JP2007064092A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2007064092A
JP2007064092A JP2005251114A JP2005251114A JP2007064092A JP 2007064092 A JP2007064092 A JP 2007064092A JP 2005251114 A JP2005251114 A JP 2005251114A JP 2005251114 A JP2005251114 A JP 2005251114A JP 2007064092 A JP2007064092 A JP 2007064092A
Authority
JP
Japan
Prior art keywords
gas
storage chamber
inert gas
water
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005251114A
Other languages
English (en)
Other versions
JP4631616B2 (ja
Inventor
Daisaku Sawada
大作 澤田
Shinichi Mitani
信一 三谷
Hiroshi Yaguchi
寛 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005251114A priority Critical patent/JP4631616B2/ja
Publication of JP2007064092A publication Critical patent/JP2007064092A/ja
Application granted granted Critical
Publication of JP4631616B2 publication Critical patent/JP4631616B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

【課題】 作動ガスの消費量を低減した作動ガス循環型内燃機関を提供すること。
【解決手段】 内燃機関EG1は、水素を燃焼するとともに作動ガスとして不活性ガスを使用する。内燃機関EG1は、水分除去装置41と脱気装置44とを備えている。水分除去装置は、燃焼室20から排出されたガスに含まれる水蒸気を第1貯留室41a内にて凝縮液化して水に変化させることにより同ガスから水蒸気を除去する。水蒸気の除去されたガスは燃焼室に再度供給される。脱気装置は、第1貯留室から供給される水を貯留する第2貯留室44aを備え、第2貯留室の不活性ガスの分圧を第1貯留室の不活性ガスの分圧より低くすることにより、貯留した水に溶存している不活性ガスの分子を気体の状態に戻し、その気体の状態に戻された不活性ガスを燃焼室に再度供給する。
【選択図】 図1

Description

本発明は、燃焼室内にて燃料としての水素を燃焼させるとともに不活性ガスを作動ガスとして使用する内燃機関に関する。
従来から、水素を燃料として燃焼室内にて燃焼させるとともに比熱比の高いアルゴン等の不活性ガスを作動ガス(熱媒体)として使用する内燃機関が知られている。このような内燃機関の一つは、排ガス中に含まれる水蒸気を凝縮液化して系外に排出し、その水蒸気が除去された排ガス(即ち、殆どが不活性ガスからなるガス)を再び燃焼室に供給するようになっている(特許文献1を参照。)。このような内燃機関は、作動ガスが循環されるので、クローズドサイクルエンジンとも称呼される。
特開平11−93681号公報
しかしながら、上記従来の内燃機関においては、凝縮液化された水に溶存している不活性ガスの分子が同凝縮液化された水とともに系外に排出されてしまうので、不活性ガスの消費量が増大するという問題がある。
本発明は、上記課題に対処するためになされたものであり、
燃焼室内にて燃料としての水素を燃焼させるとともに不活性ガスを作動ガスとして使用する内燃機関であって、
前記燃焼室から排出されたガスに含まれる水蒸気を水に変化させることにより同ガスから同水蒸気を除去するとともに同水蒸気の除去されたガスを同燃焼室に再度供給する水分除去装置と、
前記水に溶存している前記不活性ガスの分子を気体の状態に戻すことにより同水に溶存している同不活性ガスの分子の量を減少させるとともに同気体の状態に戻された不活性ガスを前記燃焼室に再度供給する脱気装置と、
を備えた内燃機関を提供する。
これによれば、燃焼室から排出されたガスに含まれる水蒸気が水へと変化させられて、同ガスから除去される。水蒸気が除去されたガスの殆どは作動ガス(不活性ガス)であり、同作動ガスは再び燃焼室に供給される。一方、上記水の中に溶存している不活性ガスの分子は、脱気装置によって気体の状態に戻され、同気体の状態に戻された不活性ガスは燃焼室に作動ガスとして再び供給される。この結果、系外に排出される不活性ガスの量を低減することができる。
この場合、前記水分除去装置は、前記燃焼室から排出されたガスを収容し且つ同ガスを冷却することによりに同ガスに含まれる前記水蒸気を凝縮液化させて前記水に変化させるとともに同凝縮液化された水を貯留する第1貯留室を備えた凝縮機を含むことができる。これによれば、燃焼室から排出されたガスから水蒸気を簡単に分離・除去することができる。
このような内燃機関において、前記脱気装置は、前記第1貯留室に貯留された水が供給されるとともに同供給された水を貯留する第2貯留室と、前記第2貯留室内における前記不活性ガスの分圧を前記第1貯留室内における前記不活性ガスの分圧より低い圧力とする不活性ガス分圧調整手段と、を含む、ことが好適である。
水の中に溶存している特定のガス分子の量は、その水が収容されている空間における特定のガス分子からなるガスの分圧が減少するほど減少する。従って、上記構成のように、第2貯留室内における不活性ガスの分圧(第2貯留室内において気体の状態にある不活性ガスの分圧)を第1貯留室内における不活性ガスの分圧(第1貯留室内において気体の状態にある不活性ガスの分圧)より低い圧力とすれば、第2貯留室に貯留された水の中に溶存している不活性ガスの分子を簡単に気体の状態に戻すことができる。
この場合、前記不活性ガス分圧調整手段は、前記第2貯留室のガスの全圧を前記第1貯留室のガスの全圧より低い圧力にすることにより、同第2貯留室内における前記不活性ガスの分圧を同第1貯留室内における前記不活性ガスの分圧より低い圧力とするように構成され得る。
これによれば、第2貯留室のガスの圧力を例えばポンプにより減圧するだけで、第2貯留室内における不活性ガスの分圧を第1貯留室内における不活性ガスの分圧より低い圧力とすることができる。
代替として、前記不活性ガス分圧調整手段は、前記第2貯留室に水素ガス及び/又は酸素ガスを補助ガスとして供給し、同第2貯留室内において気体の状態にある前記不活性ガスを同供給された補助ガスとともに前記燃焼室に戻すことにより同第2貯留室内における同不活性ガスの分圧を前記第1貯留室内における前記不活性ガスの分圧より低い圧力とするように構成され得る。
水素ガス及び酸素ガスは、何れも燃焼室に供給されて燃焼により消費されるガスである。従って、上記構成のように、第2貯留室に水素ガス及び/又は酸素ガスを補助ガスとして供給し、第2貯留室内において気体の状態にある不活性ガスを供給された補助ガスとともに燃焼室に戻せば、系内に余分なガスが導入されることなく、且つ、第2貯留室内における不活性ガスの分圧を第1貯留室内における不活性ガスの分圧より低い圧力とすることができる。
<第1実施形態>
以下、本発明による内燃機関(多気筒内燃機関)の第1実施形態について図面を参照しながら説明する。図1は、この内燃機関EG1の概略構成図である。図1は、内燃機関EG1の特定気筒の断面のみを示しているが、他の気筒も同様な構成を備えている。
内燃機関EG1は、燃焼室に作動ガスと酸素ガスと燃料としての水素ガスとを供給し、水素ガスを燃焼させる形式のエンジンである。作動ガスは熱膨張体として機能するガスであって、不活性ガスである。作動ガスは、内燃機関の熱効率を向上するために、その比熱比が大きいガスであることが望ましい。そのようなガスとしては、単原子分子からなる不活性ガスが知られている。本例における作動ガスは、単原子分子のアルゴンである。更に、内燃機関EG1は、この作動ガスを外部(系外)に放出することなく循環させる作動ガス循環型水素ガスエンジン(水素燃焼クローズドサイクルエンジン)である。内燃機関EG1は、エンジン本体部10と、作動ガス循環部40と、電気制御装置50とを備えている。
エンジン本体部10は、シリンダヘッド部が形成するシリンダヘッド11と、シリンダブロック部が形成するシリンダ12と、シリンダ12内において往復運動するピストン13と、クランク軸14と、ピストン13とクランク軸14とを連結するコネクティングロッド15と、シリンダブロック部に連接されたオイルパン16と、を備えている。シリンダヘッド11の下面、シリンダ12の壁面及びピストン13の頂面は、燃焼室20を形成している。
シリンダヘッド11には、燃焼室20に連通した吸気ポート31と、燃焼室20に連通した排気ポート32とが形成されている。吸気ポート31には吸気ポート31を開閉する吸気弁33が配設され、排気ポート32には排気ポート32を開閉する排気弁34が配設されている。
更に、シリンダヘッド11にはイグニッションコイルを含む点火プラグ35が配設されるとともに、燃焼室20内に水素ガスを直接噴射するための燃料噴射弁(水素噴射弁)36が配設されている。点火プラグ35は電気制御装置50からの点火信号に応じて火花を発生するようになっている。燃料噴射弁36は、図示しない燃料タンク(水素を貯蔵する高圧タンク)に図示しないレギュレータ等を介して接続されている。燃料噴射弁36は、電気制御装置50からの駆動信号に応じて開弁し、水素ガスを燃焼室20に向けて噴射するようになっている。
作動ガス循環部40は、水分除去装置41、第1通路(第1流路形成管)42、第2通路(第2流路形成管)43及び脱気装置44を備えている。
水分除去装置(気水分離装置、高分圧凝縮機)41は、第1貯留室41aと、冷却管41bと、第1水位センサ41cと、制御弁41dと、を備えている。第1貯留室41aの上部は、第1通路42によって排気ポート32と接続されている。従って、第1貯留室41aは、その上部空間に燃焼室20から排出されたガスExが供給されるようになっている。
第1貯留室41aの上部空間には、冷却管41bが配設されている。冷却管41bは、図示しない冷却水ポンプによって冷却水Wが供給されるようになっている。第1貯留室41aの上部空間は、第2通路43によって内燃機関EG1の吸気ポート31に接続されている。第1貯留室41aと第2通路43との接続位置は冷却管41bよりも下方である。第1水位センサ41cは、第1貯留室41aに貯留される水の水位を検出し、同水位を表す信号WL1を発生するようになっている。制御弁41dは、駆動信号により開閉する電気式開閉弁である。制御弁41dの入口側は、第1貯留室41aの底部に接続されている。
第2通路43には、酸素ガスミキサ43aとアルゴンガスミキサ43bとが介装されている。酸素ガスミキサ43aは、図示しない酸素タンク(酸素ガスを貯蔵する高圧タンク)に図示しない酸素圧レギュレータ等を介して接続されている。アルゴンガスミキサ43bは、図示しないアルゴンガスタンク(アルゴンガスを貯蔵する高圧タンク)に図示しないアルゴン圧レギュレータ等を介して接続されている。酸素ガス及びアルゴンガスは、それぞれの圧力レギュレータが調整されることにより、それぞれ調整された量だけ第2通路43内(従って、燃焼室20)に供給されるようになっている。
脱気装置44は、第2貯留室44a、減圧ポンプ44b、接続通路44c、圧力センサ44d、第2水位センサ44e及び排水ポンプ44fを備えている。
第2貯留室44aは、水分除去装置41の第1貯留室41aの底部よりも下方に配置されている。第2貯留室44aは、制御弁41dの出口側と接続されている。これにより、第2貯留室44aは、制御弁41dが開弁したとき、第1貯留室41aに貯留されている水(水蒸気が凝縮液化された水)が供給されるようになっている。
第2貯留室44aの上部空間は、電動モータ駆動式の減圧ポンプ44bを備えた接続通路44cを通して第2通路43に接続されている。減圧ポンプ44bは、駆動信号に応答して作動し、第2貯留室44aの上部空間のガスを第2通路43に供給するようになっている。接続通路44cの減圧ポンプ44bと第2貯留室44aとの間には、圧力センサ44dが配設されている。圧力センサ44dは、第2貯留室44aの上部空間の圧力を検出し、その圧力Pを表す信号を発生するようになっている。
第2水位センサ44eは、第2貯留室44aに貯留される水の水位を検出し、同水位を表す信号WL2を発生するようになっている。電動モータ駆動式の排水ポンプ44fは、第2貯留室44aの底部に接続されている。排水ポンプ44fは、駆動信号に応答して作動し、第2貯留室44aの下部に貯留された水を外部に排出するようになっている。
電気制御装置50は、CPU、ROM、RAM及びインターフェースを含む周知のマイクロコンピュータを主体とする電子回路である。電気制御装置50は、第1水位センサ41c、圧力センサ44d、第2水位センサ44e、アクセルペダル操作量センサ51及びエンジン回転速度センサ52等のセンサが接続されている。アクセルペダル操作量センサ51は、アクセルペダルAPの操作量を表す信号Accpを出力するようになっている。エンジン回転速度センサ52は、クランク軸14の回転速度に基づいてエンジン回転速度を表す信号NEを発生するようになっている。電気制御装置50は、これらのセンサから各検出信号を入力するようになっている。
更に、電気制御装置50は、各気筒の点火プラグ35、各気筒の燃料噴射弁36、制御弁41d、減圧ポンプ44b、排水ポンプ44f及び図示しない酸素圧レギュレータ及びアルゴン圧レギュレータと接続されていて、これらに駆動信号又は指示信号を送出するようになっている。
次に、上記のように構成された内燃機関EG1の作動について説明する。電気制御装置50は、アクセルペダル操作量Accpとエンジン回転速度NEとに応じて噴射すべき水素の量を決定し、その水素の量に応じた時間だけ燃料噴射弁36を開弁させるようになっている。このような内燃機関EG1においては、(1)式に示したように、燃焼室20に供給される水素2モルに対し1モルの酸素を供給すれば、水(水蒸気)のみが生成される。
2H+O=2HO …(1)
実際には、水素に対して酸素を若干だけ余分に供給することが望ましい。そこで、電気制御装置50は、図示しない酸素圧レギュレータを調整し、燃焼室20に供給される水素のモル数の半分のモル数より僅かに大きいモル数の酸素を燃焼室20に供給する。更に、電気制御装置50は、アクセルペダル操作量Accpとエンジン回転速度NEに応じて定まる点火タイミングにて点火プラグ35から火花を発生させる。また、電気制御装置50は、アルゴン圧レギュレータを調整し、燃焼室20に作動ガスとしてのアルゴンガスを供給している。以上により、燃焼室20内において水素が燃焼し、その燃焼により発生した熱によってアルゴンガスが膨張する。その結果、ピストン13が押し下げられ、内燃機関EG1から動力が取り出される。
燃焼が終了すると、排ガスExが燃焼室20から排気ポート32を介して排出される。この排ガスExは、主として、アルゴンガスと水蒸気とからなる。排ガスExには、過剰に供給された酸素及び/又は燃焼しなかった水素が若干だけ含まれている。但し、この酸素又は水素は、微量であるから、以下の説明においては省略する。
燃焼室20から排出された排ガスExは、第1通路42を介して第1貯留室41aの上部空間に流入する。そして、排ガスExは、冷却管41b内を流れる冷却水Wによって冷却される。この結果、排ガスEx中に含まれている水蒸気は、凝縮液化させられて水(液体)へと変化し、第1貯留室41a内に貯留させられる。第1貯留室41aの上部空間内において、水蒸気が除去されたガスの主成分はアルゴンである。このアルゴンガスは、第2通路43を通して再び燃焼室20に供給される。
ところで、第1貯留室41a内に貯留させられた水の中には、第1貯留室41a(第1貯留室41aの上部空間)内のアルゴンガスの分圧に応じた量のアルゴン分子が溶存している。そこで、電気制御装置50のCPUは、図2のフローチャートにより示したアルゴン回収ルーチンを所定時間の経過毎に実行し、水に溶存したアルゴンを回収する。
具体的に述べると、CPUは所定のタイミングにてステップ200から処理を開始し、ステップ205に進んで第1貯留室41aの水位レベルWL1、第2貯留室44aの水位レベルWL2及び第2貯留室44aの圧力Pを、それぞれ第1水位センサ41c、第2水位センサ44e及び圧力センサ44dから読み込む。
次いで、CPUはステップ210に進み、水位レベルWL1が第1高側基準水位WL1Hiより高いか否かを判定する。このとき、水位レベルWL1が第1高側基準水位WL1Hiより高ければ、CPUはステップ215に進んで制御弁41dを開弁し、ステップ230に進む。この結果、第1貯留室41a内に貯留されていた水が第2貯留室44a内に供給される。
一方、ステップ210の判定時において、水位レベルWL1が第1高側基準水位WL1Hi以下であれば、CPUはステップ210にて「No」と判定してステップ220に進み、水位レベルWL1が第1低側基準水位WL1Loより低いか否かを判定する。このとき、水位レベルWL1が第1低側基準水位WL1Loより低ければ、CPUはステップ225に進んで制御弁41dを閉弁し、ステップ230に進む。この結果、第1貯留室41a内から第2貯留室44a内に向かう水の流れが停止する。
更に、ステップ220の判定時において、水位レベルWL1が第1低側基準水位WL1Lo以上であれば、CPUはステップ220にて「No」と判定してステップ230に直接進む。以上により、第1貯留室41a内に貯留される水の水位が第1低側基準水位WL1Loより高く、且つ、第1高側基準水位WL1Hiより低い範囲に制御される。
CPUはステップ230に進むと、水位レベルWL2が第2高側基準水位WL2Hiより高いか否かを判定する。このとき、水位レベルWL2が第2高側基準水位WL2Hiより高ければ、CPUはステップ235に進んで排水ポンプ44fを駆動し、ステップ250に進む。この結果、第2貯留室44a内に貯留されていた水が第2貯留室44aから外部(内燃機関EG1の外部)へ排出される。
一方、ステップ230の判定時において、水位レベルWL2が第2高側基準水位WL2Hi以下であれば、CPUはステップ230にて「No」と判定してステップ240に進み、水位レベルWL2が第2低側基準水位WL2Loより低いか否かを判定する。このとき、水位レベルWL2が第2低側基準水位WL2Loより低ければ、CPUはステップ245に進んで排水ポンプ44fの駆動を停止し、ステップ250に進む。この結果、第2貯留室44a内からの排水が停止する。
更に、ステップ240の判定時において、水位レベルWL2が第2低側基準水位WL2Lo以上であれば、CPUはステップ240にて「No」と判定してステップ250に直接進む。以上により、第2貯留室44a内に貯留される水の水位が第2低側基準水位WL2Loより高く、且つ、第2高側基準水位WL2Hiより低い範囲に制御される。
CPUはステップ250に進むと、第2貯留室44aの圧力Pが高側基準圧力PthHiより大きいか否かを判定する。このとき、圧力Pが高側基準圧力PthHiより大きければ、CPUはステップ255に進んで減圧ポンプ44bを駆動し、ステップ295に進んで本ルーチンを一旦終了する。
この高側基準圧力PthHiは、第2貯留室44a(第2貯留室44aのガスで満たされている上部空間)内の全圧Pが同高側基準圧力PthHiと等しくなった場合であっても、第2貯留室44a内のアルゴンガスの分圧が第1貯留室41a(第1貯留室41aのガスで満たされている上部空間)内のアルゴンガスの分圧の想定される最小値よりも小さくなるような値に選択されている。
これにより、第2貯留室44a内のアルゴンガスの分圧は第1貯留室41a内のアルゴンガスの分圧よりも小さくなる。従って、第2貯留室44aに貯留されている水に溶存しているアルゴン分子は気体の状態に戻り(即ち、第2貯留室44aに貯留されている水に溶存しているアルゴン分子が水から脱し、上部空間においてガス状に存在するようになり)、その気体の状態に戻ったアルゴンガスが減圧ポンプ44b及び第2通路43を通って燃焼室20に再び供給される。
一方、ステップ250の判定時において、第2貯留室44aの圧力Pが高側基準圧力PthHi以下であれば、CPUはステップ250にて「No」と判定してステップ260に進み、圧力Pが低側基準圧力PthLoより小さいか否かを判定する。このとき、第2貯留室44aの圧力Pが低側基準圧力PthLoより小さければ、CPUはステップ265に進んで減圧ポンプ44bの駆動を停止し、ステップ295に進んで本ルーチンを一旦終了する。
この低側基準圧力PthLoは、第2貯留室44a(第2貯留室44aのガスで満たされている上部空間)内の全圧が同低側基準圧力PthLoまで低下した場合であっても、第2貯留室44aに貯留された水の気化を招かない程度の圧力に選択されている。
更に、ステップ260の判定時において、第2貯留室44aの圧力Pが低側基準圧力PthLo以上であれば、CPUはステップ260にて「No」と判定してステップ295に直接進み、本ルーチンを一旦終了する。以上により、第2貯留室44a内のガスの圧力(ガスの全圧)が、所定圧力範囲(低側基準圧力PthLoより高く、且つ、高側基準圧力PthHiより低い範囲)に制御される。
以上、説明したように、第1実施形態に係る内燃機関EG1は、燃焼室20内にて燃料としての水素を燃焼させるとともに不活性ガス(例えば、アルゴン)を作動ガスとして使用する内燃機関であって、燃焼室20から排出されたガスに含まれる水蒸気を水に変化させることにより同ガスから同水蒸気を除去するとともに同水蒸気の除去されたガスを同燃焼室に再度供給する水分除去装置(41)と、前記水に溶存している前記不活性ガスの分子を気体の状態に戻すことにより同水に溶存している同不活性ガスの分子の量を減少させるとともに同気体の状態に戻された不活性ガスを前記燃焼室に再度供給する脱気装置(44)と、を備えている。
従って、水蒸気から変化させられた水の中に溶存している不活性ガスの分子を回収することができるので、不活性ガス(不活性ガスの分子)の消費量を低減することができる。
また、水分除去装置41は、燃焼室20から排出されたガスを収容し且つ同ガスを冷却することによりに同ガスに含まれる前記水蒸気を凝縮液化させて前記水に変化させるとともに同凝縮液化された水を貯留する第1貯留室41aを備えた凝縮機(41a,41b等)を含んでいる。これにより、燃焼室20から排出されたガスから水蒸気を簡単に分離・除去することができる。
また、脱気装置44は、第1貯留室41aに貯留された水が供給されるとともに同供給された水を貯留する第2貯留室44aと、第2貯留室44aのガスの全圧を第1貯留室41aのガスの全圧より低い圧力にすることにより、第2貯留室44a内におけるアルゴンガスの分圧を第1貯留室41a内におけるアルゴンガスの分圧より低い圧力とする不活性ガス分圧調整手段(減圧ポンプ44b、接続通路44c、圧力センサ44d及び図2のルーチン)と、を含んでいる。これにより、第2貯留室44aに貯留された水の中に溶存しているアルゴン分子を簡単に気体の状態に戻すことができる。
<第2実施形態>
次に、本発明による内燃機関の第2実施形態について図3及び図4を参照しながら説明する。この内燃機関は、第1実施形態に係る内燃機関EG1の脱気装置44を脱気装置61に置換した点と、電気制御装置50が図2に代わる図4のフローチャートに示したルーチンを実行する点のみにおいて、内燃機関EG1と相違している。従って、以下、かかる相違点を中心として説明する。
脱気装置61は、第2貯留室61aと、接続通路61bと、第2水位センサ61cと、排水弁61dと、酸素タンク61eと、圧力レギュレータ61fとを備えている。
第2貯留室61aは、水分除去装置41の第1貯留室41aの底部よりも下方に配置されている。第2貯留室61aは、制御弁41dの出口側と接続されている。これにより、第2貯留室61aは、制御弁41dが開弁したとき、第1貯留室41aに貯留されている水が供給されるようになっている。
第2貯留室61aは、第1プレート61a1、第2プレート61a2、酸素ガス供給部61a3を備えている。第1プレート61a1は、第2貯留室61aを二つの部屋(左方室LRと右方室RR)に分割し、且つ、それらの二つの部屋の上部及び下部が連通するように、第2貯留室61a内に保持されている。第2プレート61a2は、第2貯留室61aの上部近傍であって左方室LRの壁に設けられた接続通路61bと接続される開口と、第1プレート61a1と、の間の位置において、第2貯留室61aの上部から垂下されている。酸素ガス供給部61a3は、右方室RRの底部に配設されている。酸素ガス供給部61a3は、中空の板状体であって、上壁部に微小な開口を多数備えている。第2貯留室61aの上部空間(左方室LRの上部空間)は、上記開口に接続された接続通路61bを通して第2通路43に接続されている。
なお、第1プレート61a1及び第2プレート61a2は、右方室RRにて酸素ガスが底部から供給されることにより右方室RR内の水面が乱れても、その影響が左方室LRに現れることがないように、且つ、右方室RR上方において飛散した水分が接続通路61bを介して燃焼室20に導入されることがないようにするためのバッフルプレートである。
第2水位センサ61cは、第2貯留室61aに貯留される水の水位を検出し、同水位を表す信号WL2を発生するようになっている。排水弁61dは、第2貯留室61aの底部に接続されている。排水弁61dは、駆動信号により開閉する電気式開閉弁である。排水弁61dが開弁されたとき、第2貯留室61aの下部に貯留された水は外部に排出される。
酸素タンク61eは、酸素ガスを貯蔵する高圧タンクである。酸素タンク61eは、圧力レギュレータ61fを介して酸素ガス供給部61a3に接続されている。圧力レギュレータ61fは、駆動信号に応答して開度を変化し、酸素ガス供給部61a3に供給される酸素ガスの量を制御するようになっている。
次に、上記のように構成された第2実施形態に係る内燃機関の作動について図4を参照しながら説明する。なお、図4において先に説明した図2と同一のステップには同一の符号を付し、その詳細な説明を省略する。
電気制御装置50のCPUは、所定時間の経過毎に図4に示したステップ400から処理を開始し、ステップ405に進んで第1貯留室41aの水位レベルWL1及び第2貯留室61aの水位レベルWL2を、それぞれ第1水位センサ41c及び第2水位センサ61cから読み込む。次いで、CPUはステップ210乃至ステップ225のうちの適当なステップの処理を行った後、ステップ410へと進む。これにより、第1貯留室41a内に貯留される水の水位が第1低側基準水位WL1Loより高く、且つ、第1高側基準水位WL1Hiより低い範囲に制御される。
CPUはステップ410に進むと、水位レベルWL2が第2高側基準水位WL2Hiより高いか否かを判定する。このとき、水位レベルWL2が第2高側基準水位WL2Hiより高ければ、CPUはステップ415に進んで排水弁61dを開弁し、ステップ495に進んで本ルーチンを一旦終了する。この結果、第2貯留室61a内に貯留されていた水が第2貯留室61aから外部へ排出される。なお、第2高側基準水位WL2Hiは、第2貯留室61aと接続通路61bとの接続部(上記開口)より低い位置に設定されている。
一方、ステップ410の判定時において、水位レベルWL2が第2高側基準水位WL2Hi以下であれば、CPUはステップ410にて「No」と判定してステップ420に進み、水位レベルWL2が第2低側基準水位WL2Loより低いか否かを判定する。このとき、水位レベルWL2が第2低側基準水位WL2Loより低ければ、CPUはステップ425に進んで排水弁61dを閉弁し、ステップ495に進んで本ルーチンを一旦終了する。この結果、第2貯留室61a内からの排水が停止する。
更に、ステップ420の判定時において、水位レベルWL2が第2低側基準水位WL2Lo以上であれば、CPUはステップ420にて「No」と判定してステップ495に直接進む。以上により、第2貯留室44a内に貯留される水の水位が第2低側基準水位WL2Loより高く、且つ、第2高側基準水位WL2Hiより低い範囲に制御される。
同時に、電気制御装置50は、圧力レギュレータ61fを所定の開度に調節し、酸素タンク61eからの酸素ガスを酸素ガス供給部61a3を介して第2貯留室61aの底部に供給している。これにより、第2貯留室61a内の上部空間内のアルゴンガスが、供給された酸素ガスにより第2貯留室61aから押し出され、接続通路61bを通して第2通路43(従って、燃焼室20)へと供給される。換言すると、第2貯留室61a内の上部空間にあるアルゴンガスが第2貯留室61a内の上部空間に供給された酸素ガスとともに燃焼室20へと供給される。
この結果、第2貯留室61a(第2貯留室61aの上部空間)におけるアルゴンガスの分圧が、第1貯留室41a(第1貯留室41aの上部空間)におけるアルゴンガスの分圧より低くなる。従って、第2貯留室61aに貯留されている水に溶存しているアルゴン分子は気体の状態に戻り、その気体の状態に戻ったアルゴンガスが接続通路61b及び第2通路43を通って燃焼室20に再び供給される。
以上、説明したように、第2実施形態に係る内燃機関も、燃焼室20内にて燃料としての水素を燃焼させるとともに不活性ガス(例えば、アルゴン)を作動ガスとして使用する内燃機関であって、燃焼室20から排出されたガスに含まれる水蒸気を水に変化させることにより同ガスから同水蒸気を除去するとともに同水蒸気の除去されたガスを同燃焼室に再度供給する水分除去装置(41)と、前記水に溶存している前記不活性ガスの分子を気体の状態に戻すことにより同水に溶存している同不活性ガスの分子の量を減少させるとともに同気体の状態に戻された不活性ガスを前記燃焼室に再度供給する脱気装置(61)と、を備えている。
従って、水蒸気から変化させられた水の中に溶存している不活性ガス分子を回収することができるので、不活性ガス分子の消費量を低減することができる。
また、脱気装置61は、第1貯留室41aに貯留された水が供給されるとともに同供給された水を貯留する第2貯留室61aと、第2貯留室61a内におけるアルゴンガスの分圧を第1貯留室41a内におけるアルゴンガスの分圧より低い圧力とする不活性ガス分圧調整手段(61b、61a3、61e、61f及び図4のルーチン等)と、を含んでいる。これにより、第2貯留室61aに貯留された水の中に溶存しているアルゴン分子を簡単に気体の状態に戻すことができる。
更に、その不活性ガス分圧調整手段は、第2貯留室61aに酸素ガスを補助ガスとして供給し、第2貯留室61a内のアルゴンガスを同供給された補助ガスとともに燃焼室20に戻すようになっている。これにより、第2貯留室61a内におけるアルゴンガスの分圧が第1貯留室41a内におけるアルゴンガスの分圧より低い圧力となる。その結果、液化凝縮された水に溶存していたアルゴン分子が気体の状態に戻り、系外に排出されることなく燃焼室20に再び供給される。
以上、説明したように、本発明による内燃機関の各実施形態によれば、排ガス中の水蒸気が凝縮液化されることにより生成された水に溶存している不活性ガスの量が低減されてから、同凝縮液化された水が系外に排出されるので、不活性ガス分子の消費量を低減したクローズドサイクルエンジンが提供される。なお、本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記内燃機関EG1は、作動ガスとしてアルゴンガスを使用していたが、不活性ガスであればアルゴン以外のガス(例えば、CO等の3原子ガス、或いは、He等のアルゴン以外の単原子ガス)を使用してもよい。この場合、窒素原子を含まず、且つ、比熱比が高いガスが好ましく、その意味において単原子ガス、特に、アルゴンは最適な作動ガスである。
また、上記各実施形態においては、酸素が水素に対して燃焼室20に過剰に供給されていたが、水素を過剰に供給してもよい。更に、第2実施形態において、酸素タンク61eを水素タンクに置換し、補助ガスとして水素ガスを第2貯留室61aに供給してもよい。加えて、第2実施形態における圧力レギュレータ61fは、単純な絞りに置き換えることもできる。また、本発明は、水素ガスを拡散燃焼させるディーゼルエンジンにも当然に適用され得る。
本発明の第1実施形態に係る内燃機関の概略図である。 図1に示した電気制御装置のCPUが実行するルーチンを示したフローチャートである。 本発明の第2実施形態に係る内燃機関の部分概略図である。 本発明の第2実施形態に係る内燃機関のCPUが実行するルーチンを示したフローチャートである。
符号の説明
10…エンジン本体部、20…燃焼室、31…吸気ポート、32…排気ポート、36…燃料噴射弁、40…作動ガス循環部、41…水分除去装置、41a…第1貯留室、41b…冷却管、41c…第1水位センサ、41d…制御弁、42…第1通路、43…第2通路、44…脱気装置、44a…第2貯留室、44b…減圧ポンプ(差圧ポンプ)、44c…接続通路、44d…圧力センサ、44e…第2水位センサ、44f…排水ポンプ、50…電気制御装置、61…脱気装置、61a…第2貯留室、61a3…酸素ガス供給部、61b…接続通路、61c…第2水位センサ、61d…排水弁、61e…酸素タンク、61f…圧力レギュレータ。

Claims (5)

  1. 燃焼室内にて燃料としての水素を燃焼させるとともに不活性ガスを作動ガスとして使用する内燃機関であって、
    前記燃焼室から排出されたガスに含まれる水蒸気を水に変化させることにより同ガスから同水蒸気を除去するとともに同水蒸気の除去されたガスを同燃焼室に再度供給する水分除去装置と、
    前記水に溶存している前記不活性ガスの分子を気体の状態に戻すことにより同水に溶存している同不活性ガスの分子の量を減少させるとともに同気体の状態に戻された不活性ガスを前記燃焼室に再度供給する脱気装置と、
    を備えた内燃機関。
  2. 請求項1に記載の内燃機関において、
    前記水分除去装置は、前記燃焼室から排出されたガスを収容し且つ同ガスを冷却することによりに同ガスに含まれる前記水蒸気を凝縮液化させて前記水に変化させるとともに同凝縮液化された水を貯留する第1貯留室を備えた凝縮機を含む内燃機関。
  3. 請求項2に記載の内燃機関において、
    前記脱気装置は、
    前記第1貯留室に貯留された水が供給されるとともに同供給された水を貯留する第2貯留室と、
    前記第2貯留室内における前記不活性ガスの分圧を前記第1貯留室内における前記不活性ガスの分圧より低い圧力とする不活性ガス分圧調整手段と、
    を含む、内燃機関。
  4. 請求項3に記載の内燃機関において、
    前記不活性ガス分圧調整手段は、前記第2貯留室のガスの全圧を前記第1貯留室のガスの全圧より低い圧力にすることにより、同第2貯留室内における前記不活性ガスの分圧を同第1貯留室内における前記不活性ガスの分圧より低い圧力とするように構成された内燃機関。
  5. 請求項3に記載の内燃機関において、
    前記不活性ガス分圧調整手段は、前記第2貯留室に水素ガス及び/又は酸素ガスを補助ガスとして供給し、同第2貯留室内において気体の状態にある前記不活性ガスを同供給された補助ガスとともに前記燃焼室に戻すことにより同第2貯留室内における同不活性ガスの分圧を前記第1貯留室内における前記不活性ガスの分圧より低い圧力とするように構成された内燃機関。
JP2005251114A 2005-08-31 2005-08-31 内燃機関 Expired - Fee Related JP4631616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251114A JP4631616B2 (ja) 2005-08-31 2005-08-31 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251114A JP4631616B2 (ja) 2005-08-31 2005-08-31 内燃機関

Publications (2)

Publication Number Publication Date
JP2007064092A true JP2007064092A (ja) 2007-03-15
JP4631616B2 JP4631616B2 (ja) 2011-02-16

Family

ID=37926580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251114A Expired - Fee Related JP4631616B2 (ja) 2005-08-31 2005-08-31 内燃機関

Country Status (1)

Country Link
JP (1) JP4631616B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062828A (ja) * 2007-09-04 2009-03-26 Toyota Motor Corp 作動ガス循環型水素エンジン
WO2010046978A1 (ja) * 2008-10-22 2010-04-29 トヨタ自動車株式会社 作動ガス循環型エンジン
WO2010092684A1 (ja) * 2009-02-13 2010-08-19 トヨタ自動車株式会社 作動ガス循環型エンジン
WO2011048624A1 (ja) 2009-10-19 2011-04-28 トヨタ自動車株式会社 作動ガス循環型エンジン
JP2011153598A (ja) * 2010-01-28 2011-08-11 Toyota Motor Corp 作動ガス循環型エンジン
WO2011096057A1 (ja) 2010-02-03 2011-08-11 トヨタ自動車株式会社 作動ガス循環型エンジン
JP2011196198A (ja) * 2010-03-17 2011-10-06 Toyota Motor Corp 作動ガス循環型エンジン及び比熱比検出装置
KR101160900B1 (ko) * 2010-02-11 2012-06-28 국방과학연구소 배기가스 재순환방식에 의한 폐회로 수소연소 시스템 및 방법
WO2012120612A1 (ja) * 2011-03-07 2012-09-13 トヨタ自動車株式会社 作動ガス循環型エンジン
WO2013008294A1 (ja) * 2011-07-11 2013-01-17 トヨタ自動車株式会社 作動ガス循環型ガスエンジンの気密異常検出方法及び同方法を使用する作動ガス循環型ガスエンジン

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327711A (en) * 1976-08-27 1978-03-15 Us Government Hydrogen fuel internal combustion engine
JPS61244833A (ja) * 1985-04-22 1986-10-31 Hitachi Zosen Corp 密閉サイクル機関装置
JPH0211826A (ja) * 1988-06-29 1990-01-16 Agency Of Ind Science & Technol 不活性ガス循環水素燃料内燃機関

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327711A (en) * 1976-08-27 1978-03-15 Us Government Hydrogen fuel internal combustion engine
JPS61244833A (ja) * 1985-04-22 1986-10-31 Hitachi Zosen Corp 密閉サイクル機関装置
JPH0211826A (ja) * 1988-06-29 1990-01-16 Agency Of Ind Science & Technol 不活性ガス循環水素燃料内燃機関

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062828A (ja) * 2007-09-04 2009-03-26 Toyota Motor Corp 作動ガス循環型水素エンジン
WO2010046978A1 (ja) * 2008-10-22 2010-04-29 トヨタ自動車株式会社 作動ガス循環型エンジン
WO2010092684A1 (ja) * 2009-02-13 2010-08-19 トヨタ自動車株式会社 作動ガス循環型エンジン
JPWO2010092684A1 (ja) * 2009-02-13 2012-08-16 トヨタ自動車株式会社 作動ガス循環型エンジン
JP4983983B2 (ja) * 2009-10-19 2012-07-25 トヨタ自動車株式会社 作動ガス循環型エンジン
WO2011048624A1 (ja) 2009-10-19 2011-04-28 トヨタ自動車株式会社 作動ガス循環型エンジン
US8662057B2 (en) 2009-10-19 2014-03-04 Toyota Jidosha Kabushiki Kaisha Working gas circulation engine
JP2011153598A (ja) * 2010-01-28 2011-08-11 Toyota Motor Corp 作動ガス循環型エンジン
WO2011096057A1 (ja) 2010-02-03 2011-08-11 トヨタ自動車株式会社 作動ガス循環型エンジン
US8989990B2 (en) 2010-02-03 2015-03-24 Toyota Jidosha Kabushiki Kaisha Working gas circulation type engine
KR101160900B1 (ko) * 2010-02-11 2012-06-28 국방과학연구소 배기가스 재순환방식에 의한 폐회로 수소연소 시스템 및 방법
JP2011196198A (ja) * 2010-03-17 2011-10-06 Toyota Motor Corp 作動ガス循環型エンジン及び比熱比検出装置
WO2012120612A1 (ja) * 2011-03-07 2012-09-13 トヨタ自動車株式会社 作動ガス循環型エンジン
WO2013008294A1 (ja) * 2011-07-11 2013-01-17 トヨタ自動車株式会社 作動ガス循環型ガスエンジンの気密異常検出方法及び同方法を使用する作動ガス循環型ガスエンジン
JP5141835B1 (ja) * 2011-07-11 2013-02-13 トヨタ自動車株式会社 作動ガス循環型ガスエンジンの気密異常検出方法及び同方法を使用する作動ガス循環型ガスエンジン
CN102985667A (zh) * 2011-07-11 2013-03-20 丰田自动车株式会社 工作气体循环型气体发动机的气密异常检测方法以及使用了所述方法的工作气体循环型气体发动机
CN102985667B (zh) * 2011-07-11 2015-11-25 丰田自动车株式会社 工作气体循环型气体发动机的气密异常检测方法以及使用了所述方法的工作气体循环型气体发动机

Also Published As

Publication number Publication date
JP4631616B2 (ja) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4631616B2 (ja) 内燃機関
JP4586780B2 (ja) 作動ガス循環型エンジン
JP4192930B2 (ja) 内燃機関
JP4650356B2 (ja) 作動ガス循環型水素エンジン
US20140041642A1 (en) Fuel supply apparatus, computer-readable storage medium, and method of controlling fuel supply apparatus
JP4952452B2 (ja) 作動ガス循環型水素エンジン
JP5726676B2 (ja) 燃料供給装置
JP4158752B2 (ja) 作動ガス循環型水素エンジン
JP4182652B2 (ja) 蒸発燃料回収装置
KR101836729B1 (ko) 윤활유 재생장치 및 윤활유 재생방법
JP2009281206A (ja) 作動ガス循環型エンジン
JP2010216454A (ja) 作動ガス循環型エンジン
JP2019210824A (ja) エンジン
JP2009281199A (ja) 多気筒水素エンジン
JP4670837B2 (ja) エンジンの排熱回収装置および同方法
JP5472188B2 (ja) 作動ガス循環型エンジンへの空気侵入判定方法及び同方法を使用する装置
JP5744674B2 (ja) 燃料供給装置
JP5621760B2 (ja) 作動ガス循環型エンジン
JP2015094271A (ja) ランキンサイクルシステム
JP4173743B2 (ja) 燃料蒸気処理装置
JP2011089447A (ja) 作動ガス循環型エンジン
JP5447051B2 (ja) 作動ガス循環型エンジン
JP2009162166A (ja) 内燃機関の制御装置
JP2006194105A (ja) シリンダヘッドカバーおよび内燃機関
JPS6161908A (ja) 内燃機関の沸騰冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R151 Written notification of patent or utility model registration

Ref document number: 4631616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees