JP4875180B2 - 微細接触力調整機構を有する接触式計測装置 - Google Patents

微細接触力調整機構を有する接触式計測装置 Download PDF

Info

Publication number
JP4875180B2
JP4875180B2 JP2010070837A JP2010070837A JP4875180B2 JP 4875180 B2 JP4875180 B2 JP 4875180B2 JP 2010070837 A JP2010070837 A JP 2010070837A JP 2010070837 A JP2010070837 A JP 2010070837A JP 4875180 B2 JP4875180 B2 JP 4875180B2
Authority
JP
Japan
Prior art keywords
probe
contact
contact force
measuring device
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010070837A
Other languages
English (en)
Other versions
JP2011203121A (ja
Inventor
榮杓 洪
建三 蛯原
雅之 羽村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2010070837A priority Critical patent/JP4875180B2/ja
Priority to US13/033,927 priority patent/US8225519B2/en
Priority to KR1020110018445A priority patent/KR101234379B1/ko
Priority to TW100110181A priority patent/TWI460411B/zh
Publication of JP2011203121A publication Critical patent/JP2011203121A/ja
Application granted granted Critical
Publication of JP4875180B2 publication Critical patent/JP4875180B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/002Details
    • G01B3/008Arrangements for controlling the measuring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures

Description

本発明は、微細接触力調整機構を有する接触式計測装置に関する。
超精密加工において、ナノメートル単位の形状精度を実現するためには、工作機械上に機上計測装置を設置し、機上計測した結果に基づいた補正加工が必要不可欠である。
対象物に接触して計測するプローブを備えた接触式計測装置において、計測対象に対するプローブの接触力はプローブの移動速度、測定対象の形状および材質によって調整を行う必要がある。また、プローブを鉛直方向に取付ける場合は、プローブの自重の影響を無くさなければ、微小な接触力を得ることができない。
特許文献1には、微小な接触力を実現するため、圧縮空気の空圧と永久磁石によりプローブの接触力を調整する技術が開示されている。また、特許文献2には、プローブの接触力を調整するため、プローブの軸受部に多数の付勢空間を設け、その空間に圧縮空気を供給する。付勢空間により、付勢力の方向を異ならせて、押出す方向の付勢力で増大させ、引き込む方向の付勢力でプローブの自重を相殺する技術が開示されている。
図11は、流体軸受により支持される摩擦のないプローブを備えている機上計測装置において、空気圧力と永久磁石による接触力調整の一例として、受圧面に対する空気の圧力の調整と、磁性体に対する永久磁石の引力の調整による力の釣り合いで、プローブの測定対象の面に対する接触力を調整し、排気弁の排気量の調整により接触力の微調整を行う特許文献1に開示されている技術を説明する図である。
流体軸受(流体軸受面30)により支持された機械的摩耗の無いプローブ1bを備えているプローブ本体1aにおいて、測定子の棒1eの先端に取付けられた球型測定子1fと接触力測定装置300が接触した状態で、レギュレータ36と排気弁32aによるプローブ1bへの供給空気の圧力の調整と、磁性体31に対する永久磁石33の引力の調整を行い、プローブ1bの接触力測定装置300の計測対象面300aに対する接触力f1の微調整を行うことができる。接触力測定装置300として、例えば、力センサや電子天秤を使用することができる。
特開2009−216667号公報 特開2007−155440号公報
しかしながら、特許文献1に開示された技術では、プローブの接触力を変更するには、接触力を電子天秤などの接触力測定装置を用いて測定しながら、レギュレータの空圧(圧縮空気の圧力)、または永久磁石の位置、排気弁の絞り具合などを微調整する必要があり、手間がかかる上に、手動調整であるので再現性に困難を伴う。また、特許文献2に開示された技術では、微小な接触力の調整のために微小空気圧力の制御が必要であるが、空気圧の微小な脈動にも影響されやすい。
圧縮空気による方法の他に、電磁石と永久磁石による方法もある。プローブの接触力の調整には、プローブの前方と後方の電磁石の電流を別々に制御する必要がある。しかし、電流制御のための付加装置を用いる必要がある上に、電磁石による発熱によってプローブが熱膨張し、マイクロメートル単位以下の微小な計測を必要とする装置に適用することは困難である。
そこで本発明の目的は、上記従来技術の問題点に鑑み、空圧と永久磁石による接触力調整において、微細な接触力を自動的にかつ正確に調整することが可能な微細接触力調整機構を有する接触式計測装置を提供することである。
より具体的には、プローブの角度変化による重力の影響の変化を打ち消し、プローブの計測対象の面に対する接触力を所定の接触力に維持することが可能な微細接触力調整機構を有する接触式計測装置を提供することである。
本願の請求項1に係る発明は、3軸以上の直動軸と1軸以上の回転軸で構成され、プローブがいずれかの回転軸に該プローブの軸方向が重力方向に対して任意の角度で取付けられ、該3軸以上の直動軸と該1軸以上の回転軸が計測プログラムに従って制御されプローブに取付けられた接触子と計測対象の面が接触した状態でかつ該プローブの中心軸と該計測対象の面とが垂直となるように該計測対象の面の位置と該プローブの接触子の位置とを相対移動させプローブの変位により該計測対象の面の形状計測を行う接触式計測装置であって、プローブを流体軸受で支持するプローブ本体と、前記プローブに引っ張り力あるいは押し出し力を付与するために電空レギュレータにより前記プローブ本体内の流体圧力を制御する流体圧力制御部と、前記プローブ本体に取付けられた可動部を有する距離調整部と、前記距離調整部に備わった可動部に取り付けられた永久磁石と、前記永久磁石との間に斥力または引力を生じる前記プローブに取付けられた接触子と反対側端部に取付けられる部材と、重力方向と前記プローブの軸の方向のなす角度を求める角度演算部と、予め測定しておいた重力方向と前記プローブの軸の方向のなす角度と前記プローブの変位と前記流体圧力と前記接触力の関係のデータを記憶しておく記憶部と、前記角度演算部により求めた角度から前記記憶部に記憶したデータに基づいて、プローブの自重による接触力の変化をキャンセルする流体圧力の値を求めて、前記流体圧力の値となるように前記流体圧力制御部を制御するか、あるいは、前記角度演算部により求めた角度から前記記憶部に記憶したデータに基づいて、流体圧力が一定の場合にプローブの自重による接触力の変化をキャンセルするプローブの変位の値を求めて、前記プローブの変位の値となるように前記プローブを前記角度の方向に移動制御する接触力制御部と、を備え、前記プローブの角度変化による重力の影響の変化を打ち消し、前記プローブの前記計測対象の面に対する接触力を所定の接触力に維持するようにしたことを特徴とする微細接触力調整機構を有する接触式計測装置である。
請求項2に係る発明は、前記部材は、磁性体の金属あるいは永久磁石が組み込まれており、前記プローブは流体軸受に支持されることを特徴とする請求項1に記載の微細接触力調整機構を有する接触式計測装置である。
請求項に係る発明は、前記記憶部に記憶しておくデータは、所定の前記流体圧力と所定の前記可動部の永久磁石の位置において、前記接触子を100mgf以下の分解能を有する力センサに接触させて、重力方向と前記プローブの軸の方向のなす角度を90度にして前記90度方向に直線移動させながら、前記プローブの変位と前記力センサによる接触力の関係を求めることと前記プローブの自重の前記接触力への影響と前記角度との関係を求めることで、前記データを得ることを特徴とする請求項1または2のいずれか1つに記載の微細接触力調整機構を有する接触式計測装置である。
本発明により、空圧と永久磁石による接触力調整において、微細な接触力を自動的にかつ正確に調整することが可能な微細接触力調整機構を有する接触式計測装置を提供できる。
より具体的には、プローブの角度変化による重力の影響の変化を打ち消し、プローブの計測対象の面に対する接触力を所定の接触力に維持することが可能な微細接触力調整機構を有する接触式計測装置を提供できる。
X軸,Y軸,Z軸の直動軸を有し、X軸上に回転軸であるB軸と、Y軸上に回転軸であるC軸を配置した工作機械の要部を説明する図である。 機上計測装置の可動部であるプローブの移動変位検出の手段として、リニアスケールとレーザヘッドを有し、計測対象面に沿って相対的に移動させ、プローブの変位により計測対象物の形状計測を行うことを示す図である。 機上計測装置を備えた工作機械と該工作機械を制御する数値制御装置を有するシステムを説明する図である。 機上計測装置が回転軸に取付けられ、曲面を有するワーク面の計測のため、球型測定子であるルビー球を曲面に接触させ、各軸の同時制御により機上計測装置を走査して、機上計測装置の可動軸であるプローブの変位により、機上計測を行うことを説明する図である。 加工装置が回転軸に取付けられ、球面と工具軸が垂直になるように工作機械の各軸が同時制御されながら加工を行うことを説明する図である。 加工装置と同じ回転軸上に取付けられた機上計測装置において、図5による加工の後、加工プログラムを元に作成された計測プログラムにより球面とプローブの中心軸が垂直となるように工作機械の各軸が同時制御されながら計測を行うことを説明する図である。 一定のレギュレータ圧力、一定の永久磁石の位置、一定の排気弁の絞り具合の状態とプローブの姿勢が重力方向と垂直になり重力による接触力の影響がない状態で、数値制御装置に連結された機上計測装置のプローブ変位と数値制御装置の電空レギュレータ制御により接触力を変動して、そのときのプローブ変位と接触力をパソコンなどの外部記憶装置に同時に保存することを説明する図である。 図7の保存の結果として、接触力とプローブ変位の関係が明確になることを示す図である。 機上計測装置が図1においてC軸に取付けられ、なおかつ計測対象物の表面に常にプローブの中心軸が垂直になるように制御されながら計測を行うことを説明する図である。 機上計測装置が図1においてC軸に取付けられ、なおかつ計測対象物の表面に常にプローブの中心軸が垂直となるように制御されながら計測する際に、電空レギュレータの出力は一定にして、回転角度変化によりプローブの自重の影響が増加する場合、プローブを機上計測装置の中へ引っ込ませて、磁力増大により自重の影響を常に打ち消すことを説明する図である。 流体軸受により支持される摩擦のないプローブを備えている機上計測装置において、空気圧力と永久磁石による接触力調整の一例として、受圧面に対する空気の圧力の調整と、磁性体に対する永久磁石の引力の調整による力の釣り合いで、プローブの測定対象の面に対する接触力を調整し、排気弁の排気量の調整により接触力の微調整を行う方法を説明する図である。
以下、本発明の実施形態を図面と共に説明する。なお、従来技術と同一または類似する構成については同じ符号を用いて説明する。
図1は、X軸,Y軸,Z軸の直動軸を有し、X軸上に回転軸であるB軸と、Y軸上に回転軸であるC軸を配置した工作機械の要部を説明する図である。図1に要部を示す工作機械は数値制御装置によって制御され、3軸以上の直動軸と1軸以上の回転軸で構成されている工作機械の一例として、X軸,Y軸,Z軸の直動軸を有し、X軸上に回転軸であるB軸と、Y軸上に回転軸であるC軸を有し、5軸同時制御が可能な工作機械について示している。
図2は、機上計測装置の一例を説明する図である。機上計測装置は図1に示すような工作機械に取付けられ、その場計測を行うことができる。
機上計測装置1は、可動部であるプローブ1bを流体軸受けによって支持しプローブ本体1aに内蔵して備えている。プローブ1bは流体軸受けによって支持されることによって、摩擦がないか摩擦を無視でき、プローブ1bの中心軸方向に移動可動である。流体軸受けとしては例えば空気軸受を用いることができる。
プローブ1bの一端には、細い棒状の部材である測定子の棒1eが取付けられている。測定子の棒1eの一端はプローブ1bの一端に固定され、他端には球型測定子1f取り付けられている。球型測定子1fは、計測対象物100の計測対象面100aに接触し、計測対象物の形状計測を行うことができる。球型測定子1fは、従来の接触式計測装置で用いられているように、例えば、球形のルビー球が用いられ、計測対象面100aとの摩擦係数を低減し、かつ、摩耗を防止する。
機上計測装置1は、移動変位の検出手段として、レーザヘッド1cおよびリニアスケール1dを備える。機上計測装置1内のプローブ1bの部位にリニアスケール1dを配置し、プローブ本体1a内にプローブ1bのリニアスケール1dに対抗するようにレーザヘッド1cを備える。当該レーザヘッドとリニアスケールを備えた移動変位検出手段は高精度な位置検出を行えるものとして公知の手段である。そして、図2に示されるように、機上計測装置1を計測対象物100の計測対象面100aに沿って移動させ、プローブ1bの変位を前記移動変位の検出手段により検出する。前記移動変位の検出手段はプローブ1bの変位を示す移動変位検出信号を出力する。この移動変位検出信号は、機上計測装置1からの計測信号ipfとして、後述するパーソナルコンピュータ11に入力し、機上計測装置1からのプローブ1bの位置情報として格納される。
図2を用いて説明した接触式計測装置を工作機械の機上計測装置として適用し工作機械システムを構成することができる。数値制御装置と測定子を備えたプローブを有する機上計測装置を有し、1軸以上の直線軸と1軸以上の回転軸とから構成される工作機械の可動軸の位置を検出する位置検出装置から出力される軸位置検出信号と前記機上計測装置から出力される計測信号とを外部装置に転送することにより、計測対象物の表面形状を計測する前記工作機械システムにおいて、前記数値制御装置は、前記軸位置検出信号と前記計測信号とをインタフェースを介して受けるように構成し、前記インタフェースは、工作機械の各可動軸のモータを駆動するアンプが有するインタフェースであり、前記数値制御装置は、前記工作機械を駆動するモータが接続されていない前記アンプが有するインタフェースを介して前記機上計測装置からの計測信号を受け、前記機上計測装置は、前記回転軸上に取付けられ、前記測定子と前記計測対象物の面が接触した状態で前記プローブの変位により計測を行う接触式計測装置であって、前記プローブへの空気圧力と前記プローブと永久磁石との距離の調整により接触力を調整する手段を有し、前記数値制御装置により前記空気圧力を制御する。
図3は、上述した機上計測装置を備えた工作機械と該工作機械を制御する数値制御装置を有するシステムを説明する図である。図3では、機上計測装置1からの計測信号ipfが数値制御装置を介してパーソナルコンピュータ11に入力することを示している。この例では、工作機械の各軸と、回転軸であるB軸に取付けられた機上計測装置1が同じインタフェースを持つことにより、X軸,Y軸,Z軸,B軸,C軸の各軸の位置検出信号と機上計測装置1の計測信号を簡単に同期しながら数値制御装置8に取り込むことができる。
数値制御装置8は、加工プログラムに従って工作機械を駆動制御しワークを加工する装置であって、演算装置、記憶装置、表示装置などを備えている公知の装置である。インタフェース2として、各軸に備わったモータを駆動するアンプが有するインタフェースを用いることにより、工作機械の各軸の位置検出信号と機上計測装置からの計測信号とを簡単に同期させて数値制御装置8内に取り込むことができる。そして同期して取りこまれた前記信号は位置情報として数値制御装置8内の図示しない記憶装置に格納される。
数値制御装置8は、外部装置である例えばパーソナルコンピュータ11にイーサネット(登録商標)12経由でLAN通信を行い、工作機械の各軸からの位置情報と機上計測装置1からの計測情報とをパーソナルコンピュータ11に接続された記憶装置11aを出力する。パーソナルコンピュータ11は、数値制御装置8からの位置情報および計測情報を記憶装置11aに格納する。
パーソナルコンピュータ11には、計測用ソフトウェアが格納されており、数値制御装置8を介して読み込まれた位置情報および計測情報を用いて、被加工物の形状計測などの所要の演算処理を実行することができる。形状計測などの所要の演算処理は従来技術と同様である。また、パーソナルコンピュータ11には、計測用NCプログラム、加工用NCプログラム、加工用補正NCプログラムが格納されている。これらのプログラムも従来公知のプログラムである。
図4は、機上計測装置が回転軸に取付けられ、曲面を有するワーク面の計測のため、球型測定子であるルビー球を曲面に接触させ、各軸の同時制御により機上計測装置を走査して、機上計測装置の可動軸であるプローブの変位により、機上計測を行うことを説明する図である。この場合は、プローブ1bの中心軸とワーク200のワーク面200aとが常に垂直となるように工作機械の各軸が同時制御されるため、プローブ1bの中心軸と球型測定子1fの先端と交わる点のみが理想的にはワーク面に接触するため、従来では不可能であって90度以上の角度に対しても計測が可能である。また、常に一点で計測を行うため、球型測定子1fの形状誤差を最小化することができる。
次に、図5と図6とを用いて、機上計測装置と加工工具とが同じ回転軸に搭載された場合の加工および計測の様子を説明する。
図5は、加工装置が回転軸に取付けられ、ワーク200の球面と工具軸が垂直になるように工作機械の各軸が同時制御されながら加工を行うことを説明する図である。機上計測装置1とスピンドルのような加工装置20とを回転軸に備えた場合、加工装置20が、ワークの球面と工具軸とが垂直になるように工作機械の各軸が同時制御されながら加工を行う。ワークの加工面に対して工具軸を垂直となるように指令して工作機械に加工させることは従来から行われており、この加工を実行する加工プログラムそれ自体も従来から用いられている加工プログラムである。よって図3に示される工作機械の加工用NCプログラムとして、ワーク200の表面に対して垂直方向から加工する加工用プログラムを用いることができる。
図6は、加工装置と同じ回転軸上に取付けられた機上計測装置において、図5による加工の後、加工プログラムを元に作成された計測プログラムにより球面とプローブの中心軸が垂直となるように工作機械の各軸が同時制御されながら計測を行うことを説明する図である。
図5に示された加工後、加工プログラムを元に作成された計測プログラムにより、ワーク200の球面とプローブ1bの中心軸とが垂直となるように工作機械の各軸(図1参照)が同時制御されながら計測を行うことを説明している。なお、加工プログラムを利用して、機上計測装置1による機上計測を行う際には、工具刃先に対するプローブ1bの中心軸が球型測定子1fと交わる点のオフセット量を加工プログラムに反映して、計測プログラムを作成する。加工プログラムを活用できることから、計測プログラムを最初から作成する手間を省くことができる。
図7は、従来技術として説明した図11の一例において、さらに、電空レギュレータを追加し、一定のレギュレータ圧力、一定の永久磁石の位置、一定の排気弁の絞り具合の状態とプローブの姿勢が重力方向と垂直になり重力による接触力の影響がない状態で、数値制御装置に連結された機上計測装置のプローブ変位と数値制御装置の電空レギュレータ制御により接触力を変動して、そのときのプローブ変位と接触力をパソコンなどの外部記憶装置に同時に保存することを説明する図である。
エアコンプレッサ35から、供給空気圧調整手段36aを有するレギュレータ36を介して一次降圧し、更に、電空レギュレータ40を介して2次降圧して圧縮空気を機上計測装置1のプローブ本体1a内に供給する。レギュレータ36から排出される圧縮空気の圧力は固定されている。電空レギュレータ40は、電気信号を空気圧力に変換し空気の流量を精密に制御する装置である。電空レギュレータ40は従来公知の装置である。プローブ本体1aに供給された圧縮空気は、プローブ1bをプローブ本体1a内から押し出す方向の力(押出し力f3)を、プローブ1bに取付けられた磁性体31に与える。プローブ本体1aに供給された圧縮空気は、排気口32や流体軸受面30からプローブ本体1aの外部に放出される。排気弁32aの絞り具合を固定している。なお、流体軸受面30へは、図示省略した軸受用流体供給手段から軸受用流体が供給されてもよい。
プローブ1bの端部に取付けられている磁性体31としては鉄などの金属、あるいは、磁性体にかえて永久磁石を用いることもできる。永久磁石の場合には、永久磁石33と引力が作用するように両者の極性を選択する。また、プローブ本体1aには可動部(スピンドル34a)を備えたマイクロメータ34(図11参照)が取り付けられており、可動部であるスピンドル34aの先端には、磁性体31に対向するように永久磁石33が取り付けられている。マイクロメータ34は、例えば極めて精密なネジのピッチを応用した測定器であって、永久磁石33のプローブ1bにおける位置を精密に行うことででき、磁性体31と永久磁石33との距離を精密に調整することができる。これによって、永久磁石33と磁性体31との間に働く引力を高精度に調整することができる。
プローブ1bに取付けられた磁性体31には、圧縮空気に起因する押出し力f3と、磁性体31とマイクロメータ34のスピンドル先端に取付けられた永久磁石33との間に働く引力である引張力f2が作用する。押し出し力f3は、プローブ1bをプローブ本体1a内から外側へ押出す力であり、引張り力f2は、プローブ1bをプローブ本体1aの内側へ引き込む力である。従って、プローブ1bに取付けられた測定子の棒1eに取付けられた球型測定子1fが接触力測定装置300に及ぼす力である接触力f1は、f1=f3−f2の式で表すことができる。この関係式より、引張り力f2や押し出し力f3の大きさや向きを調節することにより、球型測定子1fの接触力f1を自在に調整することができる。
流体軸受(流体軸受面30)により支持された機械的摩耗の無いプローブ1bを備えているプローブ本体1aにおいて、測定子の棒1eの先端に取付けられた球型測定子1fと接触力測定装置300とが接触した状態で、レギュレータ36と排気弁32aによるプローブ1bへの供給空気の圧力の調整と、磁性体31に対する永久磁石33の引力の調整を行い、プローブ1bの接触力測定装置300の計測対象面300aに対する接触力f1の微調整を行うことができる。接触力測定装置300として、例えば、力センサや電子天秤を使用することができる。
機上計測装置1に備わったプローブ1bの計測対象物に対する接触力f1が重力の影響を受けないように、プローブ1bの姿勢を鉛直方向と垂直な方向にとる。プローブ1bに取付けられた測定子の棒1eの先端に固定された球型測定子1fを接触力測定装置300の計測対象面300aに接触させることによって、接触力を測定する。測定された接触力f1の接触力データは、接触力測定装置300からパーソナルコンピュータ11に出力される。
工作機械を制御する数値制御装置8から電空レギュレータ40へ電圧の微調整指令を行って、電空レギュレータの空気圧を微調整し、その時のプローブ1bの変位と接触力f1との関係を同時に取得しパーソナルコンピュータ11に備わった記憶装置に格納する。
数値制御装置8による電空レギュレータ40の制御は、例えば、数値制御装置においてマクロ変数、または、機上計測装置が取付けられた回転軸の座標の変化を元に、数値制御装置の記憶装置に格納されたデータから、電空レギュレータ40に指令する電圧に変換し、数値制御装置8に接続された電空レギュレータ40の圧力の調整を行う。電空レギュレータ40を用いることにより、レギュレータ36により絞られた1次降圧された圧縮空気を電空レギュレータ40において再度絞って2次降圧する。このように、2段階にわたって降圧することにより、空気圧力の微圧調整だけでなく、脈動も最小化することができる。
図7において、数値制御装置8からパーソナルコンピュータ11へは、機上計測装置1のプローブ1bの変位が位置検出信号として数値制御装置8に入力したデータが、数値制御装置8を介してパーソナルコンピュータ11に保存される。
図8は、図7の保存の結果として、接触力とプローブ変位の関係が明確になることを示す図である。横軸はプローブ1bの変位量、縦軸は接触力を表している。ここで、プローブ1bの変位は、プローブ1bが最も機上計測装置1のプローブ本体1aから押し出された状態を0[mm]として、そこの位置から機上計測装置のプローブ本体1aの中へ引き込まれた相対量を表している。
図8のグラフは、図7において機上計測装置1に所定の流体圧力を付与し、可動部であるスピンドル34aに取付けられた永久磁石33の位置において、測定子の棒1eの球型測定子1fを100mgf以下の分解能を有する接触力測定装置300に接触させて、鉛方向である重力方向とプローブ1bの軸方向のなす角度を90度(つまり、プローブ1bを水平方向)にして、前記90度方向にプローブ1bを直線移動させながら、プローブ1bの変位と接触力測定装置300との接触力の関係を求め、プローブ1bの自重の接触力への影響と角度(重力方向とプローブ1bの軸方向とのなす角度)との関係を求めることで得られる。
接触力測定装置300による接触力の測定は、プローブ1bが水平(前記角度が90度)であって重力の影響がない時の1回行えばよい。そして、既知の情報であるプローブ1bの自重が接触力に及ぼす影響を後述する数1式によって求める。この2つのデータにより図8に示されるプローブ1bの鉛直方向(重力方向)からの角度に対して動くべき変位を決めることができる。
図9は、機上計測装置が図1においてC軸に取付けられ、なおかつ計測対象物の表面に常にプローブの中心軸が垂直になるように制御されながら計測を行うことを説明する図である。この場合、C軸の回転角度によりプローブ1bの自重が接触力f1(計測対象面に垂直な方向)へ及ぼす影響が変化する。重力方向を基準としたC軸の回転角度は前述した数値制御装置8によって算出することができる。
ここで、空圧によるプローブ1bの押し出し力をFA、永久磁石による引張り力をFMG、プローブ1bの自重をMPR、プローブ1bが完全に垂直(鉛直方向に平行)な時を基準にした際の回転角度をθ、プローブ自重による接触力への影響をFPR(θ)、総合押出し力をFPS、総合プローブ接触力をFTと記載する。なお、ここでは、プローブ1bの自重は、図2において、プローブ1b、リニアスケール1d、測定子の棒1e、および球型測定子1fを含めた重さを意味する。
上述の変数の定義を用いて、機上計測装置1を取り付けた回転軸の回転角度が変化することで変動する接触力を数1式〜数3式の関係式を用いて表すことができる。図9を参照すると理解し易い。なお、θ1<θ2とする。
数1式は、プローブ自重による接触力への影響分を表す式である。数2式は、プローブ1bの回転角度がθ1とθ2の時のプローブ自重による接触力への影響FPR(θ)への影響を説明する式である。プローブ自重による接触力への影響FPR(θ)はθが0度の時が最大となる。そして、プローブ1bの総合プローブ接触力FTは数3式によって表すことができる。
Figure 0004875180
Figure 0004875180
Figure 0004875180
電空レギュレータ40によって圧縮空気の空気圧を調整し、数3式から数1式で表されるプローブ自重による接触力への影響FPR(θ)をキャンセルすればよく、数4式にその関係を示す。
Figure 0004875180
そうすると、総合プローブ接触力FTは、数5式によって表すことができる。
Figure 0004875180
以上説明したように、機上計測装置1が取付けられた回転軸の回転角度に合わせて、数値制御装置8から電空レギュレータ40の電圧を調整して、自重の影響を常に打ち消すことができる。
プローブ1bの自重が接触力に影響を及ぼし、なおかつ機上計測装置1の取付けられた回転軸の角度変化に伴い、接触力に及ぼす影響の大きさが変動する場合、数値制御装置で演算された前記回転軸の角度変化による前記変動の値を打ち消すように、数値制御装置8により電空レギュレータ40の電圧を制御する。図7において、接触力に対するプローブ1bの自重の影響が大きくなるとその分を打ち消すために、角度に合わせて数値制御装置8から電空レギュレータ40への電圧指令を微調整し、電圧を低下し、電空レギュレータ40から機上計測装置1に圧縮空気供給管路37を通して供給される圧縮空気の圧力を下げる。
次に、図7に示される電空レギュレータ40からの圧縮空気の圧力は一定(つまり、数値制御装置8から電空レギュレータ40への電圧指令は一定とする)とした場合の、プローブ1bの自重による接触力への影響を除去する方法を、図10を用いて説明する。
この方法は、プローブ1bの自重が接触力に影響を及ぼし、なおかつ機上計測装置1が取付けられた回転軸の角度変化に伴って接触力の影響の大きさが変動する場合に、数値制御装置8で演算された角度変化による変動の値を打ち消すように、プローブ1bの変位と
接触力測定装置300による接触力の関係に基づいて、球型測定子1fと計測対象物の面が接触した状態で、数値制御装置8によりプローブ1bの変位を自動的に制御する。
図10は、機上計測装置が図1においてC軸に取付けられ、なおかつ計測対象物の表面に常にプローブの中心軸が垂直となるように制御されながら計測する際に、電空レギュレータの出力は一定にして、回転角度変化によりプローブの自重の影響が増加する場合、プローブを機上計測装置の中へ引っ込ませて、磁力増大により自重の影響を常にキャンセルすることを説明する図である。
ここで、プローブ1bがθ分回転した際に、機上計測装置1へ変位ΔPR(θ)分、引き込んだ場合の磁力増加による引張り力の増大をΔFΔPR(θ)とすると、数6式の関係が成り立つ。
Figure 0004875180
そしてこの時の総合プローブ接触力FTは、数7式として表すことができる。
Figure 0004875180
図8に示されるプローブ変位と接触力の関係から、ある回転角度でのプローブ1bの自重の影響を打ち消すため、プローブ1bを機上計測装置1(プローブ本体1a)の中へ引き込ませる変位量を決める。プローブ1bがプローブ本体1a内に引き込まれることにより、磁性体31と永久磁石33との距離が近づくことで磁力が増加し引張り力が強くなり、プローブ1bの自重を打ち消すことができる。
この関係は予め数値制御装置8に入力され記憶されており、機上計測装置が取り付けられている回転軸の角度変化によって自動的にプローブ変位量(引き込ませる量)が決まり、数値制御装置8による機上計測装置1を取り付けた工作機械の各軸の制御に反映される。機上計測装置1は、計測対象面に追従(理想的な形状では、プローブ変位が0になる)するのに対して、本発明のこの方法では、プローブ1bの自重を打ち消すためプローブ1bが移動してしまうが、そのプローブ変位量(引き込ませる量)を同時に保存し、計測対象面の計測の後に計測データからそのプローブ変位量(引き込ませる量)を差し引くことで、計測対象面に追従したようなデータが求められる。もしくは、計測プログラム作成の段階で、回転角度に対するプローブ変位量(引き込ませる量)を反映させたプログラム(引き込ませる量をプリセットさせ、座標系を再構成)する方法を採用することもできる。なお、この方法は、図7に示すような電空レギュレータを備えた工作機械システムや、図11に示されるような電空レギュレータを備えない工作機械システムにおいても実施できる。
上述したように、本発明の実施形態によれば、空圧調整のためのレギュレータの後ろに電空レギュレータ40を繋ぎ、数値制御装置8により電空レギュレータ40の制御を行う。これによって、コンプレッサから出力される圧縮空気をレギュレータ36で降圧し、さらに、電空レギュレータ40で降圧することにより、空気の脈動を最小限に抑えて、空圧変動による接触力の変化を極力なくすことができる。また、電空レギュレータ40の制御を数値制御装置8のマクロ変数とリンクすること、または、回転軸の座標とリンクすることで、計測プログラムの中で自在に接触力を調整することができる。また、機上計測装置が重力の影響を受ける方向に取付けられた場合の回転計測において、各角度において電空レギュレータ40の出力を変えることができ、角度変化による重力の影響の変化を打ち消すことができる。
また、一定の永久磁石33の位置、および、空圧において、機上計測装置1のプローブ1bを接触力測定装置300に当てて押し込みながら接触力測定装置300により接触力を計測し、そのときのプローブ変位量も同時に計測を行い、そのデータをグラフ化する。プローブ1bが押し込まれると、磁性体31と永久磁石33(または、磁石と磁石)の距離が近くなり、磁力が変動する。例えば、磁性体31と永久磁石33の場合、押し込まれると接触力が低減してある変位以上(接触力が0)になると、磁力が空圧に勝ることになる。このプローブが押し込まれる変位とそのときの接触力のグラフを一度作成しておけば、あとは、プローブ1bの押し込まれ具合で正確な接触力を微小に0まで調整することができる。
数値制御装置8に1つの軸として認識される機上計測装置1において、重力の影響を受ける回転計測の場合、角度に対する重力変動、および作成したグラフの関係を予め数値制御装置に取り込んでおくことにより、回転角度が変わる際に自動的にプローブの出入り具合を制御し、連続スキャン計測時に常に一定の接触力を維持することが可能である。
1 機上計測装置
1a プローブ本体
1b プローブ
1c レーザヘッド
1d リニアスケール
1e 測定子の棒
1f 球型測定子
2 インタフェース
3 X軸
4 Y軸
5 Z軸
6 B軸
7 C軸
8 数値制御装置
8b サーボ制御部
10 基台
11 パーソナルコンピュータ
11a 記憶装置
12 イーサネット(登録商標)
20 加工装置
30 流体軸受面
31 磁性体
32 排気口
32a 排気弁
33 永久磁石
34 マイクロメータ
34a スピンドル
35 エアコンプレッサ
36 レギュレータ
36a 供給空気圧調節手段
37 圧縮空気供給管路
40 電空レギュレータ
100 計測対象物
100a 計測対象面
200 ワーク
200a ワーク面
300 接触力測定装置
ipx,ipy,ipz,ipb,ipc 位置検出信号
ipf 計測信号(位置検出信号)

Claims (3)

  1. 3軸以上の直動軸と1軸以上の回転軸で構成され、プローブがいずれかの回転軸に該プローブの軸方向が重力方向に対して任意の角度で取付けられ、該3軸以上の直動軸と該1軸以上の回転軸が計測プログラムに従って制御されプローブに取付けられた接触子と計測対象の面が接触した状態でかつ該プローブの中心軸と該計測対象の面とが垂直となるように該計測対象の面の位置と該プローブの接触子の位置とを相対移動させプローブの変位により該計測対象の面の形状計測を行う接触式計測装置であって、
    プローブを流体軸受で支持するプローブ本体と、
    前記プローブに引っ張り力あるいは押し出し力を付与するために電空レギュレータにより前記プローブ本体内の流体圧力を制御する流体圧力制御部と、
    前記プローブ本体に取付けられた可動部を有する距離調整部と、
    前記距離調整部に備わった可動部に取り付けられた永久磁石と、
    前記永久磁石との間に斥力または引力を生じる前記プローブに取付けられた接触子と反対側端部に取付けられる部材と、
    重力方向と前記プローブの軸の方向のなす角度を求める角度演算部と、
    予め測定しておいた重力方向と前記プローブの軸の方向のなす角度と前記プローブの変位と前記流体圧力と前記接触力の関係のデータを記憶しておく記憶部と、
    前記角度演算部により求めた角度から前記記憶部に記憶したデータに基づいて、
    プローブの自重による接触力の変化をキャンセルする流体圧力の値を求めて、前記流体圧力の値となるように前記流体圧力制御部を制御するか、あるいは、前記角度演算部により求めた角度から前記記憶部に記憶したデータに基づいて、流体圧力が一定の場合にプローブの自重による接触力の変化をキャンセルするプローブの変位の値を求めて、前記プローブの変位の値となるように前記プローブを前記角度の方向に移動制御する接触力制御部と、
    を備え
    前記プローブの角度変化による重力の影響の変化を打ち消し、前記プローブの前記計測対象の面に対する接触力を所定の接触力に維持するようにしたことを特徴とする微細接触力調整機構を有する接触式計測装置。
  2. 前記部材は、磁性体の金属あるいは永久磁石が組み込まれており、前記プローブは流体軸受に支持されることを特徴とする請求項1に記載の微細接触力調整機構を有する接触式計測装置。
  3. 前記記憶部に記憶しておくデータは、所定の前記流体圧力と所定の前記可動部の永久磁石の位置において、前記接触子を100mgf以下の分解能を有する力センサに接触させて、重力方向と前記プローブの軸の方向のなす角度を90度にして前記90度方向に直線移動させながら、前記プローブの変位と前記力センサによる接触力の関係を求めることと前記プローブの自重の前記接触力への影響と前記角度との関係を求めることで、前記データを得ることを特徴とする請求項1または2のいずれか1つに記載の微細接触力調整機構を有する接触式計測装置。
JP2010070837A 2010-03-25 2010-03-25 微細接触力調整機構を有する接触式計測装置 Active JP4875180B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010070837A JP4875180B2 (ja) 2010-03-25 2010-03-25 微細接触力調整機構を有する接触式計測装置
US13/033,927 US8225519B2 (en) 2010-03-25 2011-02-24 Contact type measurement device having fine contact force adjustment mechanism
KR1020110018445A KR101234379B1 (ko) 2010-03-25 2011-03-02 미세 접촉력 조정 기구를 갖는 접촉식 계측 장치
TW100110181A TWI460411B (zh) 2010-03-25 2011-03-24 具有微細接觸力調整機構之接觸式量測裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070837A JP4875180B2 (ja) 2010-03-25 2010-03-25 微細接触力調整機構を有する接触式計測装置

Publications (2)

Publication Number Publication Date
JP2011203121A JP2011203121A (ja) 2011-10-13
JP4875180B2 true JP4875180B2 (ja) 2012-02-15

Family

ID=44654702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070837A Active JP4875180B2 (ja) 2010-03-25 2010-03-25 微細接触力調整機構を有する接触式計測装置

Country Status (4)

Country Link
US (1) US8225519B2 (ja)
JP (1) JP4875180B2 (ja)
KR (1) KR101234379B1 (ja)
TW (1) TWI460411B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020294A1 (de) * 2009-05-07 2010-11-18 Mahr Gmbh Verfahren und Vorrichtung zur Messung eines Oberflächenprofils
JP5410317B2 (ja) * 2010-02-05 2014-02-05 株式会社ミツトヨ 三次元測定機
JP5713660B2 (ja) * 2010-12-21 2015-05-07 キヤノン株式会社 形状測定方法
JP5173016B1 (ja) 2011-12-22 2013-03-27 ファナック株式会社 機上計測装置を有する工作機械
JP5800924B2 (ja) * 2014-01-20 2015-10-28 ファナック株式会社 回転工具の回転振れ及び動バランス調整機構
JP6473999B2 (ja) * 2015-06-01 2019-02-27 パナソニックIpマネジメント株式会社 スタイラス
CN105067158B (zh) * 2015-08-13 2017-05-24 株洲时代装备技术有限责任公司 一种弓网分离式受电弓压力检测装置
JP6664986B2 (ja) * 2016-02-17 2020-03-13 株式会社ディスコ 加工装置
JP2017219333A (ja) * 2016-06-03 2017-12-14 オリンパス株式会社 形状測定装置および形状測定方法
CN106568989B (zh) * 2016-11-03 2018-11-27 北京航空航天大学 一种基于石英音叉探针的深空环境原子力显微镜系统的卧式探头装置
CN106821326B (zh) * 2017-03-13 2023-08-04 复旦大学附属中山医院 一种痛觉神经检测器及检测方法
JP6978457B2 (ja) * 2019-02-28 2021-12-08 ファナック株式会社 情報処理装置および情報処理方法
CN111890122B (zh) * 2019-05-06 2022-02-08 四川大学 一种刀具前刀面初始相位在机检测计算方法
CN111412831B (zh) * 2020-03-27 2021-04-09 北京交通大学 一种耐冲击磁性液体触觉传感器
WO2023053321A1 (ja) * 2021-09-30 2023-04-06 ファナック株式会社 機上計測装置および機上計測システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578746A (en) * 1969-02-13 1971-05-18 Bendix Corp Gaging apparatus and method
US4507868A (en) * 1982-08-30 1985-04-02 The Warner & Swasey Company Coordinate measuring machine with a self aligning pneumatic counterbalance
JPS62140002A (ja) * 1985-12-13 1987-06-23 Sumitomo Metal Ind Ltd 表面粗さ測定方法及び装置
US4949465A (en) * 1986-10-31 1990-08-21 Brown & Sharpe Manufacturing Company Counterweight for coordinate measuring machine
US4860755A (en) * 1988-02-08 1989-08-29 Erath-Young Instrument Company, Inc. Differential pressure applanation tonometer
DE3842151A1 (de) * 1988-12-15 1990-06-21 Zeiss Carl Fa Tastkopf vom schaltenden typ
DE3843125A1 (de) * 1988-12-22 1990-06-28 Zeiss Carl Fa Tastkopf vom schaltenden typ
GB9107825D0 (en) * 1991-04-12 1991-05-29 Renishaw Metrology Ltd Stylus counterbalancing mechanism for a measuring probe
JPH0792381B2 (ja) * 1991-11-07 1995-10-09 株式会社ミツトヨ 三次元測定機用プローブ
JPH11316119A (ja) * 1998-05-06 1999-11-16 Ricoh Co Ltd 接触荷重制御装置及び該装置を用いた形状測定装置
JP3647378B2 (ja) * 2001-03-02 2005-05-11 キヤノン株式会社 マルチプローブを用いた形状測定装置及び測定方法
ATE441085T1 (de) * 2002-09-18 2009-09-15 Mecartex Sa Vorrichtung mit tastkopf
JP4246107B2 (ja) * 2004-04-30 2009-04-02 オリンパス株式会社 接触荷重調整装置および該装置を備える形状測定機
JP4557657B2 (ja) * 2004-09-28 2010-10-06 キヤノン株式会社 接触式プローブおよび形状測定装置
JP4923441B2 (ja) * 2005-05-26 2012-04-25 株式会社ジェイテクト 形状測定器
JP4933775B2 (ja) * 2005-12-02 2012-05-16 独立行政法人理化学研究所 微小表面形状測定プローブ
JP2008203191A (ja) 2007-02-22 2008-09-04 Nippon Steel Materials Co Ltd 接触式形状測定器用プローブヘッド
JP4291394B1 (ja) * 2008-03-12 2009-07-08 ファナック株式会社 接触式計測装置
JP4653824B2 (ja) * 2008-07-29 2011-03-16 ファナック株式会社 機上計測装置にて計測対象物の形状を計測する工作機械システム

Also Published As

Publication number Publication date
TW201140012A (en) 2011-11-16
US20110232118A1 (en) 2011-09-29
JP2011203121A (ja) 2011-10-13
US8225519B2 (en) 2012-07-24
KR101234379B1 (ko) 2013-02-18
KR20110107739A (ko) 2011-10-04
TWI460411B (zh) 2014-11-11

Similar Documents

Publication Publication Date Title
JP4875180B2 (ja) 微細接触力調整機構を有する接触式計測装置
US8554502B2 (en) Method for calculating probe mounting position in on-machine measuring device
He et al. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool
US7797850B2 (en) Contact type measuring instrument
Küng et al. Ultraprecision micro-CMM using a low force 3D touch probe
US8091243B2 (en) Precision stage
JP4653824B2 (ja) 機上計測装置にて計測対象物の形状を計測する工作機械システム
JP4895677B2 (ja) 3軸工具ユニットおよび加工装置
JP2010105063A (ja) 温度ドリフト補正を行う機上計測装置を用いるワークの形状計測方法および機上計測装置を備えた工作機械
JP2000046541A (ja) 測定エラ―低減方法および該方法を用いる測定機械
JP6830386B2 (ja) 測定ヘッド
TWI389764B (zh) 具有工作件之量測基準點設定功能的工具機
JP2005037197A (ja) 接触式表面形状測定装置及び測定方法
WO2007037224A1 (ja) 触針式形状測定装置及び方法とこれに適した回転規制エアシリンダ
JP2023062709A (ja) 加工機、加工システム及び被加工物の製造方法
JP3867246B2 (ja) 工作機械の運動精度測定装置
TWI598178B (zh) Processing device and method of controlling the profiling using the same
KR101157008B1 (ko) 작업물의 계측 기준점 설정 기능을 갖는 공작 기계
Meli et al. Ultra precision micro-CMM using a low force 3D touch probe
Rugbani et al. The kinematics and error modelling of a novel micro-CMM
Meli et al. Novel 3D analogue probe with a small sphere and low measurement force
JPH0430941A (ja) 工作機械の熱変形補正方法
JP2008279535A (ja) 加工装置、および加工方法
Jywe A computer-aided accuracy testing device for machine tools
JP6456087B2 (ja) 形状測定装置および形状測定方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150