JP2006294737A - Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。 - Google Patents

Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。 Download PDF

Info

Publication number
JP2006294737A
JP2006294737A JP2005110828A JP2005110828A JP2006294737A JP 2006294737 A JP2006294737 A JP 2006294737A JP 2005110828 A JP2005110828 A JP 2005110828A JP 2005110828 A JP2005110828 A JP 2005110828A JP 2006294737 A JP2006294737 A JP 2006294737A
Authority
JP
Japan
Prior art keywords
silicon substrate
substrate
soi
silicon
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110828A
Other languages
English (en)
Inventor
Akihiko Endo
昭彦 遠藤
Toshiaki Ono
敏昭 小野
Wataru Sugimura
渉 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2005110828A priority Critical patent/JP2006294737A/ja
Priority to EP06006411A priority patent/EP1710328A3/en
Priority to US11/277,857 priority patent/US7790573B2/en
Priority to KR1020060031716A priority patent/KR100753754B1/ko
Publication of JP2006294737A publication Critical patent/JP2006294737A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Abstract

【課題】剥離ウェーハを再利用したSOI基板にCOPが発生することを抑制する。
【解決手段】SOI基板の製造方法は、第1シリコン基板14の表面に酸化膜21を形成する工程と、第1シリコン基板の表面から水素イオンを注入してイオン注入領域16を形成する工程と、第1シリコン基板に第2シリコン基板12を重ね合せて積層体15を形成する工程と、積層体15を所定の温度で熱処理することにより第1シリコン基板14をイオン注入領域16で分離して第2シリコン基板12上に酸化膜21を介して薄膜のSOI層13が形成されたSOI基板11を得る工程とを含む。第1シリコン基板14は、水素を含む不活性雰囲気中でCZ法により育成された空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないインゴットをスライスして形成される。SOI層13から分離された剥離ウェーハ17は再び第1シリコン基板14として用いられる。
【選択図】 図1

Description

本発明は、水素イオン注入技術を用いて作製される酸化膜上にSOI層を設けたSOI(Silicon On Insulator)基板を製造する方法及びその製造における剥離ウェーハの再生処理方法に関するものである。
従来、SOI基板の製造方法として、第1シリコン基板の表面に酸化膜を形成した後、その内部に高濃度の水素イオンを注入し、高温でアニール処理してこのシリコン基板表面から所定の深さにイオン注入領域を形成し、その後この第1シリコン基板に第2シリコン基板を重ね合せて両者が接合した積層体を形成し、この積層体を500℃を越える温度に昇温して上記第1シリコン基板を上記水素イオン注入領域で第2シリコン基板から分離し、第2シリコン基板の表面に半導体SOI層を形成する製造方法が提案されている(例えば、特許文献1参照。)。この方法では、第2シリコン基板とこの基板上に形成されて埋込み酸化膜として作用する酸化膜とこの酸化膜上に形成された半導体SOI層とを有するSOI基板を製造することができるようになっている。
また、このような方法でSOI基板を製造すると、第1シリコン基板を上記水素イオン注入領域で分離して第2シリコン基板の表面に半導体SOI層を形成するので、必然的に第1シリコン基板を分離してSOI層を形成しない側の剥離ウェーハが副生されることになる。そしてこのSOI基板の製造方法においては、この副生した剥離ウェーハを再生して再び第1シリコン基板として用いることにより複数枚のSOI基板を得ることができるので、コストを大幅に下げることができるとしている(例えば、特許文献2参照。)。
ここで、SOI基板のSOI層におけるOSF、COP及びL/DなどのSOI層の結晶欠陥はデバイス特性を劣化させるものであるため、それらを低減させる必要がある。従って、イオン注入後に分離することによりSOI層を形成する第1シリコン基板は、そのような結晶欠陥のないウェーハであることが望まれる。ここで、OSFとは、酸化誘起積層欠陥(Oxidation Induced Stacking Fault)を示し、COPとは、結晶に起因したパーティクル(Crystal Originated Particle)を示し、L/Dは侵入型転位(Interstitial-type Large Dislocation)を示すものである。具体的にこのOSFは、結晶成長時にその核となる微小欠陥が導入され、半導体デバイスを製造する際の熱酸化工程等で顕在化し、作製したデバイスのリーク電流の増加等の不良原因になる。またCOPは、鏡面研磨後のシリコンウェーハをアンモニアと過酸化水素の混合液で洗浄したときにウェーハ表面に出現する結晶に起因したピットである。このウェーハをパーティクルカウンタで測定すると、このピットも本来のパーティクルとともに光散乱欠陥として検出される。このCOPは電気的特性、例えば酸化膜の経時絶縁破壊特性(Time Dependent Dielectric Breakdown、TDDB)、酸化膜耐圧特性(Time Zero Dielectric Breakdown、TZDB)等を劣化させる原因となる。またCOPがウェーハ表面に存在するとデバイスの配線工程において段差を生じ、断線の原因となり得る。そして素子分離部分においてもリーク等の原因となり、製品の歩留りを低くする。更にL/Dは、転位クラスタとも呼ばれたり、或いはこの欠陥を生じたシリコンウェーハをフッ酸を主成分とする選択エッチング液に浸漬するとピットを生じることから転位ピットとも呼ばれる。このL/Dも、電気的特性、例えばリーク特性、アイソレーション特性等を劣化させる原因となる。
一方、このようなOSF、COP及びL/Dを有しない無欠陥のシリコンウェーハが提案されている(例えば、特許文献3参照。)。この無欠陥のシリコンウェーハは、シリコン単結晶インゴット内での空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないパーフェクト領域を[P]とするとき、パーフェクト領域[P]からなるインゴットから切出されたシリコンウェーハである。パーフェクト領域[P]は、格子間シリコン型点欠陥が支配的に存在する領域[I]と、シリコン単結晶インゴット内で空孔型点欠陥が支配的に存在する領域[V]との間に介在する。このパーフェクト領域[P]からなるシリコンウェーハは、インゴットの引上げ速度をV(mm/分)とし、シリコン融液とインゴットとの界面近傍におけるインゴット鉛直方向の温度勾配をG(℃/mm)とするとき、熱酸化処理をした際にリング状に発生するOSFがウェーハ中心部で消滅するように、V/G(mm2/分・℃)の値を決めて作られる。従ってこのような無欠陥のシリコンウェーハを第1シリコン基板としてSOI基板を製造し、その製造時に副生した剥離ウェーハを再生して再び第1シリコン基板として用いることにより、SOI層にOSF、COP及びL/Dが生じないSOI基板を複数枚繰り返して得ることができると考えられる。
特開平5−211128号公報(特許請求の範囲) 特開2001−155978号公報(特許請求の範囲) 特開平11−1393号公報(特許請求の範囲)
しかし、水素ドープされていないインゴットからスライスされた結晶欠陥の存在しないウェーハを第1シリコン基板として使用した場合、その第1シリコン基板に固溶している酸素が、製造過程における複数回の熱処理で酸素析出物となる危険性があった。このため、水素ドープされていないインゴットからスライスされた結晶欠陥の存在しないウェーハを第1シリコン基板として使用してSOI基板を製造したとしても、その製造時に副生した剥離ウェーハに酸素析出物が生じることがあり、その剥離ウェーハを第1シリコン基板として再利用して得られたSOI基板に酸素析出物が存在し得るという未だ解決すべき課題が残存していた。
本発明の目的は、剥離ウェーハを再利用して得られたSOI基板に酸素析出物が発生することを抑制し得るSOI基板の製造方法及びその製造における剥離ウェーハの再生処理方法を提供することにある。
請求項1に係る発明は、図1に示すように、第1シリコン基板14の少なくとも表面に酸化膜21を形成する工程と、第1シリコン基板14の表面から水素イオンを注入して第1シリコン基板14内部にイオン注入領域16を形成する工程と、酸化膜21を介して第1シリコン基板14に第2シリコン基板12を重ね合せて第1シリコン基板14と第2シリコン基板12が接合した積層体15を形成する工程と、積層体15を所定の温度で熱処理することにより第1シリコン基板14をイオン注入領域16で分離して第2シリコン基板12上に酸化膜21を介して薄膜のSOI層13が形成されたSOI基板11を得る工程とを含むSOI基板の製造方法の改良である。
その特徴ある点は、第1シリコン基板14は、水素を含む不活性雰囲気中でCZ法により育成された空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないインゴットをスライスして形成されたところにある。
この請求項1に記載されたSOI基板の製造方法では、第1シリコン基板14を製作するためのインゴットは水素を含む不活性雰囲気中で育成することにより、そのパーフェクト領域[P]は拡大するため、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しない第1シリコン基板14を比較的容易に得ることができ、得られるSOI基板11の単価を低下させることができる。
また、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないものを第1シリコン基板14として用いるので、SOI層13の結晶欠陥の原因となる固溶酸素が熱処理により酸素析出物になりにくい。また、水素がドープされたインゴットでは、COPが存在する領域においてもそのCOPサイズが小さくなり、SOI基板の製造工程に存在する還元雰囲気の熱処理においてそのCOPが消滅しやすい。更に水素ドープにより、酸素析出物発生・成長に必要となる空孔型欠陥が水素と結びつき実質的な空孔濃度が低下するため、通常結晶と比較して、酸素析出物の発生確率が更に小さくなる。従って、この製造方法により得られたSOI基板11におけるSOI層13及びこの製造方法により副生された剥離ウェーハを第1シリコン基板14として用いたSOI基板11におけるSOI層13に酸素析出物やCOPが発生することは抑制され、それらのSOI層13における欠陥密度は従来より減少し、それらのSOI基板11におけるSOI層13の結晶品質を更に向上させることができる。
請求項2に係る発明は、請求項1に係る発明であって、第1シリコン基板14を形成するインゴットは酸素濃度が5×1017〜14×1017atoms/cm3(Old−ASTM,以下同じ。)の範囲内になるように育成されたことを特徴とする。
この請求項2に記載されたSOI基板の製造方法では、この方法により副生される剥離ウェーハ17の必要な機械的強度を維持した状態でその剥離ウェーハ17に酸素析出物が発生することを十分に抑制することができる。ここで第1シリコン基板14の酸素濃度が5×1017atoms/cm3未満では、格子間酸素が少ないためウェーハの機械的強度が低下し、熱処理により容易にスリップが発生し、SOI基板11の製品時の結晶欠陥となりデバイス特性を劣化させることになる。また第1シリコン基板14の酸素濃度が14×1017atoms/cm3越えると熱処理による酸素析出物の発生を抑制することが困難になる。機械的強度および酸素析出物の抑制の観点から、第1シリコン基板14のより好ましい酸素濃度は7×1017〜12×1017atoms/cm3の範囲内である。
請求項3に係る発明は、請求項1又は2に記載されたSOI基板の製造方法においてイオン注入領域16で分離することによりSOI層13から分離された剥離ウェーハ17を第1シリコン基板14として用いるSOI基板の製造における剥離ウェーハの再生処理方法である。
この請求項3に記載されたSOI基板の製造における剥離ウェーハの再生処理方法では、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないインゴットをスライスして形成された第1シリコン基板14を分離することにより剥離ウェーハ17を得ることになる。このため、得られた剥離ウェーハ17にあっても、通常結晶と比較して、酸素析出物の発生確率が小さくなる。また水素を含む雰囲気下によって引上げた結晶により、酸素析出物発生・成長に必要となる空孔型欠陥が水素と結びつき実質的な空孔濃度が低下するため、通常結晶と比較して、酸素析出物の発生確率が更に小さくなる。従って、この剥離ウェーハ17を第1シリコン基板14として用い、再びSOI基板を製造したとしても、得られたSOI基板11におけるSOI層に結晶欠陥が生じることは抑制され、得られるSOI層13の結晶品質を劣化させることなく通常結晶よりも再生加工回数を多くすることができる。
本発明のSOI基板の製造方法では、水素を含む不活性雰囲気中でCZ法により育成された空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないインゴットをスライスして第1シリコン基板を形成するので、インゴットのパーフェクト領域[P]は拡大するため、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しない第1シリコン基板を比較的容易に得ることができ、得られるSOI基板11の単価を低下させることができる。また、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないものを第1シリコン基板として用いることになるので、また水素がドープされることにより、酸素析出物発生・成長に必要となる空孔型欠陥が水素と結びつき実質的な空孔濃度が低下するため、通常結晶と比較して、酸素析出物の発生確率が更に小さくなる。よってSOI層の結晶欠陥の原因となる固溶酸素が熱処理により酸素析出物になりにくく、COPが存在する領域においてもそのCOPサイズが小さくなり、この製造方法により得られたSOI基板11におけるSOI層及びこの製造方法により副生された剥離ウェーハを第1シリコン基板として用いたSOI基板におけるSOI層にCOPが発生することは抑制され、それらのSOI基板におけるSOI層の結晶品質を更に向上させることができる。
また、SOI基板の製造方法においてイオン注入領域で分離することによりSOI層から分離された剥離ウェーハを第1シリコン基板として用いるSOI基板の製造における剥離ウェーハの再生処理方法では、得られた剥離ウェーハにあっても、通常結晶と比較して、酸素析出物発生確率が小さくなる。従って、この剥離ウェーハを第1シリコン基板として用い、再びSOI基板を製造したとしても、得られたSOI基板におけるSOI層に結晶欠陥が生じることは抑制され、得られるSOI層の結晶品質を劣化させることなく通常結晶よりも再生加工回数を多くすることができる。
次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1(j)に示すように、SOI基板11は、シリコン単結晶からなる第2シリコン基板12と、第2シリコン基板12上に第1酸化膜21を介して接合させられるシリコン単結晶からなるSOI層13とを備える。上記第1酸化膜21は電気絶縁性を有するシリコン酸化膜(SiO2膜)であり、第2シリコン基板12に上記酸化膜を形成しない場合を示すが、図示しないが第2シリコン基板12にも酸化膜を別に形成してもよい。
このようなSOI基板11の本発明における製造方法を説明する。
先ずシリコン単結晶からなる第1シリコン基板14を準備し、その第1シリコン基板14の表面のみならず裏面及び側面(図示せず)を含む全面に熱酸化により電気絶縁性を有するシリコン酸化膜(SiO2膜)からなる第1酸化膜21を形成する(図1(a))。この第1酸化膜21は50〜300nm、好ましくは100〜200nmの厚さになるように形成される。ここで、第1酸化膜21の厚さを50〜300nmの範囲に限定したのは、50nm未満では後述する第2シリコン基板12との接合において高温時の酸化膜の流動性を使ったボイド消滅という効果が小さくなりその結果ボイドが発生し易くなり、300nmを越えると埋込み酸化膜の均一性がデバイス要求より劣化するからである。なお、上記第1酸化膜(SiO2膜)を熱酸化ではなくCVD法により第1シリコン基板の表面にのみ形成してもよい。
次いで上記第1シリコン基板14の表面から水素イオンを4×1016atoms/cm2〜10×1016atoms/cm2のドーズ量及び20〜200keVの加速エネルギでイオン注入する。これにより第1シリコン基板14内部にイオン注入領域16を形成する(図1(b))。ここで、水素イオンのドーズ量を4×1016/cm2〜10×1016/cm2の範囲に限定したのは、4×1016/cm2未満では第1熱処理で劈開できず、10×1016/cm2を越えると水素イオン注入時に第1シリコン基板14表面の自己剥離が発生しパーティクルが発生し易くなるからである。また加速エネルギを20〜200keVの範囲に限定したのは、20keV未満ではSOI層13が薄くなり過ぎ、200keVを越えると特殊なイオン注入装置が必要になるからである。
一方、上記第1シリコン基板14と同一表面積を有するシリコン単結晶からなる第2シリコン基板12を用意する(図1(c))。この第2シリコン基板12には上記酸化膜を形成してもしなくても良い。上記第1シリコン基板14を第1酸化膜21を介して第2シリコン基板12に重ね合せて積層体15を形成する(図1(d))。この積層体15の形成は、第1シリコン基板14を第2シリコン基板12に重ね合せてその位置合せを行うとともに、その第1シリコン基板14に重ね合せた第2シリコン基板12の中央に第1シリコン基板14に向かう荷重を加えることにより行われる。
その後この積層体15を窒素雰囲気中で400〜800℃、好ましくは450〜600℃に、1〜30分間、好ましくは10〜30分間保持して第1熱処理を行う。これにより第1シリコン基板14が水素イオンの注入ピーク位置に相当するイオン注入領域16のところで割れて、上部の厚肉部17と下部の薄いSOI層13に分離する(図1(e))。そして下部のSOI層13は第1酸化膜21を介して第2シリコン基板12に密着し、こ貼合せ基板18となる。
次に貼合せ基板18を一般的な手法で、最終的な膜厚になるまで平坦化及び薄膜化処理を行う。例えば、分離の際に生じたダメージの存在する領域をCMP加工や酸化処理等により除去した後、貼合せ強度を向上させる熱処理を行う。更にCMP加工、水素やアルゴンガス等の雰囲気による高温熱処理によって平坦化を行い(図1(f)及び(h))、次いで所定のSOI層13の膜厚になるまで、CMP加工や酸化処理による薄膜化を行い、SOI基板11を得る(図1(j))。
本発明のSOI基板11の製造方法における特徴ある点は、第1シリコン基板14が、水素を含む不活性雰囲気中でインゴットの酸素濃度が5×1017〜14×1017atoms/cm3の範囲内にはいるようにCZ法により育成された空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないインゴットをスライスして形成されたところにある。即ち、インゴットは、CZ法によりホットゾーン炉内のシリコン融液からボロンコフ(Voronkov)の理論に基づいた所定の引上げ速度プロファイルで引上げられる。ボロンコフの理論は、欠陥の数が少ない高純度インゴットを成長させるために、インゴットの引上げ速度をV(mm/分)、インゴットとシリコン融液の界面近傍のインゴット中の温度勾配をG(℃/mm)とするときに、V/G(mm2/分・℃)を制御することである。
図2に示すように、ボロンコフの理論では、V/Gをよこ軸にとり、空孔型点欠陥濃度と格子間シリコン型点欠陥濃度を同一のたて軸にとって、V/Gと点欠陥濃度との関係を図式的に表現し、空孔領域と格子間シリコン領域の境界がV/Gによって決定されることを説明している。より詳しくは、V/G比が臨界点以上では空孔型点欠陥濃度が優勢なインゴットが形成される反面、V/G比が臨界点以下では格子間シリコン型点欠陥濃度が優勢なインゴットが形成される。図2において、[I]は格子間シリコン型点欠陥が支配的であって、格子間シリコン型点欠陥が存在する領域((V/G)1以下)を示し、[V]はインゴット内での空孔型点欠陥が支配的であって、空孔型点欠陥の凝集体が存在する領域((V/G)2以上)を示し、[P]は空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体が存在しないパーフェクト領域((V/G)1〜(V/G)2)を示す。領域[P]に隣接する領域[V]にはOSF核を形成する領域[OSF]((V/G)2〜(V/G)3)が存在する。
このパーフェクト領域[P]は更に領域[PI]と領域[PV]に分類される。[PI]はV/G比が上記(V/G)1から臨界点までの領域であり、[PV]はV/G比が臨界点から上記(V/G)2までの領域である。即ち、[PI]は領域[I]に隣接し、かつ侵入型転位を形成し得る最低の格子間シリコン型点欠陥濃度未満の格子間シリコン型点欠陥濃度を有する領域であり、[PV]は領域[V]に隣接し、かつOSFを形成し得る最低の空孔型点欠陥濃度未満の空孔型点欠陥濃度を有する領域である。
一方、窒素雰囲気中で引上げ速度を徐々に低下させてV/Gを連続的に低下させたときのインゴットの断面図を描いてみると、図3に示される事実が分かる。図3には、インゴット内での空孔型点欠陥が支配的に存在する領域が[V]、格子間シリコン型点欠陥が支配的に存在する領域が[I]、及び空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体が存在しないパーフェクト領域が[P]としてそれぞれ示される。前述したようにパーフェクト領域[P]は更に領域[PI]と領域[PV]に分類される。領域[PV]はパーフェクト領域[P]の中でも凝集体にならない空孔型点欠陥が存在する領域であり、領域[PI]はパーフェクト領域[P]の中でも凝集体にならない格子間シリコン型点欠陥が存在する領域である。
図3に示すように、インゴットの軸方向位置P1は、中央に空孔型点欠陥が支配的に存在する領域を含む。位置P3は格子間シリコン型点欠陥が支配的に存在するリング領域及び中央のパーフェクト領域を含む。また位置P2は、中央に空孔型点欠陥の凝集体もなく、縁部分に格子間シリコン型点欠陥の凝集体もないので全てパーフェクト領域である。従って、この図3から明らかなように、位置P1に対応したウェーハW1は、中央に空孔型点欠陥が支配的に存在する領域を含む。位置P3に対応したウェーハW3は、格子間シリコン型点欠陥が支配的に存在するリング及び中央のパーフェクト領域を含む。また位置P2に対応したウェーハW2は、中央に空孔型点欠陥の凝集体もないし、縁部分に格子間シリコン型点欠陥の凝集体もないので全てパーフェクト領域であって、領域[PV]と領域[PI]とが混在する領域である。
一方、図4に、水素を含む不活性雰囲気中で引上げ速度を徐々に低下させてV/Gを連続的に低下させたときのインゴットの断面図を示す。図4におけるインゴットは、引上げ装置において、原料のポリシリコンが融解を始めてから、インゴットの引上か完了するまでの間、アルゴンガスの導入口からアルゴンガスに対し水素ガスが6%の体積比となるように混入して引上げ装置内へ導入した場合のものを示す。そして、本発明の製造方法に用いる第1シリコン基板14を切り出すためのインゴットは、水素を含む不活性雰囲気中でCZ法により育成されたものに限定される。水素を含む不活性雰囲気中で育成されたインゴットには水素がドープされ、図4に示すようにパーフェクト領域[P]、特に凝集体にならない格子間シリコン型点欠陥が存在する領域[PI]が拡大する。これは、ドープされた水素が空孔型欠陥と結びつきやすく、同じ引上げ条件であっても、実効的な空孔濃度が下がるためと考えられている。そして、本発明の製造方法に用いる第1シリコン基板14を切り出すためのインゴットは、パーフェクト領域[P]のものが使用される。ここで、水素の不活性雰囲気中における割合は、1〜10体積%であることが好ましく、3〜10体積%であることが更に好ましい。水素の不活性雰囲気中における割合が1体積%未満であると無欠陥領域のマージン拡大及び酸素析出物抑制効果が見られないという不具合があり、その割合が10体積%を越えるとシリコン単結晶引上げ時に一般的に用いられる炭素部材と水素が反応、結晶欠陥フリーの結晶引上げが困難になるという不具合がある。
本発明のSOI基板の製造方法では、水素を含む不活性雰囲気中でCZ法により育成しパーフェクト領域[P]が拡大されたインゴットをスライスしたものを第1シリコン基板14として用いることを特徴とする。即ち、第1シリコン基板14を製作するためのインゴットを得るための所定の引上げ速度プロファイルは、インゴットがホットゾーン炉内のシリコン溶融物から引上げられる時、図2に示す温度勾配に対する引上げ速度の比(V/G)が格子間シリコン型点欠陥の凝集体の発生を防止する第1臨界比((V/G)1)以上であって、空孔型点欠陥の凝集体をインゴットの中央にある空孔型点欠陥が支配的に存在する領域内に制限する第2臨界比((V/G)2)以下に維持されるように決められる。そして、そのインゴットから切り出される本発明の製造方法に用いる第1シリコン基板14は、図4に示すように、位置P4に対応した領域[PV]が支配的に存在するウェーハW4と、位置P6に対応した領域[PI]が支配的に存在するウェーハW6と、位置P5に対応した領域[PV]と領域[PI]とが混在するウェーハW5のいずれかのものが用いられる。
即ち、本発明のSOI基板の製造方法では、第1シリコン基板14を製作するためのイをンゴットは水素を含む不活性雰囲気中で育成することにより、そのパーフェクト領域[P]は拡大するため、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しない第1シリコン基板14を比較的容易に得ることができ、得られるSOI基板11の単価を低下させることができる。特に、その領域[PI]が拡大するので、第1シリコン基板14は、パーフェクト領域であっても、領域[PI]のものを使用することにより、得られるSOI基板11の単価を確実に低下させることができる。
また、本発明のSOI基板の製造方法では、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないものを第1シリコン基板14として用いるので、SOI層の結晶欠陥の原因となる固溶酸素が熱処理により酸素析出物になりにくい。また、水素がドープされたインゴットでは、COPが存在する領域においてもそのCOPサイズが小さくなり、SOI基板の製造工程に存在する還元雰囲気の熱処理においてそのCOPが消滅しやすく、かつ、酸素析出物発生・成長に必要となる空孔型欠陥が水素と結びつき実質的な空孔濃度が低下するため、通常結晶と比較して、酸素析出物の発生確率が更に小さくなる。従って、SOI層の欠陥密度を従来より低減して、SOI層の結晶品質を更に向上させることができる。そして、第1シリコン基板14として、領域[PI]のものを使用すれば、空孔濃度をより下げることによりその品質をより向上させることができる。
次に本発明のSOI基板の製造における剥離ウェーハの再生処理方法を説明する。
図1に示すように、この再生処理方法は、上述したSOI基板の製造方法においてイオン注入領域16で分離することによりSOI層13から分離された剥離ウェーハ17を第1シリコン基板14として再び用いる方法である。具体的には、この剥離ウェーハ17は、SOI層13からの分離面を研磨した後(図1(g)及び(i))、第1シリコン基板14として再び用いられる。ここで、剥離ウェーハ17の分離面における研磨は、通常の少なくとも鏡面研磨又は基板周辺のエッジ研磨と鏡面研磨の組み合わせが好ましい。鏡面研磨の研磨代は0.5μm以上10μm以下、好ましくは1μm以上5μm以下がより好ましい。0.5μm以下では、分離面の凹凸を完全に鏡面まで平らにすることが困難であり、10μm以上では基板全体の平坦性を損ねるためである。
このようなSOI基板の製造における剥離ウェーハの再生処理方法では、空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないインゴットをスライスして形成された第1シリコン基板14を分離することにより剥離ウェーハ17を得る。ここで第1シリコン基板14は空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体が存在しない領域からなるものであり、それが[PI]領域からなるものであれば、格子間シリコンが多いため、SOI層の結晶欠陥の原因となる固溶酸素が熱処理により酸素析出物になりにくい。これにより剥離ウェーハ17も、通常結晶と比較して、酸素析出物発生確率が小さくなるため、SOI層の結晶品質を劣化させることなく通常結晶よりも再生加工回数を多くできる。また、酸素析出に必要な空孔が、上記水素ドープ効果により、より析出抑制され、コストの低減が可能となる。
一方、第1シリコン基板14が[PV]領域からなるものである場合であっても、通常結晶と比較して水素ドープの効果により、析出が抑制され、繰り返し回数を増加させ、コスト低減が可能となる。
特に、第1シリコン基板14の酸素濃度が5×1017〜14×1017atoms/cm3の範囲内であるので、剥離ウェーハ17の必要な機械的強度を維持した状態で酸素析出物の発生を十分に抑制することができる。ここで第1シリコン基板14の酸素濃度が5×1017atoms/cm3未満では、格子間酸素が少ないためウェーハの機械的強度が低下し、熱処理により容易にスリップが発生し、SOI基板11の製品時の結晶欠陥となりデバイス特性を劣化させることになる。また第1シリコン基板14の酸素濃度が14×1017atoms/cm3越えても熱処理による酸素析出物発生は抑制できないからである。
次に本発明の実施例を比較例とともに説明する。
<実施例1>
シリコン単結晶引上げ装置を用いて水素を含む不活性雰囲気中でCZ法により直径8インチのボロン(B)がドープされたp型のシリコンインゴットを引上げた。引上げ装置内にはアルゴンガスを40L/分の流量で、原料の加熱時から冷却時まで流した。水素ガスは原料のポリシリコンが融解を始めてから、インゴットの引上か完了するまでの間、アルゴンガスの導入口からアルゴンガスに対し6%の体積比となるように混入して引上げ装置内へ導入した。引上げるインゴットは、抵抗率が約10Ωcm、酸素濃度が5×1017atoms/cm3である。インゴットは、引上げ時のV/Gを0.24mm2/分℃から0.18mm2/分℃まで連続的に減少させながら、同一条件で2本育成した。そのうちの1本のインゴットは図4に示すように引上げ方向にインゴット中心を切断し、各領域の位置を調べ、別の1本から図4のP4に対応する位置のシリコンウェーハW4を切出し、外径及び厚さが200mm及び725μmである第1シリコン基板14を得た。即ち、この例における第1シリコン基板14は、領域[PV]が支配的に存在するウェーハW4である。
次に、シリコン単結晶引上げ装置を用いて水素を含まない不活性雰囲気中でCZ法により直径8インチのボロン(B)がドープされたp型のシリコンインゴットを引上げた。引上げ装置内にはアルゴンガスを40L/分の流量で、原料の加熱時からインゴットの引上か完了するまで導入した。引上げるインゴットは直胴部の長さが1200mm、抵抗率が約10Ωcm、酸素濃度が5×1017atoms/cm3である。インゴットの引上げにおけるV/Gは0.24mm2/分℃とした。そのインゴットを切断してシリコンウェーハを切出し、外径及び厚さが200mm及び725μmである第2シリコン基板12を得た。
図1に示すように、先に得られた第1シリコン基板14を酸素雰囲気中で1000℃に5時間保持する熱処理を行って、第1シリコン基板14の表面のみならず裏面及び側面に第1酸化膜21を形成した(図1(a))。次いで上記第1シリコン基板14の表面から水素イオンを6×1016/cm2のドーズ量及び50keVの加速エネルギで注入して第1シリコン基板14内部にイオン注入領域16を形成した(図1(b))。次に別に準備した第2シリコン基板12(図1(c))を上記第1シリコン基板14に第1酸化膜21を介して重ね合せて積層体15を得た(図1(d))。
次にこの積層体15を窒素雰囲気中で500℃に30分間保持して熱処理を行い、イオン注入領域16のところで割って上部のSOI層13が第1酸化膜21を介して第2シリコン基板12に密着した貼合せ基板18を得た(図1(f))。この貼合せ基板18を酸化処理により剥離時のダメージ層を除去した後、更に貼合せ界面の結合力を完全させるたにアルゴンガス雰囲気中での高温熱処理を行った。その後表面の平坦化を行い。次いで酸化性雰囲気による熱処理で、所定のSOI層の膜厚になるまで、薄膜化処理を行った(図1(j))。こうして得られたSOI基板11を実施例1とした。
<実施例2>
実施例1において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例1と同一の条件及び手順により再びSOI基板11を得た。この再び得られたSOI基板11を実施例2とした。
<実施例3>
実施例2において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例1と同一の条件及び手順により3度目のSOI基板11を得た。この3度目に得られたSOI基板11を実施例3とした。
<実施例4>
実施例3において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例1と同一の条件及び手順により4度目のSOI基板11を得た。この4度目に得られたSOI基板11を実施例4とした。
<実施例5>
この実施例5における第1シリコン基板14は、実施例1のシリコン単結晶引上げ装置を用いて水素を含む不活性雰囲気中でCZ法により引上げられたうちの1本であって、図4のP6に対応する位置のシリコンウェーハW6を切出した、外径及び厚さが200mm及び725μmであるウェーハである。即ち、この例における第1シリコン基板14は、領域[PI]が支配的に存在するウェーハW6を用いるものである。そして、この領域[PI]が支配的に存在するウェーハW6を第1シリコン基板14として用いたことを除いて、実施例1と同一の条件及び手順によりSOI基板11を得た。このSOI基板11を実施例5とした。
<実施例6>
実施例5において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例5と同一の条件及び手順により再びSOI基板11を得た。この再び得られたSOI基板11を実施例6とした。
<実施例7>
実施例6において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例5と同一の条件及び手順により3度目のSOI基板11を得た。この3度目に得られたSOI基板11を実施例7とした。
<実施例8>
実施例7において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例5と同一の条件及び手順により4度目のSOI基板11を得た。この4度目に得られたSOI基板11を実施例8とした。
<実施例9>
この実施例9における第1シリコン基板14は、実施例1のシリコン単結晶引上げ装置を用いて水素を含む不活性雰囲気中でCZ法により引上げられたうちの1本であって、図4のP5に対応する位置のシリコンウェーハW5を切出した、外径及び厚さが200mm及び725μmであるウェーハである。即ち、この例における第1シリコン基板14は、領域[PI]と領域[PV]が混在するウェーハW5を用いるものである。そして、この領域[PI]と領域[PV]が混在するウェーハW5を第1シリコン基板14として用いたことを除いて、実施例1と同一の条件及び手順によりSOI基板11を得た。このSOI基板11を実施例9とした。
<実施例10>
実施例9において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例9と同一の条件及び手順により再びSOI基板11を得た。この再び得られたSOI基板11を実施例10とした。
<実施例11>
実施例10において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例9と同一の条件及び手順により3度目のSOI基板11を得た。この3度目に得られたSOI基板11を実施例11とした。
<実施例12>
実施例11において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、実施例9と同一の条件及び手順により4度目のSOI基板11を得た。この4度目に得られたSOI基板11を実施例12とした。
<比較例1>
シリコン単結晶引上げ装置を用いて水素を含まない不活性雰囲気中でCZ法により直径8インチのボロン(B)がドープされたp型のシリコンインゴットを引上げた。引上げ装置内にはアルゴンガスを40L/分の流量で、原料の加熱時からインゴットの引上か完了するまでの間導入した。引上げるインゴットは直胴部の長さが1200mm、抵抗率が約10Ωcm、酸素濃度が5×1017atoms/cm3である。インゴットは、引上げ時のV/Gを0.24mm2/分℃から0.18mm2/分℃まで連続的に減少させながら、同一条件で2本育成した。そのうちの1本のインゴットは図3に示すように引上げ方向にインゴット中心を切断し、各領域の位置を調べ、別の1本から図3のP2に対応する位置のシリコンウェーハW2を切出し、外径及び厚さが200mm及び725μmである第1シリコン基板14を得た。即ち、この例における第1シリコン基板14は、中心部に領域[PV]を有し、その周囲に領域[PI]を有し、更にその周囲に領域[PV]を有するウェーハW2である。
このように第1シリコン基板14として、水素を含まない不活性雰囲気中でCZ法により育成されたインゴットをスライスして生成され、領域[PV]と領域[PI]が混在するウェーハを第1シリコン基板14として用いたことを除いて、実施例1と同一の条件及び手順によりSOI基板11を得た。このSOI基板11を比較例1とした。
<比較例2>
比較例1において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、比較例1と同一の条件及び手順により再びSOI基板11を得た。この再び得られたSOI基板11を比較例2とした。
<比較例3>
比較例2において、積層体15に熱処理を行い、イオン注入領域16のところで割って得られた剥離ウェーハ17(図1(g))を、そのSOI層13からの分離面を研磨した(図1(i))。この分離面が研磨された剥離ウェーハ17を、第1シリコン基板14として再び用い、比較例1と同一の条件及び手順により3度目のSOI基板11を得た。この3度目に得られたSOI基板11を比較例3とした。
尚、空孔型点欠陥の凝集体(COP)及び格子間シリコン型点欠陥領域(転移クラスター)及びその有無の確認には、各々DSOD(Direct Surface Oxide Defect)法及びCuデコレーション法を用いて確認した。本文中に表現している空孔型点欠陥の凝集体(COP)及び格子間シリコン型点欠陥領域(転移クラスター)が無い基板とは、上記評価方法により、観察される欠陥が円盤状やリング状などの特異の形状を有する集合体領域が観察されないことをいう。
<比較試験及び評価>
実施例1〜12並びに比較例1〜3におけるSOI基板のそれぞれのSOI層におけるHF欠陥の密度を測定した。HF欠陥評価とは、SOI層の結晶欠陥(COP、析出)を評価する一般的な方法であり、SOI基板をHF濃度50%溶液に30分漬けてた後、光学顕微鏡で基板外周部を5mm除いた領域での欠陥数をカウントすることで評価した。この結果を表1に示す。
Figure 2006294737
表1の結果から明らかなように、第1シリコン基板14を製作するためのインゴットを水素を含む不活性雰囲気中で育成した実施例1〜12におけるSOI基板ではそのSOI層におけるHF欠陥密度はいずれも低い値であることが判る。一方、第1シリコン基板14を製作するためのインゴットを水素を含まない不活性雰囲気中で育成した比較例1は、そのSOI層におけるHF欠陥密度が低い値を示したが、その製造過程で副生される剥離ウェーハを第1シリコン基板14として再利用した比較例2及び3におけるSOI基板では、そのSOI層におけるHF欠陥密度が著しく高い値を示している。これは、比較例における第1シリコン基板14が水素を含まない不活性雰囲気中で育成されたインゴットからなることに起因して、その第1シリコン基板に含有された固溶酸素が、製造過程における複数回の熱処理で析出物となってしまったことに起因するものと考えられる。このため、水素を含む不活性雰囲気中で育成されたインゴットをスライスして第1シリコン基板を形成することにより、剥離ウェーハに酸素析出物が形成されることを防止してその剥離ウェーハを複数回有効利用しようとする本発明が有効に成立することが判る。
本発明実施形態のSOI基板の製造方法を工程順に示す図である。 ボロンコフの理論を基づいた、V/G比が臨界点以上では空孔豊富インゴットが形成され、V/G比が臨界点以下では格子間シリコン豊富インゴットが形成されることを示す図。 水素を含まない不活性ガス中において引き上げられたインゴットの空孔が支配的に存在する領域、格子間シリコンが支配的に存在する領域及びパーフェクト領域を示すX線トポグラフィの概略図。 水素を含む不活性ガス中において引き上げられたインゴットの空孔が支配的に存在する領域、格子間シリコンが支配的に存在する領域及びパーフェクト領域を示す図3に対応するX線トポグラフィの概略図。
符号の説明
11 SOI基板
12 第2シリコン基板
13 SOI層
14 第1シリコン基板
15 積層体
16 イオン注入領域
17 剥離ウェーハ
21 酸化膜

Claims (3)

  1. 第1シリコン基板(14)の少なくとも表面に酸化膜(21)を形成する工程と、前記第1シリコン基板(14)の表面から水素イオンを注入して前記第1シリコン基板(14)内部にイオン注入領域(16)を形成する工程と、前記酸化膜(21)を介して前記第1シリコン基板(14)に第2シリコン基板(12)を重ね合せて前記第1シリコン基板(14)と前記第2シリコン基板(12)が接合した積層体(15)を形成する工程と、前記積層体(15)を所定の温度で熱処理することにより前記第1シリコン基板(14)を前記イオン注入領域(16)で分離して前記第2シリコン基板(12)上に前記酸化膜(21)を介して薄膜のSOI層(13)が形成されたSOI基板(11)を得る工程とを含むSOI基板の製造方法において、
    前記第1シリコン基板(14)は、
    水素を含む不活性雰囲気中でCZ法により育成された空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないインゴットをスライスして形成された
    ことを特徴とするSOI基板の製造方法。
  2. 第1シリコン基板(14)を形成するインゴットは酸素濃度が5×1017〜14×1017atoms/cm3(Old-ASTM)の範囲内になるように育成された請求項1記載のSOI基板の製造方法。
  3. 請求項1又は2に記載されたSOI基板の製造方法においてイオン注入領域(16)で分離することによりSOI層(13)から分離された剥離ウェーハ(17)を第1シリコン基板(14)として用いるSOI基板の製造における剥離ウェーハの再生処理方法。
JP2005110828A 2005-04-07 2005-04-07 Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。 Pending JP2006294737A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005110828A JP2006294737A (ja) 2005-04-07 2005-04-07 Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。
EP06006411A EP1710328A3 (en) 2005-04-07 2006-03-28 Process for producing SOI substrate and process for regeneration of layer transferred wafer in the production
US11/277,857 US7790573B2 (en) 2005-04-07 2006-03-29 Process for producing SOI substrate and process for regeneration of layer transferred wafer in the production
KR1020060031716A KR100753754B1 (ko) 2005-04-07 2006-04-07 에스 오 아이 기판의 제조 방법 및 제조시 층 이송된웨이퍼의 재생 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110828A JP2006294737A (ja) 2005-04-07 2005-04-07 Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。

Publications (1)

Publication Number Publication Date
JP2006294737A true JP2006294737A (ja) 2006-10-26

Family

ID=36691738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110828A Pending JP2006294737A (ja) 2005-04-07 2005-04-07 Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。

Country Status (4)

Country Link
US (1) US7790573B2 (ja)
EP (1) EP1710328A3 (ja)
JP (1) JP2006294737A (ja)
KR (1) KR100753754B1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050446A (ja) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
US8367517B2 (en) 2010-01-26 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
WO2013057865A1 (ja) * 2011-10-17 2013-04-25 信越半導体株式会社 剥離ウェーハの再生加工方法
WO2014061196A1 (ja) 2012-10-16 2014-04-24 信越半導体株式会社 Soiウェーハの製造方法
JP2014107357A (ja) * 2012-11-26 2014-06-09 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142134A (ja) * 2005-11-18 2007-06-07 Sumco Corp Soi基板の製造方法
JP4715470B2 (ja) * 2005-11-28 2011-07-06 株式会社Sumco 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
KR100828029B1 (ko) * 2006-12-11 2008-05-08 삼성전자주식회사 스택형 반도체 장치의 제조 방법
US8330126B2 (en) 2008-08-25 2012-12-11 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
SG183670A1 (en) * 2009-04-22 2012-09-27 Semiconductor Energy Lab Method of manufacturing soi substrate
US20100310775A1 (en) * 2009-06-09 2010-12-09 International Business Machines Corporation Spalling for a Semiconductor Substrate
US8703521B2 (en) * 2009-06-09 2014-04-22 International Business Machines Corporation Multijunction photovoltaic cell fabrication
US8318588B2 (en) * 2009-08-25 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
WO2011043178A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Reprocessing method of semiconductor substrate, manufacturing method of reprocessed semiconductor substrate, and manufacturing method of soi substrate
US9123529B2 (en) 2011-06-21 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
US9202711B2 (en) * 2013-03-14 2015-12-01 Sunedison Semiconductor Limited (Uen201334164H) Semiconductor-on-insulator wafer manufacturing method for reducing light point defects and surface roughness
US10164141B2 (en) * 2014-07-15 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device with damage reduction
US20180033609A1 (en) * 2016-07-28 2018-02-01 QMAT, Inc. Removal of non-cleaved/non-transferred material from donor substrate
FR3055063B1 (fr) * 2016-08-11 2018-08-31 Soitec Procede de transfert d'une couche utile
CN108461388B (zh) * 2018-03-26 2020-11-06 云谷(固安)科技有限公司 一种衬底结构、加工方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281491A (ja) * 1999-03-26 2000-10-10 Nippon Steel Corp シリコン半導体基板及びその製造方法
JP2001044398A (ja) * 1999-07-30 2001-02-16 Mitsubishi Materials Silicon Corp 張り合わせ基板およびその製造方法
JP2002134722A (ja) * 2000-10-26 2002-05-10 Sumitomo Metal Ind Ltd Soiウェーハの製造方法及びsoiウェーハ
JP2004265903A (ja) * 2003-01-23 2004-09-24 Shin Etsu Handotai Co Ltd Soiウエーハ及びその製造方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法
JP2004281883A (ja) * 2003-03-18 2004-10-07 Shin Etsu Handotai Co Ltd Soiウェーハ及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
SG64470A1 (en) 1997-02-13 1999-04-27 Samsung Electronics Co Ltd Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnace and ingots and wafers manufactured thereby
JPH11191617A (ja) 1997-12-26 1999-07-13 Mitsubishi Materials Silicon Corp Soi基板の製造方法
JP3697106B2 (ja) * 1998-05-15 2005-09-21 キヤノン株式会社 半導体基板の作製方法及び半導体薄膜の作製方法
JP3358550B2 (ja) 1998-07-07 2002-12-24 信越半導体株式会社 Soiウエーハの製造方法ならびにこの方法で製造されるsoiウエーハ
JP3943782B2 (ja) 1999-11-29 2007-07-11 信越半導体株式会社 剥離ウエーハの再生処理方法及び再生処理された剥離ウエーハ
WO2003046993A1 (fr) * 2001-11-29 2003-06-05 Shin-Etsu Handotai Co.,Ltd. Procede de production de plaquettes soi
US7129123B2 (en) * 2002-08-27 2006-10-31 Shin-Etsu Handotai Co., Ltd. SOI wafer and a method for producing an SOI wafer
JP4509488B2 (ja) * 2003-04-02 2010-07-21 株式会社Sumco 貼り合わせ基板の製造方法
US7052978B2 (en) * 2003-08-28 2006-05-30 Intel Corporation Arrangements incorporating laser-induced cleaving
JP5023451B2 (ja) * 2004-08-25 2012-09-12 株式会社Sumco シリコンウェーハの製造方法、シリコン単結晶育成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281491A (ja) * 1999-03-26 2000-10-10 Nippon Steel Corp シリコン半導体基板及びその製造方法
JP2001044398A (ja) * 1999-07-30 2001-02-16 Mitsubishi Materials Silicon Corp 張り合わせ基板およびその製造方法
JP2002134722A (ja) * 2000-10-26 2002-05-10 Sumitomo Metal Ind Ltd Soiウェーハの製造方法及びsoiウェーハ
JP2004265903A (ja) * 2003-01-23 2004-09-24 Shin Etsu Handotai Co Ltd Soiウエーハ及びその製造方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法
JP2004281883A (ja) * 2003-03-18 2004-10-07 Shin Etsu Handotai Co Ltd Soiウェーハ及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050446A (ja) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
US8367517B2 (en) 2010-01-26 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
WO2013057865A1 (ja) * 2011-10-17 2013-04-25 信越半導体株式会社 剥離ウェーハの再生加工方法
JP2013089720A (ja) * 2011-10-17 2013-05-13 Shin Etsu Handotai Co Ltd 剥離ウェーハの再生加工方法
US9496130B2 (en) 2011-10-17 2016-11-15 Shin-Etsu Handotai Co., Ltd. Reclaiming processing method for delaminated wafer
WO2014061196A1 (ja) 2012-10-16 2014-04-24 信越半導体株式会社 Soiウェーハの製造方法
JP2014107357A (ja) * 2012-11-26 2014-06-09 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法

Also Published As

Publication number Publication date
KR20060107388A (ko) 2006-10-13
KR100753754B1 (ko) 2007-08-31
US7790573B2 (en) 2010-09-07
EP1710328A3 (en) 2009-07-22
US20060228846A1 (en) 2006-10-12
EP1710328A2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP2006294737A (ja) Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。
JP4715470B2 (ja) 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
EP0966034B1 (en) Method of manufacturing silicon-on-insulator substrate
JP3943782B2 (ja) 剥離ウエーハの再生処理方法及び再生処理された剥離ウエーハ
US7186628B2 (en) Method of manufacturing an SOI wafer where COP's are eliminated within the base wafer
JP4419147B2 (ja) 貼り合わせウェーハの製造方法
JPWO2005024925A1 (ja) Soiウェーハの作製方法
JP2007208023A (ja) Simoxウェーハの製造方法
JP2003347176A (ja) 貼り合わせウェーハの製造方法
US7518187B2 (en) Soi wafer and a method for producing the same
JP4228419B2 (ja) Soiウエーハの製造方法およびsoiウエーハ
WO2014192207A1 (ja) 貼り合わせウェーハの製造方法
JP5565079B2 (ja) Soiウェーハの製造方法
JP2016082093A (ja) 貼り合わせウェーハの製造方法
JP5338559B2 (ja) シリコンエピタキシャルウェーハの製造方法
JP2014107357A (ja) Soiウェーハの製造方法
JP2013030723A (ja) シリコンウェーハの製造方法
JP2007311672A (ja) Soi基板の製造方法
JP4092874B2 (ja) Soiウェーハの製造方法及びsoiウェーハ
JP2004265904A (ja) Soiウエーハ及びその製造方法
JP2005072108A (ja) Soiウェーハの製造方法及びsoiウェーハ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110