JP2007039780A - 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法 - Google Patents

溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法 Download PDF

Info

Publication number
JP2007039780A
JP2007039780A JP2005294907A JP2005294907A JP2007039780A JP 2007039780 A JP2007039780 A JP 2007039780A JP 2005294907 A JP2005294907 A JP 2005294907A JP 2005294907 A JP2005294907 A JP 2005294907A JP 2007039780 A JP2007039780 A JP 2007039780A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
dip galvanized
layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005294907A
Other languages
English (en)
Other versions
JP5040093B2 (ja
Inventor
Takashi Kono
崇史 河野
Hisato Noro
寿人 野呂
Yoichi Tobiyama
洋一 飛山
Masahiko Tada
雅彦 多田
Yoshitsugu Suzuki
善継 鈴木
Yusuke Fushiwaki
祐介 伏脇
Toshinori Ando
壽規 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005294907A priority Critical patent/JP5040093B2/ja
Publication of JP2007039780A publication Critical patent/JP2007039780A/ja
Application granted granted Critical
Publication of JP5040093B2 publication Critical patent/JP5040093B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

【課題】高Si含有鋼板を下地とした場合に、不めっきのない美麗な表面外観を有し、かつめっき密着性に優れた溶融亜鉛めっき鋼板を、経済的にかつ高い生産性の下に製造するための方法について提案する。
【解決手段】Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面にヘマタイト含有率:70mass%以下となる酸化皮膜を形成し、ついで還元処理を行った後、溶融亜鉛めっきを施す。
【選択図】図1

Description

本発明は、自動車、建材および家電等の分野において好適に用いることができる溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板およびそれらの製造方法に関し、特Si含有高強度鋼板を下地とする溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板について、不めっきのない美麗な表面外観を得ると共に、めっき密着性および摺動性の有利な改善を図ろうとするものでもある。
近年、自動車、家電および建材等の分野において、素材鋼板に防錆性を付与した表面処理鋼板、中でも安価に製造できかつ防錆性に優れた溶融亜鉛めっき鋼板や、溶融亜鉛めっき層を合金化した合金化溶融亜鉛めっき鋼板が使用されている。
一般的に、溶融亜鉛めっき鋼板は、スラブを熱間圧延した後に冷間圧延あるいは熱処理が施された薄鋼板を下地として用い、この下地鋼板の表面を前処理工程にて脱脂および/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で下地鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中または還元性雰囲気中にて再結晶焼鈍を施し、ついで非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却してから、大気に触れることなく微量Al(0.1〜0.2mass%程度)を添加した溶融亜鉛浴中に浸漬することによって製造される。また、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後の鋼板を引き続いて合金化炉内で熱処理することによって製造される。
ところで、近年、下地となる鋼板の高性能化および軽量化を推進するために、下地鋼板の高強度化が求められており、かような下地鋼板に溶融亜鉛めっきを施して防錆性を兼備させた高強度溶融亜鉛めっき鋼板の使用量が増加している。
鋼板の高強度化手段としては、SiやMn,P等の固溶強化元素の添加が行われている。中でもSiは、鋼の延性を損なわずに高強度化できる利点があるため、Si含有鋼板は高強度鋼板として有望視されている。
しかしながら、Si含有高強度鋼板を下地とする溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板には、以下のような問題がある。
上述したように、溶融亜鉛めっき鋼板は、還元性雰囲気中にて600〜900℃程度の温度で焼鈍を行った後に、溶融亜鉛めっき処理に供される。しかしながら、鋼中のSiは易酸化性元素であるため、溶融亜鉛めっきに先立って行われる鋼板の焼鈍において一般的に用いられる還元性雰囲気中でも選択的に酸化して表面に濃化し、表面で酸化物を形成する。かようなSiの酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるため、鋼中のSi濃度を増加させると下地鋼板と溶融亜鉛との濡れ性が急激に低下して不めっきが多発するようになる。また、不めっきに至らなかった場合でも、鋼中Si濃度が高い鋼板を下地としている場合には、めっき密着性が悪いという問題がある。
さらに、鋼中のSiが選択的に酸化して表面に濃化すると、Siの酸化物がZn−Fe合金化反応を阻害するため、溶融亜鉛めっき後の合金化過程において合金化が著しく遅延する。その結果、生産性が著しく阻害される。また、生産性を確保するためにより高温で合金化処理を行うと、過合金化に起因した耐パウダリング性の劣化という問題が生じるため、高い生産性と良好な耐パウダリング性を両立させることは困難であった。
このような問題に対して、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち、還元焼鈍を行うことにより、溶融亜鉛との濡れ性を改善する技術が提案されている(例えば特許文献1)。
また、溶融めっきに先立って硫黄または硫黄化合物をS量として0.1〜1000mg/m2付着させた後、予熱工程を弱酸化性雰囲気で行い、その後水素を含む非酸化性雰囲気中で焼鈍する方法が提案されている(例えば特許文献2)。
さらに、Mn,P,Siを含む高張力鋼板の表面に、Sを含有するアンモニウム塩をS換算で0.1〜1000mg/m2付着させたのち熱処理を施すことで、鋼板の地鉄中にS成分を拡散させ、鋼中のMnと反応したMnS等の硫黄化合物を生成させることで、Mnの表面濃化を抑制すると共に、硫黄濃化層の存在によりSiの鋼板表面への拡散経路を遮断して、Siの表面濃化をも抑制する方法が提案されている(特許文献3)。
特許第2587724号公報 特開平11−50223号公報 特開2001−279410号公報
特許文献1に記載の技術は、予め酸化性雰囲気中で加熱して鋼板表面に酸化鉄を形成することによって、還元焼鈍時におけるSiの表面濃化を抑制しようとするものである。しかしながら、一般に知られているように、鋼中のSi濃度の増加に伴い鋼板表面における酸化速度が大きく低下するため、鋼中Si濃度の高い鋼板については、特許文献1に開示の酸化手段だけでは十分な酸化が進行せず、Siの表面濃化を抑制するために必要な量の酸化鉄を得ることは難しい。
その結果、溶融めっき時における不めっきの発生を十分には抑制できず、また合金化する場合には、合金化過程において懸念される合金化の著しい遅延という問題を十分に解決することができない。
合金化速度が遅いと、合金化炉の炉長が限られているCGLで所定の生産性を考慮して製造する場合、どうしても合金化温度を高くせざるを得ないが、この場合には耐パウダリング性の劣化を余儀なくされる。
また、還元焼鈍時のSi表面濃化抑制が不十分な場合は、Zn−Fe合金化反応の均一性が著しく阻害され、これにより合金化終了後のめっき表面は、不均一合金化によるZn−Fe合金層の凹凸が顕著になり、プレス成形時の摺動性が著しく劣化してしまう。
また、特許文献2や特許文献3に記載の技術は、鋼板表面に形成させた硫化物層により溶融亜鉛との濡れ性を改善しようとするものである。しかしながら、鋼中Si濃度が高い鋼板に適用した場合、硫化物層による効果のみではSiの表面濃化を十分に抑制できないので、上述したところと同様に、めっき層の性能の問題は解決できない。また、予熱工程を弱酸化性雰囲気で行ったとしても、鋼中のSi濃度が高い鋼板に適用した場合には、やはり上述したところと同様に、耐パウダリング性および摺動性の問題は解決できない。
さらに、特許文献2や特許文献3に開示された技術は、熱処理に先立って硫黄または硫黄化合物を鋼板表面に付着させるものであるため、続く熱処理工程において硫黄成分が加熱炉内で二酸化硫黄や硫化水素等の腐食性ガスとして多量に放出され、加熱炉体および炉内設備の腐食損傷が激しくなり、頻繁な補修や劣化更新が必要となるだけでなく、炉内ガスを大気中に放出する場合には大気汚染を防止する観点から脱硫装置を設ける必要も生じるなど、工程生産を実現するにはさらなる改良の必要があった。
本発明は、上記の実状に鑑み開発されたもので、高Si含有鋼板を下地とする場合であっても、不めっきの発生がなく、また特に厳しいめっき特性が要求される自動車用鋼板としても十分に耐え得る高水準のめっき密着性と摺動性を兼ね備える溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を、実用化が可能な製造方法と共に提案することを目的とする。
前述したとおり、Si:0.1mass%以上と鋼中Si濃度の高い鋼板の場合、従来技術による酸化手段のみでは酸化が進まず、不めっき改善のために必要な量の酸化鉄を得ることが困難であった。
従って、鋼中Si濃度が高い鋼板の場合、何らかの方法で酸化を促進することが必要となる。
そこで、発明者らは、鋼中Si濃度の高い鋼板について不めっきの発生を抑制し、併せてめっき層の合金化の促進を図るための手段について鋭意検討を重ねたところ、鋼中Si濃度の高い鋼板の場合、酸化を促進させて十分な量の酸化鉄を形成したとしても溶融亜鉛との濡れ性を十分に改善することはできず、不めっきを完全には抑制できないことが判明した。
そこで、さらに検討を重ねた結果、十分な量の酸化鉄を形成することもさることながら、その酸化鉄の組成が重要であることを見出した。
すなわち、鋼中Si濃度の高い鋼板の場合、鋼板を酸化させる際に表面に形成する酸化鉄の組成を制御することによって、上記の不めっきや合金化遅延の問題を解決できることを見出した。
具体的には、表面に形成する酸化鉄の組成を、ヘマタイトの含有率を70mass%以下とすることが、不めっきや合金化遅延を回避するために非常に有効であるという知見を得た。そして、ヘマタイトの含有率が70mass%以下である酸化鉄を得るには、酸化処理に先立って特定の成分を鋼板表面に付着させると共に、適正な酸化処理条件を採用することが重要であることを見出した。すなわち、鋼板の表面に、予めS,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、550℃超の温度で酸化処理を行うことで、所期した目的が達成できることの知見を得た。
また、このような酸化処理条件によりヘマタイト含有率:70mass%以下の酸化鉄を形成させた場合には、酸化処理に先立って鋼板表面に付着させた成分は、酸化処理雰囲気中および後続する還元処理雰囲気中に放出されることはなく、鋼板中に取り込まれることとなり、従って鋼板表面に付着させる成分としてSやCl等の腐食性ガスや環境汚染ガスの成分となる元素を採用した場合であっても、加熱炉の損傷の問題や汚染ガス回収設備の設置といった問題をも回避することができ、実用上、極めて有利であることも判明した。
さらに、鋼板表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのちヘマタイト含有率が上記の範囲となる酸化鉄を形成させ、その後に還元処理、溶融亜鉛めっきに供した場合には、溶融亜鉛めっき層直下の下地鋼板中にこれら成分の濃化層が形成されると共に、溶融亜鉛めっき層直下の下地鋼板中にSiを含有する酸化物が形成され、この濃化層とSiを含有する酸化物との存在により溶融亜鉛めっき層の密着性が飛躍的に向上するだけでなく、溶融亜鉛めっき層の合金化処理を行う場合には合金化が促進され、めっき層の凹凸の形成が抑制されて平滑化する結果、摺動性も顕著に向上することを見出した。
本発明は、上記の知見に立脚するものである。
すなわち、本発明の要旨構成は次のとおりである。
(1)Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面にヘマタイト含有率:70mass%以下となる酸化皮膜を形成し、ついで還元処理を行った後、溶融亜鉛めっきを施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。
(2)前記下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、上記の酸化皮膜を形成することを特徴とする上記(1)記載の溶融亜鉛めっき鋼板の製造方法。
(3)Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、500℃超の酸化性雰囲気中で加熱処理を行い、ついで還元処理を行った後、溶融亜鉛めっきを施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。
(4)Si:0.1〜3.0mass%を含有する鋼板を下地とする溶融亜鉛めっき鋼板であって、溶融亜鉛めっき層の直下に、厚さが0.01〜100μm の、S,C ,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種を濃化成分とした濃化層を有し、かつ該濃化層中にSiを含有する酸化物を併せて有することを特徴とする溶融亜鉛めっき鋼板。
(5)前記濃化層における濃化成分の濃度が、鋼板地鉄中の濃度より10%以上高いことを特徴とする上記(4)記載の溶融亜鉛めっき鋼板。
(6)前記濃化層中に含まれるSiを含有する酸化物の量が、酸素量換算で0.01〜1g/m2であることを特徴とする上記(4)または(5)記載の溶融亜鉛めっき鋼板。
(7)前記濃化層が、濃化成分と下地鋼中成分との化合物が島状に分散した存在形態からなることを特徴とする上記(4)乃至(6)のいずれかに記載の溶融亜鉛めっき鋼板。
(8)前記濃化成分がSであり、前記化合物として粒径:50nm以上の粒状のMnSが、任意の鋼板断面において、めっき層と地鉄との界面に平行な方向に20μm 当たり5個以上存在することを特徴とする上記(7)記載の溶融亜鉛めっき鋼板。
(9)Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面にヘマタイト含有率:70mass%以下となる酸化皮膜を形成し、ついで還元処理を行った後、溶融亜鉛めっきを施し、さらに該溶融亜鉛めっきの合金化処理を施すことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
(10)前記下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、上記の酸化皮膜を形成することを特徴とする上記(9)記載の合金化溶融亜鉛めっき鋼板の製造方法。
(11)Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、500℃超の酸化性雰囲気中で加熱処理を行い、ついで還元処理を行った後、溶融亜鉛めっきを施し、さらに該溶融亜鉛めっきの合金化処理を施すことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
(12)Si:0.1〜3.0mass%を含有する鋼板を下地とする合金化溶融亜鉛めっき鋼板であって、合金化溶融亜鉛めっき層の直下に、厚さが0.01〜100μm の、S,C ,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種を濃化成分とした濃化層を有し、かつ該濃化層中にSiを含有する酸化物を併せて有することを特徴とする合金化溶融亜鉛めっき鋼板。
(13)前記濃化層における濃化成分の濃度が、鋼板地鉄中の濃度より10%以上高いことを特徴とする上記(12)記載の合金化溶融亜鉛めっき鋼板。
(14)前記濃化層中に含まれるSiを含有する酸化物の量が、酸素量換算で0.01〜1g/m2であることを特徴とする上記(12)または(13)記載の合金化溶融亜鉛めっき鋼板。
(15)前記濃化層が、濃化成分と下地鋼中成分との化合物が島状に分散した存在形態からなることを特徴とする上記(12)乃至(14)のいずれかに記載の合金化溶融亜鉛めっき鋼板。
(16)前記濃化成分がSであり、前記化合物として粒径:50nm以上の粒状のMnSが、任意の鋼板断面において、めっき層と地鉄との界面に平行な方向に20μm 当たり5個以上存在することを特徴とする上記(15)記載の合金化溶融亜鉛めっき鋼板。
本発明の製造方法によれば、Si含有高強度鋼板を下地とした場合にあっても、不めっきのない美麗な表面外観を有しかつめっき密着性に優れた溶融亜鉛めっき鋼板と、不めっきのない美麗な表面外観を有しかつ耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板とを、工業的に実現可能な高い生産性の下に製造することができる。
また、本発明の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板は、Si含有高強度鋼板を下地しているにもかかわらず、不めっきのない美麗な表面外観を有し、さらにめっき密着性および摺動性にも優れているという利点を有している。
以下、本発明について具体的に説明する。
本発明の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法では、鋼板に溶融亜鉛めっきを施すに先立ち、鋼板を酸化させてヘマタイト含有率:70mass%以下の酸化皮膜を形成させてから、これを還元することが肝要である。一般に、鋼板を酸化させるとウスタイト(FeO)、マグネタイト(Fe3O4)およびヘマタイト(Fe2O3)からなる酸化皮膜が形成するが、鋼中Si濃度が0.1mass%以上と高い鋼板の場合、酸化皮膜中のヘマタイト含有率が高くなることが知られている(例えば、日新製鋼技報No.77,p.1(1988)参照)。
この酸化皮膜中におけるヘマタイト含有率を70mass%以下に抑制することで溶融亜鉛との濡れ性が改善され、不めっきの発生を完全に防止することができるだけでなく、合金化する場合には、その合金化の促進も達成することができる。これに対し、ヘマタイト含有率が70mass%を超えると、溶融亜鉛との濡れ性が低下し、不めっきの発生を完全に防止することができなくなる。なお、ヘマタイトは抑制することが好ましいことから、ヘマタイトの含有率は0mass%であってもよいことは勿論である。
ここで、鋼板表面の酸化皮膜におけるヘマタイト含有率を70mass%以下に抑制することによって溶融亜鉛との濡れ性が改善される理由は、必ずしも明らかではないが、酸化皮膜の組成が、その後の還元処理時のSi表面濃化挙動に影響を及ぼしているためと考えられ、ヘマタイト含有率が70mass%以下になるとSi表面濃化は完全に抑制される。
ちなみに、ここでいう酸化皮膜とは、前記したFeO,Fe3O4およびFe2O3に限定するものではなく、例えば鋼中添加元素であるSi等を含有した酸化物が含まれていても本発明の効果を妨げるものではない。
なお、ヘマタイト含有率の測定は、回転振動試料台を用いたX線回折法(Cu管球、管電圧:50kVおよび管電流:250mA)にて行う。すなわち、予めヘマタイト(Fe2O3),マグネタイト(Fe3O4)およびウスタイト(FeO)の粉末標準試料を別途準備し、混合割合(mass%)の異なる3種のサンプルを作製してX線回折に供する。ヘマタイト(Fe2O3):(104)面、マグネタイト(Fe3O4):(400)面、ウスタイト(FeO):(200)面の回折ピーク強度(cps)を測定して、混合割合(mass%)と回折ピーク強度(cps)との関係を求めて検量線を作成する。この検量線を基に、得られた回折ピーク強度からヘマタイト含有率(mass%)を求めることができる。
次に、前記酸化皮膜中のヘマタイト含有率を70mass%以下に制御するには、特定元素を含有する化合物を鋼板表面に付着させたのち、所定の雰囲気において加熱処理を行って鋼板を酸化させる手法が有利に適合する。
ここで、特定元素とは、S,C,Cl,Na,K,B,P,FおよびNであり、これらのいずれか1種または2種以上を含有する化合物、あるいはこれらの元素を単体で(単体で付着させることが可能なものに限る)付着させる必要がある。かような特定元素を含有する化合物としては、以下のようなものが挙げられる。
硫酸(H2SO4)、硫酸ナトリウム(Na2SO4)、亜硫酸ナトリウム(Na2SO3)、硫化ナトリウム(Na2S)、硫酸アンモニウム((NH4)2SO4)、硫化アンモニウム((NH4)2S)、チオ硫酸ナトリウム(Na2S2O3)、硫酸水素ナトリウム(NaHSO4)、硫酸水素アンモニウム(NH4HSO4)、硫酸カリウム(K2SO4)、硫酸鉄(FeSO4,Fe2(SO4)3)、硫酸アンモニウム鉄(Fe(NH4)2(SO4)2,FeNH4(SO4)2)、硫酸バリウム(BaSO4)、硫化アンチモン(Sb2S3)、硫化鉄(FeS)、チオ尿素(H2NCSNH2)、二酸化チオ尿素((NH2)2CSO2)、SCH基のチオフェン酸塩類およびSCN基を有するチオシアン酸塩類等のS含有化合物、
塩酸(HCl)、塩化ナトリウム(NaCl)、塩化アンモニウム(NH4Cl)、塩化アンチモン(SbCl3)、塩化カリウム(KCl)、塩化鉄(FeCl2,FeCl3)、塩化チタン(TiCl4)、塩化銅(CuCl)、塩化バリウム(BaCl2)、塩化モリブデン(MoCl5)および塩素酸ナトリウム(NaClO3)等のCl含有化合物、
水酸化ナトリウム(NaOH)、硫酸ナトリウム(Na2SO4)、硫化ナトリウム(Na2S)、チオ硫酸ナトリウム(Na2S2O3)、塩化ナトリウム(NaCl)、炭酸ナトリウム(Na2CO3)、クエン酸ナトリウム(Na3C6H5O7)、シアン酸ナトリウム(NaCNO)、酢酸ナトリウム(CH3COONa)、リン酸水素ナトリウム(Na2HPO4)、リン酸ナトリウム (Na3PO4)、フッ化ナトリウム(NaF)、炭酸水素ナトリウム(NaHCO3)、硝酸ナト リウム(NaNO3)、シュウ酸ナトリウム((COONa)2)、四ほう酸ナトリウム(Na2B4O7)および酸化ナトリウム(Na2O)等のNa含有化合物、
水酸化カリウム(KOH)、酢酸カリウム(CH3COOK)、ほう酸カリウム(K2B4O7)、炭酸カリウム(K2CO3)、塩化カリウム(KCl)、シアン酸カリウム(KCNO)、クエン酸水素カリウム(KH2C6H5O7)、フッ化カリウム(KF)、モリブデン酸カリウム(K2MoO4)、硝酸カリウム(KNO3)、過マンガン酸カリウム(KMnO4)、リン酸カリウム(K3PO4)、硫酸カリウム(K2SO4)、チオシアン酸カリウム(KSCN)およびシュウ酸カリウム((COOK)2)等のK含有化合物、
ほう酸(H3BO3)、ほう酸カリウム(K2B4O7)、四ほう酸ナトリウム(Na2B4O7)、ほう酸鉛(Pb(BO2)2)およびほう酸マンガン(MnH4(BO3)2)等のB含有化合物、
リン酸(H3PO4)、リン酸カリウム(K3PO4)、リン酸アンモニウム((NH4)3PO4) 、リン酸ナトリウム(Na3PO4)、リン酸水素ナトリウム(Na2HPO4)、リン酸鉄(FePO4)、ホスホン酸(H3PO3)およびホスフィン酸(H3PO2)等のP含有化合物、
フッ化アンチモン(SbF3)、フッ化アンモニウム(NH4F)、フッ化カリウム(KF)、フッ化水素アンモニウム(NH4FHF)、フッ化水素酸(HF)、フッ化ナトリウム(NaF)、フッ化バリウム(BaF)およびフッ化コバルト(CoF3)等のF含有化合物、
シュウ酸およびシュウ酸塩類、クエン酸およびクエン酸塩類、そして硝酸および硝酸塩類をはじめとする、CおよびN含有化合物
等を用いることができる。
なお、上記では代表的な例を示したのであって、上記以外のS,C,Cl,Na,K,B,P,FおよびNのいずれか1種または2種以上を含有する化合物を使用しても本発明で所期する効果が得られることは言うまでもない。
前記した特定元素を含む化合物を鋼板に付着させる方法については、特に限定するものではないが、物理的に付着させればよいことから、例えば前記化合物を水または有機溶剤等に溶解またはこれらと混合した溶液または懸濁液(以下、これらをまとめて処理液という)を用い、この処理液中に鋼板を浸漬させる方法、処理液をスプレー等で噴霧する方法、処理液をロールコーター等で塗布する方法などを採用できる。また、その後に乾燥させても本発明の効果は変わらない。その他、化合物を直接塗布しても本発明の効果を同様に得ることができる。
前記化合物を付着させる前に、必要に応じて電解脱脂や酸洗等の従来から用いられている前処理を施すことも可能である。また、前記化合物を付着させた後に、必要に応じて電解脱脂や酸洗等の従来から用いられている前処理を施したとしても、前記化合物が鋼板上に付着していれば本発明の効果を得ることができる。さらに、前記化合物を含む圧延油を用いて圧延時に付着させる方法を用いてもよい。
いずれにしても、鋼板を酸化させる際に前記特定元素を含む化合物が鋼板表面に付着していれば良いのである。
前記特定元素を含む化合物の付着量は、特定元素量として0.01〜1000mg/m2の範囲にあれば好適である。ここで、化合物の付着量が0.01mg/m2未満では、前述した本発明の効果が得られず、ヘマタイト含有率を70mass%以下に制御することが難しくなり、一方1000mg/m2を超えると本発明の効果は飽和し、むしろ経済的に不利になる。さらに、特定元素を含む化合物を付着させる本発明の製造方法で得られる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板では、後述するようにめっき層の直下に特定元素を濃化成分とした濃化層が形成され、この濃化層の存在によって溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の摺動性が向上する。特定元素量としての付着量が0.01mg/m2未満であると、この濃化層を後述する厚さ、濃化量で形成させることが困難となり、結果として得られる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の摺動性の向上効果が十分に得られなくなる。
なお、鋼板に付着させた特定元素の量は、湿式分析法により測定することができる。すなわち、下地鋼板を含んだ全特定元素量から鋼中の特定元素量を差し引くことで容易に定量することができる。
上記特定元素を含有する化合物を鋼板表面に付着させることによって、ヘマタイト含有率を70mass%以下に抑制できる理由は、以下のとおりである。
すなわち、鋼中Si濃度の高い鋼板の場合、従来技術による酸化手段では鋼中のSiは酸化鉄と下地鋼板との界面に濃化して層状で緻密なSiの酸化膜を形成する。この層状のSiの酸化膜は下地からのFe拡散を阻害するため、酸化鉄の成長が著しく抑制されると共に、金属イオン過剰型(n型)の酸化物であるヘマタイト(Fe2O3)含有率の高い酸化鉄となる。一方、特定元素を含有する化合物を鋼板表面に付着させると、前記酸化鉄と下地鋼板との界面のSi酸化膜の生成が阻害されるため、下地からのFe拡散が容易になる。その結果、金属イオン不足型(p型)の酸化物であるマグネタイト(Fe3O4)やウスタイト(FeO)の含有率の高い酸化鉄となり、結果としてヘマタイト含有率を低減することが可能になるのである。
さらに、鋼板を酸化させる際の条件として、特定元素を含有する化合物を付着させた鋼板を、最高到達温度が500℃超となる加熱処理を酸化性雰囲気にて行うことが肝要である。なぜなら、加熱処理が500℃以下の場合は、酸化皮膜中のヘマタイト含有率を70mass%以下に制御することが難しく、溶融亜鉛との濡れ性が低下するおそれがある。一方、上限は特に制限するものではないが、続く還元処理で必要とされる鋼板温度以下であれば実用上経済的なので好ましい。
鋼板表面の酸化は、例えば酸化性雰囲気中で鋼板を加熱することで容易に達成することができるが、酸化手段の違いが本発明の効果を妨げるものではなく、鋼板を酸化することができればどのような手段であってもよい。
加熱手段としては、バーナー加熱,誘導加熱,放射加熱および通電加熱など、従来から使用されている加熱方式でよく、特に限定するものではない。例えば、バーナー加熱方式としては、従来用いられている酸化炉や無酸化炉等の加熱炉を使用することができる。無酸化炉の場合、例えば直火バーナーの空燃比を1.0超えとすることで容易に鋼板を酸化することができる。
また、誘導加熱方式、放射加熱方式および通電加熱方式の場合は、加熱する鋼板近傍の雰囲気を酸化性雰囲気とすることで容易に鋼板を酸化することができる。酸化性雰囲気としては、酸素、水蒸気および二酸化炭素等の酸化性ガスを1種または2種以上含有する雰囲気が一般的であるが、鋼板を酸化することができれば特に限定するものではない。
なお、上記は代表的な例を示したのであって、いずれにしても鋼板を酸化させることができれば良く、その手段は特に限定するものではない。
上記のようにして得られた酸化皮膜は、酸素量として0.01〜5g/m2の酸化鉄であることが好適である。この酸素量が0.01g/m2未満の場合、酸化鉄量が不足してSiの表面濃化を十分に抑制することが難しくなり、一方酸素量が5g/m2を超えると、Si表面濃化抑制効果が飽和する一方で、焼鈍時の還元を十分に行うことができないために、未還元酸化皮膜として残存する結果、めっき後の合金化処理過程で著しい合金化遅延を引き起こす、おそれがある。
ここで、酸化皮膜中の酸素量の定量方法としては、湿式分析方法によって、下地鋼板を含んだ全酸素量から鋼中の酸素量を差し引くことで容易に定量することができる。事前に検量線を作成しておけば、蛍光X線やGDS等による簡易定量方法も可能である。
なお、特定元素を鋼板表面に付着させた後、酸化処理を行ってヘマタイト含有率:70mass%以下の酸化皮膜を得る方法では、特定元素が酸化雰囲気中に放出されず、酸化皮膜内あるいは下地鋼板中に取り込まれる量が多くなるので、特定元素が腐食性ガス等の有害なガスを発生する成分である場合においても、酸化処理に用いる加熱炉内や、加熱炉からの排気中への有害ガスの混入が抑制されるという効果もある。
本発明では、下地鋼板の表面にヘマタイト含有率が70mass%以下の酸化皮膜を形成したのち、酸化皮膜の還元処理を行う。この還元方法は、従来使用されている方法に準じて行えばよく、特に限定するものではない。例えば、放射加熱方式の焼鈍炉内で水素を含む還元性雰囲気中にて600〜900℃程度の温度で還元処理を行うのが一般的ではあるが、鋼板表面の酸化皮膜を還元することができれば手段は問わない。
上記の還元処理後、非酸化性あるいは還元性雰囲気中にてめっきに適した温度まで冷却したのち、めっき浴中に浸漬して溶融亜鉛めっきを施す。この溶融亜鉛めっき処理は、従来から行われている方法に従えばよい。例えば、めっき浴温は440〜520℃程度、鋼板のめっき浴浸漬温度はめっき浴温とほぼ等しくし、また亜鉛めっき浴中のAl濃度は0.1〜0.2mass%程度とするのが一般的であるが、特に限定するものではない。
なお、製品の用途によっては、めっき温度やめっき浴組成等のめっき条件を変更する場合があるが、めっき条件の違いは本発明の効果に何ら影響を与えるものではなく、特に限定されるものではない。例えば、めっき浴中にAl以外に、Pb,Sb,Fe,Mg,Mn,Ni,Ca,Ti,V,Cr,Co,Sn等の元素が混入していても本発明の効果は何ら変わらない。
さらに、めっき後のめっき層の厚さを調整する方法についても、特に限定するものではないが、一般的にはガスワイピングが使用され、ガスワイピングのガス圧,ワイピングノズル/鋼板間距離等を調節することによって、めっき層の厚さを調整する。このとき、めっき層の厚さは特に限定されるものではないが、3〜15μm 程度とするのが好ましい。というのは3μm 未満では十分な防錆性が得られず、一方15μm 超えでは防錆性が飽和するだけでなく、加工性や経済性が損なわれるからである。但し、めっき層の厚さの違いは本発明の効果を妨げるものではなく、特に限定するものではない。
また、本発明では、上記した溶融亜鉛めっき後に合金化処理を施すことも可能である。前述したように、本発明によれば、焼鈍時のSi表面濃化を完全に抑制することができるので、Si含有鋼板での著しい合金化遅延という従来技術での問題を解消することができる。その結果、耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板を生産性を阻害することなく製造することができる。合金化処理方法としては、ガス加熱、インダクション加熱および通電加熱など、従来から用いられているどのような加熱方法を用いてもよく、特に限定するものではない。例えば合金化処理板温は460〜600℃程度、合金化保持時間は5〜60秒程度とするのが一般的である。
上記のようにして、素材鋼板の表面に所定量の特定元素を付着させた後、好適にはCGLの焼鈍炉の中で、まず鋼板を酸化して酸化層を形成し、引き続き還元焼鈍を施して鉄酸化物を還元し、しかるのち溶融亜鉛めっきを施すというプロセスが必要となる。
前述したように、高張力鋼板に対してを溶融亜鉛めっきを施す場合、一般的に知られているように焼鈍前の鉄の酸化は有効ではあるが、Si含有鋼をめっきする場合には先に述べたようにSi含有鋼自体に十分な量の酸化膜を付与することが困難で、これが原因となって良好なめっき性および密着性を有する溶融亜鉛めっき層を得ることが困難になっている。
本発明では、特定元素を焼鈍前、つまり鋼板の酸化の前に鋼板に付与することにより、Si含有鋼であっても、ヘマタイト含有率が70%以下でかつ十分な量の鉄の酸化膜を形成することができ、続いて行われる焼鈍時にSiの表面濃化を効果的に抑制して、良好なめっき層を得ることができる。これにより、不めっきのない表面外観が良好な溶融亜鉛めっき層が得られるだけでなく、合金化溶融亜鉛めっきの場合には合金化温度の低減が可能となり、密着性に優れた合金化溶融亜鉛めっき鋼板の提供が可能となる。
さらに、酸化処理時にSiの表面濃化が抑制されていると、酸化させる前に表面に付着させた特定元素が、鋼板の表層に侵入できるようになり、溶融亜鉛めっき、その後の合金化処理後にはめっき層直下に特定元素の濃化層が形成される。
また、上述の特定元素を付着させて酸化処理を行うと、酸化処理時の鉄酸化物の形成量が大きくなる一方で、Siの酸化物が鉄酸化物と地鉄との界面および地鉄側内部に形成される。そして、後続する還元処理により鉄酸化物が還元されるため、Siの酸化物は地鉄内部に残存することになり、めっき後にはめっき層直下にSiを含有する酸化物が存在することになる。このSiを含有する酸化物の存在は、後述するように溶融亜鉛めっき鋼板あるいは合金化溶融亜鉛めっき鋼板のめっき密着性および摺動性の向上にも寄与する。
ここに、Siを含有する酸化物としては、SiO2,FeSiO3,Fe2SiO4,MnSiO3等 が挙げられるが、本発明ではその種類は限定されない。
次に、本発明におけるめっき原板(下地鋼板)の成分組成について説明する。
本発明では、下地鋼板中のSi含有量を0.1〜3.0mass%の範囲に限定した。この理由は、Si含有鋼を下地鋼板とした場合に従来問題となっていためっき密着性や摺動性を問題としていること、および前述したSiを含有する酸化物が得るためには下地中にSiが含有されている必要があることによる。
鋼中のSi含有量が0.1mass%未満では、めっき層直下に前述したSiを含有する酸化物を十分に形成させることができず、本発明の効果が得られない。
なお、本発明では、Si以外の元素について特に限定されることはなく、従来から公知の成分系を利用することができる。代表組成について述べると、次のとおりである。
C:0.5mass%以下
Cは鋼中に含有される元素であり、0.0001〜0.5mass%の範囲で含有される。本発明においても下地鋼板中にこの範囲でCが含有されていよい。また、Cは、高強度化に対して有用なだけでなく、強度−延性バランスを向上させるために残留オーステナイトを生成させる等、組織制御を行う場合に有用な元素である。これらの作用を発現させるには、0.05mass%以上含有されていることが好ましい。しかしながら、含有量が0.25mass%を超えると、溶接性が劣化するため、0.25mass%を上限とすることが好ましい。
Mn:5mass%以下
Mnは、鋼の高強度化に有用な元素であり、5mass%以下の範囲で鋼中に含有される元素であり、本発明においても下地鋼板中にこの範囲でMnが含有されていてよい。特に、0.1mass%以上、好ましくは0.5mass%以上含有させることによってその効果を発揮することができる。しかしながら、Mnも、Siと同様に、焼鈍時に酸化膜を形成する元素であり、その含有量が3.0mass%を超えて 多量に含有されると上述したようにめっき層直下に特定元素の濃化層およびSiを含有する酸化物を形成させたとしても、めっき密着性が劣化する傾向がある。また、溶接性や強度−延性バランスの確保にも悪影響を及ぼす。このため、Mn含有量は3.0mass%以下とすることが好ましい。より好ましくは0.5〜3.0mass%の範囲である。
Al:5.0mass%以下
Alは、Siと補完的に添加される元素であり、0.01%以上含有させることが好ましい。しかしながら、Al量が5.0mass%を超えると上述したようにめっき層直下に特定元素の濃化層およびSiを含有する酸化物を形成させたとしても、めっき密着性が劣化する傾向がある。また、溶接性や強度−延性バランスの確保にも悪影響を及ぼす。従って、Alは5.0mass%以下とすることが好ましい。より好ましくは0.01〜3.0mass%の範囲である。
以上に例示した元素以外の元素としては、Ti,Nb,V,Cr,S,Mo,Cu,Ni,B,Ca,N,PおよびSb等が挙げられる。これらの元素の含有量としては、Ti:1mass%まで、Nb:1mass%まで、V:1mass%まで、Cr:3mass%まで、S:0.1mass%まで、Mo:1mass%まで、Cu:3mass%まで、Ni:3mass%まで、B:0.1mass%まで、Ca:0.1mass%まで、N:0.1mass%まで、P:1mass%まで、Sb:0.5mass%までであれば、本発明の効果が得られることが確認されている。
なお、上記の元素を複合して使用する場合、合計量が5mass以下の範囲とすることが好ましい。残部はFeおよび不可避的不純物である。
次に、以上説明した、本発明の溶融亜鉛めっき鋼板の製造方法、合金化溶融亜鉛めっき鋼板の製造方法により得られる、本発明の溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板について説明する。
先述したように、素材を高Si含有の高張力鋼板とした場合、鋼中のSi濃度の増加に伴い鋼板表面における酸化速度が大きく低下するため、従来技術による酸化手段のみでは酸化が進まず、Siの表面濃化を抑制するために必要な量の酸化鉄を得ることが困難であった。この場合、還元焼鈍時にSiは選択酸化による表面濃化を起こし、溶融めっき時に不めっきが多発し、また合金化過程においては著しい合金化遅延が生じる。合金化速度が遅いと、合金化炉長が限られているCGLで所定の生産性を考慮して製造する場合、合金化温度を高くせざるを得ず、その結果めっき密着性および耐パウダリング性の劣化を余儀なくされる。また、焼鈍時の表面濃化抑制が不十分な場合は、Zn−Fe合金化反応の均一性が著しく阻害され、これによって合金化終了後のめっき表面は不均一合金化によるZn−Fe合金層の凹凸が顕著になり、プレス成形時の摺動性が著しく劣化してしまう。
そこで、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板のめっき密着性に関し、その改善策について検討したところ、めっき層の直下に、S,C,Cl,Na,K,BおよびNなる群から選ばれた少なくとも1種の成分の濃化層を、該濃化層の厚さが0.01〜100μmとなるように生成させ、かつこの濃化層中にSiを含有する酸化物を存在させることが、めっき密着性および摺動性の改善に有効に寄与することを見出した。
この理由についてはまだ明確に解明されたわけではないが、次のように推測している。
すなわち、溶融亜鉛めっき鋼板において、下地鋼板の表面に本発明に従う特定成分の濃化層を生成させた場合は、溶融めっき時に、めっき層/鋼板界面に生成されるFe−Al金属間化合物と素地鋼板との整合性が密着性に有利なように変化するためと考えられる。
また、下地鋼板の表面に本発明に従う特定成分の濃化層を生成させた場合、かかる特定成分は、溶融亜鉛めっき時に不可避的に溶出して、めっき層中に取り込まれ、一部めっき表層に存在するようになる。これにより、かような濃化層を有しない通常の溶融亜鉛めっき鋼板に比べて摺動性が向上するものと考えられる。
一方、合金化溶融亜鉛めっき鋼板の場合は、次のとおりである。
一般的に、合金化処理を施した場合、めっき層/鋼板界面に鋼板よりも硬度の高いΓ相が生成し、このΓ相と鋼板の硬度差に起因してめっき密着性の劣化が避けられなかったのであるが、本発明に従いめっき層の直下に特定成分の濃化層を生成させた場合には、めっき層/鋼板界面近傍の鋼板の機械的特性とくに硬度がΓ相のそれに近い値となるため、鋼板変形時にめっき/鋼板界面に付与される歪が効果的に減少する。その結果、めっき密着性が向上するものと考えられる。
なお、本発明に従い、鋼板表面に本発明に従う特定成分の濃化層を生成させた場合、焼鈍時のSiの表面濃化が抑制されるため、比較的低温で合金化が可能となり、その結果、密着性に不利なΓ相の生成が抑制されという利点もある。
次に摺動性の改善であるが、合金化溶融亜鉛めっきの場合は合金化挙動の変化により発現する。すなわち、前述したように焼鈍時のSi表面濃化で合金化速度が遅くなる。これは、焼鈍後に表面に選択酸化して濃化する表面濃化物がZn−Feの反応を抑制するためであり、その結果、合金化終了後のめっき層は均一なZn−Fe反応が阻害されて凹凸が激しいめっき層となる。また、Zn−Fe合金の結晶も粗大化する。この合金化抑制によるめっき層の凹凸および結晶粒の粗大化によりめっき層の摺動性は劣化することになる。
しかしながら、先の密着性の場合と同様、めっき層の直下に特定成分の濃化層を生成させた場合には、通常の場合に比べて焼鈍時のSi表面濃化が抑制され、合金化が促進されるために、Zn−Fe反応も均一であり、めっき層は平滑となる。また、結晶粒も微細となり、先述の通常の製法で製造したSi含有鋼に比べて良好な摺動性を示すことになる。
さらに、本発明に従い、濃化層中にSiを含有する酸化物を存在させることによって、めっき密着性や摺動性が改善される理由については、次のように考えている。
すなわち、濃化層中にSiを含有する酸化物を生成させることにより、めっき/鋼板界面の形状が凹凸になり、このアンカー効果により密着性は改善される。その結果、加工時における摺動性も向上する。なお、この効果は、溶融亜鉛めっき鋼板の場合も、合金化溶融亜鉛めっき鋼板の場合も同じである。
このように、めっき層直下に、特定元素の濃化層を形成し、かつこの濃化層中にSiを含有する酸化物を存在させると、両者の相乗効果により、密着性は飛躍的に向上し、また摺動性も向上するのである。
ここに、上記した特定元素の濃化層の厚さは、0.01〜100μmの範囲に制御する必要がある。というのは、濃化層厚が0.01μm に満たないとめっき密着性を向上させる効果が十分に発現せず、一方100μm を超えると疲労特性が劣化するからである。より好ましくは1μm 超、50μm 以下の範囲である。
また、本発明において、濃化層とは、特定成分の濃度が、鋼板地鉄中の濃度よりも10%以上高い領域を意味する。
なお、かような濃化層は、実施例でも示すように、GDSを用いてめっき鋼板の表面から深さ方向の濃化成分のDepth Profileを求めるか、あるいはめっ き鋼板の断面をEPMAを用いて線分析を行うことにより得られるDepth Profile で、界面近傍に現れるピーク強度が、地鉄の強度よりも10%以上高くなった領域として示される。
ここに、濃化層を、特定成分の界面近傍におけるピーク強度が、地鉄の強度よりも10%以上高い領域と規定した理由は、この増分が10%未満では還元焼鈍時におけるSiの表面濃化を十分に抑制することができないからである。
なお、濃化層のDepth Profileの測定は、上記のGDSを用いてもEMPAによる断面の線分析の用いても構わないが、後述するように、濃化層は、濃化成分と下地鋼中成分との化合物が島状に分散した存在形態とすることが好ましいことから、EMPAにより線分析を行う際には注意が必要である。
すなわち、濃化成分と下地鋼中成分との化合物が島状に分散した存在形態の場合、EPMAによる断面の線分析では、化合物が存在しない部分を分析することも有り得る。そのため、EMPAによる線分析を用いる場合には、鋼板断面において任意の場所5箇所について測定を行い、濃化元素の強度が地鉄の強度よりも10%以上高い領域の厚さを求め、5回の測定についての厚さの平均値を求めることで濃化層厚さを測定するものとする。
また、濃化層中に含まれるSiを含有する酸化物の量は、酸素量換算で0.01〜1g/m2の範囲とすることが好ましい。というのは、かような酸化物の量が、酸素量換算で0.01g/m2未満ではめっき密着性および摺動性の改善効果に乏しく、一方1g/m2を超えると鋼板に著しい粒界酸化が生じ、疲労などの観点で問題が生じるおそれがあるからである。
なお、かような酸化物を特定するに当たり、酸化物中にがSiを含有していることはTEM レプリカ法で調整したサンプルのEDX分析により確認できる。
なお、上述の濃化層は、濃化成分と下地鋼中成分との化合物が島状に分散した存在形態であることが好ましい。下地鋼中成分としては、Feをはじめとして、Si,Mn,Ti,Nb,V,Cr,S,Mo,Cu,Ni,B,Ca,N,PおよびSb等が想定される。所望の物質の濃化層を形成させるためには、濃化成分と下地鋼中成分との化合物を生成させる方が、より安定的に濃化元素が固定されるので有利であると考えられる。また、化合物が分散することによる利点は、解析の結果によれば、化合物の多くは地鉄の結晶粒界に存在していることから、化合物がSiの拡散経路を塞ぐことで鋼中Siの表面濃化を効果的に抑制できることにあると考えられる。
さらに、化合物をMnSとすれば、より安定して本発明の効果を得ることができる。というのは、MnSは想定される種々の化合物の中でも非常に安定した化合物であるため、生成され易く、製造条件の制御が行い易いためである。MnSを形成させるには、上述の酸化処理の前に鋼板に付着させる元素としてSを選択すれば、酸化処理および還元処理工程にて付着させたSが鋼板の表層(めっき後においてはめっき直下)において鋼中のMnとの化合物となり濃化する。
その際の好適な化合物生成量は、粒径が50nm以上の粒状のMnSが、任意の鋼板断面において、めっき層と地鉄との界面に平行な方向に20μm 当たり5個以上存在させることである。また、ここでいうMnSは、主成分がMnとSにより形成されるという意味であり、Fe等のほかの元素が混在していても問題ない。すなわち、広い意味でMnS系介在物であればよい。
なお、化合物の同定、分散状況や個数の判定は、めっき鋼板の断面のSEM観察もしくは TEM観察に加え、必要に応じてEDSや電子線回折(TED)等を利用することにより行うことができる。
実施例1
表1に示す22種類の冷延鋼板および2種類の熱延鋼板を供試材として、5mass%NaOH溶液で電解脱脂(80℃×5秒、5A/dm2)を行い、(a)リン酸(100g/l)、(b)塩酸(1g/l)、(c)フッ化ナトリウム(2g/l)、(d)チオ硫酸ナトリウム(20g/l)および(e)水酸化カリウム(100g/l) 、(f)チオシアン酸アンモニウム(50g/l)、(g)硫酸(50g/l)、(h)硫酸アンモニウム(30g/l)、(i)チオ尿素(20g/l)、(j)硫酸ナトリウム(50g/l)、(k)硫酸鉄(20g/l)、(l)硫酸(10g/l)、(m)硫酸アンモニウム(5g/l)、(n)チオ尿素(1g/l)、(o)硫酸アンモニウム(150g/l)をそれぞれ含有する水溶液を、バーコーターにより表2に示すように付着量を変えて鋼板表面に塗布した後、乾燥機で乾燥させた。
これら供試材を酸化性雰囲気の加熱炉で加熱する加熱処理を施し、一旦取り出した後、溶融めっきシミュレーターで焼鈍後に溶融亜鉛めっきを行った。
また、比較として加熱処理を行わずに焼鈍してめっきすることも実施した。
加熱条件は、大気中で鋼板の最高到達温度を変化させた。なお、最高到達温度での保持時間は1秒とし、その後窒素ガスにて急冷した。
焼鈍条件は、10vol%水素+窒素雰囲気中(露点:−35℃)で板温:830℃,保持時間:45秒の条件で行った。
めっき条件は、Alを0.14mass%含む(Fe飽和)460℃の亜鉛めっき浴を用い、侵入板温:460℃および浸漬時間:1秒であり、めっき後の表面外観を評価した。めっき後、窒素ガスワイパーで付着量を片面:45g/m2に調整 した。
得られた溶融亜鉛めっき鋼板について、後述する手法に従い、特定元素濃化層厚みおよび濃化度の測定、めっき層下のSiを含有する酸化物の定量を行うと共に、さらに後述する評価基準に従ってめっき外観およびめっき密着性の評価を行った。
ついで、得られた溶融亜鉛めっき鋼板に対し、通電加熱炉にて保持時間:10秒の合金化処理(昇温速度:40℃/s)を行い、めっき層中Fe含有率が10±0.5mass%が得られる合金化温度により合金化速度を評価した。評価基準は後述 するとおりである。また、めっき層中のFe含有率が10±0.5mass%となるサ ンプルを用いて90°曲げ試験を行って耐パウダリング性を後述する評価基準に従って評価した。さらに、摺動性についても、後述する評価基準に従って評価した。
これらの評価結果を、表2に併記する。
なお、めっき品質の各評価基準は以下の通りである。
<特定元素濃化層厚みおよび濃化度測定>
得られた溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板に対して、断面についてのEPMAによる線分析および/またはGDS測定を以下の条件で行い、得られたDepth Profile(例えば図1または図2)から、めっき/鋼板界面より地鉄側において、界面近傍に現れる濃化元素のピーク強度が、地鉄部分における同元素の強度よりも10%以上高くなっている領域の厚さを濃化層厚さとした。また、地鉄における強度Bに対するピーク強度Aの増分として濃化度を測定した(濃化度[%]=(強度A−強度B)/強度B×100[%])。ここで、濃化度が10%未満である場合については、濃化層厚さは、Depth Profileについて地鉄における濃化元素の強度Bよりも若干高くなっている領域の厚さを表中に記載した。また、EPMAによる線分析については、鋼板断面において任意の場所5箇所について測定を行い、濃化元素の強度が地鉄の強度よりも10%以上高い領域の厚さを求め、5回の測定についての厚さの平均値、ピーク強度Aの平均値を求めることで濃化層厚さおよび濃化度とした。GDSによる測定においてスパッタ時間から濃化層厚への換算は以下のGDS条件での鉄のスパッタ速度:0.04μm/sec.から換算した。
(EPMA測定条件)
加速電圧:20 kV
ビーム電流:0.05 μA
(GDS測定条件)
管電流:30mA
アルゴンガス流量:400ml
<めっき層下のSiを含有する酸化物定量法>
得られた溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板に対して、めっき層を以下に示すアルカリ溶液にて溶解除去し、この鋼板と鋼板両面を100μm 機械的に研削した鋼板との酸素分析値の差から求めた。また、この酸化物中にSiが含有されていることは、TEMレプリカ法で調整したサンプルのEDX分析により確認されている。
(アルカリ溶液)
NaOH:8.2%
トリエタノールアミン:2.1%
H2O2:1.2%
<めっき外観>
得られた溶融亜鉛めっき鋼板に対して、目視および10倍のルーペにて外観観察を行い、不めっきが全くない場合を不めっきなしとし、10倍のルーペにて観察可能な微小の不めっきがある場合を微小不めっき有りとし、目視にて不めっきが観察できる場合を不めっき有りとした。
○:不めっきなし
△:微小不めっき有り
×:不めっき有り
<めっき密着性>
得られた溶融亜鉛めっき鋼板について、ボールインパクト試験を行い、テープ剥離した際のめっき剥離状態を評価した。試験条件は、直径1/2インチの半球状突起の上に載せた溶融亜鉛めっき鋼板上に、2.8kgの重りを1mの高さから 落下させた後、凸側でテープ剥離を実施した。
○:めっき剥離なし
×:めっき剥離あり
<合金化速度>
○:合金化温度:500℃以下で合金化完了
×:合金化温度:500℃超で合金化完了
<耐パウダリング性>
合金化溶融亜鉛めっき鋼板から幅:25mm、長さ:40mmの試験片を切出し、セロハンテープ(ニチバン製、幅:24mm)を長さ:20mmの位置に貼り、テープ面を90°内側に曲げた後、曲げ戻しを行ってセロハンテープを剥がした時に付着したZn量を蛍光X線によりカウント数として測定した。測定したZnカウント数を試験片幅:単位長さ(1m)当りのカウント数に補正して、下記の基準に応じて評価した。
○:良好(カウント数:0〜5000)
×:不良(カウント数:5000超)
<摺動性試験>
摺動性については、以下の条件で、以下に示す形状の工具を用いた摺動性試験を行い、引き抜き力Fと押え荷重Pとの比から摩擦係数μを次式から求め、以下の基準で評価した。
μ=2P/F
面圧:9.8 MPa、摺動距離:100 mm、摺動速度:10 mm/s、試料幅:20mm
金型:平面工具(肩R5、#1200 研磨) 試料との接触面積:10×20mm
塗油条件 ノックスラスト550KH:1.0 g/m2塗油
○:良好(μ:0.12未満)
×:不良(μ:0.12以上)
Figure 2007039780
Figure 2007039780
Figure 2007039780
Figure 2007039780
Figure 2007039780
表2から明らかなように、鋼板表面に特定元素を含有する化合物を付着させ、その後酸化処理して、ヘマタイト含有率が70mass%以下である酸化皮膜を形成させた後に還元条件下で焼鈍することで得られる高Si含有鋼板を下地とする場合であっても、不めっきの発生がなく、また著しい合金化遅延もなく、優れた耐パウダリング性および摺動性を示すことが分かる。さらに、得られた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板には、めっき層直下に濃化層を有すると共に、該濃化層にはSiを含有する酸化物が存在していることも分かる。なお、酸化処理後に形成した酸化皮膜は、ヘマタイト以外の残部はマグネタイト、ウスタイトを主体とする組織であることを確認した。
実施例2
化合物として、(p)塩化カリウム(50g/l)、(q)シュウ酸アンモニウム(100g/l)、(r)硫酸(50g/l)、(s)水酸化ナトリウム(30g/l)および(t)四ほう酸ナトリウム(3g/l)を表3に示す付着量で適用し、加熱処理条件として0.1vol%酸素+窒素雰囲気で処理した以外は、実施例1と同様の条件にて溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を作製し、同様に評価した。
かくして得られためっき鋼板の評価結果を、表3に併記する。
Figure 2007039780
表3から明らかなように、鋼板表面に特定元素を含有する化合物を付着させ、その後酸化処理して、ヘマタイト含有率が70mass%以下である酸化皮膜を形成させた後に還元条件下で焼鈍することで得られる高Si含有鋼板は、不めっきの発生がなく、また著しい合金化遅延もなく、優れた耐パウダリング性および摺動性を示すことが分かる。さらに、得られた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板には、めっき層直下に濃化層を有すると共に、該濃化層にはSiを含有する酸化物が存在していることも分かる。なお、酸化処理後に形成した酸化皮膜は、ヘマタイト以外の残部はマグネタイト、ウスタイトを主体とする組織であることを確認した。
実施例3
化合物として、(u)塩化アンチモン(20g/l)、(v)硫酸アンモニウム(30g/l)、(w)塩化鉛(1g/l)、(x)チオ尿素(20g/l)および(y)塩化ナトリウム(25g/l)を表4に示す付着量で適用し、加熱処理条件として空燃比:1.15の直火バーナーを使用して加熱処理した以外は、実施例1と同様の条件にて溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を作製し、同様に評価した。
かくして得られためっき鋼板の評価結果を、表4に併記する。
Figure 2007039780
表4から明らかなように、鋼板表面に特定元素を含有する化合物を付着させ、その後酸化処理して、ヘマタイト含有率が70mass%以下である酸化皮膜を形成させた後に還元条件下で焼鈍することで得られる高Si含有鋼板は、不めっきの発生がなく、また著しい合金化遅延もなく、優れた耐パウダリング性および摺動性を示すことが分かる。さらに、得られた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板には、めっき層直下に濃化層を有すると共に、該濃化層にはSiを含有する酸化物が存在していることも分かる。なお、酸化処理後に形成した酸化皮膜は、ヘマタイト以外の残部はマグネタイト、ウスタイトを主体とする組織であることを確認した。
実施例4
化合物として、(イ)硫酸(50g/l)、(ロ)硫酸アンモニウム(30g/l)および(ハ)チオ尿素(20g/l)を表5に示す付着量で適用する以外は、実施例1と同様の条件にて溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を作製した。評価方法も実施例1とほぼ同様であるが、耐パウダリング性については、より細かな差を評価するため、
◎:優秀(カウント数:4000未満)
○:良好(カウント数:4000〜5000)
×:不良(カウント数:5000超)
とした。
さらに、それぞれの供試材について、めっき界面近傍の濃化物質の同定および分布状況の確認を、SEMおよびTEMを利用して行った。解析用のサンプルは、供試材を集束イオンビーム(FIB)による断面加工により作製した。SEM観察により、生成した濃化物質の化合物の大きさや個数を判断し、TEM-EDS及び電子線回折により化合物の同定を行った。化合物の個数の評価は、SEMによる断面 観察視野のうち、めっき/地鉄界面平行方向幅:20μm の領域における界面近傍に存在する粒径:50nm以上の化合物の個数について、任意に選ばれる5箇所の平均を評価指標とした。
得られた結果を表5に示す。
Figure 2007039780
表5から明らかなように、めっき界面近傍に適正に濃化層を形成させたものの中でも、特に濃化層を濃化成分と下地鋼中成分との化合物が十分に分散した存在形態とすることにより、一層優れた特性を得ることができる。
合金化溶融亜鉛めっき鋼板の断面について、EPMAによる線分析によって得られたDepth Profileの一例を示した図である。 合金化溶融亜鉛めっき鋼板について、GDSによって得られた Depth Profileの一例を示した図である。

Claims (16)

  1. Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面にヘマタイト含有率:70mass%以下となる酸化皮膜を形成し、ついで還元処理を行った後、溶融亜鉛めっきを施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。
  2. 前記下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、上記の酸化皮膜を形成することを特徴とする請求項1記載の溶融亜鉛めっき鋼板の製造方法。
  3. Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、500℃超の酸化性雰囲気中で加熱処理を行い、ついで還元処理を行った後、溶融亜鉛めっきを施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。
  4. Si:0.1〜3.0mass%を含有する鋼板を下地とする溶融亜鉛めっき鋼板であって、溶融亜鉛めっき層の直下に、厚さが0.01〜100μm の、S,C ,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種を濃化成分とした濃化層を有し、かつ該濃化層中にSiを含有する酸化物を併せて有することを特徴とする溶融亜鉛めっき鋼板。
  5. 前記濃化層における濃化成分の濃度が、鋼板地鉄中の濃度より10%以上高いことを特徴とする請求項4記載の溶融亜鉛めっき鋼板。
  6. 前記濃化層中に含まれるSiを含有する酸化物の量が、酸素量換算で0.01〜1g/m2であることを特徴とする請求項4または5記載の溶融亜鉛めっき鋼板。
  7. 前記濃化層が、濃化成分と下地鋼中成分との化合物が島状に分散した存在形態からなることを特徴とする請求項4乃至6のいずれかに記載の溶融亜鉛めっき鋼板。
  8. 前記濃化成分がSであり、前記化合物として粒径:50nm以上の粒状のMnSが、任意の鋼板断面において、めっき層と地鉄との界面に平行な方向に20μm 当たり5個以上存在することを特徴とする請求項7記載の溶融亜鉛めっき鋼板。
  9. Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面にヘマタイト含有率:70mass%以下となる酸化皮膜を形成し、ついで還元処理を行った後、溶融亜鉛めっきを施し、さらに該溶融亜鉛めっきの合金化処理を施すことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
  10. 前記下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、上記の酸化皮膜を形成することを特徴とする請求項9記載の合金化溶融亜鉛めっき鋼板の製造方法。
  11. Si:0.1〜3.0mass%を含有する鋼板を下地として、該鋼板の表面に溶融亜鉛めっきを施すに先立ち、該下地鋼板の表面に、S,C,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種の成分を付着させたのち、500℃超の酸化性雰囲気中で加熱処理を行い、ついで還元処理を行った後、溶融亜鉛めっきを施し、さらに該溶融亜鉛めっきの合金化処理を施すことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
  12. Si:0.1〜3.0mass%を含有する鋼板を下地とする合金化溶融亜鉛めっき鋼板であって、合金化溶融亜鉛めっき層の直下に、厚さが0.01〜100μm の、S,C ,Cl,Na,K,B,P,FおよびNなる群から選ばれた少なくとも1種を濃化成分とした濃化層を有し、かつ該濃化層中にSiを含有する酸化物を併せて有することを特徴とする合金化溶融亜鉛めっき鋼板。
  13. 前記濃化層における濃化成分の濃度が、鋼板地鉄中の濃度より10%以上高いことを特徴とする請求項12記載の合金化溶融亜鉛めっき鋼板。
  14. 前記濃化層中に含まれるSiを含有する酸化物の量が、酸素量換算で0.01〜1g/m2であることを特徴とする請求項12または13記載の合金化溶融亜鉛めっき鋼板。
  15. 前記濃化層が、濃化成分と下地鋼中成分との化合物が島状に分散した存在形態からなることを特徴とする請求項12乃至14のいずれかに記載の合金化溶融亜鉛めっき鋼板。
  16. 前記濃化成分がSであり、前記化合物として粒径:50nm以上の粒状のMnSが、任意の鋼板断面において、めっき層と地鉄との界面に平行な方向に20μm 当たり5個以上存在することを特徴とする請求項15記載の合金化溶融亜鉛めっき鋼板。
JP2005294907A 2004-10-07 2005-10-07 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 Expired - Fee Related JP5040093B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294907A JP5040093B2 (ja) 2004-10-07 2005-10-07 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2004294706 2004-10-07
JP2004294706 2004-10-07
JP2005101781 2005-03-31
JP2005101781 2005-03-31
JP2005200343 2005-07-08
JP2005200343 2005-07-08
JP2005294907A JP5040093B2 (ja) 2004-10-07 2005-10-07 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板

Publications (2)

Publication Number Publication Date
JP2007039780A true JP2007039780A (ja) 2007-02-15
JP5040093B2 JP5040093B2 (ja) 2012-10-03

Family

ID=37798045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294907A Expired - Fee Related JP5040093B2 (ja) 2004-10-07 2005-10-07 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板

Country Status (1)

Country Link
JP (1) JP5040093B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299349A (ja) * 2005-04-20 2006-11-02 Jfe Steel Kk 高張力溶融亜鉛めっき鋼板の製造方法および高張力合金化溶融亜鉛めっき鋼板の製造方法
JP2007238997A (ja) * 2006-03-07 2007-09-20 Jfe Steel Kk 溶融亜鉛めっき鋼板およびその製造装置、ならびに表面処理制御方法、表面処理制御装置
WO2009081997A1 (ja) * 2007-12-20 2009-07-02 Jfe Steel Corporation 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2010065314A (ja) * 2008-08-12 2010-03-25 Jfe Steel Corp 高強度溶融亜鉛系めっき鋼板およびその製造方法
JP2010196083A (ja) * 2009-02-23 2010-09-09 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2010532820A (ja) * 2007-06-29 2010-10-14 アルセロールミタル・フランス Dff調整によって合金化亜鉛めっき鋼板を製造する方法
JP2011026674A (ja) * 2009-07-28 2011-02-10 Jfe Steel Corp 耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板
JP2011523442A (ja) * 2008-05-20 2011-08-11 ポスコ 高延性及び耐遅れ破壊特性に優れた高強度冷延鋼板、溶融亜鉛メッキ鋼板及びその製造方法
US9194030B2 (en) 2008-05-19 2015-11-24 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
WO2016159298A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 溶融亜鉛系めっき鋼板
JP6041176B1 (ja) * 2016-04-15 2016-12-07 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
JPWO2015029404A1 (ja) * 2013-08-26 2017-03-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2020019683A (ja) * 2018-08-01 2020-02-06 公益財団法人電磁材料研究所 pn接合素子用の複合鉄酸化物薄膜および光触媒活性物質用の複合鉄酸化物薄膜
US10890363B2 (en) 2015-09-07 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor and refrigeration device including refrigerant compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565612A (ja) * 1991-09-10 1993-03-19 Sumitomo Metal Ind Ltd Si含有鋼板の溶融亜鉛めつき方法
JPH05140716A (ja) * 1991-11-18 1993-06-08 Nippon Steel Corp 溶融亜鉛系合金化めつき鋼板の製造方法
JPH05148604A (ja) * 1991-09-30 1993-06-15 Sumitomo Metal Ind Ltd 溶融亜鉛系めつき鋼板の製造方法
JPH0797670A (ja) * 1993-09-30 1995-04-11 Sumitomo Metal Ind Ltd 珪素含有鋼板の溶融亜鉛めっき方法
JPH07252621A (ja) * 1994-03-14 1995-10-03 Kawasaki Steel Corp 溶融亜鉛めっき系高張力鋼板の製造方法
JPH10259466A (ja) * 1997-03-21 1998-09-29 Nippon Steel Corp 合金化溶融Znめっき鋼板の製造方法
JPH1150223A (ja) * 1997-08-05 1999-02-23 Nkk Corp Si含有高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565612A (ja) * 1991-09-10 1993-03-19 Sumitomo Metal Ind Ltd Si含有鋼板の溶融亜鉛めつき方法
JPH05148604A (ja) * 1991-09-30 1993-06-15 Sumitomo Metal Ind Ltd 溶融亜鉛系めつき鋼板の製造方法
JPH05140716A (ja) * 1991-11-18 1993-06-08 Nippon Steel Corp 溶融亜鉛系合金化めつき鋼板の製造方法
JPH0797670A (ja) * 1993-09-30 1995-04-11 Sumitomo Metal Ind Ltd 珪素含有鋼板の溶融亜鉛めっき方法
JPH07252621A (ja) * 1994-03-14 1995-10-03 Kawasaki Steel Corp 溶融亜鉛めっき系高張力鋼板の製造方法
JPH10259466A (ja) * 1997-03-21 1998-09-29 Nippon Steel Corp 合金化溶融Znめっき鋼板の製造方法
JPH1150223A (ja) * 1997-08-05 1999-02-23 Nkk Corp Si含有高強度溶融亜鉛めっき鋼板およびその製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299349A (ja) * 2005-04-20 2006-11-02 Jfe Steel Kk 高張力溶融亜鉛めっき鋼板の製造方法および高張力合金化溶融亜鉛めっき鋼板の製造方法
JP2007238997A (ja) * 2006-03-07 2007-09-20 Jfe Steel Kk 溶融亜鉛めっき鋼板およびその製造装置、ならびに表面処理制御方法、表面処理制御装置
JP2010532820A (ja) * 2007-06-29 2010-10-14 アルセロールミタル・フランス Dff調整によって合金化亜鉛めっき鋼板を製造する方法
WO2009081997A1 (ja) * 2007-12-20 2009-07-02 Jfe Steel Corporation 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2009149938A (ja) * 2007-12-20 2009-07-09 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
CN101903556B (zh) * 2007-12-20 2012-06-06 杰富意钢铁株式会社 高强度熔融镀锌钢板和高强度合金化熔融镀锌钢板的制造方法
KR101192650B1 (ko) 2007-12-20 2012-10-19 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판 및 고강도 합금화 용융 아연 도금 강판의 제조 방법
US9194030B2 (en) 2008-05-19 2015-11-24 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
US9598753B2 (en) 2008-05-19 2017-03-21 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
JP2011523442A (ja) * 2008-05-20 2011-08-11 ポスコ 高延性及び耐遅れ破壊特性に優れた高強度冷延鋼板、溶融亜鉛メッキ鋼板及びその製造方法
US9109273B2 (en) 2008-05-20 2015-08-18 Posco High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
JP2010065314A (ja) * 2008-08-12 2010-03-25 Jfe Steel Corp 高強度溶融亜鉛系めっき鋼板およびその製造方法
JP2010196083A (ja) * 2009-02-23 2010-09-09 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2011026674A (ja) * 2009-07-28 2011-02-10 Jfe Steel Corp 耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板
JPWO2015029404A1 (ja) * 2013-08-26 2017-03-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
US9895863B2 (en) 2013-08-26 2018-02-20 Jfe Steel Corporation High-strength galvanized steel sheet and method of manufacturing the same
WO2016159298A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 溶融亜鉛系めっき鋼板
US10987695B2 (en) 2015-03-31 2021-04-27 Nippon Steel Corporation Hot-dip zinc-based plated steel sheet
US10890363B2 (en) 2015-09-07 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor and refrigeration device including refrigerant compressor
JP6041176B1 (ja) * 2016-04-15 2016-12-07 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
JP2020019683A (ja) * 2018-08-01 2020-02-06 公益財団法人電磁材料研究所 pn接合素子用の複合鉄酸化物薄膜および光触媒活性物質用の複合鉄酸化物薄膜

Also Published As

Publication number Publication date
JP5040093B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5040093B2 (ja) 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
KR100883245B1 (ko) 용융아연도금강판 및 그 제조방법
JP6094649B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008144264A (ja) 高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP3912014B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP4816068B2 (ja) めっき密着性に優れた溶融亜鉛めっき鋼板の製造方法
JP4810980B2 (ja) 溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板の製造方法
JP3966670B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JPH0645853B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP4882432B2 (ja) 溶融亜鉛めっき鋼板およびその製造装置、ならびに表面処理制御方法、表面処理制御装置
JP2705390B2 (ja) Si含有鋼板の溶融亜鉛めっき方法
JP2000248346A (ja) Si含有高強度溶融亜鉛めっき鋼板ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2001279410A (ja) 溶融亜鉛めっき鋼板の製造方法及び溶融亜鉛めっき鋼板
JP4747656B2 (ja) 高張力溶融亜鉛めっき鋼板の製造方法および高張力合金化溶融亜鉛めっき鋼板の製造方法
JP5194702B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JPH05239606A (ja) 高張力鋼板の溶融亜鉛めっき方法
JP5103759B2 (ja) 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2007262544A (ja) 溶融亜鉛めっき鋼板の製造方法
JPH10212563A (ja) 亜鉛系メッキ鋼板の製造方法
JP4690848B2 (ja) 外観、加工性、溶接性に優れた高張力溶融Znめっき鋼材及びその製造方法
JPS59104432A (ja) 溶接性にすぐれた亜鉛メツキ鋼板の製造方法
JPH0657390A (ja) 溶融Znめっき鋼板の製造方法
JP2000169948A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5115154B2 (ja) 高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2000212711A (ja) P含有高強度溶融亜鉛めっき鋼板ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees