3軸方向)が、加工装置のリニアステージ(X軸テーブル22、Y軸テーブル23、Z軸テーブル24)の動作方向であるX、Y、Z軸方向(第2の3軸方向)とは異なる方向となるように、加工装置に搭載されている。
このように3軸工具ユニット1のアクチュエータ3、4、5の動作方向(u、v、w軸方向)が、加工装置のリニアステージの動作方向(X、Y、Z軸方向)に対して平行とならないように、3軸工具ユニット1を加工装置に搭載した場合、そのu、v、w軸とX、Y、Z軸は、図6に示す式(1)の関係になる。
具体的には、γはZ軸まわりの角度、αはX軸まわりの角度であり、ここではγが45度、αが約55度(acos(1/sqrt3))となるように3軸工具ユニット1を加工装置に搭載した。このα、γの角度は、必ずしもこの角度である必要は無いが、この角度に設定すると対称構造になるため製作が容易となる。この式(1)から理解できるように、例えばZ軸方向へのみ工具9を動作させたい場合においても、アクチュエータ3、4、5をそれぞれ動作させることになる。
以上のように3軸工具ユニット1を加工装置のX、Y、Z軸に対して傾斜させて搭載することで、X、Y、Z軸のいずれか1軸方向にのみ工具9を変位させる場合に、その最大変位量をアクチュエータ単体の有する最大ストロークよりも大きくすることができる。例えば、アクチュエータ3、4、5として最大ストロークが40マイクロメータのものを使用した場合、工具9のZ軸方向への最大変位量は約70マイクロメータ、X軸方向への最大変位量は約56マイクロメータ、Y軸方向への最大変位量は約49マイクロメータとなる。
通常、工具の最大変位量を増大させたい場合、機械的な変位の拡大機構を用いたり、アクチュエータを最大ストロークが長いものに交換する。しかし、これらの方法では、工具の最大変位量は増大するが、高速応答時の制御特性が悪くなる。これに対して、本実施の形態によれば、制御特性が悪化することなく、工具の最大変位量を増大させることが可能となる。
また、上記したように、センサ11、12、13を、アクチュエータ3、4、5の動作方向の軸線上とは異なる位置に、それぞれのセンシング方向の延長線が一点に交わるように配置するとともに、その各センシング方向の延長線上の交点に工具9の刃先を配置した場合でも、アクチュエータ3、4、5やセンサ11、12、13が被加工物21に干渉しない加工を行うことができる。よって、センサ11、12、13の各センシング方向の延長線上の交点(回転運動の中心)に工具9の刃先を配置して、工具9の刃先の位置決め誤差を小さくすることができる。
図7に、工具の刃先に生じる位置決め誤差のシミュレーション結果を、3つのセンサの各センシング方向の延長線上の交点(回転運動の中心)から工具の刃先をオフセットさせた構成の加工装置と比較して示す。
図7(a)は、図6に示す式(1)のγが45度、αが約55度となるように3軸工具ユニット1を搭載した加工装置Aを示している。一方、図7(b)には、3つのセンサの各センシング方向の延長線上の交点から工具の刃先をw軸方向に6.5mmオフセットさせた3軸工具ユニットを、3軸工具ユニットの3軸(u、v、w軸)方向と加工装置の3軸(X、Y、Z軸)方向を一致させて搭載した加工装置Bを示している。
図7(c)に、u、v、w軸方向に動作する3つのアクチュエータを同量変位させた場合にX軸方向に生ずる刃先の位置決め誤差のシミュレーション結果を示す。図7(c)において、実線Aは加工装置Aのシミュレーション結果、破線Bは加工装置Bのシミュレーション結果である。また、縦軸は、3つのアクチュエータが同量変位した場合にX軸方向に生じる刃先の位置決め誤差を示している。また、横軸はアクチュエータの変位量を示している。
図7(c)に示すように、3つのアクチュエータを40μm変位させた場合、加工装置BではX軸方向に刃先の位置決め誤差が370nm生じる。これに対して、本実施の形態における加工装置Aでは、X軸方向の刃先の位置決め誤差は25nmとなる。図7(c)にはX軸方向の誤差のみ記したが、Y軸方向、Z軸方向の誤差を比較しても、加工装置Aの誤差の方が小さくなることが確認できた。このように、3つのセンサのセンシング方向の延長線上の交点に工具の刃先を配置することで、アクチュエータ動作時の工具ホルダの回転運動の影響を抑えることができる。
このシミュレーション結果から理解できるように、刃先の位置を回転運動の中心からオフセットすると、3軸まわりの回転運動の影響により、刃先に生じる位置決め誤差が無視できなくなる。特に光学部品のようにサブミクロンオーダの形状精度が要求される加工面の加工の場合、この誤差は無視できない。本実施の形態によれば、刃先に生じる位置決め誤差を小さくすることができるので、工具の刃先を目標値通りに動作させることができ、高精度な加工を実現できる。
また、3軸工具ユニット1を加工装置のX、Y、Z軸に対して傾斜させることで、図8に示すように、3軸工具ユニット1に付属する高精度なセンサ11、12、13およびアクチュエータ3、4、5を含めてカバー部40で覆っても、加工中にカバー部40が被加工物21に干渉しないので、カバー部40を設けることが可能となる。このようにカバー部40を設けることで、カバー部40の外側に工具9や工具ホルダ10のみを露出させることができる。よって、加工する際に、光学部品の超精密加工時に通常用いられる加工液(切削油)をミスト状にして加工点に噴霧しながら加工しても、センサに加工液が浸入して誤動作することを回避できる。また、工具の長寿命化も期待できる。このように、カバー部40を設けることで、センサやアクチュエータを保護することが可能となり、3軸工具ユニット1の信頼性、耐久性、および工具寿命の向上を図ることができる。
続いて、3軸工具ユニット1のアクチュエータ3、4、5の動作(工具9の位置)を制御する位置制御ループ回路について説明する。例えば、w軸方向に動作するアクチュエータ5を例にとると、図5に示すように、位置制御ループ回路は、加算器26が、センサ13からの変位信号と目標値(指令信号)との偏差を演算し、位相補償部27が、加算器26からの信号に対して、例えば積分処理(I制御)や比例積分処理(PI制御)、比例積分微分処理(PID制御)などを行うことで位相補償を施し、アンプ28が、位相補償部27からの信号を電力増幅してアクチュエータ5の動作を制御する駆動信号を生成して、アクチュエータ5を駆動する。
この位置制御ループ回路により、上記したセンサ13とセンサターゲット19との間隔を一定に保つフィードバック制御をかけることができる。なお、u、v軸方向に動作するアクチュエータ3、4に関しても、同様の位置制御ループ回路を構成して、同様に制御すればよい。
続いて、この加工装置による被加工物の加工方法について説明する。この加工装置は、記憶部(不図示)に記憶された加工プログラムに基づいてリニアステージの3軸座標および回転ステージの角度座標を数値制御(NC制御)して、3軸工具ユニット1(工具9の刃先)の被加工物21に対する相対位置を調整しながら、3軸工具ユニット1を被加工物21に対して相対的に円運動させることで、被加工物21の旋盤加工を行う。ここでは、回転テーブル25の中央に配置されて回転している被加工物24に対して3軸工具ユニット1(工具9)を移動させる。なお、リニアステージの3軸座標および回転ステージの角度座標を数値制御して旋盤加工を行う構成については、既に知られているNC制御の構成を用いるので、ここでは図示していない。
また、この加工装置では、リニアステージの3軸座標(X、Y、Z)ごとに、その3軸座標に対応する加工範囲を、3軸工具ユニット1の工具9を3次元方向に微小動作させることで、旋盤加工する。加工範囲は回転ステージの角度座標(θ)で表すことができる。1つの3軸座標に対応する加工範囲は1つに限るものではなく、加工形状によっては1つの3軸座標に対応する加工範囲が複数存在する場合もある。
このように、工具9を3次元方向に微小動作させて加工を行うことで、良好な加工面を得ことができる。すなわち、一般的に、加工装置のテーブルを100Hz以上の速度で動作させることはできず、例えば180[s−1]で回転する被加工物に対して工具をナノメータオーダで高速高精度に相対移動させることは困難である。よって、高速回転する被加工物に対応して充分な加工精度を得ることが困難であるため、高精度に加工するには、被加工物を遅い速度で回転させる必要が生じる。その場合、加工時間が遅くなるばかりか、被加工物の回転速度が遅いために最適な加工速度が得られないので、良好な加工面も得られない。これに対して、本実施の形態によれば、工具を3次元方向に高速高精度に微小動作させて加工を行うことができ、加工時間の短縮化並びに加工精度の向上を図ることができる。
工具9の微小な3次元動作は、リアルタイム目標値演算処理部29がアクチュエータ3、4、5の指令信号(目標値)をリアルタイムに演算して、アクチュエータ3、4、5の位置制御ループ回路へ出力し、アクチュエータ3、4、5を駆動することで行う。
以下、リアルタイム目標値演算処理部29について説明する。リアルタイム目標値演算処理部29は、リニアステージの3軸座標(X、Y、Z)および回転テーブル23の角度座標(θ)に応じたアクチュエータ3、4、5の変位量の目標値をリアルタイムに求めて、アクチュエータ3、4、5の指令信号を生成する。
図5に示すように、リアルタイム目標値演算処理部29は、現在位置演算部30と目標値演算部31を具備する。現在位置演算部30は、リニアステージの現在の3軸座標および回転ステージの現在の角度座標を示す情報を基に、リアルタイム目標値演算処理部29で演算可能なように、現在の3軸座標(X、Y、Z)および角度座標(θ)を演算する。ここで、3軸座標(X、Y、Z)は、被加工物21の回転中心をプログラム原点とした場合の座標である。
例えば、リニアステージおよび回転ステージから3軸座標および角度座標を示す情報がパルス列で入力される場合、現在位置演算部30は、パルス列をカウンタでカウントし、リニアステージおよび回転ステージの機械仕様で定義される感度(1パルスあたりの距離)から、現在の3軸座標(X、Y、Z)および角度座標(θ)を求める。
目標値演算部31は、加工面を定義する光学設計式や、工具9の刃先の先端半径、図6に示す式(1)およびα、γの値、現在位置演算部30において演算された現在の座標(X、Y、Z、θ)などを基に、アクチュエータ3、4、5の変位量の目標値をリアルタイムに演算して、アクチュエータ3、4、5の指令信号を生成し、各位置制御ループ回路へ出力する。なお、加工面を定義する光学設計式や、工具の刃先の先端半径、図6に示す式(1)およびα、γの値などは、図示しないユーザインターフェースより入力され、図示しない記憶部に記憶されている。
続いて、上記した加工装置の加工動作について、図9を用いて詳細に説明する。図9は、図6に示す刃先付近のA部の拡大図であり、上記した加工装置の加工動作を説明するための説明図である。ここでは、図13に示した従来の1軸高速位置決め機構の加工動作と比較できるように、関数Z=f(X)で定義される回転対称面の加工を例に、説明を行う。
回転対称面を加工する場合、3軸工具ユニット1(工具9)を、回転テーブル25の中央に配置された被加工物21の外周側から回転中心へX軸方向に沿って移動させるので、X軸座標ごとに工具9を微小動作させて旋盤加工を行う。
なお、回転テーブル25は回転速度一定で回転させてもよいし、線速度一定で回転させてもよい。ただし、線速度一定で回転させた場合、外周の回転速度に内周の回転速度を合わせるためには、工具9が内周に近づくほど回転テーブル25の回転速度を上げる必要があり、ある地点で回転テーブル25が回転可能な限界の回転数になることが考えられる。そこで、そのような場合には、線速度一定の範囲を何段階かに分ける。
目標値演算部31は、現在位置演算部30から現在の座標の情報を受け取ると、そのX軸座標から加工面上の制御点PにおけるZ軸方向の位置を算出する。同時に、その制御点Pにおける法線ベクトルを解析的に算出する。そして、工具9の刃先の先端半径rの中心点が、算出した法線ベクトル上の制御点Pから「r」だけオフセットした位置に移動するように、アクチュエータ3、4、5の目標値を演算する。その結果、刃先が干渉する干渉点(実際の加工点)Mと制御点Pとが一致する。すなわち、刃先が干渉する干渉点Mと制御点Pとが一致するように、アクチュエータ3、4、5をu、v、w軸方向に動作させる。
この回転対称面の加工の例では、X−Z平面で工具を動作させるだけでよい。同様に、非軸対称非球面の加工においては、3次元的にX−Y−Z面内で工具を動かせばよい。目標値演算処理部31における演算は解析的に実行でき、収束演算等は伴わないので、現在の技術レベルでもリアルタイムに処理でき、3次元的に工具を高速高精度に動作させることができる。また、事前に加工データを製作する必要がない。すなわち、NCデータの作製に膨大な時間を必要としないので、実用的な加工方法となる。
また、リアルタイムに制御点(次に加工する位置:加工点)Pを算出して3軸のアクチュエータ3、4、5の目標値を求めつつ、順次加工していくので、非軸対称非球面を、あたかも旋盤で加工するかのごとく短時間で作成できる。具体的には、回転対称面の加工にかかる時間と同等にでき、従来のラスターフライカット法による加工時間と比較して、1/10〜1/100程度に短縮できる。また、加工時間が短いので、加工環境の変化も少ない。よって、加工環境の変化に伴う加工誤差を抑制でき、加工面を高精度に仕上げることができる。
また、刃先の半径が異なる工具に変換した場合でも、ユーザインターフェースを通して工具の先端半径rの値を変更するだけで済む。同様に、加工後、加工精度が所期の精度に達しておらず、形状精度の補正をするため再加工する場合においても、ユーザインターフェースを通して、直接光学設計式をパラメータ変更するなり、光学設計式に新たに補正式を加えるだけで済む。よって、短時間で再加工を開始できる。
なお、加工面を定義した光学設計式や工具の刃先の先端半径などをユーザインターフェースを通して変更する場合に限らず、リアルタイム目標値演算処理部29の制御プログラムを直接書き換えてもよい。
以上のように、本実施の形態によれば、目標値をリアルタイムで演算することができ、加工時間の短縮化を図ることができる。また、工具を3次元的に高速高精度に動作させて、高速超精密加工を行うことができ、微細な形状を有する光学部品や精密機構部品等の精密部品を、旋盤加工に代表される軸対称加工法と同様の工法で、高精度にかつ高速に加工することができ、高能率な加工を行うことができる。
なお、本実施の形態では3軸とも圧電素子を用いた場合について説明したが、例えば3軸のうちの1つが圧電素子で、他の2軸に圧電素子以外の素子を用いる構成でもよい。圧電素子以外の素子として、例えば磁歪素子やボイスコイルモータなどを用いることができる。
本発明の加工装置、および加工方法は、加工精度の高精度化とともに加工時間の短縮化を図ることができ、微細な形状を有する光学部品や精密機構部品等の精密部品の加工に有用である。
本発明の実施の形態における3軸工具ユニットの鳥瞰図 本発明の実施の形態における3軸工具ユニットの側面図 本発明の実施の形態における3軸工具ユニットのセンサおよび刃先の配置を示す拡大図 本発明の実施の形態における3軸工具ユニットのプリロードの構成を示す断面図 本発明の実施の形態における加工装置を説明するための要部構成を示す図 本発明の実施の形態における加工装置の加工動作を説明するための一部拡大図 本発明の実施の形態における3軸工具ユニットの刃先に生じる位置決め誤差のシミュレーション結果を示す図 本発明の実施の形態における3軸工具ユニットの他の例を示す図 本発明の実施の形態における加工装置の加工動作を説明するための説明図 従来の1軸高速位置決め機構の内部構造図 従来の1軸高速位置決め機構の1軸動作を制御する位置制御ループ回路のブロック図 ラスターフライカット法の模式図 従来の1軸高速位置決め機構の加工動作を説明するための説明図
符号の説明
1 3軸工具ユニット
2 支持体
3〜5 アクチュエータ
6〜8 取り付け部材
9 工具
10 工具ホルダ
11〜13 センサ
14〜16 センサホルダ
17〜19 センサターゲット
20 プリロードロッド
21 被加工物
22 X軸テーブル
23 Y軸テーブル
24 Z軸テーブル
25 回転テーブル
26 加算器
27 位相補償部
28 アンプ
29 リアルタイム目標値演算処理部
30 現在位置演算部
31 目標値演算部
40 カバー部
100 ケーシング
101 円筒形圧電素子
102 工具ホルダ
103 ダイヤフラム
104 容量型変位センサ
105 ダイヤモンド工具
110 積分器
111 ノッチフィルタ
112 アンプおよびPZTの伝達関数
200 軸
201 工具
300 工具

Claims (5)

  1. 工具と、
    前記工具が固定される工具ホルダと、
    互いに直交する第1の3軸方向にそれぞれ動作して前記工具ホルダの位置を変位させる3つのアクチュエータと、
    前記各アクチュエータの動作方向への変位量を示す信号を生成する3つのセンサと、を有し、前記工具ホルダが、前記各アクチュエータの動作方向の軸線上の交点に設けられ、前記3つのセンサが、それぞれのセンシング方向の延長線が一点に交わるように配置され、前記工具が、前記3つのセンサのセンシング方向の延長線上の交点に刃先が位置するように配置された3軸工具ユニットと、
    被加工物に対して前記3軸工具ユニットを互いに直交する第2の3軸方向に相対移動させるリニアステージと、
    前記被加工物に対して前記3軸工具ユニットを相対的に円運動させる回転ステージと、
    前記リニアステージの3軸座標および前記回転ステージの角度座標に応じて前記各アクチュエータの変位量の目標値を求め、記各アクチュエータへの指令信号を生成する目標値演算処理部と、
    前記各センサからの信号と前記各指令信号との偏差を基に前記各アクチュエータの動作を制御する信号を生成する3つの位置制御ループ回路と、
    を備え、前記リニアステージにより前記3軸工具ユニットの前記被加工物に対する相対位置を調整しながら、前記回転ステージにより前記3軸工具ユニットを前記被加工物に対して相対的に円運動させるとともに、前記各位置制御ループ回路により前記各アクチュエータを駆動して、前記工具の刃先を前記被加工物に接触させて加工を行う加工装置であって、前記3軸工具ユニットは、前記第1の3軸方向が前記第2の3軸方向と異なる方向となるように配置されていることを特徴とする加工装置。
  2. 前記目標値演算処理部は、前記リニアステージの3軸座標および前記回転ステージの角度座標に応じた加工点の座標を算出するとともに、前記加工点における法線ベクトルを算出して、前記法線ベクトル上の前記加工点から前記工具の刃先の半径分離れた位置に前記工具の刃先の半径の中心点が位置するように前記各アクチュエータの変位量の目標値を求めることを特徴とする請求項1記載の加工装置。
  3. 請求項1もしくは2のいずれかに記載の加工装置であって、前記3軸工具ユニットが前記3つのアクチュエータおよび前記3つのセンサを覆うカバー部を有することを特徴とする加工装置。
  4. 工具と、
    前記工具が固定される工具ホルダと、
    互いに直交する第1の3軸方向にそれぞれ動作して前記工具ホルダの位置を変位させる3つのアクチュエータと、
    前記各アクチュエータの動作方向への変位量を示す信号を生成する3つのセンサと、を有し、前記工具ホルダが、前記各アクチュエータの動作方向の軸線上の交点に設けられ、前記3つのセンサが、それぞれのセンシング方向の延長線が一点に交わるように配置され、前記工具が、前記3つのセンサのセンシング方向の延長線上の交点に刃先が位置するように配置された3軸工具ユニットを用いた加工方法であって、
    前記第1の3軸方向とは異なる互いに直交する第2の3軸方向に動作可能なリニアステージにより前記3軸工具ユニットの被加工物に対する相対位置を調整しながら、回転ステージにより前記3軸工具ユニットを前記被加工物に対して相対的に円運動させるとともに、前記リニアステージの3軸座標および前記回転ステージの角度座標に応じて前記各アクチュエータの変位量の目標値を求め、前記各アクチュエータへの指令信号を生成し、その各指令信号と前記各センサからの信号との偏差を基に前記各アクチュエータの動作を制御する信号を生成して、前記各アクチュエータを駆動し、前記工具の刃先を前記被加工物に接触させて加工を行うことを特徴とする加工方法。
  5. 前記各アクチュエータの変位量の目標値を求めるに際し、前記リニアステージの3軸座標および前記回転ステージの角度座標に応じた加工点の座標を算出するとともに、前記加工点における法線ベクトルを算出して、前記法線ベクトル上の前記加工点から前記工具の刃先の半径分離れた位置に前記工具の刃先の半径の中心点が位置するように前記各アクチュエータの変位量の目標値を求めることを特徴とする請求項4記載の加工方法。
JP2007125113A 2007-05-10 2007-05-10 加工装置、および加工方法 Expired - Fee Related JP4762194B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125113A JP4762194B2 (ja) 2007-05-10 2007-05-10 加工装置、および加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125113A JP4762194B2 (ja) 2007-05-10 2007-05-10 加工装置、および加工方法

Publications (2)

Publication Number Publication Date
JP2008279535A JP2008279535A (ja) 2008-11-20
JP4762194B2 true JP4762194B2 (ja) 2011-08-31

Family

ID=40140796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125113A Expired - Fee Related JP4762194B2 (ja) 2007-05-10 2007-05-10 加工装置、および加工方法

Country Status (1)

Country Link
JP (1) JP4762194B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114473838A (zh) * 2021-11-17 2022-05-13 河南水滴智能技术有限公司 一种3d快速加工单元

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219549A (ja) * 1985-03-25 1986-09-29 Agency Of Ind Science & Technol 微動装置
JP3909719B2 (ja) * 1994-04-20 2007-04-25 財団法人新産業創造研究機構 送り装置およびその動作制御方法
JP4538285B2 (ja) * 2004-09-10 2010-09-08 東芝機械株式会社 加工システム
JP2007075915A (ja) * 2005-09-12 2007-03-29 Kobe Univ 切削加工方法および切削加工装置

Also Published As

Publication number Publication date
JP2008279535A (ja) 2008-11-20

Similar Documents

Publication Publication Date Title
US7908028B2 (en) Machining device and method
JP4840144B2 (ja) 位置決め装置及び位置決め方法
CN112815901B (zh) 坐标测量机、探测系统以及补偿探针元件处的力的方法
JP4875184B2 (ja) 工具回転半径可変の工具ホルダおよび該工具を備えた工作機械ならびに前記工作機械を用いた加工方法
US8554502B2 (en) Method for calculating probe mounting position in on-machine measuring device
JP4875180B2 (ja) 微細接触力調整機構を有する接触式計測装置
JP5030653B2 (ja) 数値制御工作機械及び数値制御装置
Clark et al. Laser-based sensing, measurement, and misalignment control of coupled linear and angular motion for ultrahigh precision movement
Liu et al. A flexure-based long-stroke fast tool servo for diamond turning
JP2010105063A (ja) 温度ドリフト補正を行う機上計測装置を用いるワークの形状計測方法および機上計測装置を備えた工作機械
JP5719625B2 (ja) 工作機械
CN107532894B (zh) 控制测量装置和提供主动阻尼的方法、坐标测量机及存储介质
JP6693457B2 (ja) 加工装置
JP2009025024A (ja) 形状測定装置および方法
US20170361383A9 (en) Machine tools
JP2008073813A (ja) マシニングセンタによる加工方法
WO2017036523A1 (en) A chuck for a high precision machine tool
US20090281652A1 (en) Controller of three-axis tool unit and working machine
JP4762194B2 (ja) 加工装置、および加工方法
JP2007075915A (ja) 切削加工方法および切削加工装置
JP2006263847A (ja) 加工装置および加工方法
JP2017045314A (ja) 加工装置の制御方法及び加工装置
KR100608270B1 (ko) 초정밀 가공에서의 공구 윤곽도 보상방법
US11992886B2 (en) Controller for a tool drive and methods for using a tool drive
JP7098926B2 (ja) 加工方法及び加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees