JP2006342326A - オレフィン重合用触媒およびオレフィン重合用触媒の製造方法 - Google Patents

オレフィン重合用触媒およびオレフィン重合用触媒の製造方法 Download PDF

Info

Publication number
JP2006342326A
JP2006342326A JP2006080750A JP2006080750A JP2006342326A JP 2006342326 A JP2006342326 A JP 2006342326A JP 2006080750 A JP2006080750 A JP 2006080750A JP 2006080750 A JP2006080750 A JP 2006080750A JP 2006342326 A JP2006342326 A JP 2006342326A
Authority
JP
Japan
Prior art keywords
catalyst
component
polymer
polymerization
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006080750A
Other languages
English (en)
Inventor
Takehiro Sakae
竹弘 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2006080750A priority Critical patent/JP2006342326A/ja
Priority to US11/920,093 priority patent/US20090069171A1/en
Priority to PCT/JP2006/308833 priority patent/WO2006120916A1/ja
Priority to EP06745761.4A priority patent/EP1881012B1/en
Priority to CN2006800157073A priority patent/CN101171268B/zh
Publication of JP2006342326A publication Critical patent/JP2006342326A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

【課題】多大なエネルギーを使用する溶融混練工程またはそれに変わる別の添加工程を必要とせず、かつ少量の酸化防止剤を効果的に添加されたポリオレフィン樹脂を製造するためのオレフィン重合用触媒およびオレフィン重合用触媒の製造方法の提供。
【解決手段】成分[I]平均粒径10〜200μmのオレフィン重合用固体触媒、成分[II]樹脂用酸化防止剤及び成分[III]オレフィンの存在下で予備重合処理してなることを特徴とするオレフィン重合用触媒。
【選択図】なし

Description

本発明は、オレフィン重合用触媒およびオレフィン重合用触媒の製造方法に関し、さらに詳しくは、安定性に優れたポリオレフィン樹脂を製造することのできる酸化防止剤を含有する予備重合されたオレフィン重合用触媒およびオレフィン重合用触媒の製造方法に関する。
従来のオレフィン重合用固体触媒成分を用いて得られるポリオレフィンは、生成重合体中に触媒金属やハロゲン化合物が残留し、重合体の安定性を大きく損なうため、アルコール類やキレート剤などで処理し、さらに水洗処理などの工程を加えることにより触媒残渣を除去してきた。しかし、近年、重合触媒の高活性化により、重合体中に残留する触媒由来の化合物が低減されたことから、製造コスト削減のために触媒残渣の除去工程が省略されるようになってきた。また、地球温暖化などの環境対策のためにも省エネルギー型で少ない酸化防止剤等の配合で高い安定性が得られるポリオレフィン樹脂の製造方法が求められるようになってきている。
高活性オレフィン重合触媒により得られるポリオレフィン樹脂は、触媒除去工程が不要となるので省エネルギー型の製造方法ではあるが、僅かながら触媒残渣を含むために、触媒除去を行ったポリオレフィン樹脂に比較して安定性が低く、得られる製品寿命が短くなるため、多量の酸化防止剤を用いることが必要となる。そこで、微粉末の重合体として得られたものに各種酸化防止剤に代表される安定剤を配合して、造粒装置などにより加熱溶融することで均一に分散させ、取り扱いの容易な顆粒状に成形することで長期の安定性が図られてきている。
しかし、重合後に各種の安定剤を溶融混練することは、多大なエネルギーを消費するため非効率的で、また、安定剤の分散不良に対応するには必要以上に安定剤を添加しなければならない場合もあった。顆粒状のポリマーが直接得られる重合方法において、重合中、重合後に安定剤を配合することで安定剤を均一に分散することができ、造粒混錬工程が省略できることが報告されている。
例えば、重合直後に安定剤を配合する方法としては、重合パウダーにリン系酸化防止剤、フェノール系酸化防止剤、チオエーテル、光安定剤をパラフィンワックスで付着、コーティングする方法(例えば、特許文献1参照。)、安定剤の添加を液体モノマー中で、重合後の工程において、ただし液体モノマーをフラッシングする前の工程において添加する方法(例えば、特許文献2参照。)、重合で得られた粉粒状のポリオレフィン樹脂を水蒸気で接触処理した後に、酸化防止剤を散布して配合する方法(例えば、特許文献3参照。)が示されている。
しかしながら、これら重合後に安定剤を配合する方法は、重合ポリマーに均一分散させることが困難で、また添加のための別の工程が必要となる。
また、重合系に安定剤等を存在させる方法としては、例えば、チーグラーナッタ触媒系を用いる重合において、リン系の酸化防止剤存在下でα−オレフィンの重合を行う方法が示され、後で添加するよりも優れた安定性を示し、酸化防止剤と混合するための押出機を排除できることが示されている(例えば、特許文献4参照。)。また、特定のエーテル化合物を用いた触媒を用いることで重合時にフェノール系酸化防止剤を用いた場合に優れた安定化効果が得られ、かつ重合活性の低下や樹脂の着色等の問題がないことが示されている(例えば、特許文献5参照。)。さらに、リン化合物、立体障害アミン、立体障害フェノール又は酸掃去剤の少なくとも一種を添加して、遷移メタロセン触媒上で重合するオレフィンポリマーの製造方法が提案されている(例えば、特許文献6参照。)。
しかしながら、これらの重合系に安定剤を添加する方法においては、重合後の加工による安定剤の配合工程を省略できる利点はあるものの、未反応モノマー中へ安定剤が同伴される可能性があり、モノマーリサイクルラインの汚染や付着、閉塞等の問題を引き起こす可能性もある。また、安定剤が有効に使用されないという問題がある。
一方、重合で得られた粒子は、不定形で微粒子状のものが多く、重合パウダーそのものの取り扱いが困難であることから、形態の揃ったペレットに造粒する必要があるが、触媒技術の改良により、その大きさや形態を制御する製造方法も提案されている。例えば、マグネシウムの酸素含有化合物噴霧造粒粒子にチタン化合物を担持せしめたハロゲン含有チタン触媒成分を用いて形状および粒度分布の整った重合体を得る方法が提案されている(例えば、特許文献7参照。)。
しかしながら、この方法によれば形状と粒度分布の整った重合体を得ることができるが、安定化処理がなされていないために安定剤の配合のための別工程が必要となる。また、粒径が大きい粒子の場合は、安定剤を粒子内部まで安定化することが困難であり、比較的小さい粒子に比べて劣化しやすい。そこで、大きい粒子に対しても、安定剤が内部まで均一に分散し効果的に安定化される方法が求められている。
特開平3−220248号公報 特開平6−179713公報 特開2003−231711号公報 特開昭63−92613号公報 特開平5−271335号公報 特開平9−12621号公報 特開昭61−23205号公報
本発明の目的は、従来の安定化のために重合後に酸化防止剤を溶融混練配合するポリオレフィンの重合における方法は、多大なエネルギーを消費するため、非効率的であり、また、酸化防止剤の分散不良に対応するためには必要以上の酸化防止剤を添加しなければならないという現状技術の欠点に鑑み、多大なエネルギーを使用する溶融混練工程またはそれに変わる別の添加工程を必要とせず、少量の酸化防止剤を効果的に添加され、かつ取り扱いが容易に行えるような大粒径のポリオレフィン樹脂を製造するためのオレフィン重合用触媒およびオレフィン重合用触媒の製造方法を提供することにある。
本発明者は、かかる課題を解決すべく鋭意検討を行った結果、少なくとも1種類以上の酸化防止剤を含有する予備重合されたオレフィン重合用触媒を用いてポリオレフィン樹脂を製造すると、粉体性状の良好な重合パウダーを得ることができ、また少量の酸化防止剤で効果的にポリオレフィンに安定性を付与することができ、多大なエネルギーを使用する溶融混練による添加を必ずしも必要としないことを見出し、本発明に到達した。
すなわち、本発明の第1の発明によれば、下記成分[I]〜[III]の存在下で予備重合処理してなることを特徴とするオレフィン重合用触媒が提供される。
成分[I]:平均粒径10〜200μmのオレフィン重合用固体触媒
成分[II]:樹脂用酸化防止剤
成分[III]:オレフィン
また、本発明の第2の発明によれば、第1の発明において、成分[II]が、フェノール系酸化防止剤および/またはリン系酸化防止剤からなることを特徴とするオレフィン重合用触媒が提供される。
また、本発明の第3の発明によれば、第1又は2の発明において、成分[I]に対する成分[III]の割合が、0.01〜100であることを特徴とするオレフィン重合用触媒が提供される。
また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、成分[I]が、メタロセン触媒からなることを特徴とするオレフィン重合用触媒が提供される。
また、本発明の第5の発明によれば、成分[II]を、成分[I]と成分[III]とを接触させて予備重合処理する工程で添加することを特徴とする第1〜4のいずれかの発明のオレフィン重合用触媒の製造方法が提供される。
また、本発明の第6の発明によれば、成分[II]を、成分[I]と成分[III]とを接触させて予備重合処理を行った直後に添加することを特徴とする第1〜4のいずれかの発明のオレフィン重合用触媒の製造方法が提供される。
本発明のオレフィン重合用触媒は、予備重合触媒中に樹脂用酸化防止剤を含有し、これを用いて得られるポリオレフィンは、大粒径で粉体性状が良好で、高度に安定化されたポリオレフィン樹脂となる。また、触媒中に樹脂用酸化防止剤を含有することで、重合後のポリマー内部に樹脂用酸化防止剤が高分散されることから、成形加工時に配合する各種の酸化防止剤や耐候性改良剤の使用量低減が期待できる。さらに、重合ポリマーに安定剤を含有するため、安定剤を導入するための造粒工程を省略することができ安定化のためのエネルギーを削減できる。
本発明は、成分[I]平均粒径10〜200μmのオレフィン重合用固体触媒成分、成分[II]樹脂用酸化防止剤、及び成分[III]オレフィンの存在下で予備重合処理してなるオレフィン重合用触媒およびその製造方法である。以下、各構成成分、オレフィン重合用触媒、製造方法等について詳細に説明する。
1.オレフィン重合用触媒を構成する成分
(1)平均粒径10〜200μmのオレフィン重合用固体触媒成分[I]
本発明のオレフィン重合用触媒で用いるオレフィン重合用触媒固定触媒成分[I]としては、公知のマグネシウム化合物やケイ素化合物を担体としたチタン系のZN触媒や遷移金属からなるメタロセン触媒が挙げられる。本発明においては、固体触媒成分の平均粒径を、10〜200μm、好ましくは40〜200μm、さらに好ましくは40〜150μmになるように調製する必要がある。平均粒径が10μm未満では生成される重合ポリマーが小さく、取り扱いの容易なポリマーを得ることが困難であり、200μmを超えると重合ポリマーが巨大になりすぎて、反応系での沈降や流動不良による塊状物の生成、閉塞等の原因となるのである。
上記マグネシウム化合物を担体とするチタン系のZN触媒の調製方法としては、例えば、特開昭53−45688号公報や特開昭55−90510号公報などに記載の活性化された塩化マグネシウムとチタン化合物および必要に応じて電子供与性化合物とを、同時にもしくは段階的に共粉砕もしくは液状状態で接触させることによる方法、特開昭54−40293号公報、特開昭56−811号公報、特開昭58−183708号公報、特開昭58−183709号公報などに記載の均一状態にあるマグネシウム化合物に電子供与体化合物の存在下に、ハロゲン化剤、還元剤などを作用させることによって得られた析出物に、チタン化合物および必要に応じて電子供与体化合物を接触させることによる方法、特開昭52−14672号公報、特開昭53−100986号公報などに記載のグリニャール試薬等の有機マグネシウム化合物にハロゲン化剤、還元剤などを作用させた後、これに電子供与体化合物とチタン化合物とを接触させることによる方法などが挙げられる。
なお、マグネシウム化合物やケイ素化合物の担体は、球状で大きい粒子であることが好ましい。
マグネシウム化合物の製造方法としては、平均粒径0.01〜20μmのマグネシウム酸素含有化合物の懸濁液を噴霧造粒して得ることができる。
平均粒径0.01〜20μmのマグネシウム化合物は市販の大粒径の固体状のマグネシウム酸素含有化合粒を粉砕して用いてもよい。これを水あるいは有機溶媒中に懸濁させ、熱風中に噴霧することにより10〜200μmの球形粒子を製造する。この製造の好ましい方法は、1〜60wt%好ましくは5〜40wt%の濃度を有するマグネシウム化合物の懸濁液を公知の技術と装置を用いて、噴霧ノズルを使用、あるいは高速で回転する円盤型のディスクを用いて回転数を選ぶことにより熱風中に噴霧して球状の粒子を生成させる。マグネシウム酸素含有化合物中に存在する溶媒残存量が10wt%以下となるように熱風の温度、圧力、懸濁液の温度、供給量を選ぶ。用いられる溶媒はヘキサン、ヘプタン、トルエンのような炭化水素水、メタノール、エタノールのようなアルコール類が用いられるが、一般に乾燥が迅速に行われる為に低沸点のものを選ぶことが好ましい。
また、マグネシウム酸素含有化合物とアルコールを不活性な炭化水素液体中で混合して、溶融温度に上げ、激しく撹拌して得られたエマルジョンを、きわめて短時間に冷却する方法によっても得られる。この粒子を乾燥した後、50〜130℃の温度に加熱して部分脱アルコール化する。部分的に脱アルコール化したものは、球状粒子であって平均粒径は40〜200μmであり、表面積は10〜50m/gであり、細孔度は0.6〜2cm/g(水銀圧入法で測定)である。脱アルコールは、アルコール含量がマグネシウム酸素含有化合物1モルに対して、2モル以下であり、好ましくは、0.15〜1.5モルである。
このようにして得られたマグネシウム酸素含有化合物は、必要に応じて残存溶媒量を低減すべく乾燥操作を施した後、触媒調製に用いられる。触媒調製の方法は、チタン化合物と直接反応させる以外に、マグネシウム酸素含有化合物を予め電子供与体やハロゲン化剤あるいは有機金属化合物で予備処理した後チタン化合物と反応させる方法、チタン化合物を反応させる際に電子供与体やハロゲン化剤を反応させる方法、チタン化合物を反応させた後、電子供与体、ハロゲン化剤あるいは有機金属化合物の1種以上を任意の順序で反応させ、その際必要に応じチタン化合物を任意の段階で作用させる方法などを採用することができる。とくに、チタン化合物を反応させた後、担体に固定されたチタン1原子当たり、0.1ないし6モル程度、好ましくは1ないし4モル程度の電子供与体を反応させ、次いで有機金属化合物を電子供与体1モル当たり0.5ないし5モル程度作用させ、必要に応じて洗浄した後、再びチタン化合物を反応させる方法により、一層活性の高い触媒成分が得られる。
上記遷移金属からなるメタロセン触媒としては、共役五員環配位子を少なくとも一個有する周期律表第4〜6族の遷移金属化合物を含有するオレフィン重合用触媒が挙げられ、好ましくは、成分[A]周期律表第4〜6族の遷移金属化合物、と成分[B](b−1)アルミニウムオキシ化合物が担持された粒子状固体、(b−2)[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された粒子状担体、(b−3)固体酸粒子、(b−4)イオン交換性層状珪酸塩から選ばれた1種以上を含有する固体成分、さらに、必要に応じて、成分[C]有機アルミニウム化合物とを接触させて得られたものが用いられる。
なお、本発明の説明において、「を含む」、「からなる」、および「組み合わせてなる」とは、本発明の効果を損なわない限りにおいては、挙示の化合物に成分以外の化合物をも組み合わせて使用することが可能であることを意味する。
さらに、各成分の詳細を以下に説明する。
[A]成分:周期律表第4〜6族の遷移金属化合物
本発明で用いる周期律表第4〜6族の遷移金属化合物[A]成分としては、下記一般式(1)、(2)、(3)、(4)で表される化合物を挙げることができる。
Figure 2006342326
上記一般式(1)、(2)、(3)、(4)中、AおよびA’は置換基を有してもよい共役五員環配位子(同一化合物内においてAおよびA’は同一でも異なっていてもよい)を示し、Qは二つの共役五員環配位子を任意の位置で架橋する結合性基を示し、Zは窒素原子酸素原子、珪素原子、リン原子またはイオウ原子を含む配位子を示し、Q’は共役五員環配位子の任意の位置とZを架橋する結合性基を示し、Mは周期律表4〜6族から選ばれる金属原子を示し、XおよびYは水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、リン含有炭化水素基または珪素含有炭化水素基(同一化合物内においてX及びX’は同一でも異なっていてもよい)を示す。
AおよびA’としては、シクロペンタジエニル基を挙げることができる。シクロペンタジエニル基は、水素原子を五個有するもの[C−]であってもよく、また、その誘導体、すなわちその水素原子のいくつかが置換基で置換されているものであってもよい。
この置換基の例としては、炭素数1〜40、好ましくは1〜30の炭化水素基である。この炭化水素基は、一価の基としてシクロペンタジエニル基と結合していても、またこれが複数存在するときにその内の2個がそれぞれ他端(ω−端)で結合してシクロペンタジエニルの一部と共に環を形成していてもよい。後者の例としては、2個の置換基がそれぞれω−端で結合して該シクロペンタジエニル基中の隣接した2個の炭素原子を共有して縮合六員環を形成しているもの、即ちインデニル基、テトラヒドロインデニル基、フルオレニル基、および縮合七員環を形成しているもの、即ちアズレニル基、テトラヒドロアズレニル基が挙げられる。
AおよびA’で示される共役五員環配位子の好ましい具体的例としては、置換または非置換のシクロペンタジエニル基、インデニル基、フルオレニル基、またはアズレニル基等が挙げられる。この中で、特に好ましいものは、置換または非置換のインデニル基、またはアズレニル基である。
シクロペンタジエニル基上の置換基としては、前記の炭素数1〜40、好ましくは1〜30の炭化水素基に加え、フッ素、塩素、臭素等のハロゲン原子基、炭素数1〜12のアルコキシ基、例えば−Si(R)(R)(R)で示される珪素含有炭化水素基、−P(R)(R)で示されるリン含有炭化水素基、または−B(R)(R)で示されるホウ素含有炭化水素基が挙げられる。これらの置換基が複数ある場合、それぞれの置換基は同一でも異なっていてもよい。上述のR、R、Rは、同一でも異なっていてもよく、炭素数1〜24、好ましくは1〜18のアルキル基を示す。
Qは、二つの共役五員環配位子間を任意の位置で架橋する結合性基を、Q’は、共役五員環配位子の任意の位置とZで示される基を架橋する結合性基を表す。
QおよびQ’の具体例としては、次の基が挙げられる。
(イ)メチレン基、エチレン基、イソプロピレン基、フェニルメチルメチレン基、ジフェニルメチレン基、シクロヘキシレン基等のアルキレン基類
(ロ)ジメチルシリレン基、ジエチルシリレン基、ジプロピルシリレン基、ジフェニルシリレン基、メチルエチルシリレン基、メチルフェニルシリレン基、メチル−t−ブチルシリレン基、ジシリレン基、テトラメチルジシリレン基等のシリレン基類
(ハ)ゲルマニウム、リン、窒素、ホウ素あるいはアルミニウムを含む炭化水素基類
さらに、具体的には、(CHGe、(CGe、(CH)P、(C)P、(C)N、(C)N、(C)B、(C)B、(C)Al(CO)Alで示される基等である。好ましいものは、アルキレン基類およびシリレン基類である。
Mは、周期律表第4〜6族から選ばれる金属原子遷移金属を、好ましくは周期律表第4属金属原子、具体的にはチタン、ジルコニウム、ハフニウム等である。特には、ジルコニウム、ハフニウムが好ましい。
Zは、窒素原子、酸素原子、ケイ素原子、リン原子またはイオウ原子を含む配位子、水素原子、ハロゲン原子又は炭化水素基を示す。好ましい具体例としては、酸素原子、イオウ原子、炭素数1〜20、好ましくは1〜12のチオアルコキシ基、炭素数1〜40、好ましくは1〜18のケイ素含有炭化水素基、炭素数1〜40、好ましくは1〜18の窒素含有炭化水素基、炭素数1〜40、好ましくは1〜18のリン含有炭化水素基、水素原子、塩素、臭素、炭素数1〜20の炭化水素基である。
XおよびYは、各々水素、ハロゲン原子、炭素数1〜20、好ましくは1〜10の炭化水素基、炭素数1〜20、好ましくは1〜10のアルコキシ基、アミノ基、ジフェニルフォスフィノ基等の炭素数1〜20、好ましくは1〜12のリン含有炭化水素基、またはトリメチルシリル基、ビス(トリメチルシリル)メチル基等の炭素数1〜20、好ましくは1〜12のケイ素含有炭化水素基である。XとYは同一でも異なってもよい。これらのうちハロゲン原子、炭素数1〜10の炭化水素基、および炭素数1〜12のアミノ基が特に好ましい。
一般式(1)で表される化合物としては、例えば、
(1)ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、
(2)ビス(n−ブチルシクロペンタジエニル)ジルコニウムジクロリド、
(3)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、
(4)ビス(1−n−ブチル−3−メチルシクロペンタジエニル)ジルコニウムジクロリド、
(5)ビス(1−メチル−3−トリフルオロメチルシクロペンタジエニル)ジルコニウムジクロリド、
(6)ビス(1−メチル−3−トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、
(7)ビス(1−メチル−3−フェニルシクロペンタジエニル)ジルコニウムジクロリド、
(8)ビス(インデニル)ジルコニウムジクロリド、
(9)ビス(テトラヒドロインデニル)ジルコニウムジクロリド、
(10)ビス(2−メチル−テトラヒドロインデニル)ジルコニウムジクロリド
等が挙げられる。
一般式(2)で表される化合物としては、例えば、
(1)ジメチルシリレンビス{1−(2−メチル−4−イソプロピル−4H−アズレニル)}ジルコニウムジクロリド、
(2)ジメチルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(3)ジメチルシリレンビス〔1−{2−メチル−4−(4−フルオロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(4)ジメチルシリレンビス[1−{2−メチル−4−(2,6−ジメチルフェニル)−4H−アズレニル}]ジルコニウムジクロリド、
(5)ジメチルシリレンビス{1−(2−メチル−4,6−ジイソプロピル−4H−アズレニル)}ジルコニウムジクロリド、
(6)ジフェニルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(7)ジメチルシリレンビス{1−(2−エチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(8)エチレンビス{1−[2−メチル−4−(4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(9)ジメチルシリレンビス{1−[2−エチル−4−(2−フルオロ−4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(10)ジメチルシリレンビス{1−[2−メチル−4−(2’,6’−ジメチル−4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(11)ジメチルシリレン{1−[2−メチル−4−(4−ビフェニリル)−4H−アズレニル]}{1−[2−メチル−4−(4−ビフェニリル)インデニル]}ジルコニウムジクロリド、
(12)ジメチルシリレン{1−(2−エチル−4−フェニル−4H−アズレニル)}{1−(2−メチル−4,5−ベンゾインデニル)}ジルコニウムジクロリド、
(13)ジメチルシリレンビス{1−(2−エチル−4−フェニルー7ーフルオロ−4H−アズレニル)}ジルコニウムジクロリド、
(14)ジメチルシリレンビス{1−(2−エチル−4−インドリル−4H−アズレニル)}ジルコニウムジクロリド、
(15)ジメチルシリレンビス[1−{2−エチル−4−(3,5−ビストリフルオロメチルフェニル)−4H−アズレニル}]ジルコニウムジクロリド、
(16)ジメチルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムビス(トリフルオロメタンスルホン酸)、
(17)ジメチルシリレンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(18)ジメチルシリレンビス{1−(2−メチル−4,5−ベンゾインデニル)}ジルコニウムジクロリド、
(19)ジメチルシリレンビス〔1−{2−メチル−4−(1−ナフチル)インデニル}〕ジルコニウムジクロリド、
(20)ジメチルシリレンビス{1−(2−メチル−4,6−ジイソプロピルインデニル)}ジルコニウムジクロリド、
(21)ジメチルシリレンビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(22)エチレン−1,2−ビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(23)エチレン−1,2−ビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(24)イソプロピリデンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(25)エチレン−1,2−ビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(26)イソプロピリデンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(27)ジメチルゲルミレンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(28)ジメチルゲルミレンビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(29)フェニルホスフィノビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(30)ジメチルシリレンビス[3−(2−フリル)−2,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(31)ジメチルシリレンビス[2−(2−フリル)−3,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(32)ジメチルシリレンビス[2−(2−フリル)−インデニル]ジルコニウムジクロリド、
(33)ジメチルシリレンビス[2−(2−(5−メチル)フリル)−4,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(34)ジメチルシリレンビス[2−(2−(2−(5−トリメチルシリル)フリル)−4,5−ジメチル−シクロペンタジエニル)ジルコニウムジクロリド、
(35)ジメチルシリレンビス[2−(2−チエニル)−インデニル]ジルコニウムジクロリド、
(36)ジメチルシリレン[2−(2−(5−メチル)フリル)−4−フェニルインデニル][2−メチル−4−フェニルインデニル]ジルコニウムジクロリド、
(37)ジメチルシリレンビス(2,3,5−トリメチルシクロペンタジエニル)ジルコニウムジクロリド、
(38)ジメチルシリレンビス(2,3−ジメチル−5−エチルシクロペンタジエニル)ジルコニウムジクロリド、
(39)ジメチルシリレンビス(2,5−ジメチル−3−フェニルシクロペンタジエニル)ジルコニウムジクロリド
等が挙げられる。
一般式(3)で表される化合物としては、例えば、
(1)(テトラメチルシクロペンタジエニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(2)(テトラメチルシクロペンタジエニル)チタニウム(ビスイソプロピルアミド)ジクロリド、
(3)(テトラメチルシクロペンタジエニル)チタニウム(ビスシクロドデシルアミド)ジクロリド、
(4)(テトラメチルシクロペンタジエニル)チタニウム{ビス(トリメチルシリル)アミド)}ジクロリド、
(5)(2−メチル−4−フェニル−4H−アズレニル)チタニウム{ビス(トリメチルシリル)アミド}ジクロリド、
(6)(2−メチルインデニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(7)(フルオレニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(8)(3,6−ジイソプロピルフルオレニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(9)(テトラメチルシクロペンタジエニル)チタニウム(フェノキシド)ジクロリド、
(10)(テトラメチルシクロペンタジエニル)チタニウム(2,6−ジイソプロピルフェノキシド)ジクロリド
等が挙げられる。
一般式(4)で表される化合物としては、例えば、
(1)ジメチルシランジイル(テトラメチルシクロペンタジエニル)(t−ブチルアミド)チタニウムジクロリド、
(2)ジメチルシランジイル(テトラメチルシクロペンタジエニル)(シクロドデシルアミド)チタニウムジクロリド、
(3)ジメチルシランジイル(2−メチルインデニル)(t−ブチルアミド)チタニウムジクロリド、
(4)ジメチルシランジイル(フルオレニル)(t−ブチルアミド)チタニウムジクロリド
等が挙げられる。
なお、一般式(1)〜(4)で示される部分成分Aは、同一の一般式で示される化合物および/または異なる一般式で表される化合物の二種以上の混合物として用いることができる。これらの例示化合物のジクロリドは、ジブロマイド、ジフルオライド、ジメチル、ジフェニル、ジベンジル、ビスジメチルアミド、ビスジエチルアミド等に置き換えた化合物、も同様に例示される。さらに、例示化合物中のジルコニウム、チタニウムは、ハフニウムに置き換えた化合物も同様に、例示される。
[B]成分:下記(b−1)〜(b−4)から選ばれた1種以上を含有する固体成分
(b−1)アルミウニウムオキシ化合物
本発明で用いる(b−1)アルミウニウムオキシ化合物としては、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
上記従来公知のアルミノキサンは、たとえば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(i)吸着水を含有する化合物または結晶水を含有する塩類、たとえば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(ii)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(iii)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
アルミノキサンの調製に用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタンなどの脂環族炭化水素、ガソリン、灯油、軽油などの石油留分または上記芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化物などの炭化水素溶媒が挙げられる。さらにエチルエーテル、テトラヒドロフランなどのエーテル類を用いることもできる。これらの溶媒のうち特に芳香族炭化水素または脂肪族炭化水素が好ましい。
また、上記ベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。
本発明で用いられる有機アルミニウムオキシ化合物としては、一般式(5)で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Figure 2006342326
一般式(5)中、Rは炭素原子数が1〜10の炭化水素基を示す。Rは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1〜10の炭化水素基を示す。
一般式(5)で表されるボロンを含んだ有機アルミニウムオキシ化合物は、一般式(6)で表されるアルキルボロン酸と有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、−80℃〜室温の温度で1分〜24時間反応させることにより製造できる。
−B(OH) …(6)
(式中、Rは前記と同じ基を示す。)
一般式(6)で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、n−ブチルボロン酸、イソブチルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5−ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5−ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。これらの中では、メチルボロン酸、n−ブチルボロン酸、イソブチルボロン酸、3,5−ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
上記のような(b−1)アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられ、粒子状担体に担持される。
(b−2)[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された粒子状担体
本発明で用いる(b−2)としては、成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された粒子状担体である。成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物としては、カルボニウムカチオン、アンモニウムカチオンなどの陽イオンと、トリフェニルホウ素、トリス(3,5−ジフルオロフェニル)ホウ素、トリス(ペンタフルオロ)ホウ素等の有機ホウ素化合物のカチオンとの錯化物、ジエチルアルミニウムペンタフルオロフェノキシド、ペンタフルオロフェノキシエチル亜鉛等のペンタフルオロフェノキシ基を有する有機金属化合物、等が挙げられる。
また、ルイス酸、特に成分[A]をカチオンに変換可能なルイス酸としては、種々の有機ホウ素化合物、例えば、トリス(ペンタフルオロ)ホウ素などが例示される。あるいは、塩化アルミニウム、塩化マグネシウム等の金属ハロゲン化合物などが例示される。なお、上記ルイス酸のある種のものは、成分[A]と反応して成分[A]とカチオンに変換することが可能なイオン性化合物として把握することもできる。したがって、上記のルイス酸およびイオン性化合物の両者に属する化合物は、いずれか一方に属するものとする。
(b−3)固体酸粒子
本発明で用いる(b−3)固体酸微粒子としては、シリカ・アルミナ、ゼオライト等の固体酸が挙げられる。
ここで、(b−1)、(b−2)および(b−3)における粒子について説明する。
本発明で用いる粒子状担体は、その元素組成、化合物組成については特に限定されない。例えば、無機または有機の化合物からなる粒子状担体が例示できる。無機担体としては、シリカ、アルミナ、シリカ・アルミナ、塩化マグネシウム、活性炭、無機珪酸塩等が挙げられる。あるいは、これらの混合物であってもよい。
有機担体としては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等の炭素数2〜14のα−オレフィンの重合体、スチレン、ジビニルベンゼン等の芳香族不飽和炭化水素の重合体などからなる多孔質ポリマーの粒子担体が挙げられる。あるいはこれらの混合物であってもよい。
これらの粒子状担体は、10μm〜200μmの平均粒径を有するものが好ましい。
(b−4)イオン交換性層状珪酸塩
本発明で用いる(b−4)イオン交換性層状珪酸塩は、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでもよい。珪酸塩の具体例としては、例えば、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
すなわち、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群等である。
本発明で原料として使用する珪酸塩は、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。層間カチオンの種類は、特に限定されないが、工業原料として比較的容易に且つ安価に入手し得る観点から、アルカリ金属あるいはアルカリ土類金属を層間カチオンの主成分とする珪酸塩が好ましい。
本発明で使用する上記珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。ここで化学処理とは、表面に付着している不純物を除去する表面処理と粘土の構造に影響を与える処理のいずれをも用いることができる。具体的には、下記に説明する酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。
(i)酸処理
酸処理は、表面の不純物を取り除くほか、結晶構造のAl、Fe、Mg、等の陽イオンの一部または全部を溶出させることができる。
酸処理で用いられる酸は、好ましくは塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸から選択される。処理に用いる塩類および酸は、2種以上であってもよい。塩類および酸による処理条件は、特には制限されないが、通常、塩類および酸濃度は、0.1〜50重量%、処理温度は室温〜沸点、処理時間は、5分〜24時間の条件を選択して、イオン交換性層状珪酸塩から成る群より選ばれた少なくとも一種の化合物を構成している物質の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類および酸は、一般的には水溶液で用いられる。
(ii)塩類処理
本発明においては、塩類で処理される前の、イオン交換性層状珪酸塩の含有する交換可能な1族金属の陽イオンの40%以上、好ましくは60%以上を、下記に示す塩類より解離した陽イオンと、イオン交換することが好ましい。
このようなイオン交換を目的とした塩類処理で用いられる塩類は、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸および有機酸から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物であり、更に好ましくは、2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンとCl、Br、I、F、PO、SO、NO、CO、C、ClO、OOCCH、CHCOCHCOCH、OCl、O(NO、O(ClO、O(SO)、OH、OCl、OCl、OOCH、OOCCHCH、CおよびCから成る群から選ばれる少なくとも一種の陰イオンとから成る化合物である。
具体的には、LiF、LiCl、LiBr、LiI、LiSO、Li(CHCOO)、LiCO、Li(C)、LiCHO、LiC、LiClO、LiPO、CaCl、CaSO、CaC、Ca(NO、Ca(C、MgCl、MgBr、MgSO、Mg(PO、Mg(ClO、MgC、Mg(NO、Mg(OOCCH、MgC等。
Ti(OOCCH、Ti(CO、Ti(NO、Ti(SO、TiF、TiCl、Zr(OOCCH、Zr(CO、Zr(NO、Zr(SO、ZrF、ZrCl、ZrOCl、ZrO(NO、ZrO(ClO、ZrO(SO)、HF(OOCCH、HF(CO、HF(NO、HF(SO、HFOCl、HFF、HFCl、V(CHCOCHCOCH、VOSO、VOCl、VCl、VCl、VBr等。
Cr(CHCOCHCOCH、Cr(OOCCHOH、Cr(NO、Cr(ClO、CrPO、Cr(SO、CrOCl、CrF、CrCl、CrBr、CrI、Mn(OOCCH、Mn(CHCOCHCOCH、MnCO、Mn(NO、MnO、Mn(ClO、MnF、MnCl、Fe(OOCCH、Fe(CHCOCHCOCH、FeCO、Fe(NO、Fe(ClO、FePO、FeSO、Fe(SO、FeF、FeCl、FeC等。
Co(OOCCH、Co(CHCOCHCOCH、CoCO、Co(NO、CoC、Co(ClO、Co(PO、CoSO、CoF、CoCl、NiCO、Ni(NO、NiC、Ni(ClO、NiSO、NiCl、NiBr等。
Zn(OOCCH、Zn(CHCOCHCOCH、ZnCO、Zn(NO、Zn(ClO、Zn(PO、ZnSO、ZnF、ZnCl、AlF、AlCl、AlBr、AlI、Al(SO、Al(C、Al(CHCOCHCOCH、Al(NO、AlPO、GeCl、GeBr、GeI等が挙げられる。
(iii)アルカリ処理
アルカリ処理で用いられる処理剤としては、LiOH、NaOH、KOH、Mg(OH)、Ca(OH)、Sr(OH)、Ba(OH)などが例示される。
(iv)有機物処理
有機物処理に用いられる有機物としては、トリメチルアンモニウム、トリエチルアンモニウム、N,N−ジメチルアニリニウム、トリフェニルホスホニウム、等が挙げられる。
有機物処理剤を構成する陰イオンとしては、塩類処理剤を構成する陰イオンとして例示した陰イオン以外にも、例えばヘキサフルオロフォスフェート、テトラフルオロボレート、テトラフェニルボレートなどが例示されるが、これらに限定されるものではない。
これらイオン交換性層状珪酸塩には、通常吸着水および層間水が含まれる。本発明においては、これらの吸着水および層間水を除去して成分(b−4)として使用するのが好ましい。
イオン交換性層状珪酸塩の吸着水および層間水の加熱処理方法は、特に制限されないが、層間水が残存しないように、また構造破壊を生じないよう条件を選ぶことが必要である。加熱時間は0.5時間以上、好ましくは1時間以上である。その際、除去した後の成分(b−4)の水分含有率が、温度200℃、圧力1mmHgの条件下で2時間脱水した場合の水分含有率を0重量%とした時、3重量%以下、好ましくは1重量%以下、であることが好ましい。
以上のように、本発明において、成分(b−4)として、特に好ましいものは、塩類処理および/または酸処理を行って得られた、水分含有率が3重量%以下の、イオン交換性層状珪酸塩である。
また、成分(b−4)は、平均粒径が10μm以上の球状粒子を用いるのが好ましい。より好ましくは、触媒および重合粒子の流動性や嵩密度を向上させ、重合運転の障害となる微粉や粗粉の生成を防止する観点から、平均粒径が10μm以上200μm以下である。
ここで、粒子の測定は、レーザー回折法による粒度分布測定装置を用いて行った時のものをいう。測定はエタノールを分散媒として用い、屈折率1.33、形状係数1.0として粒径分布および平均粒径を算出する。
粒子の形状が球状であれば天然物あるいは市販品をそのまま使用してもよいし、造粒、分粒、分別等により粒子の形状および粒径を制御したものを用いてもよい。
ここで用いられる造粒法は、例えば、攪拌造粒法、噴霧造粒法が挙げられるが、市販品を利用することもできる。
また、造粒の際に有機物、無機溶媒、無機塩、各種バインダ−を用いてもよい。上記のようにして得られた球状粒子は、重合工程での破砕や微粉の生成を抑制するためには0.2MPa以上、特に好ましくは0.5MPa以上の圧縮破壊強度を有することが望ましい。エチレン重合用触媒の場合は、さらに強度が要求され、4.0MPa以上、さらに好ましくは10MPa以上である。上限は40MPa程度である。圧壊強度は、微小圧縮試験器を用いて、任意の10個以上の粒子の圧縮強度を測定し、その平均値を圧壊強度として求めた時のものである。このような粒子強度の場合には、特に予備重合を行う場合に、粒子性状改良効果が有効に発揮される。
本発明のオレフィン重合用触媒において、(b−1)アルミニウムオキシ化合物が担持された微粒子状担体、(b−2)成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された微粒子状担体、(b−3)固体酸微粒子、あるいは、(b−4)イオン交換性層状珪酸塩微粒子は、それぞれ単独に成分[B]として使用される他、これらの4成分を適宜組み合わせて使用することができる。
[C]成分:有機アルミニウム化合物
本発明のオレフィン重合用固体触媒成分においては、必要に応じて、成分[C]有機アルミニウム化合物を用いることができる。成分[C]として用いられる有機アルミニウム化合物は、一般式(7)で示される化合物が好ましい。
AlRpX3−p …(7)
本発明では、一般式(7)で表される化合物を単独で、複数種混合してあるいは併用して使用することができることは言うまでもない。一般式(7)中、Rは炭素数1〜20の炭化水素基を示し、Xは、ハロゲン、水素、アルコキシ基、アミノ基を示す。pは0より大きくかつ3までの数であり、qは3未満である。Rとしてはアルキル基が好ましく、またXは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。
好ましい化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。これらのうち、好ましくは、p=3、q=1のトリアルキルアルミニウムおよびジアルキルアルミニウムヒドリドである。さらに好ましくは、Rが炭素数1〜8であるトリアルキルアルミニウムである。
上記成分[A]〜成分[C]からなるメタロセン触媒は、各成分を接触させて製造できる。接触方法としては、上記の各成分[A]〜[C]を重合槽内で、同時にもしくは連続的に、あるいは一度にもしくは複数回にわたって、接触させることによって形成させることができる。各成分の接触は、窒素等の不活性ガス中、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の不活性脂肪族炭化水素あるいは芳香族炭化水素溶媒中で行うのが普通である。接触温度は特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては合目的的な任意の組み合わせが可能である。
例えば、好ましいものを各成分について示せば次の通りである。成分[C]を使用する場合は、成分[A]と成分[B]を接触させる前に、成分[A]と、あるいは成分[B]と、または成分[A]及び成分[B]の両方に成分[C]を接触させること、または、成分[A]と成分[B]を接触させるのと同時に成分[C]を接触させること、または、成分[A]と成分[B]を接触させた後に成分[C]を接触させることが可能であるが、好ましくは、成分[C]を使用しない方法、あるいは成分[A]と成分[B]を接触させる前に成分[C]といずれかに接触させる方法である。
また、各成分を接触させた後、脂肪族炭化水素あるいは芳香族炭化水素溶媒にて洗浄することが可能である。
成分[A]、[B]および[C]の使用量は任意である。例えば、成分[B]に対する成分[A]の使用量は、成分[B]1gに対し、好ましくは0.1〜1000μmol、特に好ましくは0.5〜500μmolの範囲である。成分[B]に対する成分[C]の使用量は、成分[B]1gに対し、好ましくは遷移金属の量が0.001〜100μmol、特に好ましくは0.005〜50μmolの範囲である。したがって、成分[A]に対する成分[C]の量は、遷移金属のモル比で、好ましくは10−5〜50、特に好ましくは10−4〜5、の範囲内が好ましい。
各成分の接触に際し、または接触の後にポリエチレン、ポリプロピレン等の重合体、シリカ、アルミナ等の無機酸化物の固体を共存させ、あるいは接触させてもよい。
(2)成分[II]:樹脂用酸化防止剤
本発明のオレフィン重合用触媒で用いられる成分[II]樹脂用酸化防止剤は、通常のポリオレフィン樹脂に用いられる安定剤の中から用途や成形方法に応じて適宜選択され、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、紫外線吸収剤、ヒンダードアミン化合物、造核剤、難燃剤、ハイドロタルサイト類等特に制限はないが、フェノール系酸化防止剤、或いは有機ホスファイト化合物または有機ホスホナイト化合物から選択されるリン系酸化防止剤が好ましく、フェノール系およびリン系酸化防止剤を混合して用いてもよい。
好ましいフェノール系酸化防止剤の例は、以下のものである。
2,6−ジ第三ブチル−4−メチルフェノール、2−ジ第三ブチル−4,6−ジメチルフェノール、2,6−ジ第三ブチル−4−エチルフェノール、2,6−ジ第三ブチル−4−n−ブチルフェノール、2,6−ジ第三ブチル−4−イソブチルフェノール、2,6−ジシクロペンチル−4−メチルフェノール、2−(α−メチルシクロヘキシル)−4,6−ジメチルフェノール、2,6−ジオクタデシル−4−メチルフェノール、2,4,6−トリシクロヘキシルフェノール、2,6−ジ第三ブチル−4−メトキシメチルフェノール、2,6−ジノニル−4−メチルフェノール、2,6−ジ第三ブチル−4−メトキシフェノール、2,5−ジ第三ブチルヒドロキノン、2,5−ジ第三ブチルアミルヒドロキノン、2,6−ジフェニル−4−オクタデシルオキシフェノール、2,2’−チオビス(6−第三ブチル−4−メチルフェノール)、2,2’−チオビス(4−オクチルフェノール)、4,4’−チオビス(6−第三ブチル−3−メチルフェノール)、4,4’−チオビス(6−第三ブチル−2−メチルフェノール)、2,2’−メチレンビス(6−第三ブチル−4−メチルフェノール)、2,2’−メチレンビス(6−第三ブチル−4−エチルフェノール)、2,2’−メチレンビス[4−メチル−6−(α−メチルシクロヘキシル)フェノール]、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−メチレンビス(6−ノニル−4−メチルフェノール)、2,2’−メチレンビス(4,6−ジ第三ブチルフェノール)、2,2’−エチリデンビス(4,6−ジ第三ブチルフェノール)、2,2’−エチリデンビス(6−第三ブチル−4−イソブチルフェノール)、2,2’−メチレンビス[6−(α−メチルベンジル)−4−ノニルフェノール]、2,2’−メチレンビス[6−(α,α−ジメチルベンジル)−4−ノニルフェノール]、4,4’−メチレンビス(2,6−ジ第三ブチルフェノール)、4,4’−メチレンビス(6−第三ブチル−2−メチルフェノール)、1,1−ビス(5−第三ブチル−4−ヒドロキシ−2−メチルフェニル)ブタン、2,6−ビス(3−第三ブチル−5−メチル−2−ヒドロキシベンジル)−4−メチルフェノール、1,1,3−トリス(5−第三ブチル−4−ヒドロキシ−2−メチルフェニル)ブタン、1,1−ビス(5−第三ブチル−4−ヒドロキシ−2−メチルフェニル)−3−n−ドデシルメルカプトブタン、エチレングリコールビス[3,3−ビス(3’−第三ブチル−4’−ヒドロキシフェニル)ブチレート]、ビス(3−第三ブチル−4−ヒドロキシ−5−メチルフェニル)ジシクロペンタジエン、ビス[2−(3’−第三ブチル−2’−ヒドロキシ−5’−メチルベンジル)−6−第三ブチル−4−メチルフェニル]テレフタレート、1,3,5−トリス(3,5−ジ第三ブチル−4−ヒドロキシベンジル)−2,4,6−トリメチルベンゼン、ビス(3,5−ジ第三ブチル−4−ヒドロキシベンジル)スルフィド、イソオクチル3,5−ジ第三ブチル−4−ヒドロキシベンジルメルカプトアセテート、ビス(4−第三ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)ジチオテレフタレート、1,3,5−トリス(3,5−ジ第三ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−第三ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、ジオクタデシル3,5−ジ第三ブチル−4−ヒドロキシベンジルホスホネート、並びにモノエチル3,5−ジ第三ブチル−4−ヒドロキシベンジルホスホネートのカルシウム塩
上記フェノール系酸化防止剤の内、特に好ましいフェノール系酸化防止剤は、2,6−ジ第三ブチル−4−メチルフェノール、ステアリル(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス(3,5−ジ第三ブチル−4−ヒドロキシベンジル)−2,4,6−トリメチルベンゼン、1,1,3−トリス(5−第三ブチル−4−ヒドロキシ−2−メチルフェニル)ブタン、及びトコフェロール類(ビタミンE)である。これらは、単独で用いても、混合物で用いてもよい。
添加されるフェノール系酸化防止剤の量は、重合によって得られる重合体に対して、0.001〜10重量%となるように添加される。好ましくは、0.002〜1重量%である。さらに好ましくは、0.002〜0.5重量%である。この方法による添加は、後で造粒混練時に添加する方法より、少量でポリマーの安定化効果を発揮する。
リン系酸化防止剤は、プラスチック、とりわけポリオレフィンの熱的酸化的老化に対して同様に公知の安定剤である。これらは、有機ホスファイト化合物および有機ホスホナイト化合物として記載される。
好ましい有機ホスファイト化合物の例は、トリラウリルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリトリトールジホスファイト又はトリステアリルソルビトールトリホスファイトである。芳香族ホスファイトが好ましい。芳香族ホスファイトは、芳香族炭化水素基、例えばフェニル基を有するホスファイトである。それらの例は、トリフェニルホスファイト、ジフェニルアルキルホスファイト、フェニルジアルキルホスファイトである。特にトリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ第三ブチルフェニル)ホスファイト、ビス(2,4−ジ第三ブチルフェニル)ペンタエリトリトールジホスファイト及び2,2’−エチリデンビス(2,4−ジ第三ブチルフェニル)フルオロホスファイトが好ましい。
有機ホスホナイト化合物の好ましい具体例としては、テトラキス(2,4−ジ第三ブチルフェニル)−4,4’−ビフェニレンジホスホナイト〔イルガフォス(Irgafos)PEPQ〕、テトラキス(2−第三ブチル−4−メチルフェニル)ビフェニレンジホスホナイト、テトラキス(2,4−ジ第三アルミフェニル)ビフェニレンジホスホナイト、テトラキス(2,4−ジ第三ブチル−5−メチルフェニル)ビフェニレンジホスホナイト、テトラキス(2−第三ブチル−4,6−ジメチルフェニル)ビフェニレンジホスホナイトが挙げられる。これらは、単独で用いても、混合物で用いてもよい。
添加されるリン系酸化防止剤の量は、重合によって得られる重合体に対して、0.001〜10重量%となるように添加される。好ましくは、0.002〜1重量%である。さらに好ましくは、0.002〜0.5重量%である。この方法による添加は、後で造粒混練時に添加する方法より、少量でポリマーの安定化効果を発揮する。
(3)成分[III]:オレフィン
本発明のオレフィン重合用触媒で用いられる成分[III]オレフィンとしては、α−オレフィンが使用することができる。α−オレフィンとしては、炭素数2〜20程度のものが好ましく、具体的にはエチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン等が挙げられる。さらに好ましくは、プロピレン、エチレンである。
これらのオレフィンは、予備重合処理において、単独重合及び/又は共重合する。共重合のコモノマーの種類としては炭素数2〜20(モノマーとして使用するものを除く)程度のものが好ましく、具体的にはエチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン等の直鎖状オレフィンや1、5−ペンタジエン、1、5−ヘキサジエン、2−メチル−1、6−ヘプタジエン等の直鎖状ジオレフィン、シクロペンタジエンやノルボルネン等の環状オレフィンあるいはスチレン、ジビニルベンゼン等の芳香族オレフィンが挙げられる。共重合の場合、用いられるコモノマーの種類は、前記オレフィンとして挙げられるもののなかから、主成分となるもの以外のオレフィンを選択して用いることができる。好ましいオレフィンは、エチレンとプロピレンであり、エチレンまたはプロピレンの単独重合体、主としてエチレンを使用する他のα−オレフィンとの共重合体、主としてプロピレンを使用するエチレンや高級オレフィンとの2元、3元以上のランダム共重合体やブロック共重合体の製造に使用することが可能であり、好ましい。
2.予備重合処理
本発明のオレフィン重合用触媒は、上記の各成分[I]〜[III]を予備重合槽内で、同時にもしくは連続的に、あるいは一度にもしくは複数回にわたって、接触させることによって予備重合処理を行なって形成させることができる。各成分の接触は、窒素等の不活性ガス中、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の不活性脂肪族炭化水素あるいは芳香族炭化水素溶媒中で行う。
接触順序としては、合目的的な任意の組み合わせが可能である。好ましい接触順序としては、例えば、成分[II]を、成分[I]と成分[III]とを接触させて予備重合をさせる工程で添加する方法や、成分[II]を、成分[I]と成分[III]とを接触させて予備重合処理を行った直後に添加する方法が挙げられる。前者の方法は、触媒活性の低下を起こさず、微粉発生がなく粉体性状の良好なオレフィン重合触媒を得ることができるという利点をもつ。また、後者の方法は、安定性に優れたポリオレフィン樹脂を製造することのできるオレフィン重合用触媒を得ることができるという利点をもつ。
予備重合温度、時間は、特に限定されないが、各々−20〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合時に上記成分[C]を添加、又は追加することもできる。
予備重合処理において、成分[III]オレフィンは、予備重合槽に定速的にあるいは定圧状態になるように維持するフィード方法やその組み合わせ、段階的な変化をさせる等の方法で成分[I]と接触させる方法が好ましい。この際、成分[III]の量(予備重合量)は、成分[I]に対し、好ましくは0.01〜100、さらに好ましくは0.1〜80である。予備重合量が、成分[I]に対し、0.01未満であると、予備重合処理の効果が低く、粒子の破砕や微粉の発生を抑制することが困難であり、100を超えると粒子が巨大となることによる触媒供給ラインの閉塞や活性の低下が生じてしまうのである。
また、成分[II]の量は、オレフィンの重合によって得られる重合体に対して、0.001重量%〜0.5重量%となるように添加される。好ましくは、0.002重量%〜0.1重量%である。
このようにして得られたオレフィン重合用触媒から得られる重合パウダーは、少量の安定剤の添加で効果的にポリオレフィンを安定化させることができ、多大なエネルギーを使用する溶融混練による添加を必ずしも必要としない。また、予備重合された触媒から得られる重合パウダーは、粉体性状にも優れ、粒子破砕、微粉の生成がなく、嵩密度が高いため、触媒供給ラインへの付着、閉塞や重合反応器内壁や配管、熱交換機等での付着、閉塞がなく、オレフィンの重合を安定に行うことができる。
3.オレフィンの重合
本発明のオレフィン重合用触媒を用いるオレフィンの重合において、重合し得るオレフィンとしては炭素数2〜20程度のα−オレフィンが好ましく、具体的には、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン等が挙げられる。さらに好ましくは、プロピレン、エチレンである。単独重合以外に、共重合を行ってもよく、コモノマーの種類としては炭素数2〜20(モノマーとして使用するものを除く)程度のものが好ましく、具体的にはエチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン等の直鎖状オレフィンや1、5−ペンタジエン、1、5−ヘキサジエン、2−メチル−1、6−ヘプタジエン等の直鎖状ジオレフィン、シクロペンタジエンやノルボルネン等の環状オレフィンあるいはスチレン、ジビニルベンゼン等の芳香族オレフィンが挙げられる。共重合の場合、用いられるコモノマーの種類は、前記オレフィンとして挙げられるもののなかから、主成分となるもの以外のオレフィンを選択して用いることができる。好ましいオレフィンはエチレンとプロピレンであり、エチレンまたはプロピレンの単独重合体、主としてエチレンを使用する他のα−オレフィンとの共重合体、主としてプロピレンを使用するエチレンや高級オレフィンとの2元、3元以上のランダム共重合体やブロック共重合体の製造に使用することが可能であり、好ましい。
オレフィンの重合様式は、触媒成分と各モノマーが効率よく接触するならば、あらゆる様式を採用しうる。具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いるスラリー法、溶液重合法あるいは実質的に液体溶媒を用いず各モノマーをガス状に保つ気相法などが採用できる。また、連続重合、回分式重合、又は予備重合を行う方法も適用される。スラリー重合の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。重合温度は0〜200℃であり、また分子量調節剤として補助的に水素を用いることができる。重合圧力は0〜2000kg/cmGの範囲で実施可能である。
本発明のオレフィン重合用触媒を用いて重合して得られるポリオレフィンは、安定剤がポリマー中に高分散されていることから、高度に安定化されたポリオレフィンとなる。
以下、実施例により本発明を具体的に説明するが、本発明はその要旨を逸脱しない限りこれら実施例によって制約をうけるものではない。なお、実施例および比較例において、物性の評価は次の通りである。
(1)MFR:JIS−K−6758に準拠して230℃、2.16kg荷重により測定したメルトインデックス値。
(2)ポリマーBD:ASTM D1895−69に準拠して測定したポリマーの嵩密度。
(実施例1)
(1)触媒の合成
攪拌翼と還流装置を取り付けた5Lセパラブルフラスコに、純水1,700gを投入し、98%硫酸500gを滴下した。そこへ、平均粒径45μmの造粒モンモリロナイト(原料として水澤化学工業社製、ベンクレイSLを用いた)を300g添加後、攪拌した。その後90℃で2時間反応させた。このスラリーをろ過、洗浄した。回収したケーキに27%硫酸リチウム水溶液1230gを加え、90℃で2時間反応させた。このスラリーをろ過し、さらに、ろ液のpHが4以上となるまで洗浄した。回収したケーキを100℃で予備乾燥した後に200℃で2時間乾燥した。その結果、275gの化学処理モンモリロナイトを得た。平均粒径43μm、形状は球形であり、M/Lの値が0.8以上1.0以下である粒子の数は93%であった。
1Lフラスコに、化学処理モンモリロナイト10gを加え、ヘプタン65mlとトリイソブチルアルミニウムのヘプタン溶液35.4ml(25mmol)を加え、室温で1時間攪拌した。その後ヘプタンで残液率1/100まで洗浄し、最後にスラリー量を100mlに調製した。さらに、トリイソブチルアルミニウムのヘプタン溶液2.1ml(1.5mmol)を加えて、10分間室温で攪拌した。
200mlフラスコ中で、(r)−ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニル)−4H−アズレニル}]ハフニウム(300μmol)にトルエン(60ml)を加えてスラリーとした後、上記1Lフラスコに加えて室温で60分間攪拌した。
(2)予備重合
50mlフラスコ中で、フェノール系安定剤としてステアリル(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネートの30重量%ヘプタン溶液10mlとリン系の安定剤としてトリス(2,4−ジ第三ブチルフェニル)ホスファイトの30重量%ヘプタン溶液10mlとを混合させた後、上記1Lフラスコに加え30分間撹拌した。
窒素で十分置換を行った内容積1.0Lの撹拌式オートクレーブに、上記スラリーを全量導入した。温度が40℃に安定したところでプロピレンを10g/時間の速度で供給し、温度を維持した。2時間後プロプレンの供給を停止し、さらに1時間維持した。予備重合終了後、残モノマーをパージし、撹拌を停止させ、十分窒素置換を行った1Lフラスコにスラリーを抜き出した。このスラリーを減圧乾燥して予備重合触媒を36.4g回収した。このとき触媒に対するポリプロピレンの割合は、2.0g/gであった。予備重合触媒の平均粒径は61μmであった。
(3)重合
内容積3Lの誘導撹拌機付オートクレーブ内をプロピレンで十分置換した後に、トリイソブチルアルミニウムのヘプタン溶液(140mg/ml)2.9mlを加え、水素200ml、続いて液体プロピレン750gを導入し、65℃に昇温した。上記(2)で得られた予備重合触媒をヘプタンスラリー化し、予備重合触媒として144mgを圧入して重合を開始した。槽内温度を65℃に維持した。触媒投入後1時間経過後に、残モノマーのパージを行い、アルゴンにて槽内を5回置換して重合を停止させた。回収したポリマーは40℃の減圧乾燥機で1時間乾燥した。得られたポリマーは210gであった。ポリマーBDは、0.48g/cmであり、粉体性状は良好であった。ポリマー中のフェノール系安定剤含有量およびリン系安定剤含有量はそれぞれ45ppmであった。
(4)ポリマーの安定性評価
得られたポリマーの安定性の評価は、メルトインデクサーによるMFRの3回繰り返し測定によって行った。得られたポリマーを追加の安定剤添加なしにMFRを測定すると18.4g/10minであった。得られたストランドを再びメルトインデクサーに導入し、MFRを測定し、これを2回繰り返した。3回目のMFRは、21.7g/10minであり、安定していた。結果を表1に示す。
(実施例2)
実施例1(3)の重合時間を15分にすること以外は、実施例1と同様にして重合体を得た。得られたポリマーは、50gであった。これを実施例1と同様にして安定化評価を実施した。その結果を表1に示す。MFRは安定していた。
(比較例1)
実施例1(2)でフェノール系安定剤とリン系安定剤を添加しなかった以外は、実施例1と同様にして触媒を調製し、それを用いて重合して重合体を得た。得られたポリマーは、350gであった。ポリマーBDは、0.48g/cmであり、粉体性状は良好であった。これを実施例1と同様にして安定化評価を実施した。結果を表1に示す。測定のたびにMFRの上昇が見られ、ポリマーが劣化した。
(比較例2)
予備重合をしなかった以外は、実施例1と同様にして触媒を調製した。フェノール系安定剤とリン系安定剤は、実施例1と同様に添加し、そのまま乾燥した。得られたポリマーは、180gであった。ポリマーBDは、0.42g/cmであり、粉体性状が悪く、重合パウダー中には微粉が見られた。これを実施例1と同様にして安定化評価を実施した。結果を表1に示す。MFRは安定していた。
(比較例3)
ステアリル(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネートとトリス(2,4−ジ第三ブチルフェニル)ホスファイトを、比較例1で得られたポリマー100重量部に対してそれぞれ0.0045重量部となるようにスラリーで添加して乾燥後、実施例1と同様にして安定化評価を行った。結果を表1に示す。実施例と同等のMFR変化率を得るためには多量の酸化防止剤が必要であることが分かる。
(実施例3)
(1)予備重合
実施例1と同様に触媒の調製を実施したあと、50mlフラスコ中で、フェノール系安定剤としてテトラキス[メチレン−3−(3’,5’−ジ第三ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンの30重量%ヘプタン溶液5mlとリン系の安定剤としてトリス(2,4−ジ第三ブチルフェニル)ホスファイトの30重量%ヘプタン溶液5mlとを混合させた後、上記1Lフラスコに加え30分間撹拌した。
窒素で十分置換を行った内容積1.0Lの撹拌式オートクレーブに、上記スラリーを全量導入した。温度が40℃に安定したところでプロピレンを10g/時間の速度で供給し、温度を維持した。2時間後プロプレンの供給を停止し、さらに1時間維持した。予備重合終了後、残モノマーをパージし、撹拌を停止させ、十分窒素置換を行った1Lフラスコにスラリーを抜き出した。このスラリーを減圧乾燥して予備重合触媒を33.4g回収した。このとき触媒に対するポリプロピレンの割合は、2.2g/gであった。予備重合触媒の平均粒径は、58μmであった。
(2)重合
内容積3Lの誘導撹拌機付オートクレーブ内をプロピレンで十分置換した後に、トリイソブチルアルミニウムのヘプタン溶液(140mg/ml)2.9mlを加え、水素200ml、続いて液体プロピレン750gを導入し、65℃に昇温した。上記(1)で得られた予備重合触媒をヘプタンスラリー化し、予備重合触媒として116mgを圧入して重合を開始した。槽内温度を65℃に維持した。触媒投入後1時間経過後に、残モノマーのパージを行い、アルゴンにて槽内を5回置換して重合を停止させた。回収したポリマーは40℃の減圧乾燥機で1時間乾燥した。得られたポリマーは165gであった。ポリマーBDは、0.47g/cmであり、粉体性状は良好であった。ポリマー中のフェノール系安定剤含有量およびリン系安定剤含有量はそれぞれ26ppmであった。
(3)安定性評価
実施例1と同様にして安定化評価を行った。結果を表1に示す。MFRは安定していた。
(実施例4)
(1)触媒の合成
市販のモンモリロナイト(水澤化学社製ベンクレイSL)150gを、蒸留水2850gに徐々に添加し、数時間撹拌させた均一スラリーにした後に噴霧造粒を実施して平均粒径10.1μmの粒子を得た。1.0Lの撹拌翼を備えたガラス製フラスコに、蒸留水510g、濃硫酸(96%)150gをゆっくり添加し、造粒粒子80gを分散させ、90℃で2時間加熱処理した。冷却後、このスラリーを減圧ろ過し、ケーキを回収した。蒸留水で数回洗浄し、110℃で乾燥して、67.5gの酸処理粒子を得た。酸処理粒子50gを、蒸留水150g中に徐々に添加して撹拌した。このスラリーを再度噴霧造粒して、平均粒径69.3μmの球形の触媒担体粒子を45g回収した。形状を測定するとM/Lが0.8以上1.0以下の粒子は92%であった。この粒子を200℃で2時間減圧乾燥した。
1Lフラスコに、上記の様に調製した触媒担体粒子10gを加え、ヘプタン65mlとトリイソブチルアルミニウムのヘプタン溶液35.4ml(25mmol)を加え、室温で1時間攪拌した。その後ヘプタンで残液率1/100まで洗浄し、最後にスラリー量を100mlに調製した。さらに、トリイソブチルアルミニウムのヘプタン溶液2.1ml(1.5mmol)を加えて、10分間室温で攪拌した。
200mlフラスコ中で、(r)−ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニル)−4H−アズレニル}]ハフニウム(300μmol)にトルエン(60ml)を加えてスラリーとした後、上記1Lフラスコに加えて室温で60分間攪拌した。
(2)予備重合
50mlフラスコ中で、フェノール系安定剤としてステアリル(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネートの30重量%ヘプタン溶液10mlとリン系の安定剤としてトリス(2,4−ジ第三ブチルフェニル)ホスファイトの30重量%ヘプタン溶液10mlとを混合させた後、上記1Lフラスコに加え30分間撹拌した。
窒素で十分置換を行った内容積1.0Lの撹拌式オートクレーブに、上記スラリーを全量導入した。温度が40℃に安定したところでプロピレンを10g/時間の速度で供給し、温度を維持した。2時間後プロプレンの供給を停止し、さらに1時間維持した。予備重合終了後、残モノマーをパージし、撹拌を停止させ、十分窒素置換を行った1Lフラスコにスラリーを抜き出した。このスラリーを減圧乾燥して予備重合触媒を37.7g回収した。このとき触媒に対するポリプロピレンの割合は、2.1g/gであった。予備重合触媒の平均粒径は98.3μmであった。
(3)重合
実施例1(3)と同様に重合を実施した。予備重合触媒として75mg導入した。回収したポリマーは40℃の減圧乾燥機で1時間乾燥した。得られたポリマーは259gであった。ポリマーBDは、0.41g/cmであり、粉体性状は良好であった。ポリマー中のフェノール系安定剤含有量およびリン系安定剤含有量はそれぞれ23ppmであった。
(4)ポリマーの安定性評価
得られたポリマーの安定性の評価は、メルトインデクサーによるMFRの3回繰り返し測定によって行った。得られたポリマーを追加の安定剤添加なしにMFRを測定すると15.3g/10minであった。得られたストランドを再びメルトインデクサーに導入し、MFRを測定し、これを2回繰り返した。3回目のMFRは、19.1g/10minであり、安定していた。結果を表1に示す。
(実施例5)
(1)触媒の合成
内容積2Lの高速撹拌装置を十分窒素置換し、精製灯油700ml、市販のMgCl10g、エタノール24.2gおよびエマゾール320(花王アトラス社製、ソルビタンジステアレート)3gを入れ、撹拌下に昇温し120℃にて3000rpmで30分撹拌した。高速撹拌下、内径5mmのテフロン(登録商標)製チューブを用いて、あらかじめ−10℃に冷却された精製灯油1lを張り込んである2Lガラスフラスコに移送した。生成固体をろ過により採取し、ヘキサンで洗浄したのち担体を得た。粒度は40μm〜100μmであった。
300mlのガラス製フラスコに上記担体10g(MgCl30.7mmolを含む)および精製灯油100mlを入れ、撹拌下5℃でトリエチルアルミニウム21.1mlを滴下したのち、25℃で1時間撹拌し、更に80℃で3時間撹拌した。固体部をろ過し、ヘキサンで洗浄、乾燥した。精製灯油100ml中に生成固体を懸濁し、乾燥空気を室温で2時間撹拌下に吹き込んだ。固体部をろ過し、ヘキサンで洗浄した。生成固体を精製灯油100ml中に懸濁したのち、安息香酸エチル1.9mlを加え、25℃で1時間撹拌後、更に80℃で2時間撹拌した。固体部をろ過により採取し、ヘキサンで十分洗浄したのち乾燥した。200mlのガラスフラスコに移した固体にTiCl100mlを加え、90℃で2時間撹拌後上澄み液をデカンテーションにより除去し、さらにTiCl100mlを加え90℃で2時間撹拌した。熱ろ過により採取した固体部を、熱灯油およびヘキサンで十分洗浄し、固体部を減圧乾燥してTi原子換算で2.4wt%を含有するチタン含有触媒を得た。平均粒径は、52μmであった。
(2)予備重合
20mlフラスコ中で、フェノール系安定剤としてステアリル(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネートの30重量%ヘプタン溶液5mlとリン系の安定剤としてトリス(2,4−ジ第三ブチルフェニル)ホスファイトの30重量%ヘプタン溶液5mlとを混合させて撹拌した。
窒素で十分置換を行った内容積1.0Lの撹拌式オートクレーブに、ヘキサン500ml、トリエチルアルミニウム1mmol、上記安定剤スラリーおよびチタン含有触媒を2g(チタン原子換算で1.0mmol)添加した後、20℃でプロピレン10.5gを120分間供給して予備重合を行った。反応終了後、未反応のプロピレンをパージし、撹拌を停止させ、十分窒素置換を行った1Lフラスコにスラリーを抜き出した。このスラリーを減圧乾燥して予備重合触媒を6.3g回収した。このとき触媒に対するポリプロピレンの割合は、2.1g/gであった。予備重合触媒の平均粒径は67.3μmであった。
(3)重合
内容積3Lの誘導撹拌機付オートクレーブ内をプロピレンで十分置換した後に、トリエチルアルミニウム0.5mmol、ジイソプロピルジメトキシシラン0.1mmol、水素、液体プロピレン500gを導入し、65℃に昇温した。予備重合触媒21mgを圧入して重合を開始した。槽内温度を65℃に維持した。触媒投入後1時間経過後に、残モノマーのパージを行い、アルゴンにて槽内を5回置換して重合を停止させた。回収したポリマーは40℃の減圧乾燥機で1時間乾燥した。得られたポリマーは150gであった。ポリマーBDは、0.48g/cmであり、粉体性状は良好であった。ポリマー中のフェノール系安定剤含有量およびリン系安定剤含有量はそれぞれ18ppmであった。
(4)ポリマーの安定性評価
得られたポリマーの安定性の評価は、メルトインデクサーによるMFRの3回繰り返し測定によって行った。得られたポリマーを追加の安定剤添加なしにMFRを測定すると23.5g/10minであった。得られたストランドを再びメルトインデクサーに導入し、MFRを測定し、これを2回繰り返した。3回目のMFRは、30.3g/10minであり、安定していた。結果を表1に示す。
(実施例6)
(1)触媒の合成
攪拌翼と還流装置を取り付けた5Lセパラブルフラスコに、純水1,700gを投入し、98%硫酸500gを滴下した。そこへ、平均粒径45μmの造粒モンモリロナイト(原料として水澤化学工業社製、ベンクレイSLを用いた)を300g添加後、攪拌した。その後90℃で2時間反応させた。このスラリーをろ過、洗浄した。回収したケーキに27%硫酸リチウム水溶液1230gを加え、90℃で2時間反応させた。このスラリーをろ過し、さらに、ろ液のpHが4以上となるまで洗浄した。回収したケーキを100℃で予備乾燥した後に200℃で2時間乾燥した。その結果、275gの化学処理モンモリロナイトを得た。平均粒径43μm、形状は球形であり、M/Lの値が0.8以上1.0以下である粒子の数は93%であった。
1Lフラスコに、化学処理モンモリロナイト10gを加え、ヘプタン65mlとトリイソブチルアルミニウムのヘプタン溶液35.4ml(25mmol)を加え、室温で1時間攪拌した。その後ヘプタンで残液率1/100まで洗浄し、最後にスラリー量を100mlに調製した。さらに、トリイソブチルアルミニウムのヘプタン溶液2.1ml(1.5mmol)を加えて、10分間室温で攪拌した。
200mlフラスコ中で、(r)−ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニル)−4H−アズレニル}]ハフニウム(300μmol)にトルエン(60ml)を加えてスラリーとした後、上記1Lフラスコに加えて室温で60分間攪拌した。
(2)予備重合
窒素で十分置換を行った内容積1.0Lの撹拌式オートクレーブに、上記スラリーを全量導入し、ヘプタン340mlを加えた。温度が40℃に安定したところでプロピレンを10g/時間の速度で供給し、温度を維持した。2時間後プロプレンの供給を停止し、さらに1時間維持した。予備重合終了後、残モノマーをパージし、撹拌を停止させ、十分窒素置換を行った1Lフラスコにスラリーを抜き出した。一方、50mlフラスコ中で、フェノール系安定剤としてステアリル(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネートの30重量%ヘプタン溶液10mlとリン系の安定剤としてトリス(2,4−ジ第三ブチルフェニル)ホスファイトの30重量%ヘプタン溶液10mlとを混合させて、酸化防止剤液を予め調剤しておき、これを、上記1Lフラスコに加え30分間撹拌した。このスラリーを減圧乾燥して予備重合触媒を36.2g回収した。このとき触媒に対するポリプロピレンの割合は、2.0g/gであった。予備重合触媒の平均粒径は61μmであった。
(3)重合
内容積3Lの誘導撹拌機付オートクレーブ内をプロピレンで十分置換した後に、トリイソブチルアルミニウムのヘプタン溶液(140mg/ml)2.9mlを加え、水素200ml、続いて液体プロピレン750gを導入し、65℃に昇温した。上記(2)で得られた予備重合触媒をヘプタンスラリー化し、予備重合触媒として144mgを圧入して重合を開始した。槽内温度を65℃に維持した。触媒投入後1時間経過後に、残モノマーのパージを行い、アルゴンにて槽内を5回置換して重合を停止させた。回収したポリマーは40℃の減圧乾燥機で1時間乾燥した。得られたポリマーは198gであった。ポリマーBDは、0.48g/cmであり、粉体性状は良好であった。ポリマー中のフェノール系安定剤含有量およびリン系安定剤含有量はそれぞれ48ppmであった。
(4)ポリマーの安定性評価
得られたポリマーの安定性の評価は、メルトインデクサーによるMFRの3回繰り返し測定によって行った。得られたポリマーを追加の安定剤添加なしにMFRを測定すると20.4g/10minであった。得られたストランドを再びメルトインデクサーに導入し、MFRを測定し、これを2回繰り返した。3回目のMFRは、23.7g/10minであり、安定していた。結果を表1に示す。
(実施例7)
(1)触媒の合成および予備重合
平均粒径18μmの造粒モンモリロナイトを使用すること以外は、実施例6と同様にして、触媒の合成および予備重合を行った。予備重合触媒の平均粒径は28μmであった。
(2)重合
実施例6と同様にして重合評価を実施した。その結果、210gのポリマーが得られた。ポリマーBDは、0.46g/cmであり、粉体性状は良好であった。ポリマー中のフェノール系安定剤含有量およびリン系安定剤含有量はそれぞれ45ppmであった。
(3)ポリマーの安定性評価
実施例6と同様にしてポリマーの安定性評価を実施した。得られたポリマーを追加の安定剤添加なしにMFRを測定すると10.2g/10minであった。得られたストランドを再びメルトインデクサーに導入し、MFRを測定し、これを2回繰り返した。3回目のMFRは、13.3g/10minであり、安定していた。結果を表1に示す。
(比較例4)
実施例1(2)でフェノール系安定剤とリン系安定剤を添加しなかった以外は、同様にして予備重合触媒を製造した。
内容積3Lの誘導攪拌式オートクレーブ内をプロピレンで十分置換した後に、トリイソブチルアルミニウムのヘプタン溶液(140mg/ml)2.9mlを添加し、さらに2,6−ジ第三ブチル−4−メチルフェノールのヘプタン溶液2.0ml(0.15mg/ml)を添加した。続いて、水素102ml、エチレン33g、液体プロピレン750gを導入し、60℃に昇温した。予備重合触媒をヘプタンスラリー化し、予備重合触媒として24mgを圧入して重合を開始した。槽内温度を60℃に維持した。1時間後、エタノール10mlを加え、残ガスパージを行い、アルゴンにて槽内を5回置換した。得られたポリマーは40℃の減圧乾燥機で乾燥した。得られたポリマーは229gであった。ポリマーBDは、0.46g/cmであり、粉体性状は良好であった。これを実施例1と同様にして安定性評価を実施した。得られたポリマーを追加の安定剤添加なしにMFRを測定すると12.3g/10minであった。3回目のMFRは17.2g/10minであり、測定のたびにMFRの上昇が見られた。MFR測定後のストランドは着色していた。
(比較例5)
実施例1(2)でフェノール系安定剤とリン系安定剤を添加しなかった以外は、同様にして予備重合触媒を製造した。
内容積3Lの誘導攪拌式オートクレーブ内をプロピレンで十分置換した後に、トリイソブチルアルミニウムのヘプタン溶液(140mg/ml)2.9mlを添加し、さらにフェノール系安定剤としてステアリル(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネートのヘプタン溶液2.0ml(25mg/ml)、リン系安定剤としてトリス(2,4−ジ第三ブチルフェニル)ホスファイトのヘプタン溶液2.0ml(25mg/ml)を添加した。水素200ml、続いて液体プロピレン750gを導入し、65℃に昇温した。上記予備重合触媒をヘプタンスラリー化し、予備重合触媒として120mgを圧入して重合を開始した。槽内温度を65℃に維持した。触媒投入後1時間経過後に、エタノール10mlを加え、残モノマーのパージを行い、アルゴンにて槽内を5回置換して重合を停止させた。回収したポリマーは40℃の減圧乾燥機で1時間乾燥した。得られたポリマーは150gであった。ポリマーBDは、0.45g/cmであった。反応機壁に微粉が付着していた。ポリマー中のフェノール系安定剤含有量およびリン系安定剤含有量はそれぞれ82ppm、100ppmであり、導入した安定剤の約2/3はポリマーに添加されなかったものと思われる。安定性評価ではMFRは安定していたが、数日後ポリマーは黄色に着色していた。
Figure 2006342326
表1の結果から、実施例と比較例とを対比すると、本発明の特定事項である、成分[I](平均粒径10〜200μmのオレフィン重合用固体触媒)、成分[II](樹脂用酸化防止剤)及び成分[III](オレフィン)の存在下で予備重合処理してなるオレフィン重合用触媒であるとの要件を満たさない比較例では、製造したオレフィン重合用触媒を用いて製造されたポリマーのMFRの上昇が見られ、ポリマーの安定性が悪く劣化したり、重合ポリマーのパウダー中に微粉が見られ粉体性状が良くなかったり、ポリマーが着色したりするのに比べて、実施例によるオレフィン重合用触媒を使用して製造したポリマーは、高度に安定化され、重合ポリマーのパウダーは大粒径で粉体性状も良好なポリオレフィン樹脂が得られている。このことから、本発明においては、成分[I](平均粒径10〜200μmのオレフィン重合用固体触媒)、成分[II](樹脂用酸化防止剤)及び成分[III](オレフィン)の存在下で予備重合処理してなるオレフィン重合用触媒を用いることで、少ない工程で、安定性の高い、粉体性状の良好なポリオレフィン樹脂を製造しうることが分かる。
本発明の予備重合処理により、高度に安定化されたポリオレフィン樹脂の提供が可能な大粒径オレフィン重合用触媒を提供することができる。また、触媒中に樹脂用酸化防止剤を含有することで、ポリマー内部に高分散されることから、成形加工時に配合する各種の酸化防止剤や耐候性改良剤の使用量低減が期待でき、さらに、重合ポリマーは大粒径で粉体性状も良好であり、重合ポリマーに樹脂用酸化防止剤を含有するため、安定剤を導入するための造粒工程を省略することができ、その工業的価値は極めて大きい。

Claims (6)

  1. 下記成分[I]〜[III]の存在下で予備重合処理してなることを特徴とするオレフィン重合用触媒。
    成分[I]:平均粒径10〜200μmのオレフィン重合用固体触媒
    成分[II]:樹脂用酸化防止剤
    成分[III]:オレフィン
  2. 成分[II]が、フェノール系酸化防止剤および/またはリン系酸化防止剤からなることを特徴とする請求項1に記載のオレフィン重合用触媒。
  3. 成分[I]に対する成分[III]の割合が、0.01〜100であることを特徴とする請求項1又は2に記載のオレフィン重合用触媒。
  4. 成分[I]が、メタロセン触媒からなることを特徴とする請求項1〜3のいずれか1項に記載のオレフィン重合用触媒。
  5. 成分[II]を、成分[I]と成分[III]とを接触させて予備重合処理する工程で添加することを特徴とする請求項1〜4のいずれか1項に記載のオレフィン重合用触媒の製造方法。
  6. 成分[II]を、成分[I]と成分[III]とを接触させて予備重合処理を行った直後に添加することを特徴とする請求項1〜4のいずれか1項に記載のオレフィン重合用触媒の製造方法。
JP2006080750A 2005-05-12 2006-03-23 オレフィン重合用触媒およびオレフィン重合用触媒の製造方法 Pending JP2006342326A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006080750A JP2006342326A (ja) 2005-05-12 2006-03-23 オレフィン重合用触媒およびオレフィン重合用触媒の製造方法
US11/920,093 US20090069171A1 (en) 2005-05-12 2006-04-27 Catalysts for olefin polymerization, process for production of the catalysts, and method for preservation thereof
PCT/JP2006/308833 WO2006120916A1 (ja) 2005-05-12 2006-04-27 オレフィン重合用触媒、オレフィン重合用触媒の製造方法、及びその保存方法
EP06745761.4A EP1881012B1 (en) 2005-05-12 2006-04-27 Catalysts for olefin polymerization, process for production of the catalysts, and method for preservation thereof
CN2006800157073A CN101171268B (zh) 2005-05-12 2006-04-27 烯烃聚合用催化剂、烯烃聚合用催化剂的制造方法及其保存方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005139445 2005-05-12
JP2006080750A JP2006342326A (ja) 2005-05-12 2006-03-23 オレフィン重合用触媒およびオレフィン重合用触媒の製造方法

Publications (1)

Publication Number Publication Date
JP2006342326A true JP2006342326A (ja) 2006-12-21

Family

ID=37639512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080750A Pending JP2006342326A (ja) 2005-05-12 2006-03-23 オレフィン重合用触媒およびオレフィン重合用触媒の製造方法

Country Status (1)

Country Link
JP (1) JP2006342326A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140343A1 (ja) * 2009-06-01 2010-12-09 三井化学株式会社 エチレン系樹脂組成物、太陽電池封止材およびそれを用いた太陽電池モジュール
JP2019157021A (ja) * 2018-03-15 2019-09-19 三井化学株式会社 オレフィン重合体の製造方法
JP2019157020A (ja) * 2018-03-15 2019-09-19 三井化学株式会社 オレフィン重合体の製造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158490A (en) * 1978-02-22 1979-12-14 Union Carbide Corp Ethylene catalytic polymerization using carrier chrome*2* catalyst under phenol antioxidant
JPS6166705A (ja) * 1984-09-11 1986-04-05 Chisso Corp プロピレンの連続気相重合方法
JPS63152608A (ja) * 1986-08-26 1988-06-25 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPH03163115A (ja) * 1989-08-11 1991-07-15 Mitsui Petrochem Ind Ltd ポリプロピレン延伸フィルム
JPH03234714A (ja) * 1990-02-13 1991-10-18 Tosoh Corp ポリプロピレンの製造方法
JPH04189803A (ja) * 1990-11-26 1992-07-08 Tosoh Corp ポリプロピレンの製造方法
JPH06206923A (ja) * 1992-11-19 1994-07-26 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH07118319A (ja) * 1993-10-22 1995-05-09 Tosoh Corp オレフィン重合用触媒およびオレフィンの重合方法
JPH07133306A (ja) * 1993-09-16 1995-05-23 Showa Denko Kk オレフィン重合触媒及びポリオレフィンの製造方法
JPH07247308A (ja) * 1994-03-09 1995-09-26 Mitsubishi Chem Corp プロピレン重合用固体触媒成分及びそれを使用したプロピレンの重合方法
JPH08217816A (ja) * 1995-02-16 1996-08-27 Mitsui Toatsu Chem Inc 立体規則性ポリプロピレンの製造方法
JPH09255711A (ja) * 1996-03-27 1997-09-30 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH11504053A (ja) * 1995-03-10 1999-04-06 エクソン・ケミカル・パテンツ・インク 予備重合された触媒を生成する方法
JP2000517372A (ja) * 1996-09-04 2000-12-26 ザ・ダウ・ケミカル・カンパニー ポリオレフィン類へのフリーラジカル抑制剤の組み込み
JP2002060411A (ja) * 2000-08-24 2002-02-26 Japan Polychem Corp オレフィン重合用触媒の保存方法
JP2004051676A (ja) * 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158490A (en) * 1978-02-22 1979-12-14 Union Carbide Corp Ethylene catalytic polymerization using carrier chrome*2* catalyst under phenol antioxidant
JPS6166705A (ja) * 1984-09-11 1986-04-05 Chisso Corp プロピレンの連続気相重合方法
JPS63152608A (ja) * 1986-08-26 1988-06-25 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPH03163115A (ja) * 1989-08-11 1991-07-15 Mitsui Petrochem Ind Ltd ポリプロピレン延伸フィルム
JPH03234714A (ja) * 1990-02-13 1991-10-18 Tosoh Corp ポリプロピレンの製造方法
JPH04189803A (ja) * 1990-11-26 1992-07-08 Tosoh Corp ポリプロピレンの製造方法
JPH06206923A (ja) * 1992-11-19 1994-07-26 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH07133306A (ja) * 1993-09-16 1995-05-23 Showa Denko Kk オレフィン重合触媒及びポリオレフィンの製造方法
JPH07118319A (ja) * 1993-10-22 1995-05-09 Tosoh Corp オレフィン重合用触媒およびオレフィンの重合方法
JPH07247308A (ja) * 1994-03-09 1995-09-26 Mitsubishi Chem Corp プロピレン重合用固体触媒成分及びそれを使用したプロピレンの重合方法
JPH08217816A (ja) * 1995-02-16 1996-08-27 Mitsui Toatsu Chem Inc 立体規則性ポリプロピレンの製造方法
JPH11504053A (ja) * 1995-03-10 1999-04-06 エクソン・ケミカル・パテンツ・インク 予備重合された触媒を生成する方法
JPH09255711A (ja) * 1996-03-27 1997-09-30 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JP2000517372A (ja) * 1996-09-04 2000-12-26 ザ・ダウ・ケミカル・カンパニー ポリオレフィン類へのフリーラジカル抑制剤の組み込み
JP2002060411A (ja) * 2000-08-24 2002-02-26 Japan Polychem Corp オレフィン重合用触媒の保存方法
JP2004051676A (ja) * 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013005434; 便覧 ゴム・プラスチック配合薬品 , 20031202, 第91頁,第97頁-第103頁, 株式会社ポリマーダイジェスト *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140343A1 (ja) * 2009-06-01 2010-12-09 三井化学株式会社 エチレン系樹脂組成物、太陽電池封止材およびそれを用いた太陽電池モジュール
US8945701B2 (en) 2009-06-01 2015-02-03 Mitsui Chemicals Tohcello, Inc. Ethylene resin composition, sealing material for solar cell, and solar cell module utilizing the sealing material
JP2019157021A (ja) * 2018-03-15 2019-09-19 三井化学株式会社 オレフィン重合体の製造方法
JP2019157020A (ja) * 2018-03-15 2019-09-19 三井化学株式会社 オレフィン重合体の製造方法
JP7131930B2 (ja) 2018-03-15 2022-09-06 三井化学株式会社 オレフィン重合体の製造方法
JP7131931B2 (ja) 2018-03-15 2022-09-06 三井化学株式会社 オレフィン重合体の製造方法

Similar Documents

Publication Publication Date Title
JP2006316160A (ja) オレフィン重合用触媒の保存方法
EP1881012B1 (en) Catalysts for olefin polymerization, process for production of the catalysts, and method for preservation thereof
JP4558066B2 (ja) 溶融物性が改良されたプロピレン系重合体の製造方法
JP2012149160A (ja) オレフィン重合用触媒の製造方法
JP5140625B2 (ja) プロピレン系樹脂組成物及びそれを用いた食品容器、医療部材
JP2009120810A (ja) メタロセン系重合触媒およびこれを用いたα−オレフィン−アルケニルシラン共重合体の製造方法
JP4866624B2 (ja) オレフィン重合用固体触媒成分、オレフィン重合用触媒、およびこれを用いたポリオレフィンの製造方法
JP3865314B2 (ja) オレフィンの重合方法
JP2002020415A (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
JP6256494B2 (ja) メタロセン予備重合触媒の製造方法
JP5520865B2 (ja) 層状ケイ酸塩粒子の製造方法およびそれを用いたオレフィン重合用触媒の製造方法
JP5256245B2 (ja) 長鎖分岐を有するプロピレン系重合体の製造方法
JP2006342326A (ja) オレフィン重合用触媒およびオレフィン重合用触媒の製造方法
JP2006249167A (ja) プロピレン系重合体
JP5285893B2 (ja) 溶融物性が改良されたプロピレン系重合体の製造方法
JP7092002B2 (ja) オレフィン重合用触媒成分の製造方法、オレフィン重合用触媒の製造方法およびそれを用いたオレフィン重合体の製造方法
JP3830370B2 (ja) プロピレン系重合体
JP2002284808A (ja) オレフィン重合用触媒及びポリオレフィンの製造方法
JP5222809B2 (ja) 遷移金属化合物を含む重合触媒及びそれを用いるプロピレン系重合体の製造方法
JP2009120748A (ja) エチレン系重合体および製造方法
JP5232709B2 (ja) プロピレン/エチレン−α−オレフィン系ブロック共重合体用重合触媒及びそれを用いるプロピレン系ブロック共重合体の製造方法
JP6559490B2 (ja) オレフィン重合用触媒およびエチレン系重合体の合成方法
JP7069284B2 (ja) オレフィン重合用触媒ならびにそれを用いたエチレン系重合体の製造方法
JP2002179723A (ja) オレフィン重合用触媒及び該触媒を用いるオレフィンの重合方法
JP2004027200A (ja) オレフィン重合用触媒及び該触媒を用いるオレフィンの重合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723