JP2007294514A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2007294514A
JP2007294514A JP2006117720A JP2006117720A JP2007294514A JP 2007294514 A JP2007294514 A JP 2007294514A JP 2006117720 A JP2006117720 A JP 2006117720A JP 2006117720 A JP2006117720 A JP 2006117720A JP 2007294514 A JP2007294514 A JP 2007294514A
Authority
JP
Japan
Prior art keywords
insulating film
lower electrode
interlayer insulating
film
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006117720A
Other languages
English (en)
Other versions
JP2007294514A5 (ja
Inventor
Yuichi Kono
祐一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006117720A priority Critical patent/JP2007294514A/ja
Priority to US11/733,975 priority patent/US20070246799A1/en
Publication of JP2007294514A publication Critical patent/JP2007294514A/ja
Publication of JP2007294514A5 publication Critical patent/JP2007294514A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】MIM構造のキャパシタをダマシン工程を利用して形成する場合に、ディッシングやエロージョンの発生により、キャパシタが不良になることを防止した半導体装置を提供する。
【解決手段】電極溝11c上にビアホール開口用の開口部OP1を、また、キャパシタ形成領域外に設けられた配線層9bの上方部に対応する位置の層間絶縁膜6上に配線層9bとの接続のためのビアホール開口用の開口部OP2を形成する。このとき、開口部OP1の開口直径は、開口部OP2よりも大きく設定するものとし、例えば開口部OP2の直径が0.36μmであるならば、開口部OP1の開口直径は0.38μmに設定する。
【選択図】図5

Description

本発明は半導体装置に関し、特にMIM(Metal Insurator Metal)構造のキャパシタを有する半導体装置に関する。
通信用LSIや高速CMOSロジックデバイスでは、高速動作の実現のため、層間絶縁膜の低誘電率化とダマシン(Damascene)法を用いた銅(Cu)配線の使用が一般化しつつある。また、通信用LSIや高速CMOSロジックデバイスでは、アナログ回路中にMIM構造のキャパシタを有することが一般的である。
ダマシン法は、層間絶縁膜中に配線用の溝および/またはコンタクトプラグ用のホールを形成し、その中に銅を埋め込んだ後、不要な部分の銅をCMP(Chemical Mechanical Polishing)により取り除く手法であり、配線またはコンタクトプラグを別個に形成するシングルダマシンと、配線およびコンタクトホールを同時に形成するデュアルダマシンとがある。
どちらを採用する場合でもCMPは必須であり、コンタクトプラグに比べて面積の大きな配線の形成に際しては、研磨時にディッシングやエロージョンという現象が発生する。
ディッシングは、CMPで使用する研磨パッドが変形して配線の断面形状が皿状に窪むような現象であり、エロージョンは配線が密集する部分において配線の表面だけでなく層間絶縁膜の表面も併せて研磨される現象である。
例えば特許文献1では、CMPの研磨条件を適切に選択することでディッシングやエロージョンの発生を防止することが開示されている。
特開2004−14828号公報
最近では、MIM構造のキャパシタもダマシン工程を利用して形成する技術が開発されているが、キャパシタの電極は配線に比べてもさらに面積が広いので、ディッシングやエロージョンの問題についてはより深刻であるが、上記特許文献1にはMIM構造のキャパシタに関する記載はない。
本発明は上記のような問題点を解消するためになされたもので、MIM構造のキャパシタをダマシン工程を利用して形成する場合に、ディッシングやエロージョンの発生により、キャパシタが不良になることを防止した半導体装置を提供することを目的とする。
本発明に係る請求項1記載の半導体装置は、半導体基板の上方に配設された層間絶縁膜と、前記層間絶縁膜の上層部に配設された下部電極と、前記下部電極上に配設された誘電体膜と、前記誘電体膜を間に挟んで前記下部電極に対向して配設された上部電極とを有したキャパシタを備え、前記下部電極は、その底部から前記半導体基板の主面に垂直な方向に前記層間絶縁膜を貫通するように設けられたコンタクトプラグと一体をなす半導体装置であって、前記コンタクトプラグの直径は、前記層間絶縁膜を前記半導体基板の主面と垂直な方向に貫通するように設けられた他のコンタクトプラグの直径よりも広く形成される。
本発明に係る請求項1記載の半導体装置によれば、下部電極の底部から半導体基板の主面に垂直な方向に層間絶縁膜を貫通するように設けられたコンタクトプラグ直径を、他のコンタクトプラグの直径よりも広く形成することで、下部電極の製造時のフォトリソグラフィのフォーカスマージンが大きくなり。下部電極形成用の電極溝をより深く形成してもコンタクトプラグの形成に不具合が生じることがない。このため、電極溝の深さで規定される下部電極の厚さが厚くなり、CMPによる過剰研磨で、ディッシングやエロージョンが発生し、下部電極の表面が皿状に窪んでも、下部電極の厚さがディッシングやエロージョンによる過剰研磨量に比べて十分厚いので、下部電極が局所的にでも完全に除去されるということがなく、キャパシタに不具合が生じることが防止される。
<はじめに>
本発明に係る実施の形態の説明に先立って、MIM構造のキャパシタに発生するディッシングについて説明する。
図1は、本発明を適用しない場合のMIM構造のキャパシタを有する半導体装置90を示す断面図である。
図1に示すように、シリコン基板等の半導体基板1上に、例えばCVD法により形成されたシリコン酸化膜(SiO2)で構成される層間絶縁膜2が配設されている。
ここで、図1においては半導体基板1上には半導体素子が形成されていない例を示しているが、同じ半導体基板1上の他の部分ではMOSトランジスタ等の半導体素子が形成されており、当該半導体素子を覆うために層間絶縁膜2が設けられている。
また、層間絶縁膜2上には、例えばCVD法により形成されたSiOC等で構成される層間絶縁膜3が配設され、層間絶縁膜3の表面内には銅の配線層5aが配設されている。層間絶縁膜3はSiOCに限定されるものではなく、SiC膜などの、いわゆるLow−k膜と呼称される膜であれば良い。もちろん、シリコン酸化膜等の比較的誘電率の高い膜でも良い。
配線層5aはダマシン法により形成され、配線層5aはバリアメタル膜BM1で囲まれている。
バリアメタル膜BM1は、下側からTaN(窒化タンタル)、Ta(タンタル)、Ti(チタン)、TiN(窒化チタン)の順に積層された多層膜、あるいはTa(タンタル)、TaN(窒化タンタル)の順に積層された多層膜、あるいはTi(チタン)、TiN(窒化チタン)の順に積層された多層膜で構成される。
層間絶縁膜3上には、例えばSiN膜等の絶縁膜で構成され、Cuの拡散を防止する拡散防止絶縁膜PDが配設される。なお、拡散防止絶縁膜PDは機械的強度の低いSiOCの層間絶縁膜を保護する保護膜(キャップ絶縁膜)としても機能し、シリコン酸化膜を用いる場合もある。
拡散防止絶縁膜PD上にはSiOC等で構成される層間絶縁膜4が配設され、層間絶縁膜4の上層部には銅の配線層7bが配設され、層間絶縁膜4の下層部には層間絶縁膜4および拡散防止絶縁膜PDを貫通して配線層7bと配線層5aとを電気的に接続するコンタクトプラグ6aが設けられている。なお、配線層7bとコンタクトプラグ6aとはデュアルダマシンにより形成され、両者は一体となっており、両者はバリアメタル膜BM1で囲まれている。コンタクトプラグ6aの直径は0.36μmに設定されている。
層間絶縁膜4上には、拡散防止絶縁膜PDが配設され、拡散防止絶縁膜PD上にはSiOC等で構成される層間絶縁膜5が配設されている。そして、層間絶縁膜5の上層部には銅の配線層9aおよび9bが複数配設され、配線層9bは、層間絶縁膜5および拡散防止絶縁膜PDを貫通して配線層7bに達するコンタクトプラグ8aによって、配線層7bと電気的に接続される構成となっている。なお、配線層9bとコンタクトプラグ8aとはデュアルダマシンにより形成され、両者は一体となっており、配線層9a、9bおよびコンタクトプラグ8aはバリアメタル膜BM1で囲まれている。なおコンタクトプラグ8aの直径は0.36μmに設定されている。
層間絶縁膜5上には、拡散防止絶縁膜PDが配設され、拡散防止絶縁膜PD上にはシリコン酸化膜等で構成される層間絶縁膜6が配設されている。
そして、層間絶縁膜6の上層部にはCVD法で形成されたタングステン(W)で構成されるキャパシタの下部電極110(設定深さ約250nm)が配設され、下部電極110は、層間絶縁膜6および拡散防止絶縁膜PDを貫通して配線層9aに達する複数のコンタクトプラグ10bによって、配線層9aと電気的に接続される構成となっている。なお、コンタクトプラグ10bの直径は0.36μmに設定されている。
ここで、下部電極110とコンタクトプラグ10bとはデュアルダマシンにより形成され、両者は一体となっている。
また、層間絶縁膜6および拡散防止絶縁膜PDを貫通して配線層9bに達するコンタクトプラグ10bが配設され、コンタクトプラグ10b上には上層配線14が設けられている。なお、下部電極110、コンタクトプラグ10bはバリアメタル膜BM1で囲まれている。
ここで、図1に示すように、下部電極110の表面はディッシングによって皿状に窪んでおり、中央部では殆ど電極が残っていない状態となっている。
そして、下部電極110上を覆うように、例えばシリコン窒化膜で構成されるキャパシタ誘電体膜12が配設されているが、下部電極110の窪みに合わせてキャパシタ誘電体膜12も窪んでいる。
さらに、キャパシタ誘電体膜12上には、例えばTiN膜で構成されるキャパシタの上部電極13が配設されおり、上部電極13およびキャパシタ誘電体膜12を覆うように、例えばアルミニウム膜(あるいはCu膜)で構成される最上層配線14が配設されている。またコンタクトプラグ10b上にも最上層配線14が選択的に配設されている。
このように、ディッシングあるいはエロージョンにより下部電極110が削られると、場合によっては層間絶縁膜6が露出あるいは露出に近い状態になるが、その場合、本来ならばタングステン膜と界面を形成するキャパシタ誘電体膜12が、層間絶縁膜6と界面を形成する可能性があり、界面状態が変わることで、キャパシタが耐圧不良を起こす可能性がある。
ここで、ディッシングあるいはエロージョンにより、下部電極110がどの程度削られるかについて図2に示すモデルを用いて説明する。
図2は、下部電極110の形成後の断面形状を示す図であり、便宜的に下部電極110だけを示している。
図2においては、下部電極110をCMPにより研磨する前の、層間絶縁膜6に下部電極110形成用の電極溝を設けた段階の層間絶縁膜6の主面SF1の位置を破線で示しており、上記電極溝の深さ、すなわち主面SF1から電極溝の中央部底面までの長さを下部電極深さAとする。
また、バリアメタル膜BM1の厚さをバリアメタル厚さBとし、CMPによりタングステン膜とともに除去された層間絶縁膜6の厚さを層間絶縁膜切削厚さCとする。
CMP後の層間絶縁膜6の主面SF2と下部電極110の中央部との段差をディッシング量Dとし、下部電極110の中央部の厚さ(バリアメタル膜BM1含まず)を残膜量Eとする。
ここで、下部電極110の設定深さを250nmとする場合のディッシングの一例について、中央部を例に採って説明するなら、下部電極深さAが245nm(実測値)、バリアメタル厚さBは88nm(断面SEM写真からの計測値)、層間絶縁膜切削厚さCは33nm(A−(B+E)により算出)、ディッシング量Dは33nm(A−(B+E)により算出)、残膜量Eは124nmとなる。
このように、ディッシングにより下部電極110中央部の厚さは設定値の半分程度となってしまうが、キャパシタは複数設けられ、エロージョンの影響も含めると、下部電極110の厚さがマイナス、すなわち、完全に除去されてしまうものもある。
先に説明したように、局所的にせよ下部電極110が完全に除去されてしまうとキャパシタが耐圧不良を起こす可能性がある。
発明者達はディッシングやエロージョンの発生により、下部電極が完全に除去されてしまうことを防止した半導体装置を開発したので、以下に当該構成について説明する。
<実施の形態1>
まず発明者達は、下部電極が完全に除去される部分が発生するのを防止するには、下部電極の厚みを増せば良いという技術思想を得た。しかし、発明者達の採用する下部電極の製造方法は、デュアルダマシンの中でも電極形成用の電極溝を最初に形成するトレンチファーストという手法であり、この場合、最初に深い溝を形成すると、次に、ビア(via)ホールを形成する際にフォトリソグラフィによりレジストを感光するときのフォーカス位置が、深くなってしまうが、フォトリソグラフィ装置の焦点深度(DOF)の調整範囲(フォーカスマージン)にも制限があり、電極用の溝を深くするとビアホールの直径が設計通りに形成できず、下層配線とのコンタクトが確実にできないという問題があった。
発明者達は当該問題を解消する有効な構成に想到したので、以下、本発明に係る実施の形態1において説明する。
<製造方法>
まず、製造工程を順に示す断面図である図3〜図9を用いて本発明に係る半導体装置100の製造方法について説明する。なお、半導体装置100の構成については最終工程を示す図9に示す。なお、半導体装置100においては図1に示した半導体装置90と同一の構成には同一の符号を付し、重複する説明は省略する。
まず、従来からの製造方法を用いて図3に示す配線層9a、9bおよびコンタクトプラグ8aまでの構成を形成する。
その後、図4に示す工程において、層間絶縁膜5上に例えばCVD法によりSiN膜等の絶縁膜を形成して拡散防止絶縁膜PDを配設する。
その後、拡散防止絶縁膜PD上に、例えばCVD法によりシリコン酸化膜等で構成される厚さ400〜1000nmの層間絶縁膜6を形成する。
そして配線層9aの上方部に対応する位置の層間絶縁膜6をフォトリソグラフィおよび異方性エッチングにより選択的にエッチングして深さ約350nmキャパシタの下部電極形成用の電極溝11cを形成する。この深さは、図1に示した半導体装置90の下部電極110形成用の電極溝よりも大きな値に設定する。
その後、図5に示す工程において層間絶縁膜6上にレジストマスクRM1を形成し、フォトリソグラフィによりパターニングして、電極溝11c上にビアホール開口用の開口部OP1を、また、キャパシタ形成領域外に設けられた配線層9bの上方部に対応する位置の層間絶縁膜6上に配線層9bとの接続のためのビアホール開口用の開口部OP2を形成する。このとき、開口部OP1の開口直径は、開口部OP2よりも大きく設定するものとし、例えば開口部OP2の直径が0.36μmであるならば、開口部OP1の開口直径は0.38μmに設定する。
そしてレジストマスクRM1をエッチングマスクとして異方性エッチングを行い、開口部OP1およびOP2に対応する部分の層間絶縁膜6および拡散防止絶縁膜PDを除去することで、それぞれ配線層9aおよび9bに達するビアホール10cおよび10dを形成する。
次に、レジストマスクRM1を除去した後、図6に示す工程において層間絶縁膜6の全面に例えばスパッタリング法によりバリアメタル膜BM1を形成することで、電極溝11cの内面および電極溝11cに連通するビアホール10cの内面、ビアホール10dの内面をバリアメタル膜BM1で覆う。
次に、図7に示す工程においてバリアメタル膜BM1で覆われた層間絶縁膜6の全面に、例えばCVD法によりタングステン膜ML1を形成し、電極溝11c内、ビアホール10c内およびビアホール10d内にタングステン膜ML1を充填する。
その後、図8に示す工程において、CMPにより層間絶縁膜6上の不要なタングステン膜ML1を研磨除去して、電極溝11c内、ビアホール10c内および10d内にのみタングステン膜ML1を残して、それぞれキャパシタの下部電極11、コンタクトプラグ10aおよびコンタクトプラグ10bを形成する。
このとき、CMPによる過剰研磨で、ディッシングやエロージョンが発生し、下部電極11の表面は皿状に窪むが、下部電極11の厚さ(350nm程度)がディッシングやエロージョンによる過剰研磨量に比べて十分厚いので、下部電極11が局所的にでも完全に除去されるということはない。
その後、図9に示す工程において、下部電極11上を覆うように、例えばCVD法によりシリコン窒化膜で構成されるキャパシタ誘電体膜12を形成した後、さらに、キャパシタ誘電体膜12に、例えばスパッタリング法によりTiN膜(あるいはTaN膜あるいはW膜)で構成されるキャパシタの上部電極13を形成する。
その後、上部電極13およびキャパシタ誘電体膜12を覆うように、例えばスパッタリング法によりアルミニウム膜(あるいはCu膜)で構成される最上層配線14を形成する。このとき、同時にコンタクトプラグ10b上にも最上層配線14を選択的に形成するようにパターニングすることで半導体装置100を得る。
なお、図9に示す半導体装置100は5層の層間絶縁膜を有する構成であったが、これに限定されるものではなく、さらに多くの層間絶縁膜、あるいはより少ない層間絶縁膜で構成される半導体装置にも本発明は適用可能である。
また、図9においてはキャパシタを最上層の層間絶縁膜6上に形成した構成を示したが、キャパシタは最上層以外の層間絶縁膜上に設けても良い。
<特徴的作用効果>
ここで、図4を用いて説明したように、電極溝11cの深さを約350nmとして図1に示した半導体装置90よりも深くしたが、フォトリソグラフィ装置の焦点深度(DOF)の調整範囲の制限は問題とならなかった。
それは、開口部OP2の直径が0.36μmであるならば、開口部OP1の直径は0.38μmになるように設定したためである。
すなわち、発明者達の実験では、ビアホール直径を大きく設定すると、焦点深度が変わった場合にビアホール直径が変化する割合を低減できる、すなわちDOFマージン(フォーカスマージン)を大きくできるという知見が得られた。
図10には発明者達が得たフォーカスオフセットとビアホール直径との関係を示す。
図10においては、横軸にフォーカスオフセット(μm)を縦軸にビアホールの直径(nm)を示し、0.38μmのビアホールを形成する場合と、0.39μmのビアホールを形成する場合について、フォーカスオフセットを変化させた場合にビアホール直径がどのように変化するかについて示している。なお、図10においてはDOFが深くなる方向をマイナス方向として示している。
図10において0.38μmのビアホールおよび0.39μmのビアホールが形成されるフォーカスオフセットをリソグラフィ最適条件として矢印で示しているが、0.38μmのビアホールを形成する場合に、ビアホール直径が0.38μmより小さくならないフォーカスオフセットの範囲は−0.7μmから−1.2μmの範囲であるが、0.39μmのビアホールを形成する場合に、ビアホール直径が0.39μmより小さくならないフォーカスオフセットの範囲は−0.7μmから−1.3μmの範囲となっており、ビアホール直径を大きく設定する方がDOFの変化の影響を受けにくいことが判る。
従って、電極溝11cの底部に形成するコンタクトプラグ10aの直径を、層間絶縁膜6中の他の部分に形成するコンタクトプラグ10bの直径に比べて大きく設定することで、電極溝11cの設定深さを約350nmとして、図1に示した半導体装置90よりも約100nm深くした場合でも、コンタクトプラグ10bの直径が設定値よりも大幅に小さくなるということが防止される。
以上説明したように、開口部OP2の直径が0.36μmであるのに対し、開口部OP1の直径は0.38μmであり、これは、コンタクトプラグ10aの直径とコンタクトプラグ10bの直径に対応し、コンタクトプラグ10aの直径はコンタクトプラグ10bの直径よりも1.05倍大きいということになる。
また、図10より、直径を大きくすればDOFマージンを大きくできることが判るので、キャパシタの下部電極と下層の配線層とを電気的に接続するコンタクトプラグの直径は、少なくとも同じ層間絶縁膜に設けられた他のコンタクトプラグの直径より1.05以上大きくすることで、同じ層間絶縁膜中の他のコンタクトプラグに比べてフォーカスマージンを確実に大きくできる。
電極溝11cを深くすることで、当該電極溝11cの深さで規定される下部電極11の厚さが厚くなり、CMPによる過剰研磨で、ディッシングやエロージョンが発生し、下部電極11の表面が皿状に窪んでも、下部電極11の厚さ(350nm程度)がディッシングやエロージョンによる過剰研磨量に比べて十分厚いので、下部電極11が局所的にでも完全に除去されるということはない。
ここで、図2に示した下部電極の形成後の断面形状を示す図を用いて、下部電極のディッシングに関する発明者達の知見を紹介する。なお、以下の説明においては図2を下部電極11の形成後の断面形状を示す図として使用する。
ここで、下部電極深さAが332nm(実測値)、バリアメタル厚さBは79nm(断面SEM写真からの計測値)、層間絶縁膜切削厚さCは84nm(A−(B+E)により算出)、ディッシング量Dは84nm(A−(B+E)により算出)、残膜量Eは169nmとなる。
このように、ディッシングにより下部電極11中央部の厚さは設定値の半分程度となってしまうが、複数設けられた下部電極11の中で、厚さがマイナスになるものは存在しなかった。
以上説明した本発明に係る実施の形態1の半導体装置によれば、下部電極11の過研磨に対する耐性を高めることで、下部電極11が局所的にせよ完全に除去されることが防止され、耐圧不良を起こすキャパシタの発生を防止できるという効果が得られた。
なお、上記においては、電極溝11cの底部に形成するコンタクトプラグ10aの直径を、層間絶縁膜6中の他の領域に形成するコンタクトプラグ10bの直径に比べて大きく設定するものとして説明したが、コンタクトプラグ10aは、キャパシタが形成される層間絶縁膜6以下の層間絶縁膜において形成される何れのコンタクトプラグよりも大きく形成される。
<実施の形態2>
以上説明した本発明に係る実施の形態1の半導体装置においては、下部電極11と下層配線とを電気的に接続するコンタクトプラグ10aの直径を他の部分のコンタクトプラグよりも大きくすることで、DOFマージンを大きくして、CMP時の下部電極11の過研磨に対する耐性を高める構成を示したが、下部電極の過研磨を低減することで耐圧不良を起こすキャパシタの発生を防止するようにしても良い。
すなわち、CMP時の下部電極の過研磨は、CMPで使用する研磨パッドの変形等に起因するだけでなく、下部電極と下層配線とを電気的に接続するコンタクトプラグの単位面積当たりの配設個数によっても過研磨の程度が異なることが発明者達の試験により判った。
図11は下部電極110の形成工程において、層間絶縁膜6の全面にタングステン膜ML1を形成して、電極溝11d内にタングステン膜ML1を充填した状態を示す断面図であり、電極溝11d内に配設され、下層の配線層9aに達するビアホール10d内にもタングステン膜ML1が充填され、また、キャパシタ形成領域外に設けられた配線層9bに達するビアホール10d内にもタングステン膜ML1が充填されている。
なお、電極溝11dは図4に示した設定深さ350nmの電極溝11cより浅く、設定深さ250nmとし、また、ビアホール10dの直径は0.36μmで統一されている。また、便宜的に、バリアメタル膜は図示を省略した。
ここで、電極溝11d内には図11に示す断面において5個のビアホール10dを配設しているが、ビアホール10dを配設すると、その部分ではビアホール10dを埋め込む分だけタングステン膜ML1の厚さが減少する。そして、図11に示すように多数のビアホール10dを密集させると、電極溝11d内でのタングステン膜ML1の平均膜厚が減少することになる。
この状態でCMPを行うと、平均膜厚が薄くなった電極溝11d内ではディッシングが顕著になり、図12に示すように下部電極110が局所的に完全に除去されてしまう可能性があるという知見を得るに至った。
そして、タングステン膜ML1の平均膜厚が大幅に減少しないように、電極溝11d内に設けるビアホール10dの個数を設定すれば、下部電極110が局所的に完全に除去される率を低減できることが判った。
図13には、上記知見に基づいて得られたコンタクトプラグ10b(すなわちビアホール10d)の配設パターンの一例を示す。
図13は、キャパシタを最上層配線側から見た平面図であり、下部電極110を破線で示しており、平面視形状が正方形の下部電極110において、5個のコンタクトプラグ10bが十字状をなすように、下部電極110の縦横の中心軸に沿って配設されている。
なお、下部電極110の上方に配設される最上層配線14は、コンタクトプラグ10bの配列に沿って配設されており、その幅は0.6μm程度である。
ここで、下部電極110は縦横の長さがそれぞれ3μm程度であり、3μmの長さの領域において3個程度のコンタクトプラグ10bを配設するのであれば、タングステン膜ML1の平均膜厚が大幅に減少するということがなく、下部電極110が局所的に完全に除去される率を低減できると言える。
なお、コンタクトプラグ10bが十字状をなすように配設することは一例であり、下部電極110内で並列に2列をなすように配設するようにしても良く、また、1列だけであっても良い。
本発明を適用しないMIM構造のキャパシタを有する半導体装置の構成を示す断面図である。 下部電極の過研磨を説明するための下部電極モデルを示す図である。 本発明に係る半導体装置の実施の形態1の製造工程を示す断面図である。 本発明に係る半導体装置の実施の形態1の製造工程を示す断面図である。 本発明に係る半導体装置の実施の形態1の製造工程を示す断面図である。 本発明に係る半導体装置の実施の形態1の製造工程を示す断面図である。 本発明に係る半導体装置の実施の形態1の製造工程を示す断面図である。 本発明に係る半導体装置の実施の形態1の製造工程を示す断面図である。 本発明に係る半導体装置の実施の形態1の製造工程を示す断面図である。 フォーカスオフセットとビアホール直径との関係を示す図である。 電極溝内のビアホールの個数と下部電極の過研磨との関係を説明する断面図である。 電極溝内のビアホールの個数と下部電極の過研磨との関係を説明する断面図である。 本発明に係る半導体装置の実施の形態2の構成を説明する平面図である。
符号の説明
11 下部電極、12 キャパシタ誘電体膜、13 上部電極、10a、10b コンタクトプラグ。

Claims (2)

  1. 半導体基板の上方に配設された層間絶縁膜と
    前記層間絶縁膜の上層部に配設された下部電極と、
    前記下部電極上に配設された誘電体膜と、
    前記誘電体膜を間に挟んで前記下部電極に対向して配設された上部電極とを有したキャパシタを備え、前記下部電極は、その底部から前記半導体基板の主面に垂直な方向に前記層間絶縁膜を貫通するように設けられたコンタクトプラグと一体をなす半導体装置であって、
    前記コンタクトプラグの直径は、前記層間絶縁膜を前記半導体基板の主面と垂直な方向に貫通するように設けられた他のコンタクトプラグの直径よりも広く形成される、半導体装置。
  2. 前記コンタクトプラグの直径は、前記他のコンタクトプラグの直径の1.05倍以上である、請求項1記載の半導体装置。
JP2006117720A 2006-04-21 2006-04-21 半導体装置 Pending JP2007294514A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006117720A JP2007294514A (ja) 2006-04-21 2006-04-21 半導体装置
US11/733,975 US20070246799A1 (en) 2006-04-21 2007-04-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117720A JP2007294514A (ja) 2006-04-21 2006-04-21 半導体装置

Publications (2)

Publication Number Publication Date
JP2007294514A true JP2007294514A (ja) 2007-11-08
JP2007294514A5 JP2007294514A5 (ja) 2009-05-14

Family

ID=38618698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117720A Pending JP2007294514A (ja) 2006-04-21 2006-04-21 半導体装置

Country Status (2)

Country Link
US (1) US20070246799A1 (ja)
JP (1) JP2007294514A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300676A (ja) * 2007-05-31 2008-12-11 Rohm Co Ltd 半導体装置およびその製造方法
CN114203442B (zh) * 2021-12-03 2023-11-03 灿芯半导体(上海)股份有限公司 一种用于高精度电容阵列的电容单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061349A (ja) * 1992-06-12 1994-01-11 Kawasaki Steel Corp 溶接缶胴を有する缶体
JP2000164812A (ja) * 1998-11-27 2000-06-16 Sharp Corp 半導体装置及びその製造方法
JP2004022694A (ja) * 2002-06-14 2004-01-22 Renesas Technology Corp 半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504205B1 (en) * 2001-06-15 2003-01-07 Silicon Integrated Systems Corp. Metal capacitors with damascene structures
JP4076131B2 (ja) * 2002-06-07 2008-04-16 富士通株式会社 半導体装置の製造方法
JP2004079924A (ja) * 2002-08-22 2004-03-11 Renesas Technology Corp 半導体装置
US6867447B2 (en) * 2003-05-20 2005-03-15 Texas Instruments Incorporated Ferroelectric memory cell and methods for fabricating the same
US6876028B1 (en) * 2003-09-30 2005-04-05 International Business Machines Corporation Metal-insulator-metal capacitor and method of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061349A (ja) * 1992-06-12 1994-01-11 Kawasaki Steel Corp 溶接缶胴を有する缶体
JP2000164812A (ja) * 1998-11-27 2000-06-16 Sharp Corp 半導体装置及びその製造方法
JP2004022694A (ja) * 2002-06-14 2004-01-22 Renesas Technology Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
US20070246799A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP3961412B2 (ja) 半導体装置及びその形成方法
US20050263848A1 (en) Metal-insulator-metal capacitor having a large capacitance and method of manufacturing the same
JP2007221161A (ja) 半導体デバイスで用いられるキャパシタとその製造方法
JP2006191036A (ja) 半導体素子及びその形成方法
US6849920B2 (en) Semiconductor capacitive element, method for manufacturing same and semiconductor device provided with same
JP2005142369A (ja) 半導体装置の製造方法
JP2007049089A (ja) 半導体装置およびその製造方法
JP4848137B2 (ja) 半導体装置およびその製造方法
US20090149019A1 (en) Semiconductor device and method for fabricating the same
JP4272168B2 (ja) 半導体装置及び半導体集積回路装置
JP5613272B2 (ja) 半導体装置
JP5388478B2 (ja) 半導体装置
JP2007294514A (ja) 半導体装置
JP2006228977A (ja) 半導体装置及び半導体装置の製造方法
US7005343B2 (en) Semiconductor device and method of manufacturing the same
JP2004079924A (ja) 半導体装置
JP2008124070A (ja) 半導体装置
JP4211910B2 (ja) 半導体装置の製造方法
JP5424551B2 (ja) 半導体装置
JP2008294403A (ja) 半導体装置
KR20070013894A (ko) 반도체 소자의 금속 배선 형성 방법
KR20090055772A (ko) 반도체 소자의 금속 배선 형성 방법
JP2008171886A (ja) 半導体装置およびその製造方法
JP2008098424A (ja) 半導体装置および半導体装置の製造方法
WO2011030476A1 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904