JP2023062709A - 加工機、加工システム及び被加工物の製造方法 - Google Patents

加工機、加工システム及び被加工物の製造方法 Download PDF

Info

Publication number
JP2023062709A
JP2023062709A JP2023024938A JP2023024938A JP2023062709A JP 2023062709 A JP2023062709 A JP 2023062709A JP 2023024938 A JP2023024938 A JP 2023024938A JP 2023024938 A JP2023024938 A JP 2023024938A JP 2023062709 A JP2023062709 A JP 2023062709A
Authority
JP
Japan
Prior art keywords
axis
error
control
movable portion
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023024938A
Other languages
English (en)
Inventor
貴信 秋山
Takanobu Akiyama
将彦 福田
Masahiko Fukuda
勝治 覚張
Katsuji Kakuhari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Shibaura Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Machine Co Ltd filed Critical Shibaura Machine Co Ltd
Priority to JP2023024938A priority Critical patent/JP2023062709A/ja
Publication of JP2023062709A publication Critical patent/JP2023062709A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/601Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism a single sliding pair followed parallelly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45096Polishing manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45161Grinding machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45199Polish

Abstract

【課題】真直度に起因する加工誤差を低減する。【解決手段】加工機1において、X軸制御部33Xは、制御周期Tc毎に、X軸テーブル9XのX方向における位置のフィードバック制御を行う。Z軸制御部33Zは、制御周期Tc毎に、Z軸テーブル9ZのZ方向の位置の間近の検出値を取得し、その取得した検出値と目標位置との差に基づいて第2偏差を算出し、第2偏差を縮小するようにZ軸駆動源23Zを制御する。Z軸制御部33Zは、制御周期Tc毎に、X軸テーブル9のZ方向における変位である第1誤差の間近の検出値を取得し、第1誤差に起因するワーク103と工具101とのZ方向における相対位置の誤差の少なくとも一部がZ軸テーブル9ZのZ方向の移動によって打ち消されるように、第1誤差の検出値に基づいて第2偏差を増加又は減少させる。【選択図】図1

Description

本開示は、加工機、加工システム及び被加工物の製造方法に関する。
工具によってワークを加工する加工機が知られている(例えば特許文献1~3)。加工機は、例えば、工具とワークとを相対移動させるために、工具又はワークを保持し、所定の方向に駆動される可動部(例えばテーブル又はヘッド)を有している。可動部は、例えば、ガイドによって案内されており、理想的には直線上を移動する。ただし、現実には、ガイドの製造誤差等に起因して、うねりを生じながら移動する。すなわち、真直度又は直角度は0とはならない。このうねりは加工精度を低下させる。
特許文献1では、テーブルの移動に関する直角度を予めNC(numerical control)装置に登録しておき、その直角度によって補正した目標位置へテーブルを移動させることにより、直角度を低減する技術が開示されている。
特許文献2では、NCプログラムに従って加工機を動作させたときにその動作軌跡を検出し、検出した動作軌跡と理想の動作軌跡とに基づいてNCプログラムを補正する技術が開示されている。
特許文献3では、ワークを保持する第1テーブルと、第1テーブルの移動方向に直交する方向に移動する第2テーブルと、第2テーブル上に設けられ、工具を保持する微動ステージとを有している加工機が開示されている。この加工機は、第1テーブルの真直度をリアルタイムで検出し、検出された真直度が加工誤差に及ぼす影響が縮小されるように微動テーブルを駆動する。
特開昭62-55706号公報 特開平4-111003号公報 特開平9-76141号公報
特許文献1及び2の技術は、予め真直度を計測しておく方法であることから、例えば、再現性のない真直度、又は再現性が短時間に限定される真直度に対応することができない。その結果、例えば、数十ナノメートル以下の精度が要求される超精密加工に適さない。特許文献3の技術は、例えば、真直度を縮小するために微動テーブルが必要であり、加工機の大型化及び/又は複雑化を招く。
真直度に起因する加工誤差を低減できる加工機、加工システム及び被加工物の製造方法が待たれる。
本開示の一態様に係る加工機は、ワーク又は工具を支持する第1可動部と、前記第1可動部を第1方向に案内する第1ガイドと、前記第1可動部を前記第1方向に駆動する第1駆動源と、前記第1可動部の前記第1方向における変位である第1変位と、前記第1可動部の前記第1方向に直交する第2方向における変位である第1誤差とに応じた信号を出力する第1センサと、前記ワーク又は前記工具を支持する第2可動部と、前記第2可動部を前記第2方向に案内する第2ガイドと、前記第2可動部を前記第2方向に駆動する第2駆動源と、前記第2可動部の前記第2方向における変位である第2変位に応じた信号を出力する第2センサと、前記第1可動部及び前記第2可動部の移動に関する指令の情報を含むプログラムに従って前記第1駆動源及び前記第2駆動源を制御する制御装置と、を有しており、前記制御装置が、前記プログラムの情報に基づいて、前記第1可動部の前記第1方向における所定の制御周期毎の第1目標位置と、前記第2可動部の前記第2方向における前記制御周期毎の第2目標位置とを算出する補間部と、前記制御周期毎に、前記第1センサからの信号に基づく前記第1変位の間近の検出値を取得し、その取得した検出値と前記第1目標位置との差に基づいて第1偏差を算出し、前記第1偏差を縮小するように前記第1駆動源を制御する第1制御部と、前記制御周期毎に、前記第2センサからの信号に基づく前記第2変位の間近の検出値を取得し、その取得した検出値と前記第2目標位置との差に基づいて第2偏差を算出し、前記第2偏差を縮小するように前記第2駆動源を制御する第2制御部と、を有しており、前記第2制御部が、前記制御周期毎に、前記第1センサからの信号に基づく前記第1誤差の間近の検出値を取得し、前記第1誤差に起因する前記ワークと前記工具との前記第2方向における相対位置の誤差の少なくとも一部が前記第2可動部の前記第2方向の移動によって打ち消されるように、前記第1誤差の検出値に基づいて前記第2偏差を増加又は減少させる。
本開示の一態様に係る加工システムは、上記加工機と、前記加工機から前記第1誤差の検出値の情報を取得し、取得した情報に応じた画像を表示する診断装置と、を有している。
本開示の一態様に係る被加工物の製造方法は、上記加工機を用いて、前記ワークと前記工具とを接触させて前記ワークを被加工物に加工するステップを有する。
上記の構成又は手順によれば、真直度に起因する加工誤差を低減できる。
実施形態に係る加工機の構成を示す模式的な斜視図。 図2(a)は図1の加工機のX軸テーブルを直線移動させる構成の一例を示す斜視図、図2(b)は図2(a)のII-II線における断面図。 図3(a)及び図3(b)は図1の加工機のX軸センサの構成及び動作を説明する図。 図1の加工機における制御系の構成を示すブロック図。 図4のブロック図の一部について詳細を示す図。 図6(a)及び図6(b)は制御に利用される真直度に関する検出値を説明するための概念図。 変形例に係る加工機の制御系に係るブロック図。 2次元スケールに関して図3(a)の構成例とは別の構成例を示す図。 ガイドに関して図2(b)を参照して説明した構成例とは別の構成例を示す図。 図1の加工機の主軸の軸受の構成の一例を示す断面図。
(加工機の全体構成)
図1は、実施形態に係る加工機1の構成を示す模式的な斜視図である。図には、便宜上、直交座標系XYZを付している。+Y方向は、例えば、鉛直上方である。
本開示に係る技術は、種々の加工機に適用可能であり、図示されている加工機1は、その一例に過ぎない。ただし、以下の説明では、便宜上、加工機1の構成を前提とした説明をすることがある。
加工機1は、例えば、工具101によってワーク103の研削及び/又は研磨を行う。より詳細には、図示の例では、ワーク103は、Z方向に平行な軸回りに回転される。また、工具101は、砥石によって構成されており、Y方向に平行な軸回りに回転される。そして、工具101がワーク103に当接されることによって、ワーク103の研削及び/又は研磨が行われる。このような加工機は、例えば、非球面レンズ等を作製する非球面加工機として利用可能である。
加工機1は、例えば、工具101及びワーク103を保持する機械本体3と、機械本体3を制御する制御装置5とを有している。
機械本体3は、例えば、ワーク103及び工具101それぞれを上述のように回転させるとともに、工具101とワーク103とを近接及び離反させるように相対移動させる。ワーク103の回転軸及び工具101の回転軸の相対的な向き、各回転軸の絶対座標系における向き、工具101及びワーク103の相対移動の方向、工具101及びワーク103の絶対座標系における移動の有無、並びに当該移動の方向等は、適宜に設定されてよい。
図示の例では、切削前において、工具101は、Y方向に移動されて位置決めがなされる。切削中において、既述のように、ワーク103は、Z方向に平行な軸回りに回転され、工具101は、Y軸に平行な軸回りに回転される。また、工具101及びワーク103は、Z方向及びX方向に相対移動する。より詳細には、工具101が絶対座標系においてX方向に移動し、ワーク103が絶対座標系においてZ方向に移動する。このような動作により、ワーク103は、+Z側の面及び/又はZ軸に平行な軸回りの外周面が研削され、及び/又は研磨される。
上記のような回転及び平行移動を実現する構成は、例えば、公知の種々の構成と同様とされたり、公知の構成を応用したものとされたりしてよい。図示の例では、以下のとおりである。
機械本体3は、基台7と、基台7に支持されているX軸テーブル9Xと、X軸テーブル9Xに固定されているコラム11と、コラム11に支持されているサドル13と、サドル13に支持されている工具主軸15Tとを有している。工具主軸15Tは、工具101を保持しており、Y方向に平行な軸回りに工具101を回転可能である。X軸テーブル9Xは、基台7上をX方向に直線移動可能であり、これにより、工具101がX方向に駆動される。サドル13は、コラム11に対してY方向に直線移動可能であり、これにより、工具101がY方向に駆動される。
また、機械本体3は、基台7に支持されているZ軸テーブル9Zと、Z軸テーブル9Zに支持されているワーク主軸15Wとを有している。ワーク主軸15Wは、ワーク103を保持しており、Z方向に平行な軸回りにワーク103を回転可能である。Z軸テーブル9Zは、基台7上をZ方向に直線移動可能であり、これにより、ワーク103がZ方向に駆動される。
なお、以下の説明では、X軸テーブル9X及びZ軸テーブル9Zを区別せずに、これらをテーブル9と呼称することがある。また、工具主軸15T及びワーク主軸15Wを区別せずに、これらを主軸15と呼称することがある。
テーブル9の移動、サドル13の移動及び主軸15の回転を実現するための機構の構成は、公知の構成又は公知の構成を応用したものとされてよい。例えば、駆動源は、電動機、油圧機器又は空圧機器とされてよい。また、電動機は、回転式電動機又はリニアモータとされてよい。テーブル9又はサドル13を案内する(別の観点では駆動方向以外の方向における移動を規制する)リニアガイドは、可動部と固定部とが摺動するすべり案内であってもよいし、可動部と固定部との間で転動体が転がる転がり案内であってもよいし、可動部と固定部との間に空気又は油を介在させる静圧案内であってもよいし、これらの2以上の組み合わせであってもよい。同様に、主軸15の軸受は、すべり軸受、転がり軸受、静圧軸受又はこれらの2以上の組み合わせとされてよい。
制御装置5は、例えば、特に図示しないが、NC装置及びドライバ(例えばサーボドライバ)を含んで構成されている。NC装置は、例えば、特に図示しないが、CPU(central processing unit)、ROM(read only memory)、RAM(random access memory)及び外部記憶装置を含んで構成されている。換言すれば、NC装置は、コンピュータを含んで構成されている。CPUがROM及び/又は外部記憶装置に記憶されているプログラムを実行することによって、制御等を行う各種の機能部が構築される。また、NC装置は、一定の動作のみを行う論理回路を含んでいてもよい。
制御装置5は、例えば、主軸15(別の観点では例えば不図示の主軸モータ)の回転数、テーブル9及びサドル13の速度及び位置を制御する。位置制御は、いわゆるフルクローズドループ制御とされてよい。すなわち、テーブル9及びサドル13の検出位置がフィードバックされてよい。テーブル9及びサドル13の速度制御は、位置制御と同様に、フルクローズドループ制御とされてよい。ただし、速度制御は、フィードバックがなされないオープンループ制御とされたり、電動機の回転数の検出値がフィードバックされるセミクローズドループ制御とされたりしてもよい。
加工機1の加工精度は適宜に設定されてよい。例えば、加工機1は、サブミクロンメータオーダーの精度(1μm未満の誤差)、又はナノメータオーダーの精度(10nm未満の誤差)で加工を実現可能なものであってよい。そのような工作機械は、本願出願人によって既に実用化されている(例えばUVMシリーズ、ULGシリーズ及びULCシリーズ。)。より詳細には、例えば、X軸テーブル9XのX方向における位置決め精度、Z軸テーブル9ZのZ方向における位置決め精度、及び/又はサドル13のY方向における位置決め精度は、1μm以下、0.1μm以下、10nm以下又は1nm以下とされてよい。
(移動機構の一例)
既述のように、テーブル9を直線上で移動させるための構成は、適宜な構成とされてよい。以下に一例を示す。
図2(a)は、X軸テーブル9Xを直線移動させる構成の一例を示す斜視図である。図2(b)は、図2(a)のII-II線における断面図である。
図示の例では、X軸テーブル9XをガイドするX軸ガイド17Xは、V-V転がり案内によって構成されている。例えば、X軸ガイド17Xは、X軸テーブル9Xを支持するX軸ベッド19Xの上面に形成された断面V字状の2本の溝19aと、X軸テーブル9Xの下面に形成された断面三角形状の2本の突条9aと、溝19aと突条9aとの間に介在している複数のコロ21(転動体)とを有している。溝19a及び突条9aは、X方向に直線状に延びており、突条9aはコロ21を介して溝19aに嵌合している。これにより、X軸テーブル9Xは、Z方向における移動が規制される。また、コロ21は、溝19aの内面及び突条9aの外面に対して転がり、両者のX方向における相対移動を許容する。これにより、X軸テーブル9Xは、比較的小さい抵抗でX方向に移動する。X軸テーブル9Xの+Y側への移動は、例えば、自重によって規制される。X軸テーブル9Xの-Y側への移動は、例えば、X軸ベッド19Xからの反力によって規制される。
また、図示の例では、X軸テーブル9Xを駆動するX軸駆動源21Xは、リニアモータによって構成されている。例えば、X軸駆動源21Xは、X軸ベッド19Xの上面にてX方向に配列されている複数の磁石21cからなる磁石列21aと、X軸テーブル9Xの下面に固定されており、磁石列21aと対向するコイル21bとを有している。そして、コイル21bに交流電力が供給されることによって、磁石列21aとコイル21bとがX方向に駆動力を生じる。ひいては、X軸テーブル9XがX方向に移動する。
X軸テーブル9Xを直線移動させる構成について述べたが、図1から理解されるように、上記の説明は、XをZに置換して、Z軸テーブル9Zを直線移動させる構成に援用されてよい。すなわち、Z軸ガイド17Zは、Z軸ベッド19Zの溝19aと、Z軸テーブル9Zの突条9aと、その間に介在するコロ21とを有するV-V転がり案内とされてよい。Z軸ガイド17ZのZ軸駆動源23Z(図4)は、リニアモータによって構成されてよい。
(真直度に起因する加工誤差の低減方法)
X軸テーブル9Xは、理想的には、X方向に直線移動する。しかし、現実には、種々の要因によってうねり(X方向に直交する方向への変位)を生じながらX方向に移動する。すなわち、工具101は、X方向に直交する方向において位置決め誤差を生じる。この誤差は、ガイド17として真直度が高いものを用いたとしても、例えば、10nm以上1μm以下の大きさで生じる。従って、例えば、超精密加工機のように高い加工精度(例えば1μm以下又は0.1μm以下の誤差)が求められる加工機1においては、上記の位置決め誤差の影響が大きくなる。
そこで、本実施形態では、X軸テーブル9XのZ方向における変位(誤差)をリアルタイムで検出する。例えば、X軸テーブル9XのX方向における移動中(別の観点では例えば加工中)に所定の周期でX軸テーブル9X(別の観点では工具101)のZ方向における誤差を検出する。そして、その誤差に起因する工具101とワーク103との相対位置の誤差(その一部又は全部)を打ち消すように、Z軸テーブル9Z(別の観点ではワーク103)をZ方向において移動させる。例えば、図示の例では、X軸テーブル9Xが+Z側へ誤差を生じた場合には、その誤差と同等の大きさの移動量でZ軸テーブル9Zを+Z側へ移動させる。より詳細に言えば、Z軸テーブル9Zの本来のZ方向における移動量(NCプログラムによって規定された移動量)に、上記の誤差に対応する移動量を加える。これにより、X軸テーブル9Xの移動に係る真直度が加工誤差に及ぼす影響を低減できる。
X軸テーブル9XのZ方向における誤差を例に取って述べたが、上記の加工誤差の低減方法は、X軸テーブル9XのY方向の誤差についても適用可能であるし、Z軸テーブル9Z及びサドル13についても適用可能である。ただし、本実施形態の説明では、主として、X軸テーブル9XのZ方向における誤差、及びZ軸テーブル9ZのX方向における誤差を例に取る。
以下、上記の加工誤差の低減方法を実現するための構成例について説明する。
(センサ)
図2(a)に示すように、加工機1は、X軸テーブル9XのX方向における位置及びZ方向における位置を検出するX軸センサ25Xを有している。これまでの説明から理解されるように、X軸センサ25Xが検出するX方向における位置は、X軸テーブル9XのX方向における位置に係るフルクローズドループ制御に利用される。また、X軸センサ25Xが検出するZ方向における位置は、Z軸テーブル9ZのZ方向における位置に係る制御に利用される。
図2(a)では、X軸センサ25Xとして、2次元スケール(換言すれば2次元エンコーダ)が例示されている。2次元スケールは、例えば、X方向に延びているスケール部27と、スケール部27に対向している検出部29とを有している。スケール部27においては、例えば、光学的又は磁気的に形成された複数のパターンがX方向(X軸センサ25Xの構成によってはX方向に加えてZ方向)に一定のピッチで配列されている。検出部29は、各パターンとの相対位置に応じた信号を生成する。従って、スケール部27及び検出部29の相対移動に伴って生成される信号の計数(すなわちパターンの計数)によって、変位(位置)を検出することができる。
スケール部27及び検出部29の一方(図示の例ではスケール部27)は、X軸テーブル9Xに固定されている。スケール部27及び検出部29の他方(図示の例では検出部29)は、X軸ベッド19Xに対して直接的に又は間接的に固定されている。従って、X軸テーブル9Xが移動すると、スケール部27及び検出部29は相対移動する。これにより、X軸テーブル9Xの変位(位置)が検出される。
スケール部27及び検出部29の具体的な取付位置は適宜に設定されてよい。また、X軸センサ25Xは、スケール部27のパターンに基づいてスケール部27に対する検出部29の位置(絶対位置)を特定可能なアブソリュート式のものであってもよいし、そのような特定ができないインクリメンタル式のものであってもよい。公知のように、インクリメンタル式のスケールであっても、検出部29をスケール部27に対して所定位置(例えば移動限)に移動させてキャリブレーションを行うことによって絶対位置を特定することができる。
X軸テーブル9Xの移動に係る誤差(Z方向の変位)は、当然ながら、X軸テーブル9XのX方向における移動可能な長さに比較して小さい。従って、X軸センサ25Xにおいて、Z方向の位置を検出可能な範囲の長さは、X方向の位置を検出可能な範囲の長さよりも短くされてよい。例えば、後者は、前者の10倍以上又は100倍以上とされてよい。また、Z方向の位置を検出可能な範囲の長さは、例えば、1cm以下、1mm以下、10μm以下又は1μm以下とされてよい。なお、X方向の位置を検出可能な範囲は、例えば、Z方向の位置を検出可能な範囲の長さよりも長いことを前提として、1cm以上、5cm以上、10cm以上又は30cm以上とされてよい。なお、上記の説明において、X方向の位置を検出可能な範囲の長さ、及びZ方向の位置を検出可能な範囲の長さは、X軸センサ25X(より詳細には例えばスケール部27)のX方向の長さ及びZ方向の長さと置き換えられてもよい。
X軸センサ25Xにおいて、X方向の位置の検出精度及びZ方向の位置の検出精度は、互いに同等であってもよいし、互いに異なっていてもよい。いずれの場合においても、X軸センサ25Xにおいて、X方向の位置の検出精度及びZ方向の位置の検出精度それぞれは、比較的高くされてよく、例えば、1μm以下、0.1μm以下、10nm以下又は1nm以下とされてよい。
X軸テーブル9Xの位置を検出するX軸センサ25Xについて述べたが、上記の説明は、XとZとを相互に置換して、Z軸テーブル9Zを検出するZ軸センサ25Z(図4)に援用されてよい。
(2次元スケールの一例)
2次元スケールの構成は、公知の構成を含む種々の構成とされてよい。以下では、その一例を示す。以下の説明では、便宜上、X軸センサ25Xを例に取る。
図3(a)は、X軸センサ25Xの一部の拡大図である。なお、説明の便宜上、図3(a)と他の図とでは、直交座標系XYZに対するスケール部27及び検出部29の向きが異なるが、これは本質的な差異ではない。
スケール部27は、例えば、互いに平行にX方向に延びるA相スケール部27a及びB相スケール部27bを有している。A相スケール部27a及びB相スケール部27bは、光学的又は磁気的に形成された複数のパターン27cを有している。複数のパターン27cは、X方向に対して傾斜する直線状である。A相スケール部27a及びB相スケール部27bとで、複数のパターン27cの傾斜角の大きさは互いに同等であり、かつ傾斜方向は互いに逆である。検出部29は、例えば、A相スケール部27aのパターン27cを検出するA相検出部29aと、B相スケール部27bのパターン27cを検出するB相検出部29bとを有している。
図3(b)は、A相スケール部27aの一部を拡大して示す模式図である。
A相検出部29aによって検出されるパターン27cの計数によって、A相スケール部27aのパターン27cに直交する方向の変位dAが検出される。パターン27cに直交する方向のX軸に対する傾斜角をθとし、変位dAのX方向成分をx1とし、変位dAのZ方向成分をz1とする。このとき、以下の式が成り立つ。
dA=x1×cosθ+z1×sinθ (1)
一方、B相検出部29bによって検出されるパターン27cの計数によって、B相スケール部27bのパターン27cに直交する方向の変位dB(図3(a))が検出される。このとき、A相スケール部27aとB相スケール部27bとでパターン27cの傾斜角は同一であるから、B相スケール部27bにおいても、パターン27cに直交する方向のX軸に対する傾斜角(絶対値)はθである。また、検出部29がY軸回りに回転しないと仮定すると、変位dBのX方向成分及びZ方向成分は、変位dAのX方向成分及びZ方向成分(x1及びz1)と同じである。従って、以下の式が成り立つ。
dB=x1×cosθ-z1×sinθ (2)
上記の(1)式及び(2)式から、以下の式が導かれる。
x1=(dA+dB)/(2×cosθ) (3)
z1=(dA-dB)/(2×sinθ) (4)
このような原理によって、図示の例の2次元スケールは、2方向の変位を検出することができる。
X軸センサ25Xについて述べたが、上記の2次元スケールに係る説明は、XとZとを相互に置換して、Z軸センサ25Z(図4)に援用されてよい。また、図3(a)及び図3(b)を参照して説明した2次元スケールの構成は、X軸センサ25X又はZ軸センサ25Zの構成の一例に過ぎない。ただし、以下の説明では、便宜上、上記の2次元スケールの構成を前提とした説明をすることがある。
(加工機における制御系の構成)
図4は、加工機1における制御系の構成を示すブロック図である。より詳細には、ここでは、加工機1における制御系の構成のうち、X軸テーブル9Xの位置及びZ軸テーブル9Zの位置の制御に係る構成が抽出されている。
X軸センサ25Xは、例えば、検出信号SXをX軸算出部31Xに入力する。検出信号SXは、例えば、検出部29の直下を通過した1つのパターン27cと1つの波形(パルス波)とが対応しているパルス信号である。パルス波は、例えば、正弦波、矩形波、三角波又はのこぎり波である。検出信号SXは、A相検出部29aが生成するパルス信号と、B相検出部29bが生成するパルス信号とを含んでいる。
X軸算出部31Xは、入力された検出信号SXに基づいて、検出されたパターン27cの計数を行い、次に、(3)式及び(4)式の演算等を行う。これにより、X軸テーブル9XのX方向における位置と、X軸テーブル9XのZ方向における位置とが特定される。そして、X軸算出部31Xは、前者の位置の情報を含む信号SXxと、後者の位置の情報を含む信号SXzとを出力する。
X軸テーブル9XのX方向における位置の情報を含む信号SXxは、制御装置5の統合制御部35を経由して制御装置5のX軸制御部33Xに入力される。X軸制御部33Xは、信号SXxに含まれる情報に基づいて、X軸駆動源23Xを駆動して、X軸テーブル9Xの位置をフィードバック制御する。
以上のようにして、X軸テーブル9XのX方向の位置に関する一般的なフィードバック制御と同様の制御が行われる。この一般的なフィードバック制御と同様の制御は、Z軸テーブル9Zにおいても同様に行われる。上記の説明は、X及びZ(並びにx及びz)を相互に置換して、Z軸テーブル9ZのZ方向の位置に関する制御に援用されてよい。
X軸算出部31Xにおいて生成されたX軸テーブル9XのZ方向の位置の情報を含む信号SXzは、Z軸算出部31Zで生成されたZ軸テーブル9ZのZ方向の位置の情報を含む信号SZzと共に、Z軸制御部33Zに入力される。そして、Z軸制御部33Zは、信号SZzに含まれる情報に基づくフィードバック制御において、信号SXzに含まれる情報を加味した制御を行う。すなわち、既述のように、X軸テーブル9XのZ方向における位置の誤差が加工精度に及ぼす影響を打ち消すように、当該誤差の大きさに応じた移動量で、Z軸テーブル9Zの移動量を増加又は減少させる。
上記と同様に、Z軸テーブル9ZのX方向における位置の誤差が加工精度に及ぼす影響が低減されてよい。具体的には、Z軸算出部31Zにおいて生成されたZ軸テーブル9ZのX方向の位置の情報を含む信号SZxは、X軸算出部31Xで生成されたX軸テーブル9XのX方向の位置の情報を含む信号SXxと共に、X軸制御部33Xに入力される。そして、X軸制御部33Xは、信号SXxに含まれる情報に基づくフィードバック制御において、信号SZxに含まれる情報を加味した制御を行う。
X軸制御部33Xにおいて、信号SXx及びSZxに基づく位置の取得、及び取得した信号に基づくX軸駆動源23Xの制御は、所定の制御周期で繰り返し行われる。同様に、Z軸制御部33Zにおいて、信号SZz及びSXzに基づく位置の取得、及び取得した信号に基づくZ軸駆動源23Zの制御は、所定の制御周期で繰り返し行われる。X軸制御部33Xにおける制御周期と、Z軸制御部33Zにおける制御周期とは、例えば、同一(異ならせることも不可能ではない。)であり、また、統合制御部35によって同期が図られる。
統合制御部35は、例えば、所定のサンプリング周期でX軸算出部31Xから信号SXxを取得する。同様に、統合制御部35は、例えば、所定のサンプリング周期でZ軸算出部31Zから信号SZzを取得する。統合制御部35は、例えば、所定のサンプリング周期でX軸算出部31Xから信号SXzを取得する。統合制御部35は、例えば、所定のサンプリング周期でZ軸算出部31Zから信号SZxを取得する。信号SXx、SZz、SXz及びSZxは、サンプリング周期毎の移動量又は位置の情報を含んでいる。
X軸テーブル9XのX方向の位置の情報を含む信号SXx、及びZ軸テーブル9ZのZ方向の位置の情報を含むSZzのサンプリング周期は、例えば、X軸制御部33X及びZ軸制御部33Zにおける上記制御周期と同等又は上記制御周期よりも短い。これにより、フィードバック制御に利用される位置の間近の検出値が制御周期毎に更新される。
X軸テーブル9XのZ方向の位置の情報を含む信号SXz、及びZ軸テーブル9ZのX方向の位置の情報を含むSZxのサンプリング周期は、上記の制御周期よりも短くてもよいし、同等でもよいし、長くてもよい。後述の図6(a)及び図6(b)の説明から理解されるように、真直度に係る誤差の間近の検出値は、必ずしも制御周期毎に更新される必要はないからである。ただし、以下の説明では、便宜上、信号SXz及びSZxのサンプリング周期が制御周期以下である態様を前提に説明することがある。
信号SXx及びSZzのサンプリング周期は、例えば、互いに同一である(異なっていてもよい。)。信号SXzのサンプリング周期は、信号SXx又はSZzのサンプリング周期に対して同一であってもよいし、異なっていてもよい。同様に、信号SZxのサンプリング周期は、信号SZz又はSXxのサンプリング周期に対して同一であってもよいし、異なっていてもよい。ただし、以下の説明では、便宜上、4つの信号SXx、SXz、SZz及びSZxのサンプリング周期が互いに同一である態様を前提に説明することがある。
なお、統合制御部35、X軸制御部33X及びZ軸制御部33Zは、機能上又は概念上の区分である。従って、ハードウェアの観点においては、これらの制御部は、一体的に構成されていてもよいし、図示と同様に、又は図示とは異なる態様で、分散されて構成されていてもよい。また、X軸制御部33X及びZ軸制御部33Zは、ドライバを含んで概念されてよい。
一般に、センサの語は、物理量を信号に変換するトランスデューサーのみを指す場合と、トランスデューサーと、これに接続された機能部とを含んだ装置を指す場合とがある。機能部としては、例えば、トランスデューサーに電力を供給するドライバ、及びトランスデューサーからの信号の処理を行う演算部が挙げられる。本実施形態においても、X軸センサ25X及びX軸算出部31Xの組み合わせがX軸センサ37Xとして概念されてよい。同様に、Z軸センサ25Z及びZ軸算出部31Zの組み合わせがZ軸センサ37Zとして概念されてよい。ハードウェアの観点において、X軸センサ25X及びX軸算出部31Xは、隣接していてもよいし、隣接していなくてもよい。Z軸センサ25Z及びZ軸算出部31Zについても同様である。
(各軸における制御系の構成の一例)
図5は、各軸における制御系の構成の一例を示すブロック図である。ここでは、Z軸テーブル9Zの位置の制御に係る構成を例に取る。
NCプログラム107は、各軸の駆動に関する指令の情報を含んでいる。例えば、NCプログラム107は、X軸テーブル9X、Z軸テーブル9Z及びサドル13の移動に関する指令の情報を含んでいる。移動に関する指令の情報は、例えば、移動軌跡上の複数の位置、及び複数の位置間の速度の情報を含んでいる。
制御装置5の解釈部39は、NCプログラム107を読み出して解釈する。これにより、例えば、テーブル9及びサドル13のそれぞれについて、順次に通過する複数の位置と、複数の位置間の速度の情報が取得される。
制御装置5の補間部41は、解釈部39が取得した情報に基づいて、所定の制御周期毎の目標位置等を算出する。例えば、順次に通過する2つの位置と、その2つの位置の間の速度とに基づいて、制御周期毎に順次に到達すべき複数の目標位置を2つの位置の間に設定する。補間部41は、軸毎に制御周期毎の目標位置等を算出して出力する。図5では、Z軸テーブル9Zの制御周期毎の目標位置が制御装置5の加算部43に出力されている。
加算部43では、上記の制御周期毎の目標位置と、Z軸センサ25Zによって検出されたZ軸テーブル9ZのZ方向における位置(信号SZz)との偏差が算出される。また、この偏差には、X軸テーブル9XのZ方向における誤差が加工誤差に及ぼす影響を打ち消すように、X軸センサ25Xによって検出されたX軸テーブル9XのZ方向における誤差が加算又は減算される。図1の例では、X軸テーブル9Xの誤差が生じた側(例えば+Z側)と同じ側へZ軸テーブル9Zを移動させることから、誤差は偏差に加算される。
その後は、一般的な制御系の構成と同様である。例えば、加算部43において算出された偏差(制御周期毎の目標移動量)は、制御装置5の位置制御部45に入力される。位置制御部45は、入力された偏差に所定のゲインを乗じて制御周期毎の目標速度を算出し、制御装置5の加算部47に出力する。加算部47は、入力された制御周期毎の目標速度と、Z軸センサ25Zの検出位置が制御装置5の微分部55によって微分されて得られた検出速度との偏差を算出し、制御装置5の速度制御部49に出力する。速度制御部49は、入力された偏差に所定のゲインを乗じて制御周期毎の目標電流(目標トルク)を算出し、制御装置5の加算部51に出力する。加算部51は、入力された制御周期毎の目標電流と、不図示の電流検出部からの検出電流との偏差を算出し、制御装置5の電流制御部53に出力する。電流制御部53は、入力された偏差に応じた電力をZ軸駆動源23Zに供給する。
上記はあくまで一例であり、適宜に変形されてよい。例えば、特に図示しないが、フィードフォワード制御が付加されてもよい。電流ループに代えて加速度ループが挿入されてもよい。駆動源が回転式の電動機であり、その回転を検出する回転センサ(例えばエンコーダ又はレゾルバ)が設けられている場合においては、その回転センサの検出値に基づいて速度制御がなされてもよい。
図示の例では、X軸センサ25Xによって検出される誤差(信号SXzに基づく検出誤差)は、加算部43に入力された。加算部43への入力に代えて、補間部41に入力されて制御周期毎の目標位置の算出に利用されてもよい。いずれにせよ、位置制御部45に入力される偏差は、NCプログラム107のみに基づく目標位置と、信号SZzに基づく検出位置との差のみに基づいて算出される場合に比較して増減される。
図5に示す構成は、適宜に図4の構成と対応付けられてよい。例えば、解釈部39、補間部41及び加算部43は、統合制御部35の一部と捉えられてよい。位置制御部45から電流制御部53までの経路はZ軸制御部33Zの一部と捉えられてよい。
Z軸テーブル9Zの移動に係る制御について述べたが、上記の説明は、XとZとを相互に置換して、X軸テーブル9Xの移動に係る制御に援用されてよい。
(制御に利用される検出値)
制御に利用される真直度に係る誤差の間近の検出値(加算部43に入力される誤差の検出値)は、信号SXz又はSZxが情報として保持する検出値(生の検出値)そのままのものであってもよいし、上記生の検出値に対して何らかの処理がなされた値であってもよい。以下に例を示す。以下の説明では、X軸テーブル9Xの真直度に係る誤差が加工精度に及ぼす影響をZ軸テーブル9Zの移動によって低減する構成を例に取るが、Z軸テーブル9Zの真直度に係る誤差が加工精度に及ぼす影響をX軸テーブル9Xの移動によって低減する構成についても同様である。
図6(a)は、検出位置の経時変化を示す模式的な図である。これらの図において、横軸tは経過時間を示している。図6(a)の上部のグラフにおいて、縦軸は、Z軸テーブル9ZのZ方向における位置を示しており、別の観点では、信号SZzに保持される生の検出値を示している。図6(a)の下部のグラフにおいて、縦軸は、X軸テーブル9XのZ方向における位置(誤差)を示しており、別の観点では、信号SXzに保持される生の検出値を示している。
図中にプロットされた黒点は、統合制御部35がZ軸算出部31Z又はX軸算出部31Xからサンプリング周期Ts毎に取得した生の検出値を示している。図6(a)の例では、サンプリング周期Tsは、Z軸制御部33Zによってフィードバック制御が繰り返される制御周期Tcと同一とされている。換言すれば、統合制御部35は、制御周期Tc毎に、Z軸算出部31Z及びX軸算出部31Xから信号SZz及びSXzを取得する。
なお、ここでいう生の検出値は、サンプリング周期Ts毎の検出値ということである。従って、例えば、信号SZz又はSXzが保持している検出値(狭義の生の検出値)に対して何らかの補正がなされた値であっても、サンプリング周期Ts毎の体裁が維持されているのであれば、生の検出値として捉えられて構わない。
図4及び図5を参照して説明した制御ループにおいて、Z軸テーブル9ZのZ方向における位置の検出値としては、例えば、前回までの制御周期Tc毎の制御の結果として得られた複数の生の検出値のうち、間近の生の検出値が利用されてよい。例えば、図6(a)の上部のグラフに示すように、現時点が時点t1であるとすると、その直前の検出値P1がZ軸制御部33Z(加算部43)に入力される。このようにすることによって、例えば、Z軸テーブル9ZのZ方向における実際の位置に対する制御の遅れを縮小し、高精度に位置決めを行うことができる。
一方、X軸テーブル9XのZ方向における位置(誤差)の検出値としては、例えば、前回までの制御周期Tc毎の制御の結果として得られた複数の生の検出値のうち、所定数の生の検出値の平均値(移動平均)が利用されてよい。例えば、図6(a)の下部のグラフに示すように、現時点が時点t1であるとすると、その直前の所定数(図示の例では3つ)の検出値P2の平均値がZ軸制御部33Z(加算部43)に入力される。このようにすることによって、例えば、特異的な生の検出値に応じてZ軸テーブル9Zを移動させてしまう蓋然性を低減できる。ひいては、加工誤差を却って増大させてしまう蓋然性を低減できる。ただし、Z軸テーブル9ZのZ方向における位置と同様に、誤差の間近の生の検出値のみが用いられても構わない。
上記のように所定数の生の検出値の平均値を用いる場合において、前記所定数は適宜に設定されてよい。例えば、所定数は、2つであってもよいし、5以上であってもよいし、10以上であってもよい。
平均値の算出に用いられる所定数の生の検出値は、例えば、間近(最新)の生の検出値を含んでよい。なお、ここでいう間近は、例えば、制御ループに組み込むことができる範囲内のものと解釈されてよい。例えば、マルチタスクによって、生の検出値の取得の繰り返し、平均値の算出の繰り返し、及び制御ループの繰り返しを並行して実行しているような場合において、平均値を算出して制御ループに入力するまでの間に新たに生の検出値が検出されても、当該生の検出値は間近の検出値ではなく、平均値に算入できた生の検出値のうち最新のものが間近の生の検出値である。なお、通常のフィードバック制御に係る検出値(信号SXx及びSZzが保持する検出値)等の他の説明における間近についても同様とされてよい。
平均値の算出に用いられる所定数の生の検出値は、例えば、サンプリング周期Ts間隔で連続している生の検出値である。すなわち、平均値の算出に用いられる所定数の生の検出値は、取捨選択されていない。ただし、取捨選択が行われてもよい。例えば、フィルタリングによって特異な検出値を除去し、残りの生の検出値に基づいて平均値が算出されてもよい。この場合、残りの生の検出値の数が所定数になるように調整されてもよいし、そのような調整がなされなくてもよい。
平均値は、特に断りがない限り、相加平均だけでなく、加重平均等の他の平均も含むものとする。例えば、現時点に対して近い時点の生の検出値ほど重みが大きくなるように加重平均が算出され、この加重平均が加算部43に入力される検出値として用いられてもよい。
図6(b)は、図6(a)の例とは異なる例を示す、図6(a)と同様の図である。
図6(b)の例では、サンプリング周期Tsは、フィードバック制御が繰り返される制御周期Tcの半分未満とされている。従って、制御周期Tc内においては、Z方向の位置について、複数(図示の例では6個)の生の検出値が取得される。
Z軸テーブル9ZのZ方向における位置の検出値としては、例えば、制御周期Tc内の複数の生の検出値のうち、間近の生の検出値が利用されてよい。例えば、図6(b)の上部のグラフに示すように、現時点が時点t1であるとすると、その直前の検出値P1がZ軸制御部33Z(加算部43)に入力されてよい。このようにすることによって、例えば、図6(a)の例と同様に、Z軸テーブル9ZのZ方向における実際の位置に対する制御の遅れを縮小し、高精度に位置決めを行うことができる。
一方、X軸テーブル9XのZ方向における位置(誤差)の検出値としては、例えば、現時点に対して直前の制御周期Tc内の複数の生の検出値の平均値が利用される。例えば、図6(b)の下部のグラフに示すように、現時点が時点t1であるとすると、その直前の複数の検出値P2の平均値がZ軸制御部33Z(加算部43)に入力される。このようにすることによって、図6(a)の例と同様に、例えば、特異的な生の検出値に応じてZ軸テーブル9Zを移動させてしまう蓋然性を低減できる。もちろん、Z軸テーブル9ZのZ方向における位置と同様に、誤差の間近の生の検出値のみが用いられても構わない。
図6(b)の例では、間近の制御周期Tc内に含まれる複数(図示の例では6個)の生の検出値のうち、一部(図示の例では4個)のみに基づいて、平均値が算出されている。ただし、平均値は、間近の制御周期Tc内に含まれる全ての生の検出値に基づいて算出されてもよい。また、図6(a)の例からも理解されるように、間近の制御周期Tcに加えて、さらに過去の制御周期Tc内の生の検出値に基づいて平均値が算出されてもよい。
(サンプリング周期)
図4の説明において言及したように、X軸テーブル9XのZ方向における位置(誤差)、及びZ軸テーブル9ZのX方向における位置(誤差)を取得するサンプリング周期は、適宜に設定されてよい。このサンプリング周期は、制御周期との適合の観点から設定されてもよいし、対象とされているうねりの大きさ等に基づいて設定されてもよい。以下に、うねりの大きさ、加工条件及び上述した平均値を算出するときの生の検出値の数に基づいてサンプリング周期を設定する場合の例を示す。以下の説明では、X軸テーブル9Xの誤差のサンプリング周期を例に取るが、Z軸テーブル9Zの誤差のサンプリング周期についても同様である。
例えば、X軸テーブル9Xのうねり(Z方向における誤差)の1つの山のX方向における長さ(半波長)が0.03mm以上3mm以下であると仮定する。また、X軸テーブル9XのX方向における速度が0.12mm/min以上12mm/min以下であると仮定する。このとき、うねりの1山を通過する最小時間は、以下のとおりである。
0.03/12=0.0025min=0.15sec
うねりの1山の高さ(Z方向における誤差)を安定して検出するために、1山について10個の生の検出値の平均(10点平均)が必要であると仮定する。また、上記の1山を通過する最小時間においても、1山につき10個の生の検出値が得られるようにサンプリング周期を設定するものとする。この場合のサンプリング周期は、以下のとおりである。
0.15/10=0.015sec
以上のようにして、サンプリング周期が設定されてもよい。なお、別の観点では、加工機1は、上記のように設定される時間長さ以下のサンプリング周期でリアルタイム処理が可能に構成されてよい。
ここで、サンプリング周期及び制御周期の具体的な例を示す。サンプリング周期及び/又は制御周期は、例えば、0.02sec以下、0.01sec以下又は0.005sec以下とされてよい。
(加工システム)
図1に戻って、加工機1は、OpenCNC(computerized numerical control)などの技術を利用して診断装置93と接続されてよい。別の観点では、加工機1と診断装置93とによって加工システム91が構築されてよい。
診断装置93は、例えば、コンピュータ(不図示)を含んで構成されてよい。コンピュータは、特に図示しないが、CPU、ROM、RAM及び外部記憶装置を含んで構成されており、CPUがROM及び/又は外部記憶装置に記憶されているプログラムを実行することによって、各種の機能部が構築される。
診断装置93(機能部)は、例えば、加工機1の制御装置5から加工に係る情報を取得する。当該情報としては、例えば、X軸センサ25Xによって検出されたX軸テーブル9XのZ方向における位置(誤差)の情報、及び/又はZ軸センサ25Zによって検出されたZ軸テーブル9ZのX方向における位置(誤差)の情報が挙げられる。誤差の情報は、上述した生の情報であってもよいし、何らかの処理(例えば上述した制御のための処理)が施された情報であってもよい。そして、診断装置93は、取得した情報に基づく処理を行う。
上記の取得した情報に基づく処理としては、例えば、取得した情報に基づく画像の表示が挙げられる。例えば、診断装置93は、表示装置93aを有している。表示装置93aは、例えば、任意の画像を表示可能なものであり、液晶ディスプレイ又は有機ELディスプレイによって構成されている。そして、診断装置93は、取得した情報に応じて表示装置93aに表示させる画像を変化させる。
診断装置93が表示する画像の例としては、例えば、X軸テーブル9XのX方向の位置を横軸にし、X軸テーブル9XのZ方向の位置(誤差)を縦軸にしたグラフのように誤差自体を示すものが挙げられる。Z軸テーブル9Zについても同様の画像が表示されてよい。また、画像は、取得した誤差(真直度)が大きいときに表示される所定の警告画像であってもよい。
診断装置93が実行する処理としては、上記の他、例えば、誤差(真直度)に応じて制御装置5へ制御指令を送信するものが挙げられる。例えば、診断装置93は、誤差が大きいときに加工のサイクルを停止させる信号を制御装置5に送信してもよい。
診断装置93は、制御装置5と隣接してケーブルで接続されていてもよいし、制御装置5(加工機1)から離れており、無線通信及び/又は有線通信を制御装置5との間で行ってもよい。後者の場合において、制御装置5と診断装置93との間にはインターネット及び/又は電話網が介在していてもよい。なお、診断装置93が制御装置5と隣接している場合、診断装置93は、加工機1の一部と捉えられてもよい。また、診断装置93は、制御装置5に含まれていてもよい。
以上のとおり、本実施形態では、加工機1は、第1可動部(X軸テーブル9X)と、第1ガイド(X軸ガイド17X)と、第1駆動源(X軸駆動源23X)と、第1センサ(X軸センサ25X)と、第2可動部(Z軸テーブル9Z)と、第2ガイド(Z軸ガイド17Z)と、第2駆動源(Z軸駆動源23Z)と、第2センサ(Z軸センサ25Z)と、制御装置5とを有している。X軸テーブル9Xは、ワーク103又は工具101(本実施形態では工具101)を支持する。X軸ガイド17Xは、X軸テーブル9Xを第1方向(X方向)に案内する。X軸駆動源23Xは、X軸テーブル9XをX方向に駆動する。X軸センサ25Xは、X軸テーブル9XのX方向における変位である第1変位と、X軸テーブル9XのX方向に直交する第2方向(Z方向)における変位である第1誤差とに応じた信号SXを出力する。Z軸テーブル9Zは、ワーク103又は工具101(本実施形態ではワーク103)を支持する。Z軸ガイド17Zは、Z軸テーブル9ZをZ方向に案内する。Z軸駆動源23Zは、Z軸テーブル9ZをZ方向に駆動する。Z軸センサ25Zは、Z軸テーブル9ZのZ方向における変位である第2変位に応じた信号SZを出力する。制御装置5は、X軸テーブル9X及びZ軸テーブル9Zの移動に関する指令の情報を含むプログラム(NCプログラム107)に従ってX軸駆動源23X及びZ軸駆動源23Zを制御する。制御装置5は、補間部41と、第1制御部(X軸制御部33X)と、第2制御部(Z軸制御部33Z)と、を有している。補間部41は、NCプログラム107に基づいて、X軸テーブル9XのX方向における所定の制御周期Tc毎の第1目標位置と、Z軸テーブル9ZのZ方向における制御周期Tc毎の第2目標位置とを算出する。X軸制御部33Xは、制御周期Tc毎に、X軸センサ25Xからの信号SXに基づく前記第1変位の間近の検出値を取得し、その取得した検出値と前記第1目標位置との差に基づいて第1偏差を算出し、前記第1偏差を縮小するようにX軸駆動源23Xを制御する。Z軸制御部33Zは、制御周期Tc毎に、Z軸センサ25Zからの信号SZに基づく前記第2変位の間近の検出値を取得し、その取得した検出値と前記第2目標位置との差に基づいて第2偏差を算出し、前記第2偏差を縮小するようにZ軸駆動源23Zを制御する。また、Z軸制御部33Zは、制御周期Tc毎に、X軸センサ25Xからの信号SXに基づく前記第1誤差の間近の検出値を取得し、前記第1誤差に起因するワーク103と工具101とのZ方向における相対位置の誤差の少なくとも一部がZ軸テーブル9ZのZ方向の移動によって打ち消されるように、前記第1誤差の検出値に基づいて前記第2偏差を増加又は減少させる。
従って、例えば、真直度に起因する加工誤差を低減できる。また、例えば、リアルタイムで真直度に係る誤差が取得されることから、再現性のない真直度、又は再現性が短時間に限定される真直度に対応することができる。その結果、高い加工精度を実現できる。例えば、発明者が行った実証実験では、工具101とワーク103との相対移動に関して、25nm以上の波高のうねりを5nm以下の波高のうねりに縮小することができた。また、真直度が加工誤差に及ぼす影響を縮小するための移動は、NCプログラム107に従ってワーク103をZ方向へ移動させるためのZ軸テーブル9Zの移動によって実現される。従って、NCプログラム107とは無関係なテーブル(真直度の影響を低減するための専用のテーブル)を設ける必要がない。その結果、加工機1の構成を簡素化できる。別の観点では、既設の加工機1に対して本開示に係る技術を適用して、真直度が加工誤差に及ぼす影響を低減できる。なお、加工機1は、X軸センサ25X及びZ軸センサ25Zによる2軸に係る検出値を1軸に係るZ軸テーブル9Zの駆動に利用しており、画期的である。また、別の観点では、1軸に係るX軸テーブル9Xに対して設けられたX軸センサ25Xの検出値をX軸テーブル9X及びZ軸テーブル9Zの2軸に係る駆動に利用しており、画期的である。
第2センサ(Z軸センサ25Z)は、第2可動部(Z軸テーブル9Z)の第1方向(X方向)における変位である第2誤差に応じた信号を出力してよい。第1制御部(X軸制御部33X)は、制御周期Tc毎に、Z軸センサ25Zからの信号SZに基づく前記第2誤差の間近の検出値を取得し、前記第2誤差に起因するワーク103と工具101とのX方向における相対位置の誤差の少なくとも一部が第1可動部(X軸テーブル9X)のX方向の移動によって打ち消されるように、前記第2誤差の検出値に基づいて前記第1偏差を増加又は減少させてよい。
この場合、例えば、X軸テーブル9Xの移動に係る真直度だけでなく、Z軸テーブル9Zの移動に係る真直度についても、上記の効果を得ることができる。その結果、XZ平面における任意の方向について、加工精度が向上する。
第1可動部(X軸テーブル9X)は、ワーク103及び工具101の一方(本実施形態では工具101)を支持してよい。第2可動部(Z軸テーブル9Z)は、ワーク103及び工具101の他方(本実施形態ではワーク103)を支持してよい。
この場合、例えば、X軸テーブル9X及びZ軸テーブル9Zの一方が他方を支持し、両テーブルがワーク103及び工具101の一方を支持する態様(当該態様も本開示に係る技術に含まれてよい。)に比較して、真直度が加工精度に及ぼす影響を低減することが容易である。例えば、X軸テーブル9XがZ軸ベッド19Zを兼ねることによってZ軸テーブル9Zを支持している態様(当該態様も本開示に係る技術に含まれてよい。)では、X軸テーブル9XがZ方向への誤差を生じつつX方向に対して傾斜(Y軸回りに回転)すると、Z軸テーブル9ZがZ軸ベッド19Zによって案内される方向がZ方向に対して傾斜する。その結果、X軸テーブル9XのZ方向の誤差の大きさと同等の大きさの変位でZ軸テーブル9Zを移動させても、誤差が検出されたZ方向とZ軸テーブル9Zが移動する方向とが互いに傾斜していることから、誤差を完全に打ち消すことができなくなる。しかし、X軸テーブル9Xが工具101を保持し、Z軸テーブル9Zがワーク103を保持している態様においては、2つのテーブルは、互いに独立して移動可能であるから、上記のような不都合を生じない。
第1センサ(X軸センサ25X)は2次元スケールとされてよい。
この場合、例えば、X軸センサ25XのX方向の変位を検出するセンサと、X軸センサ25XのZ方向の変位(誤差)を検出するセンサとを別個に取り付け、その全体をX軸センサ25Xとして利用する態様(当該態様も本開示に係る技術に含まれてよい)に比較して、構成が簡素化される。
2次元スケール(X軸センサ25X)は、第1方向(X方向)において位置を検出可能な範囲の長さが第2方向(Z方向)において位置を検出可能な範囲の長さの10倍以上とされてよい。
この場合、例えば、NCプログラム107に応じたX軸テーブル9XのX方向における移動と、この移動に係る距離に比較して微小な真直度に係る誤差との双方を過不足無く検出しつつ、X軸センサ25Xを小型化することができる。X軸センサ25Xの小型化によって、例えば、X軸センサ25Xの加工機1内における取付位置の自由度が向上する。その結果、例えば、アッベの原理を考慮してX軸センサ25Xを配置して、検出精度を向上させることが容易化される。
制御装置5は、統合制御部35を有してよい。統合制御部35は、所定のサンプリング周期Tsで第1センサ(X軸センサ25X)からの信号SXに基づいて第1誤差(Z方向の位置)の生の検出値を取得し、複数の前記第1誤差の生の検出値の平均値を算出してよい。第2制御部(Z軸制御部33Z)は、上記平均値を前記第1誤差の検出値(間近の検出値)として用いてよい。
この場合、例えば、既述のように、X軸テーブル9XのZ方向における位置(誤差)に係る複数の生の検出値のうち、特異的な生の検出値に対してZ軸テーブル9Zを移動させる蓋然性が低減される。ひいては、却って加工精度を低下させてしまう蓋然性が低減される。
第1ガイド(X軸ガイド17X)はV-V転がり案内とされてよい。
この場合、例えば、X軸ガイド17Xの真直度を小さくすることが容易である。また、X軸テーブル9XをX方向に移動させるときの摩擦抵抗が小さいから、X方向の位置決めを高精度に行うことができる。このような構成により、高い加工精度を実現することができる。その結果、X軸テーブル9Xの真直度が加工精度に及ぼす影響をZ軸テーブル9Zの移動によって低減する効果の有用性が高くなる。
第1駆動源(X軸駆動源23X)及び第2駆動源(Z軸駆動源23Z)それぞれはリニアモータとされてよい。
この場合、例えば、回転式の駆動源の回転を並進運動に変換してテーブル9に伝達する態様(当該態様も本開示に係る技術に含まれてよい。)に比較して、バックラッシュ等に起因する機械的な誤差が低減され、高い加工精度を実現することができる。その結果、X軸テーブル9Xの真直度が加工精度に及ぼす影響をZ軸テーブル9Zの移動によって低減する効果の有用性が高くなる。また、X軸テーブル9Xの微小な真直度に係る誤差の大きさと同等の大きさでZ軸テーブル9Zを移動させることが容易化され、X軸テーブル9Xの真直度が加工精度に及ぼす影響を低減する効果が向上する。
本開示に係る加工システム91は、上記のような加工機1と、診断装置93とを有してよい。診断装置93は、加工機1から前記第1誤差(X軸テーブル9XのZ方向の位置)の検出値の情報を取得し、取得した情報に応じた画像を表示してよい。
この場合、例えば、加工機1の制御のための情報を利用して、X軸ガイド17Xの案内面の状態を管理することができる。換言すれば、X軸ガイド17Xの案内面の状態を測定する特別な測定システムを追加する必要がない。また、加工中にリアルタイムで案内面の状態を管理することができる。その結果、例えば、案内面が経年劣化又は破損を生じた状態での加工(不良品の製造)を継続してしまう蓋然性が安価に低減される。
また、本開示に係る被加工物の製造方法は、上記のような加工機1を用いて、ワーク103と工具101とを接触させてワーク103を被加工物に加工するステップを有する。
この場合、例えば、上述した真直度が加工精度に及ぼす影響を低減する効果によって、形状の精度が高い被加工物を得ることができる。
(変形例)
以下では、実施形態の変形例について説明する。以下の説明では、基本的に、実施形態との相違部分についてのみ述べる。特に言及が無い事項は、実施形態と同様とされたり、実施形態から類推されたりしてよい。以下の説明では、実施形態の構成に対応する構成に対して、便宜上、実施形態と差異があっても実施形態の符号を付すことがある。
(対象とする軸に関する変形例)
図7は、変形例に係る加工機201の制御系に係るブロック図である。この図は、図4を更に簡略化した図に相当する。
実施形態の説明でも述べたように、真直度が加工誤差に及ぼす影響を低減する方法は、複数の平行移動に係る軸のうちのいずれの軸のいずれの方向の真直度に対して適用されてもよい。図7では、全ての軸の全ての方向の真直度について、加工誤差を低減する方法が適用された態様が例示されている。具体的には以下のとおりである。
X軸テーブル9Xの位置を検出するX軸センサ37X(X軸センサ25X及びX軸算出部31Xを含む。)は、これまでに説明した信号SXx及びSXzに加えて、X軸テーブル9XのY方向における位置の検出値の情報を含む信号SXyを出力する。すなわち、X軸センサ37Xは、3軸全ての位置を検出可能である。
上記のような3軸の位置を検出するX軸センサ37Xは、適宜に実現されてよい。例えば、既述のX軸センサ25Xに加えて、X軸センサ25Xと同様の構成を有する2次元スケールをX方向の位置とY方向の位置とを検出する向きで設けてよい。また、例えば、X軸センサ25Xに加えて、Y方向の位置のみを検出するセンサが設けられてもよい。さらに、X軸センサ25X(2次元スケール)に代えて、3次元スケールが設けられてもよい。3次元スケールは、例えば、2次元スケールと同様又は類似した構成において、パターン27cに応じて生成される信号SXの強度に基づいてスケール部27と検出部29との距離を特定するものとされてよい。
そして、信号SXzに保持されているX軸テーブル9XのZ方向の検出位置(検出誤差)に基づくZ軸テーブル9ZのZ方向における位置の制御に加えて、当該制御と同様に、信号SXyに保持されているX軸テーブル9XのY方向の検出位置(検出誤差)に基づくサドル13のY方向における位置の制御がなされてよい。具体的には、信号SXyの情報は、Y軸制御部33Yに入力される。Y軸制御部33Yは、Y方向の誤差に起因するワーク103及び工具101の相対位置の誤差の少なくとも一部がサドル13のY方向における移動によって打ち消されるように、Y方向の検出誤差に基づいて、サドル13を駆動するY軸駆動源23Yを制御する。
なお、X軸テーブル9XのZ方向の誤差の影響を打ち消すときは、Z軸テーブル9Zの位置制御ループの偏差にZ方向の誤差が加算された。一方、サドル13は、Z軸テーブル9Zとは異なり、X軸テーブル9Xに支持されている。従って、X軸テーブル9XのY方向の誤差の影響を打ち消すときは、上記とは逆に、サドル13の位置制御ループの偏差からY方向の誤差が減算される。ただし、この説明は、図1に示す直交座標系XYZの正負をそのまま制御に適用した場合の概念上のものである。従って、例えば、実際の制御部内の演算においては、加算及び減算は上記の説明と逆であってもよい。
上記のX軸テーブル9Xの真直度に係る制御と同様に、Z軸テーブル9Zの真直度に係る制御、及びサドル13の真直度に係る制御が行われてよい。
具体的には、Y軸センサ37Yは、サドル13のX方向における検出位置(検出誤差)の情報を含む信号SYxと、サドル13のY方向における検出位置の情報を含む信号SYyと、サドル13のZ方向における検出位置(検出誤差)の情報を含む信号SYzとを出力する。信号SYyは、NCプログラム107に従うサドル13のY方向における位置制御に利用される。信号SYxは、サドル13のX方向における誤差が加工精度に及ぼす影響を低減するためのX軸テーブル9XのX方向における位置制御に利用される。信号SYzは、サドル13のZ方向における誤差が加工精度に及ぼす影響を低減するためのZ軸テーブル9ZのZ方向における位置制御に利用される。
Z軸センサ37Zは、既述の信号SZx及びSZzに加えて、Z軸テーブル9ZのY方向における検出位置(検出誤差)の情報を含む信号SZyを出力する。信号SZyは、Z軸テーブル9ZのY方向における誤差が加工精度に及ぼす影響を低減するためのサドル13のY方向における位置制御に利用される。
この他、特に図示しないが、真直度が加工精度に及ぼす影響を低減する方法は、例えば、1つの軸の1つの方向の真直度(例えばX軸テーブル9XのZ方向における誤差)のみに適用されてもよい。また、例えば、当該方法は、1つの軸の2つの方向の真直度(例えばX軸テーブル9XのZ方向及びY方向における誤差)のみに適用されてもよい。また、例えば、当該方法は、1つの軸の1つの方向の真直度、及び上記1つの方向とは異なる方向への平行移動に係る他の1つの軸の上記1つの方向と同一の方向の真直度(例えばX軸テーブル9XのY方向における誤差及びZ軸テーブル9ZのY方向における誤差)のみに適用されてもよい。
(2次元スケールの構成の他の例)
図8は、2次元スケールに関して、図3(a)を参照して説明した構成例とは別の構成例を示す図である。ここでは、説明の便宜上、X軸センサ25Xを例に取る。
X軸センサ25Xは、図3(a)の構成例と同様に、スケール部27と、検出部29とを有している。スケール部27は、互いに平行にX方向に延びるA相スケール部27a及びB相スケール部27bを有している。検出部29は、A相スケール部27aのパターン27cを検出するA相検出部29aと、B相スケール部27bのパターン27cを検出するB相検出部29bとを有している。
ただし、図3(a)の構成例とは異なり、A相スケール部27aにおいては、X方向に平行に延びる複数のパターン27cがZ方向に配列されている。従って、A相検出部29aは、Z方向の位置を検出する。また、B相スケール部27bにおいては、Z方向に平行に延びる複数のパターン27cがX方向に配列されている。従って、B相検出部29bは、X方向の位置を検出する。以上のようにして、図示の2次元スケールは2方向の変位を検出する。
この他、特に図示しないが、例えば、2次元スケールは、2次元的に配置されたビットパターンを検出するものであってもよい。また、2次元スケールは、所定の周期でスケール部を撮像して画像を取得し、前回の画像と今回の画像との比較に基づいて2方向の移動量を算出するものであってもよい。
(ガイドの構成の他の例)
図9は、テーブル9又はサドル13を案内するガイドに関して、図2(b)を参照して説明した構成例とは別の構成例を示す図である。この図は、図2(b)に相当する断面図となっている。説明の便宜上、ガイドに案内される部材としてテーブル9を例に取る。
図9に示すガイド17Aは、いわゆる静圧案内によって構成されている。具体的には、テーブル9の被案内面とベッド19の案内面との間には隙間が構成されている。当該隙間にはポンプ57等によって所定の圧力で流体が供給される。流体は、気体(例えば空気)であってもよいし、液体(例えば油)であってもよい。
このようにガイド17Aが静圧案内によって構成されている場合、例えば、NCプログラム107に従ってテーブル9をその移動方向に移動させるときの摩擦抵抗が小さいから、移動方向の位置決めを高精度に行うことができる。このような構成により、高い加工精度を実現することができる。その結果、真直度が加工精度に及ぼす影響を低減する効果の有用性が高くなる。
(駆動機構の他の例)
上記の図9は、駆動機構の構成としてリニアモータ以外の構成例を示す図ともなっている。具体的には、図9では、ねじ軸59と、ねじ軸59と螺合しているナット61とが図示されている。すなわち、ねじ機構(例えばボールねじ機構又はすべりねじ機構)が図示されている。ねじ軸59及びナット61の一方(図示の例ではナット61)の回転が規制されている状態で、ねじ軸59及びナット61の他方(図示の例ではねじ軸59)が回転されることによって、両者は軸方向に相対移動する。ねじ軸59及びナット61の一方(図示の例ではねじ軸59)はベッド19に支持されており、ねじ軸59及びナット61の他方(図示の例ではナット61)はテーブル9に支持されている。ねじ軸59(又はナット61)を回転させる駆動力は、例えば、回転式の電動機(不図示)によって生成される。
(主軸の軸受の構成例)
図10は、主軸15の軸受の構成の一例を示す断面図である。
実施形態の説明で述べたように、主軸15の軸受は、すべり軸受、転がり軸受、静圧軸受又はこれらの2以上の組み合わせとされてよい。図10では、静圧軸受が例示されている。具体的には、工具101又はワーク103を保持して軸回りに回転する主軸本体15a(この主軸本体15aを主軸と呼称してもよい。)の外周面と、主軸本体15aを軸回りに囲む軸受部材15b(静圧軸受)の内周面との間には隙間が構成されている。当該隙間にはポンプ57等によって所定の圧力で流体が供給される。流体は、気体(例えば空気)であってもよいし、液体(例えば油)であってもよい。
このように主軸本体15aが静圧軸受によって支持されている場合、例えば、NCプログラム107に従って主軸本体15aを軸回りに回転させるときの摩擦抵抗が小さいから、主軸本体15aの回転数を高精度に制御することができ、ひいては、高い加工精度を実現することができる。その結果、真直度が加工精度に及ぼす影響を低減する効果の有用性が高くなる。
なお、以上の実施形態及び変形例において、X方向は第1方向の一例である。X軸テーブル9Xは第1可動部の一例である。X軸ガイド17Xは第1ガイドの一例である。X軸駆動源23Xは第1駆動源の一例である。X軸センサ25Xは第1センサの一例である。X軸制御部33Xは第1制御部の一例である。Z方向は第2方向の一例である。Z軸テーブル9Zは第2可動部の一例である。Z軸ガイド17Zは第2ガイドの一例である。Z軸駆動源23Zは第2駆動源の一例である。Z軸センサ25Zは第2センサの一例である。Z軸制御部33Zは第2制御部の一例である。
本開示に係る技術は、以上の実施形態及び変形例に限定されず、種々の態様で実施されてよい。
実施形態の説明でも述べたように、加工機は、図1に例示した構成のものに限定されない。例えば、加工機は、超精密非球面加工機のような特殊な工作機械に限定されず、一般的な工作機械であってもよい。また、加工機は、工作機械に限定されず、例えば、ロボットであってもよい。別の観点では、移動に関する指令の情報を含むプログラムは、NCプログラムに限定されず、ティーチングによって生成されたものであってもよい。
また、加工機は、研削及び/又は研磨を行うものに限定されず、例えば、切削又は放電加工を行うものであってもよいし、上述した種々の加工の2以上を行うことができるものであってもよい。加工は、回転しているワークに回転していない工具を接触させるもの(例えば旋削)であってもよいし、回転していないワークに回転している工具を接触させるもの(例えば転削)であってもよいし、ワーク及び工具のいずれも回転していないものであってもよい。
加工機は、ワーク及び/又は工具を平行移動させる軸として、互いに直交する少なくとも2つの軸を有している。従って、例えば、加工機は、平行移動に関して3つの軸を有していなくてもよいし、逆に、4つ以上の軸を有していてもよい。
1…加工機、5…制御装置、9X…X軸テーブル(第1可動部)、9Z…Z軸テーブル(第2可動部)、17X…X軸ガイド(第1ガイド)、17Z…Z軸ガイド(第2ガイド)、23X…X軸駆動源(第1駆動源)、23Z…Z軸駆動源(第2駆動源)、25X…X軸センサ(第1センサ)、25Z…Z軸センサ(第2センサ)、33X…X軸制御部(第1制御部)、33Z…Z軸制御部(第2制御部)、41…補間部、101…工具、103…ワーク、107…NCプログラム(プログラム)。

Claims (11)

  1. ワーク又は工具を支持する第1可動部と、
    前記第1可動部を第1方向に案内する第1ガイドと、
    前記第1可動部を前記第1方向に駆動する第1駆動源と、
    前記第1可動部の前記第1方向における変位である第1変位と、前記第1可動部の前記第1方向に直交する第2方向における変位である第1誤差とに応じた信号を出力する第1センサと、
    前記ワーク又は前記工具を支持する第2可動部と、
    前記第2可動部を前記第2方向に案内する第2ガイドと、
    前記第2可動部を前記第2方向に駆動する第2駆動源と、
    前記第2可動部の前記第2方向における変位である第2変位に応じた信号を出力する第2センサと、
    前記第1可動部及び前記第2可動部の移動に関する指令の情報を含むプログラムに従って前記第1駆動源及び前記第2駆動源を制御する制御装置と、
    を有しており、
    前記制御装置が、
    前記プログラムの情報に基づいて、前記第1可動部の前記第1方向における所定の制御周期毎の第1目標位置と、前記第2可動部の前記第2方向における前記制御周期毎の第2目標位置とを算出する補間部と、
    前記制御周期毎に、前記第1センサからの信号に基づく前記第1変位の間近の検出値を取得し、その取得した検出値と前記第1目標位置との差に基づいて第1偏差を算出し、前記第1偏差を縮小するように前記第1駆動源を制御する第1制御部と、
    前記制御周期毎に、前記第2センサからの信号に基づく前記第2変位の間近の検出値を取得し、その取得した検出値と前記第2目標位置との差に基づいて第2偏差を算出し、前記第2偏差を縮小するように前記第2駆動源を制御する第2制御部と、を有しており、
    前記第2制御部が、前記制御周期毎に、前記第1センサからの信号に基づく前記第1誤差の間近の検出値を取得し、前記第1誤差に起因する前記ワークと前記工具との前記第2方向における相対位置の誤差の少なくとも一部が前記第2可動部の前記第2方向の移動によって打ち消されるように、前記第1誤差の検出値に基づいて前記第2偏差を増加又は減少させる
    加工機。
  2. 前記第2センサが、前記第2可動部の前記第1方向における変位である第2誤差に応じた信号を出力し、
    前記第1制御部が、前記制御周期毎に、前記第2センサからの信号に基づく前記第2誤差の間近の検出値を取得し、前記第2誤差に起因する前記ワークと前記工具との前記第1方向における相対位置の誤差の少なくとも一部が前記第1可動部の前記第1方向の移動によって打ち消されるように、前記第2誤差の検出値に基づいて前記第1偏差を増加又は減少させる
    請求項1に記載の加工機。
  3. 前記第1可動部が、前記ワーク及び前記工具の一方を支持し、
    前記第2可動部が、前記ワーク及び前記工具の他方を支持する
    請求項1又は2に記載の加工機。
  4. 前記第1センサが2次元スケールである
    請求項1~3のいずれか1項に記載の加工機。
  5. 前記2次元スケールにおいて、前記第1方向の位置を検出可能な範囲の長さが前記第2方向の位置を検出可能な範囲の長さの10倍以上である
    請求項4に記載の加工機。
  6. 前記制御装置は、所定のサンプリング周期で前記第1センサからの信号に基づいて前記第1誤差の生の検出値を取得し、複数の前記第1誤差の生の検出値の平均値を算出する統合制御部を有しており、
    前記第2制御部は、前記平均値を前記第1誤差の検出値として用いて前記第2偏差を増加又は減少させる
    請求項1~5のいずれか1項に記載の加工機。
  7. 前記第1ガイドが静圧案内又はV-V転がり案内である
    請求項1~6のいずれか1項に記載の加工機。
  8. 前記加工機が、前記ワーク又は前記工具を保持する主軸と、当該主軸を軸回りに回転可能に支持する静圧軸受とを有している
    請求項1~7のいずれか1項に記載の加工機。
  9. 前記第1駆動源及び前記第2駆動源それぞれがリニアモータである
    請求項1~8のいずれか1項に記載の加工機。
  10. 請求項1~9のいずれか1項に記載の加工機と、
    前記加工機から前記第1誤差の検出値の情報を取得し、取得した情報に応じた画像を表示する診断装置と、
    を有している加工システム。
  11. 請求項1~9のいずれか1項に記載の加工機を用いて、前記ワークと前記工具とを接触させて前記ワークを被加工物に加工するステップを有する
    被加工物の製造方法。
JP2023024938A 2020-07-28 2023-02-21 加工機、加工システム及び被加工物の製造方法 Pending JP2023062709A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023024938A JP2023062709A (ja) 2020-07-28 2023-02-21 加工機、加工システム及び被加工物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020127195A JP2022024542A (ja) 2020-07-28 2020-07-28 加工機、加工システム及び被加工物の製造方法
JP2023024938A JP2023062709A (ja) 2020-07-28 2023-02-21 加工機、加工システム及び被加工物の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020127195A Division JP2022024542A (ja) 2020-07-28 2020-07-28 加工機、加工システム及び被加工物の製造方法

Publications (1)

Publication Number Publication Date
JP2023062709A true JP2023062709A (ja) 2023-05-08

Family

ID=80035588

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020127195A Pending JP2022024542A (ja) 2020-07-28 2020-07-28 加工機、加工システム及び被加工物の製造方法
JP2023024938A Pending JP2023062709A (ja) 2020-07-28 2023-02-21 加工機、加工システム及び被加工物の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020127195A Pending JP2022024542A (ja) 2020-07-28 2020-07-28 加工機、加工システム及び被加工物の製造方法

Country Status (7)

Country Link
US (1) US20230339060A1 (ja)
JP (2) JP2022024542A (ja)
KR (1) KR20230029941A (ja)
CN (1) CN116194850A (ja)
DE (1) DE112021004058T5 (ja)
TW (1) TWI796716B (ja)
WO (1) WO2022024916A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194707B2 (ja) * 2019-04-26 2022-12-22 芝浦機械株式会社 ワークの加工方法およびワークの加工機
JP2024057290A (ja) * 2022-10-12 2024-04-24 Dmg森精機株式会社 ワークと該ワークを加工する加工体との相対位置の補正方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255706A (ja) 1985-09-05 1987-03-11 Nec Corp テ−ブル位置決め作動の直角度補正方法
JPH04111003A (ja) 1990-08-30 1992-04-13 Nikon Corp Nc装置
JPH0976141A (ja) 1995-09-13 1997-03-25 Mitsubishi Heavy Ind Ltd 超精密加工機の真直度補正システム
JPH10315082A (ja) * 1997-05-14 1998-12-02 Canon Inc ステージ装置およびそれを用いた加工方法
JP2005128914A (ja) * 2003-10-27 2005-05-19 Olympus Corp Ncプログラム作成方法
JP2007086953A (ja) * 2005-09-21 2007-04-05 Jtekt Corp 加工面のnc補正加工方法および補正加工用ncデータの作成装置
US8725283B2 (en) * 2006-08-04 2014-05-13 Hurco Companies, Inc. Generalized kinematics system
EP2270425A1 (en) * 2009-07-03 2011-01-05 Leica Geosystems AG Coordinate measuring machine (CMM) and method of compensating errors in a CMM
JP2011240457A (ja) * 2010-05-20 2011-12-01 Panasonic Corp 切削加工装置,切削加工方法
KR101448509B1 (ko) * 2013-12-04 2014-10-13 순환엔지니어링 주식회사 직선 운동 평면 구동형 겐트리 스테이지의 동적 및 열변형 에러 실시간 보상 시스템, 스테이지 장치 및 제조, 계측 및 검사 장비
JP6295070B2 (ja) * 2013-12-05 2018-03-14 オークマ株式会社 多軸工作機械の幾何誤差同定方法及び多軸工作機械

Also Published As

Publication number Publication date
TWI796716B (zh) 2023-03-21
KR20230029941A (ko) 2023-03-03
US20230339060A1 (en) 2023-10-26
DE112021004058T5 (de) 2023-08-03
WO2022024916A1 (ja) 2022-02-03
JP2022024542A (ja) 2022-02-09
TW202212047A (zh) 2022-04-01
CN116194850A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
JP2023062709A (ja) 加工機、加工システム及び被加工物の製造方法
US8522654B2 (en) Cutting-edge position detecting method and cutting-edge position detecting apparatus
JP4276252B2 (ja) 工具とワークの接触検知機構を有する工作機械
US7850406B2 (en) Method for setting working origin and machine tool for implementing the same
CN110186400B (zh) 摩擦焊接同轴度精度检测装置及其检测方法
JP5355037B2 (ja) 精度測定方法及び数値制御工作機械の誤差補正方法並びに誤差補正機能を有した数値制御工作機械
CN110268345B (zh) 运动评价方法、评价装置以及使用了该评价方法的参数调节方法、工件的加工方法以及机床
CN113245625A (zh) 一种集成力传感器的加工设备及超精密切削对刀方法
JP2831610B2 (ja) 測定装置
JP5496029B2 (ja) 放電加工装置
JP6723013B2 (ja) 流体圧アクチュエータ
JP4618616B2 (ja) 数値制御装置
JP7261206B2 (ja) 加工機及び被加工物の製造方法
EP4134762A1 (en) Machining method
JP6054134B2 (ja) 超精密形状測定装置
WO2022065283A1 (ja) 加工機、計測装置及び被加工物の製造方法
CN215316095U (zh) 一种集成力传感器的加工设备
JPS62176739A (ja) 工作機械の真直度補正装置
CN116367959A (zh) 进给装置
CN110014176A (zh) 加工方法以及加工装置
JPH11221763A (ja) 研削方法および研削装置
JP2021049591A (ja) 工作機械における機上測定方法
da Silva et al. Design, Development and Geometric Error Analysis of an Aerostatic Rotary Table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230707