JP2006286788A - 半導体装置とその製造方法 - Google Patents
半導体装置とその製造方法 Download PDFInfo
- Publication number
- JP2006286788A JP2006286788A JP2005102693A JP2005102693A JP2006286788A JP 2006286788 A JP2006286788 A JP 2006286788A JP 2005102693 A JP2005102693 A JP 2005102693A JP 2005102693 A JP2005102693 A JP 2005102693A JP 2006286788 A JP2006286788 A JP 2006286788A
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxide film
- voltage transistor
- nitride film
- hard mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims description 41
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 150000004767 nitrides Chemical class 0.000 claims abstract description 45
- 238000002955 isolation Methods 0.000 claims description 55
- 238000005530 etching Methods 0.000 claims description 50
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 39
- 229910052710 silicon Inorganic materials 0.000 claims description 39
- 239000010703 silicon Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 23
- 238000000206 photolithography Methods 0.000 claims description 20
- 230000001590 oxidative effect Effects 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 64
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 64
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 53
- 229910052814 silicon oxide Inorganic materials 0.000 description 53
- 239000010410 layer Substances 0.000 description 35
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 31
- 229920005591 polysilicon Polymers 0.000 description 31
- 230000003647 oxidation Effects 0.000 description 20
- 238000007254 oxidation reaction Methods 0.000 description 20
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 16
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 238000007667 floating Methods 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical group [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76229—Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76227—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials the dielectric materials being obtained by full chemical transformation of non-dielectric materials, such as polycristalline silicon, metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823878—Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0207—Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/10—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
- H10B41/42—Simultaneous manufacture of periphery and memory cells
- H10B41/49—Simultaneous manufacture of periphery and memory cells comprising different types of peripheral transistor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Semiconductor Memories (AREA)
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Non-Volatile Memory (AREA)
Abstract
【課題】
複数の電圧で動作するトランジスタを集積化し、且つ複数種類のトランジスタがそれぞれ所望の特性を発揮する。
【解決手段】
半導体装置は、半導体基板と、前記半導体基板に形成され、高電圧トランジスタ領域、低電圧トランジスタ領域を画定するSTIであって、熱酸化膜を含み、窒化膜は含まない第1ライナを有するとともに、前記高電圧トランジスタ領域の少なくとも一部を囲む第1STIと、熱酸化膜と窒化膜を積層した第2ライナを有するとともに、前記低電圧トランジスタ領域を囲む第2STIとを有するSTIと、を有する。
【選択図】 図2−9
複数の電圧で動作するトランジスタを集積化し、且つ複数種類のトランジスタがそれぞれ所望の特性を発揮する。
【解決手段】
半導体装置は、半導体基板と、前記半導体基板に形成され、高電圧トランジスタ領域、低電圧トランジスタ領域を画定するSTIであって、熱酸化膜を含み、窒化膜は含まない第1ライナを有するとともに、前記高電圧トランジスタ領域の少なくとも一部を囲む第1STIと、熱酸化膜と窒化膜を積層した第2ライナを有するとともに、前記低電圧トランジスタ領域を囲む第2STIとを有するSTIと、を有する。
【選択図】 図2−9
Description
本発明は、半導体装置とその製造方法に関し、特に微細化した低電圧高速動作の半導体素子と高耐圧の半導体素子とを集積化した複合半導体装置とその製造方法に関する。
ブロードバンド時代においては、デジタル化の進展と共に、コンシューマ関連機器やIT関連機器の融合とマルチメディア化が加速度的に進行している。このような急速な変化と共に、サーバや通信システムなどの基幹系に加え、、多様な携帯端末機器や家庭用エレクトロニクス機器においても、機能の拡充と共に、性能面でも現在の数百倍もの性能向上が求められる。このようなニーズに基づき、半導体装置の設計は高速化、多様化している。特にシステムオンチップ(SoC)と呼ばれる1チップに複数の機能を搭載した半導体装置の要求が増加している。
システムオンチップにおいては、低電圧動作の論理回路と高電圧動作の不揮発性メモリ制御回路のような異種回路を混載する要請も強い。これを実現するには、低電圧動作の論理回路と高電圧動作の不揮発性メモリ制御回路とを同一半導体基板上に集積化することが必要となる。
不揮発性メモリは、NOR型フラッシュメモリのようなチャネルホットエレクトロン(CHE)注入による書き込みとファウラーノルドハイム(Fowler-Nordheim, FN)トンネルによる消去に10V程度の電圧を用いた動作、NAND型フラッシュメモリのようなFNトンネルによる書き込みと消去に20V程度の電圧を用いた動作が必要になる。このような高電圧を制御するために、高耐圧CMOSトランジスタが必要である。高耐圧トランジスタにおいては、絶縁ゲート構造の信頼性が求められる。
素子分離は、バーズビークを伴う局所酸化(LOCOS)に代え、素子分離溝をエッチングした後、酸化シリコン膜ライナを介して絶縁物等を埋め込むシャロートレンチアイソレーション(STI)が用いられるようになった。埋め込み絶縁膜としては、多くの場合、埋め込み特性のよい高密度プラズマ(HDP)酸化シリコン膜が用いられる。HDP酸化シリコン膜はコンプレッシブなストレスを有し、トランジスタ特性を劣化させる。そこで酸化シリコン膜の上に天才留守トレスを有する窒化シリコンライナを積層する。素子分離溝を埋め込む酸化シリコン膜等を堆積した後、基板表面上の不要な酸化シリコン膜を除去するのに化学機会研磨(CMP)が用いられ、CMPのストッパとして、シリコン基板上にバッファ膜としての酸化シリコン膜を介して窒化シリコン膜が形成される。窒化シリコン膜は、エッチング時にハードマスクとして利用することもできる。CMP後には、窒化シリコン膜を熱燐酸等で除去する。さらにバッファとして用いた酸化シリコン膜もフッ酸水溶液処理等で除去する。この酸化膜エッチングでSTIの酸化シリコンもエッチされる。
STIの周縁がエッチされて、基板表面より引き下がり、隣接する活性領域肩部が露出すると、その上方にゲート電極を形成した時、肩部に電界集中が生じ、トランジスタの特性を劣化させる。
特開2003−273206号公報は、酸化膜、窒化膜の積層からなるハードマスクを用いてSTI用のトレンチ(溝)をエッチングした後、酸化膜をサイドエッチして活性領域周縁表面を露出し、ケミカルドライエッチングを行って、活性領域肩部を丸め込むことを教示する。活性領域肩部の丸め込みにより電界集中が生じにくくなると共に、トレンチ形成用のドライエッチングによるダメージ層が除去され、清浄なSi表面を露出する効果もある。
論理回路においては、高速化と消費電力の低減等の要請から、トランジスタのゲート長の短縮化と動作電圧の低電圧化が進んでいる。例えば、65nmのゲート長で、1.0Vの電源電圧という規格が主流になりつつある。不揮発性メモリを集積化する場合には、上述の様に不揮発性メモリ制御用の高電圧トランジスタと不揮発性メモリセルも必要である。周辺機器の電源電圧は、3.3Vまたは2.5Vが主流であるので、このような中電圧トランジスタも必要である。このように、多種類の電源電圧の素子を混載する論理回路が通常である。
スタティック(S)RAMの微細化も進み、MOSトランジスタのチャネル幅は0.12μm程度まで微細化されている。0.12μm幅の活性領域をパタ−ニングするにはホトリソグラフィ技術にも制約が生まれる。KrFエキシマレーザを用いたホトリソグラフィは、パターン幅0.14μm位が限界であり、それ以下の寸法の加工には、ArFエキシマレーザを用いたホトリソグラフィが必要とされる。KrF用のレジストはフェノール樹脂であるが、ArF用のレジストはアクリル酸樹脂であり、窒化シリコンに対するエッチングレート比は、平面部で約1、パターン角部では約0.5しかない。反射光低減のため、裏面反射防止膜(BARC)も必要である。一般的にBARCの最適膜厚は、80nm程度である。BARCに対するArFレジストのエッチングレート比も、平面部で約1、角部で約0.5しかない。ArFレジストのエッチング耐性は、KrFレジストの約半分である。
レジスト膜厚を厚くすると、狭いパターンを形成した時、現像時の現像液の表面張力の影響で、現像後にパターン倒れが生じる。レジストパターンのアスペクト比は2.5以下が望ましい。パタ−ン幅が0.12μm(120nm)の場合、レジスト膜厚は300nm以下となる。
STIのトレンチエッチング用のハードマスクは、通常厚さ120nm程度の窒化膜と、その下に窒化膜除去用の燐酸ボイルでシリコン表面を保護する酸化膜を必要とする。さらに厚さ80nm程度のBARCも必要である。これらのエッチングに厚さ300nm程度のArFレジストは耐えられない。他のハードマスク層を用いることが望まれる。
特開2003−273207号公報は、酸化膜/アモルファスシリコン膜/窒化膜の積層ハードマスクを教示する。シリコン膜は、酸化膜、窒化膜などに対するエッチングの選択性にも優れている。
特開2003−273207号公報 複数種類のトランジスタを集積化する場合、それぞれの製造プロセスが互いに影響を与え、所望の結果を得られないことがある。複数種類のトランジスタを集積化しつつ、それぞれ所望の特性を実現することが望まれる。
本発明の目的は、複数の電圧で動作するトランジスタを集積化し、且つ複数種類のトランジスタがそれぞれ所望の特性を有する複合半導体装置を提供することである。
本発明の他の目的は、複数の電圧で動作するトランジスタを集積化し、且つ複数種類のトランジスタがそれぞれ所望の特性を実現できる複合半導体装置の製造方法を提供することである。
本発明の他の目的は、複数の電圧で動作するトランジスタを集積化し、且つ複数種類のトランジスタがそれぞれ所望の特性を実現できる複合半導体装置の製造方法を提供することである。
本発明の他の目的は、高電圧トランジスタと低電圧トランジスタを同一チップ上に形成し、それぞれ所望の特性と、高い信頼性を実現可能な半導体装置の製造方法を提供することである。
本発明の1観点によれば、
半導体基板と、
前記半導体基板に形成され、高電圧トランジスタ領域、低電圧トランジスタ領域を画定するSTIであって、熱酸化膜を含み、窒化膜は含まない第1ライナを有するとともに、前記高電圧トランジスタ領域の少なくとも一部を囲む第1STIと、熱酸化膜と窒化膜を積層した第2ライナを有するとともに、前記低電圧トランジスタ領域を囲む第2STIとを有するSTIと、
を有する半導体装置。
が提供される。
半導体基板と、
前記半導体基板に形成され、高電圧トランジスタ領域、低電圧トランジスタ領域を画定するSTIであって、熱酸化膜を含み、窒化膜は含まない第1ライナを有するとともに、前記高電圧トランジスタ領域の少なくとも一部を囲む第1STIと、熱酸化膜と窒化膜を積層した第2ライナを有するとともに、前記低電圧トランジスタ領域を囲む第2STIとを有するSTIと、
を有する半導体装置。
が提供される。
本発明の他の観点によれば、
(a)高電圧トランジスタ領域と低電圧トランジスタ領域を有する半導体基板に対し、第1のハードマスク層、第1のホトリソグラフィによるレジストパターンを用いて前記高電圧トランジスタ領域を囲む第1の素子分離溝をエッチする工程と、
(b)前記第1の素子分離溝表面を熱酸化する工程と、
(c)前記半導体基板に対し、第2のハードマスク層、第2のホトリソグラフィによるレジストパターンを用いて、前記低電圧トランジスタ領域を囲む第2の素子分離溝をエッチする工程と、
(d)工程(c)に続き、前記第1、第2の素子分離溝表面を熱酸化する工程と、
(e)工程(d)に続き、前記第1、第2の素子分離溝内に窒化膜のライナを形成する工程と、
を含む半導体装置の製造方法
が提供される。
(a)高電圧トランジスタ領域と低電圧トランジスタ領域を有する半導体基板に対し、第1のハードマスク層、第1のホトリソグラフィによるレジストパターンを用いて前記高電圧トランジスタ領域を囲む第1の素子分離溝をエッチする工程と、
(b)前記第1の素子分離溝表面を熱酸化する工程と、
(c)前記半導体基板に対し、第2のハードマスク層、第2のホトリソグラフィによるレジストパターンを用いて、前記低電圧トランジスタ領域を囲む第2の素子分離溝をエッチする工程と、
(d)工程(c)に続き、前記第1、第2の素子分離溝表面を熱酸化する工程と、
(e)工程(d)に続き、前記第1、第2の素子分離溝内に窒化膜のライナを形成する工程と、
を含む半導体装置の製造方法
が提供される。
高電圧トランジスタ領域を囲むSTIが窒化膜を含まないことにより、特性の経時変化を低減できる。高電圧トランジスタ領域を囲むSTIの熱酸化を低電圧トランジスタ領域を囲むSTIの熱酸化とは別に行うことにより、低電圧トランジスタに悪影響を与えず、高電圧トランジスタの特性を良好に保つことができる。
以下、図面を参照して本発明の実施例を説明する。
図1A−1Lは、本発明の第1の実施例による半導体装置の製造方法と、その変形例を示す半導体基板の断面図である。
図1A−1Lは、本発明の第1の実施例による半導体装置の製造方法と、その変形例を示す半導体基板の断面図である。
図1Aに示すように、例えばp型シリコン基板で形成された半導体基板1は、左側に示す低電圧領域LVと右側に示す高電圧領域HVを含む。半導体基板1の表面上に、例えば熱酸化により厚さ10nmの熱酸化膜2を成長し、その上に低圧(LP)化学気相堆積(CVD)により厚さ120nmの窒化シリコン膜3を成長する。窒化シリコン膜3の上に、CVDにより厚さ150nmのポリシリコン膜5とその上に後にポリシリコン層の酸化防止膜として機能する厚さ7nmの窒化シリコン膜6を成長する。これらの膜は、ハードマスクであり、かつ化学機械研磨(CMP)におけるストッパとしての機能を有する。
図1Bに示すように、窒化シリコン膜6の上に、厚さ80nmの底面反射防止膜BARC1と厚さ500nmのKrFレジスト膜を塗布する。レジスト膜を露光現像し、高電圧領域に対するエッチングマスクとして機能するレジストパターンRP1を形成する。低電圧領域はすべてレジストパターンRP1によって覆われている。高電圧領域の活性領域の最小幅は、0.2μm程度であるので、照明系はKrFエキシマレーザでよく、レジスト膜厚は0.5μm程度あってもよい。
図1Cに示すように、レジストパターンRP1をエッチングマスクとし、CF4+CHF3+Ar等、CF4を含む混合ガスをエッチャントガスとして底面反射防止膜BARC1、窒化シリコン膜6、ポリシリコン層5、窒化シリコン膜3、酸化シリコン膜2をエッチングし、シリコン基板表面を露出する。エッチングガスをHBr+O2,Cl2+O2等、HBrやCl2を含む混合ガスに代え、シリコン基板1に深さ約300nm程度の素子分離溝をエッチングする。KrFレジストに対してBARC、窒化シリコンは、平面での選択比が2程度、角部の選択比が1程度あるので、厚さ500nmのレジストパターンRP1を用い、シリコン基板表面上の積層をエッチングできる。シリコン基板1のエッチングにおいては、エッチされたハードマスクもエッチングマスクとして機能する。
図1Dに示すように、高電圧領域の素子分離溝をエッチングした後、残っていればレジストパターンを除去し、底面反射防止膜BARC1を除去し、フッ酸水溶液処理により、酸化シリコン膜2を40nm程度サイドエッチングする。その後熱酸化により、露出しているシリコン表面に厚さ40nm程度の熱酸化膜7を形成する。酸化シリコン膜2のサイドエッチングにより、高電圧領域の活性領域周縁の上面も露出しているため、酸化は上面と側面から行なわれ、活性領域を断面で見た時の肩部が丸め込まれる。肩部断面の曲率半径が大きくなり電界集中が生じにくくなる。なお、ポリシリコン層5は、側面が酸化され、酸化膜7xが生じるが、上面は窒化シリコン膜6で覆われているので、酸化されない。
図1Eに示すように、ArF用底面反射防止膜BARC2を厚さ80nm程度、ArF用レジスト膜を厚さ300nm程度塗布し、ArFエキシマレーザで露光し、現像してレジストパターンRP2を形成する。低電圧領域の活性領域の最小幅は120nm程度であるため、ArFホトリソグラフィが好ましく、レジストマスクRP2の高さは300nm程度に制限することが好ましい。
図1Fに示すように、レジストパターンRP2をエッチングマスクとし、BARC2、窒化膜6、ポリシリコン膜5、窒化膜3、酸化膜2を、例えば上述のCF4を含む混合ガスをエッチャントガスとしてエッチングする。エッチングされる膜のレジストパターンに対するエッチング選択比は1程度なので、平面部ではBARC2がかろうじて残る程度までエッチングが進む。パターン角部おいてはプラズマが電界集中するため選択比は0.7程度まで低下し、ポリシリコン膜5の周縁はエッチングされる。
図1Gに示すように、残るBARC2(残っていればレジストパターンも)を除去し、ハードマスクをエッチングマスクとしてシリコン基板1を深さ300nm程度、例えば上述のHBrやCl2を含む混合ガスをエッチングガスとしてエッチする。シリコンと酸化膜とは20程度の選択比が取れるため、高電圧領域における酸化膜7で被覆されたシリコン基板1がエッチングでダメージを受けることは少ない。薄い窒化膜6はエッチングされ、シリコンに対するエッチングによってポリシリコン膜5もエッチングされる。ポリシリコン膜5がダミー的にエッチングされている間は、その下の窒化シリコン膜3はエッチされない。窒化膜3は、エッチストッパとして機能する。なお、図1Dの工程で生じた酸化膜7xはエッチングしきれず、残渣7r及びその側壁上にシリコンの残渣5rが残るであろう。
図1Hに示すように、低電圧領域における素子分離溝をエッチングした後、溝表面に露出したシリコン表面を熱酸化し、厚さ5nm程度のバッファ用熱酸化膜8を形成する。高電圧領域も酸化雰囲気に曝されるが、厚さ40nm程度の酸化シリコン膜7が既に形成されているので、酸化膜厚の増加は少ない。低電圧領域の活性領域は、側壁に5nm程度の熱酸化膜が形成されるのみであり、活性領域断面における肩部の曲率半径は、高電圧領域の活性領域断面における肩部の曲率半径よりも小さい。続いて、LPCVDにより、基板全面に窒化シリコン膜9を厚さ5nm程度堆積する。この窒化シリコン膜9は、テンサイル(引っ張り)ストレスを有し、後に素子分離溝を埋め込む酸化シリコンのコンプレシブ(圧縮)ストレスを相殺し、トランジスタの能力を維持する。
図1Iに示すように、高密度プラズマ(HDP)による酸化シリコン膜11を厚さ500nm程度堆積し、素子分離溝を埋め込む。酸化膜(O)/窒化膜(N)/酸化膜(O)のONO構造のSTIが形成される。なお、素子分離溝が埋め戻せ、良質な絶縁膜が形成できれば、他の成膜法を用いてもよい。
図1Jに示すように、化学機械研磨(CMP)により、HDP酸化シリコン膜を研磨し、平坦部上のHDP酸化膜11を除去し、素子分離溝内のみに酸化シリコン膜11を残す。窒化シリコン膜3が、CMPに対するストッパとして機能する。STIが完成した後は、ゲート絶縁膜形成前に、窒化シリコン膜3、バッファ用酸化シリコン膜2は除去する必要がある。
図1Kに示すように、燐酸ボイルにより窒化シリコン膜3を除去し、フッ酸水溶液により酸化シリコン膜2を除去する。なお、酸化シリコンである素子分離溝内のライナ7及び埋め込み膜11もフッ酸水溶液によるエッチングを受ける。高電圧領域においては、図1Dに示す熱酸化により、活性領域断面の肩部の曲率半径が大きくされているため、MOSトランジスタを形成した時のチャネル領域端部における閾値変化が低減される。
なお、図1Hの工程において、低電圧領域及び高電圧領域共に、素子分離溝内の酸化膜ライナ8,7上に共通に窒化膜ライナ9を形成し、その上に埋め込み酸化膜11を堆積した。高電圧領域においてONO構造の窒化膜が電荷キャリヤのトラップとして働く可能性がある場合、高電圧領域の窒化膜はないほうが好ましい。
図1Lに示すように、図1Hの工程で窒化シリコン膜9を堆積した後、I線レジストパターンRP3を形成して所望の高電圧領域を露出し、上述のC4F8を含むエッチャントガスにより窒化シリコン膜9をエッチング除去する。例えば、NANDフラッシュメモリセルのように20V程度の高電圧を用いる場合、ONO構造は電荷をトラップし、閾値をシフトさせる可能性がある。このような場合には、窒化シリコン膜を除去することが好ましい。
第1の実施例においては、ポリシリコン膜を含むハードマスクを用いたが、KrFリソグラフィにおいてはレジスト膜を厚くできるため、ポリシリコンのハードマスクは必ずしも必要ない。
図2A−2Kは、第2の実施例とその変形例とを示す半導体基板の断面図である。
図2Aに示すように、シリコン基板1の表面を熱酸化して厚さ10nm程度の熱酸化膜2を形成し、その上にLPCVDにより厚さ120nm程度の窒化シリコン膜3を堆積する。
図2Aに示すように、シリコン基板1の表面を熱酸化して厚さ10nm程度の熱酸化膜2を形成し、その上にLPCVDにより厚さ120nm程度の窒化シリコン膜3を堆積する。
図2Bに示すように、窒化シリコン膜3の上に、厚さ80nm程度の底面反射防止膜BARC3と、厚さ500nm程度のKrFレジスト膜を塗布し、レジスト膜をKrFエキシマレーザで露光し、現像してレジストパターンRP4を形成する。このレジストパターンRP4をエッチングマスクとし、第1の実施例同様、底面反射防止膜BARC3、窒化シリコン膜3、酸化シリコン膜2をエッチングし、さらにシリコン基板1を深さ300nm程度エッチングする。その後レジストパターンRP4は除去する。
図2Cに示すように、フッ酸水溶液のウエットエッチングにより酸化シリコン膜2を40nm程度サイドエッチングして後退させ、熱酸化により厚さ40nm程度の熱酸化膜7を形成する。図1Dで説明したように、高電圧領域の活性領域を囲む素子分離溝側面及び活性領域周縁の上面が酸化され、断面の肩部における曲率半径が大きくなる。なお、窒化シリコン膜3の上にポリシリコン膜は形成されておらず、図1Fに示した側壁酸化膜7x、従って図1Gに示した酸化シリコンの残渣7rは生じない。
図2Dに示すように、ポリシリコン膜5を厚さ150nm程度堆積する。必要に応じてI線レジスト膜を塗布し、高電圧領域を開口する露光現像を行なってレジストパターンRP5を形成する。なお、ポリシリコン膜5を酸化から遮蔽する必要はないので、図1Aに示した窒化シリコン膜6は、形成しない。
図2Eにしめすように、HBrやCl2を含む混合ガスをエチャントガスとしてポリシリコン膜5を300nm程度エッチングする。その後、レジストパターンRP5は除去する。このエッチングは、素子分離溝上方におけるポリシリコン膜5の表面の凹凸を低減する機能を有する。素子分離溝内がポリシリコン膜で埋め込まれる場合等、さほど表面平坦化の必要がない場合には、レジストパターンRP5形成及びその後エッチバック工程を省略してもよい。
図2Fに示すように、ArF用底面反射防止膜BARC4を厚さ80nm程度、ArF用レジスト膜を厚さ300nm程度塗布し、低電圧領域に対するレジストパターンRP6をArFエキシマレーザを用いた露光、現像によって形成する。
図2Gに示すように、ArF用レジストパターンRP6をエッチングマスクとし、ポリシリコン膜5、窒化シリコン膜3、酸化シリコン膜2のエッチングを行なう。その後、レジストパターンRP6、BARC4を除去する。
図2Hに示すように、パターニングされた窒化シリコン膜3を実質的なハードマスクとし、シリコン基板1に対するエッチングを第1の実施例同様に行なう。ポリシリコン膜5は、シリコンに対するエッチングによって消滅する。高電圧領域の素子分離溝内に堆積したポリシリコン膜5も除去される。
図2Iに示すように、エッチングして素子分離溝表面を保護するために厚さ5nm程度の酸化膜8を熱酸化により形成する。なお、酸化膜7はすでに40nm程度の厚さを有するため、受ける影響は少ない。第1の実施例同様、高電圧領域の活性領域断面の肩部は、低電圧領域の活性領域肩部の曲率半径よりも大きくなる。その後、テンサイルストレスを有する窒化シリコン膜9を厚さ5nm程度LPCVDにより堆積する。前述のように、テンサイルストレスを有する窒化シリコン膜は、素子分離溝を埋め込む酸化シリコンのコンプレッシブストレスを相殺する機能を有する。
図2Jに示すように、必要に応じて高電圧領域を露出する開口を有するレジストパターンRP7を形成し、高電圧領域における窒化シリコン膜9を除去することができる。窒化シリコン膜が電荷をトラップする可能性がある場合には、窒化シリコン膜を除去することによりその後の閾値の変動を低減することができる。なお、図2Jに示す工程は必要に応じて行なうものであり、必須の工程ではない。以下、窒化シリコン膜が除去されない場合を前提として説明を続ける。
図2Kに示すように、第1の実施例同様HDP酸化シリコン膜11を厚さ500nm程度堆積し、素子分離溝を埋め込んだ後、CMPを用いて基板表面上の不要なHDP酸化膜を除去する。第1の実施例により図1Jで示す構造を得た状態と、第2の実施例により図2Kに示す構造を得た状態はほぼ同一である。その後、第1の実施例の図1Kの工程同様、窒化シリコン膜3、酸化シリコン膜2を除去する。
以下、低電圧領域に低電圧トランジスタ、高電圧領域に高電圧トランジスタ及びフラッシュメモリを形成する場合を説明する。
図2LAは、低電圧トランジスタ領域の平面配置例を示す。n型及びp型の活性領域AR1n、AR1pが1つのCMOS領域を画定する。各活性領域AR1n、AR1pの中間部を横断して、ゲート長65nm程度の絶縁ゲート電極GLVが形成されている。活性領域AR1n、AR1pのチャネル幅は、最小0.12μm程度である。
図2LAは、低電圧トランジスタ領域の平面配置例を示す。n型及びp型の活性領域AR1n、AR1pが1つのCMOS領域を画定する。各活性領域AR1n、AR1pの中間部を横断して、ゲート長65nm程度の絶縁ゲート電極GLVが形成されている。活性領域AR1n、AR1pのチャネル幅は、最小0.12μm程度である。
図2LBは、高電圧トランジスタ領域の平面配置例を示す。n型及びp型の活性領域AR2n、AR2pが1つのCMOS領域を画定する。各活性領域AR2n,AR2pの中間部を横断して、ゲート電極GHVが形成されている。以下、nチャネルトランジスタを例にとって示し、説明する。
図2LCは、フラッシュメモリ回路の概略構造を示す平面図である。図中縦方向に延在する複数の活性領域AR3が並列に配置され、複数のワードラインWLが活性領域AR3を横断して図中横方向に並列に形成されている。ワードラインWLは、各メモリセルに独立のフローティングゲートFGの上に、横方向に連続するコントロールゲートを積層した構造である。図中2つのワードラインWLに挟まれる領域が2つのメモリセルに共通のドレイン領域であり、縦方向に延在するビットラインBLに接続される。ワードラインWLに関し、ドレインと逆側にソースが形成され、ソースラインSLに接続される。
図2LDは、フラッシュメモリの等価回路を示す。複数のフラッシュメモリセルFMCが、並列に配置され、ビットラインBLに接続されている。各フラッシュメモリセルを独立に制御して書き込み情報を読み出すことにより、フローティングゲートに書き込まれた情報を選択的に読み出すことができる。
図2MA1、2MA2、2MA3は、低電圧トランジスタLVT、高電圧トランジスタHVT及びフラッシュメモリセルFMCにおける、(ゲート電極延在方向と直交する)活性領域のチャネル長方向の断面図を示す。図2MB1、2MB2,2MB3は、図2MA1、2MA2、2MA3と直交するゲート電極延在方向の断面図を示す。以下、図番のA,B以下の文字は同様の意味を有する。図2M等とA,B以下の文字を省略して指す時は、6つの図をまとめて指す。
図2Mに示すように、フラッシュメモリセル用活性領域AR3の表面に、例えば厚さ10−15nm程度のトンネル酸化膜(組成としては酸化窒化シリコン膜)13を形成する。他の活性領域においても付随的に酸化膜13が形成される。
図2Nに示すように、ドープトアモルファスシリコン層15を厚さ90nm程度LPCVDにより堆積し、フローティングゲートを形成するため活性領域に沿ったストライプ形状にパターニングする。同時に、フラッシュメモリセル領域以外の領域におけるアモルファスシリコン膜15は除去される。
図2Nに示すように、シリコン膜15を覆って基板上に、酸化シリコン膜を厚さ6nm程度LPCVDで成膜し、その上に窒化シリコン膜を厚さ5nm程度LPCVDで成膜し、800℃、20分程度のウエット酸化を行い、ONO絶縁膜16を形成する。低電圧トランジスタ領域LVTと、高電圧トランジスタ領域HVTのONO絶縁膜16とトンネル酸化膜13を選択的に除去し、これらの領域のシリコン表面を露出する。
図2Oに示すように、熱酸化を行なうことにより露出したシリコン表面に高電圧トランジスタに適した厚さ15nm程度の酸化シリコン膜19を成長する。低電圧トランジスタ領域の酸化シリコン膜19を除去し、新たに厚さ2nm以下の酸化窒化シリコン膜20を形成する。フラッシュメモリセル領域においては、表面がONO絶縁膜16で覆われているため熱酸化はほとんど生じない。その後、LPCVDによりポリシリコン層21を厚さ100nm程度堆積し、その上に窒化シリコンの反射防止膜22を厚さ29nm程度プラズマCVDにより堆積する。
図2Pに示すように、フラッシュメモリセル領域において積層ゲート電極をパターニングする。低電圧トランジスタ領域及び高電圧トランジスタ領域はレジストマスクで覆ってポリシリコン膜21を全面的に残す。その後、フラッシュメモリセル領域においてAs+イオンを加速エネルギ30keV、ドーズ量5×1014cm-2(5E14のように標記する)程度イオン注入し、フラッシュメモリセルのソース/ドレイン25を形成する。積層ゲート電極のパターニング後又はイオン注入後レジストマスクは除去する。積層ゲート電極の側壁を熱酸化し、酸化膜24を形成する。シリコン表面にも酸化シリコン膜が形成される。
図2Qに示すように、基板全面上にLPCVDにより窒化シリコン膜を厚さ100nm程度堆積し、異方性エッチングを行なうことにより積層ゲート電極の側壁上にサイドウォールSW1を形成する。窒化シリコン膜に対する異方性エッチングにより、ポリシリコン層21表面上の窒化シリコン膜22も除去される。
図2Rに示すように、低電圧トランジスタ領域及び高電圧トランジスタ領域においてポリシリコン層21の上にレジストマスクを形成し、パターニングすることによりゲート電極を形成する。ゲート電極をマスクとし、n型不純物をイオン注入することにより、所望のエクステンション26を形成する。TEOS酸化膜を厚さ100nm程度堆積し、異方性エッチングを行なうことにより、各トランジスタの側壁上及び積層ゲート電極のサイドウォールSW1の側壁上に酸化シリコンによりサイドウォールSW2を形成する。
サイドウォールSW2形成後、ソース/ドレインに対する高濃度の不純物をイオン注入することにより、高濃度ソース/ドレイン領域27を形成する。
図2Sに示すように、基板表面上にCo膜をスパッタリングし、600℃程度でアニールすることによりシリコン表面上でのみ選択的にCoSiを形成し、SC1洗浄液で未反応のCo膜を除去する。必要に応じさらにアニールを行ない、低抵抗シリサイド層31を形成する。その後酸化シリコン等の層間絶縁膜32を形成し、コンタクトホールを開口し、タングステンプラグ等の導電性プラグ33を埋め込む。
図2Sに示すように、基板表面上にCo膜をスパッタリングし、600℃程度でアニールすることによりシリコン表面上でのみ選択的にCoSiを形成し、SC1洗浄液で未反応のCo膜を除去する。必要に応じさらにアニールを行ない、低抵抗シリサイド層31を形成する。その後酸化シリコン等の層間絶縁膜32を形成し、コンタクトホールを開口し、タングステンプラグ等の導電性プラグ33を埋め込む。
図2Tに示すように、層間絶縁膜32上に配線層を形成し、パターニングして配線34を形成する。その後必要に応じ、層間絶縁膜、配線形成工程を繰り返し、多層配線を形成する。
以上、高電圧領域においても窒化シリコン膜を形成した場合を説明したが、図1L、2Gに示すように高電圧領域においては窒化シリコン膜を除去した場合を図2U及び図2Vに示す。
図2Uは、フラッシュメモリセル領域を対象にトンネル酸化膜13を形成した状態を示す。高電圧トランジスタ領域及びフラッシュメモリセル領域においては、STIのライナが厚い酸化膜7のみで形成され、窒化シリコン膜はないことが特徴である。
図2Vは、低電圧トランジスタ、高電圧トランジスタ、フラッシュメモリセルを形成し、層間絶縁膜31で覆い、導電性プラグ33を埋め込み、配線34を形成した状態を示す。
以上の実施例においては、高電圧トランジスタと低電圧トランジスタ領域とでホトリソグラフィを分割し、2種類のホトリソグラフィを行なった。低電圧領域のSTI領域開口前に高電圧領域の素子分離溝表面を酸化するので,酸化の程度を独立に選択でき,高電圧領域の活性領域断面における肩部の曲率選択の自由度がある。
2回のホトリソグラフィは,工程としては複雑化する。同一のホトリソグラフィにより、低電圧トランジスタ領域と高電圧トランジスタ領域に対し同時に素子分離用溝を形成することも可能である。図3A−3Gは、第3の実施例による半導体装置の製造方法を示す断面図である。
図3Aに示すように、シリコン基板1の表面を熱酸化し、厚さ10nmの熱酸化膜2を形成し、その上にLPCVDにより窒化シリコン膜3を厚さ120nm成長し、その上にポリシリコン層5を厚さ150nm成長する。ポリシリコン層5の上に、底面反射防止膜BARCを厚さ約80nm塗布し、その上にArFレジスト膜ArRを塗布する。低電圧領域におけるパターン最小幅は約120nmであるので、レジスト膜ArRの膜厚は300nm程度とする。ArFエキシマレーザ光でレジスト膜ArRを露光し、現像して、各活性領域に対応するレジストパターンを形成する。
図3Bに示すように、レジストパターンをエッチングマスクとし、底面反射防止膜BARC、ポリシリコン層5、窒化シリコン層3、酸化膜1をエッチングする。これらの層のレジスト膜に対する選択比は1程度なので、平面部では底面反射防止膜BARCがかろうじて残る程度までエッチングされ、角部はプラズマが電界集中するので選択比は0.7程度まで低下し、ポリシリコン層5の途中までエッチングされる。
図3Cに示すように、ポリシリコン層5、窒化シリコン膜3をエッチングマスクとし、シリコン基板1を深さ300nm程度エッチングする。ポリシリコン層5は、シリコンに対するエッチングで消滅し、窒化シリコン膜3がハードマスクの役割を果たす。
図3Dに示すように、露出したシリコン表面に対し熱酸化により、厚さ5nm程度の酸化膜8を成長し、その後基板全面にLPCVDにより窒化シリコン膜9を厚さ5nm程度成長する。前述の実施例同様、窒化シリコン膜9はテンサイルストレスを有し、後に形成する埋め込み酸化膜のコンプレッシブストレスを相殺する。
図3Eに示すように、低電圧領域LVをI線レジストRPにより覆い、高電圧領域HVの素子分離溝内の窒化シリコン膜9を除去する。
図3Fに示すように、フッ酸水溶液のウエットエッチングで酸化シリコン膜2を40nm程度サイドエッチングする。高電圧領域HVの素子分離溝内に露出した酸化シリコン膜8は、エッチングされて、消滅する。その後、レジストパターンRPを除去し、熱酸化を行い厚さ約40nm程度の酸化シリコン膜7を成長する。低電圧領域LVにおいては基板表面を窒化シリコン膜9が覆っているため、酸化は阻止される。
図3Fに示すように、フッ酸水溶液のウエットエッチングで酸化シリコン膜2を40nm程度サイドエッチングする。高電圧領域HVの素子分離溝内に露出した酸化シリコン膜8は、エッチングされて、消滅する。その後、レジストパターンRPを除去し、熱酸化を行い厚さ約40nm程度の酸化シリコン膜7を成長する。低電圧領域LVにおいては基板表面を窒化シリコン膜9が覆っているため、酸化は阻止される。
その後、前述の実施例同様にHDP酸化シリコン膜を500nm程度堆積して素子分離溝内を埋め込んだ後、CMPで基板表面上の不要なHDP酸化シリコン膜を除去し、燐酸ボイルにより窒化シリコン膜を除去し、フッ酸水溶液により活性領域表面の酸化シリコン膜2を除去する。さらに、低電圧トランジスタ、高電圧トランジスタ及びフラッシュメモリセルを形成し、層間絶縁膜で覆い、導電性プラグを埋め込み、配線層を形成する。
図3GA1、3GA2、3GA3、3GB1、3GB2、3GB3は、このように作成した半導体装置の低電圧トランジスタ、高電圧トランジスタ及びフラッシュメモリセルの活性領域チャネル長方向に沿う断面図及びワードラインに沿う断面図を示す。得られる構成は図2Vと同様である。
本実施例においては、高電圧領域の活性領域断面肩部の曲率半径を低電圧領域活性領域肩部の曲率半径よりも大きくした。高電圧領域において、窒化シリコン膜による閾値変動を低減する必要があるが、低電圧トランジスタの特性劣化をある程度は許容できる場合もある。このような場合の実施例を以下に説明する。
先ず、図3A−3Cに示す工程を行ない、素子分離用溝を形成する。
図4Aに示すように、フッ酸水溶液処理により活性領域表面の酸化シリコン膜2をサイドエッチし、幅20nm程度後退させる。その後熱酸化により酸化シリコン膜8を厚さ20nm程度成長させ、素子分離用溝表面を酸化シリコン膜8で覆う。活性領域周縁表面部の酸化シリコン膜2が除去されているため、酸化は活性領域表面からも進む。活性領域断面肩部が丸め込まれる。低電圧トランジスタの特性劣化を抑制するため、酸化膜8の厚さを制限し、活性領域肩部の丸め込みをある程度以下にしている。
図4Aに示すように、フッ酸水溶液処理により活性領域表面の酸化シリコン膜2をサイドエッチし、幅20nm程度後退させる。その後熱酸化により酸化シリコン膜8を厚さ20nm程度成長させ、素子分離用溝表面を酸化シリコン膜8で覆う。活性領域周縁表面部の酸化シリコン膜2が除去されているため、酸化は活性領域表面からも進む。活性領域断面肩部が丸め込まれる。低電圧トランジスタの特性劣化を抑制するため、酸化膜8の厚さを制限し、活性領域肩部の丸め込みをある程度以下にしている。
図4Bに示すように、LPCVDにより窒化シリコン膜9を厚さ5nm程度堆積する。窒化シリコン膜9のテンサイルストレスは、前述のように埋め込み酸化膜のコンプレッシブストレスを相殺し、トランジスタの能力を維持する。
図4Cに示すように、低電圧領域LVをI線レジストRP8により覆い、高電圧領域HVの窒化シリコン膜9を除去する。その後、レジストパターンRP8を除去し、HDP酸化シリコン膜を堆積して素子分離溝を埋め、CMPによって基板上の不要なHDP酸化シリコン膜を除去し、窒化シリコン膜3、酸化シリコン膜2を除去する。各活性領域にゲート電極構造、ソース/ドレイン領域、シリサイド層を形成し、層間絶縁膜を形成し、導電性プラグを埋め込み、配線を形成する。
図4DA1,4DA2,4DA3,4DB1,4DB2,4DB3が、得られる低電圧トランジスタHVT、高電圧トランジスタHVT、フラッシュメモリセルFMCの構成を示す。低電圧トランジスタを囲むSTIには、酸化シリコン膜/窒化シリコン膜の積層ライナがあり、埋め込み酸化シリコンのコンプレッシブストレスを相殺して高性能を維持する。高電圧領域のSTIには窒化シリコン膜のライナがなく、電荷をトラップして閾値変動を起こす現象を防止する。活性領域断面は、ある程度丸め込まれ、ゲート電極下の電界集中をある程度緩和する。
図3A−3Gに示した実施例、図4A−4Dに示した実施例によれば,高電圧領域と低電圧領域に対して同一プロセスで酸化シリコン膜のサイドエッチ,シリコン表面の熱酸化が行われるので,活性領域断面における肩部の曲率も同じになリ,異なる要求に対し妥協する選択となる。工程数は少なく,プロセスは複雑化しない。
以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。例えば、種々の変更、改良、組み合わせなどが可能なことは、当業者に自明であろう。
以下、本発明の特徴を付記する。
以下、本発明の特徴を付記する。
(付記1)
半導体基板と、
前記半導体基板に形成され、高電圧トランジスタ領域、低電圧トランジスタ領域を画定するSTIであって、熱酸化膜を含み、窒化膜は含まない第1ライナを有するとともに、前記高電圧トランジスタ領域の少なくとも一部を囲む第1STIと、熱酸化膜と窒化膜を積層した第2ライナを有するとともに、前記低電圧トランジスタ領域を囲む第2STIとを有するSTIと、
を有する半導体装置。
半導体基板と、
前記半導体基板に形成され、高電圧トランジスタ領域、低電圧トランジスタ領域を画定するSTIであって、熱酸化膜を含み、窒化膜は含まない第1ライナを有するとともに、前記高電圧トランジスタ領域の少なくとも一部を囲む第1STIと、熱酸化膜と窒化膜を積層した第2ライナを有するとともに、前記低電圧トランジスタ領域を囲む第2STIとを有するSTIと、
を有する半導体装置。
(付記2)
前記第1ライナの熱酸化膜は、前記第2ライナの熱酸化膜より厚く、前記高電圧トランジスタ領域の少なくとも一部の断面の曲率半径は前記低電圧トランジスタ領域の断面の曲率半径より大きい、
付記1記載の半導体装置。
前記第1ライナの熱酸化膜は、前記第2ライナの熱酸化膜より厚く、前記高電圧トランジスタ領域の少なくとも一部の断面の曲率半径は前記低電圧トランジスタ領域の断面の曲率半径より大きい、
付記1記載の半導体装置。
(付記3)
付記2記載の半導体装置において、前記高電圧トランジスタ領域を囲む第1STIが、前記第1ライナの代わりに、熱酸化膜と窒化膜を積層した第3ライナを有する半導体装置。
付記2記載の半導体装置において、前記高電圧トランジスタ領域を囲む第1STIが、前記第1ライナの代わりに、熱酸化膜と窒化膜を積層した第3ライナを有する半導体装置。
(付記4)
前記高電圧トランジスタは、5V以上の使用電圧を有し、前記低電圧トランジスタは、1.2V以下の使用電圧を有する付記1〜3のいずれか1項記載の半導体装置。
前記高電圧トランジスタは、5V以上の使用電圧を有し、前記低電圧トランジスタは、1.2V以下の使用電圧を有する付記1〜3のいずれか1項記載の半導体装置。
(付記5)
(a)高電圧トランジスタ領域と低電圧トランジスタ領域を有する半導体基板に対し、第1のハードマスク層、第1のホトリソグラフィによるレジストパターンを用いて前記高電圧トランジスタ領域を囲む第1の素子分離溝をエッチする工程と、
(b)前記第1の素子分離溝表面を熱酸化する工程と、
(c)前記半導体基板に対し、第2のハードマスク層、第2のホトリソグラフィによるレジストパターンを用いて、前記低電圧トランジスタ領域を囲む第2の素子分離溝をエッチする工程と、
(d)工程(c)に続き、前記第1、第2の素子分離溝表面を熱酸化する工程と、
(e)工程(d)に続き、前記第1、第2の素子分離溝内に窒化膜のライナを形成する工程と、
を含む半導体装置の製造方法。
(a)高電圧トランジスタ領域と低電圧トランジスタ領域を有する半導体基板に対し、第1のハードマスク層、第1のホトリソグラフィによるレジストパターンを用いて前記高電圧トランジスタ領域を囲む第1の素子分離溝をエッチする工程と、
(b)前記第1の素子分離溝表面を熱酸化する工程と、
(c)前記半導体基板に対し、第2のハードマスク層、第2のホトリソグラフィによるレジストパターンを用いて、前記低電圧トランジスタ領域を囲む第2の素子分離溝をエッチする工程と、
(d)工程(c)に続き、前記第1、第2の素子分離溝表面を熱酸化する工程と、
(e)工程(d)に続き、前記第1、第2の素子分離溝内に窒化膜のライナを形成する工程と、
を含む半導体装置の製造方法。
(付記6)
前記第1のホトリソグラフィが、KrFエキシマレーザを用いたホトリソグラフィであり、前記第2のホトリソグラフィがArFエキシマレーザを用いたホトリソグラフィである付記5記載の半導体装置の製造方法。
前記第1のホトリソグラフィが、KrFエキシマレーザを用いたホトリソグラフィであり、前記第2のホトリソグラフィがArFエキシマレーザを用いたホトリソグラフィである付記5記載の半導体装置の製造方法。
(付記7)
(f)工程(e)の後に、前記第1、第2の素子分離溝を絶縁物で埋め戻す工程、
を含む請求項5または6記載の半導体装置の製造方法。
(f)工程(e)の後に、前記第1、第2の素子分離溝を絶縁物で埋め戻す工程、
を含む請求項5または6記載の半導体装置の製造方法。
(付記8)
(g)工程(e)と(f)との間に、前記第2の素子分離溝内の窒化膜ライナを除去する工程、
を含む付記7記載の半導体装置の製造方法。
(g)工程(e)と(f)との間に、前記第2の素子分離溝内の窒化膜ライナを除去する工程、
を含む付記7記載の半導体装置の製造方法。
(付記9)
前記第1のハードマスクが、酸化膜、窒化膜の積層を含み、
(bx)工程(b)の前に、前記第1のハードマスクの酸化膜をサイドエッチする工程、
を含む付記5〜8のいずれか1項記載の半導体装置の製造方法。
前記第1のハードマスクが、酸化膜、窒化膜の積層を含み、
(bx)工程(b)の前に、前記第1のハードマスクの酸化膜をサイドエッチする工程、
を含む付記5〜8のいずれか1項記載の半導体装置の製造方法。
(付記10)
前記第1のハードマスクが、酸化膜、窒化膜、シリコン層、窒化膜の積層を含み、前記第2のハードマスクが、前記第1のハードマスクのシリコン層側面が熱酸化されたものである付記5〜9のいずれか1項記載の半導体装置の製造方法。
前記第1のハードマスクが、酸化膜、窒化膜、シリコン層、窒化膜の積層を含み、前記第2のハードマスクが、前記第1のハードマスクのシリコン層側面が熱酸化されたものである付記5〜9のいずれか1項記載の半導体装置の製造方法。
(付記11)
前記第1のハードマスクが、酸化膜、窒化膜の積層を含み、前記第2のハードマスクが、前記第1のハードマスクと、その上に堆積したシリコン層を含む付記5〜9のいずれか1項記載の半導体装置の製造方法。
前記第1のハードマスクが、酸化膜、窒化膜の積層を含み、前記第2のハードマスクが、前記第1のハードマスクと、その上に堆積したシリコン層を含む付記5〜9のいずれか1項記載の半導体装置の製造方法。
(付記12)
(a)高電圧トランジスタ領域、低電圧トランジスタ領域を有する半導体基板に対し、ハードマスク層、ホトリソグラフィによるレジストパターンを用いて素子分離溝をエッチする工程と、
(b)前記素子分離溝表面を熱酸化する工程と、
(c)工程(b)に続き、前記素子分離溝に窒化膜を堆積する工程と、
(d)工程(c)に続き、前記高電圧トランジスタ領域の素子分離溝内の窒化膜を除去する工程と、
を含む半導体装置の製造方法。
(a)高電圧トランジスタ領域、低電圧トランジスタ領域を有する半導体基板に対し、ハードマスク層、ホトリソグラフィによるレジストパターンを用いて素子分離溝をエッチする工程と、
(b)前記素子分離溝表面を熱酸化する工程と、
(c)工程(b)に続き、前記素子分離溝に窒化膜を堆積する工程と、
(d)工程(c)に続き、前記高電圧トランジスタ領域の素子分離溝内の窒化膜を除去する工程と、
を含む半導体装置の製造方法。
(付記13)
前記ハードマスク層が酸化膜、窒化膜の積層を含み、
(e1)工程(d)に続き、前記ハードマスクの酸化膜をサイドエッチし、さらに熱酸化する工程、
を含む付記12記載の半導体装置の製造方法。
前記ハードマスク層が酸化膜、窒化膜の積層を含み、
(e1)工程(d)に続き、前記ハードマスクの酸化膜をサイドエッチし、さらに熱酸化する工程、
を含む付記12記載の半導体装置の製造方法。
(付記14)
前記ハードマスク層が酸化膜、窒化膜の積層を含み、
(e2)工程(a)と(b)の間に、前記ハードマスクの酸化膜をサイドエッチする工程、
を含む付記12記載の半導体装置の製造方法。
前記ハードマスク層が酸化膜、窒化膜の積層を含み、
(e2)工程(a)と(b)の間に、前記ハードマスクの酸化膜をサイドエッチする工程、
を含む付記12記載の半導体装置の製造方法。
1 半導体(シリコン)基板
2 酸化シリコン膜(バッファ膜)
3 窒化シリコン膜(CMPストッパ)
5 ポリシリコン膜
6 窒化シリコン膜
7 酸化シリコン膜
8 酸化シリコン膜
9 窒化シリコン膜
11 HDP酸化シリコン膜
AR 活性領域
LV 低電圧領域
HV 高電圧領域
RP レジストパターン
BARC 底面反射防止膜
LVT 低電圧トランジスタ
HVT 高電圧トランジスタ
FMC フラッシュメモリセル
BL ビットライン
WL ワードライン
FG フローティングゲート
SL ソースライン
15 ポリシリコン層(フローティングゲート)
16 ONO(絶縁)膜
19 酸化シリコン膜(高電圧トランジスタ用ゲート絶縁膜)
20 酸化窒化シリコン膜(低電圧トランジスタ用ゲート絶縁膜)
21 ポリシリコン層
22 (窒化シリコン)反射防止膜
24 側壁酸化膜
25 ソース/ドレイン
26 エクステンション
27 高濃度ソース/ドレイン(HDD)
SW サイドウォール
26 エクステンション
27 HDD(高濃度ソース/ドレイン領域)
31 シリサイド層
32 層間絶縁膜
33 導電性プラグ
34 配線
2 酸化シリコン膜(バッファ膜)
3 窒化シリコン膜(CMPストッパ)
5 ポリシリコン膜
6 窒化シリコン膜
7 酸化シリコン膜
8 酸化シリコン膜
9 窒化シリコン膜
11 HDP酸化シリコン膜
AR 活性領域
LV 低電圧領域
HV 高電圧領域
RP レジストパターン
BARC 底面反射防止膜
LVT 低電圧トランジスタ
HVT 高電圧トランジスタ
FMC フラッシュメモリセル
BL ビットライン
WL ワードライン
FG フローティングゲート
SL ソースライン
15 ポリシリコン層(フローティングゲート)
16 ONO(絶縁)膜
19 酸化シリコン膜(高電圧トランジスタ用ゲート絶縁膜)
20 酸化窒化シリコン膜(低電圧トランジスタ用ゲート絶縁膜)
21 ポリシリコン層
22 (窒化シリコン)反射防止膜
24 側壁酸化膜
25 ソース/ドレイン
26 エクステンション
27 高濃度ソース/ドレイン(HDD)
SW サイドウォール
26 エクステンション
27 HDD(高濃度ソース/ドレイン領域)
31 シリサイド層
32 層間絶縁膜
33 導電性プラグ
34 配線
Claims (10)
- 半導体基板と、
前記半導体基板に形成され、高電圧トランジスタ領域、低電圧トランジスタ領域を画定するSTIであって、熱酸化膜を含み、窒化膜は含まない第1ライナを有するとともに、前記高電圧トランジスタ領域の少なくとも一部を囲む第1STIと、熱酸化膜と窒化膜を積層した第2ライナを有するとともに、前記低電圧トランジスタ領域を囲む第2STIとを有するSTIと、
を有する半導体装置。 - 前記第1ライナの熱酸化膜は、前記第2ライナの熱酸化膜より厚く、前記高電圧トランジスタ領域の少なくとも一部の断面の曲率半径は前記低電圧トランジスタ領域の断面の曲率半径より大きい、
請求項1記載の半導体装置。 - 請求項2記載の半導体装置において、前記高電圧トランジスタ領域を囲む第1STIが、前記第1ライナの代わりに、熱酸化膜と窒化膜を積層した第3ライナを有する半導体装置。
- (a)高電圧トランジスタ領域と低電圧トランジスタ領域を有する半導体基板に対し、第1のハードマスク層、第1のホトリソグラフィによるレジストパターンを用いて前記高電圧トランジスタ領域を囲む第1の素子分離溝をエッチする工程と、
(b)前記第1の素子分離溝表面を熱酸化する工程と、
(c)前記半導体基板に対し、第2のハードマスク層、第2のホトリソグラフィによるレジストパターンを用いて、前記低電圧トランジスタ領域を囲む第2の素子分離溝をエッチする工程と、
(d)工程(c)に続き、前記第1、第2の素子分離溝表面を熱酸化する工程と、
(e)工程(d)に続き、前記第1、第2の素子分離溝内に窒化膜のライナを形成する工程と、
を含む半導体装置の製造方法。 - (f)工程(e)に続き、前記第2の素子分離溝内の窒化膜ライナを除去する工程を有する請求項4記載の半導体装置の製造方法。
- 前記第1のハードマスクが、酸化膜、窒化膜、シリコン層、窒化膜の積層を含み、前記第2のハードマスクが、前記第1のハードマスクのシリコン層側面が熱酸化されたものである請求項4または5記載の半導体装置の製造方法。
- 前記第1のハードマスクが、酸化膜、窒化膜の積層を含み、前記第2のハードマスクが、前記第1のハードマスクと、その上に堆積したシリコン層を含む請求項4または5記載の半導体装置の製造方法。
- (a)高電圧トランジスタ領域、低電圧トランジスタ領域を有する半導体基板に対し、ハードマスク層、ホトリソグラフィによるレジストパターンを用いて素子分離溝をエッチする工程と、
(b)前記素子分離溝表面を熱酸化する工程と、
(c)工程(b)に続き、前記素子分離溝に窒化膜を堆積する工程と、
(d)工程(c)に続き、前記高電圧トランジスタ領域の素子分離溝内の窒化膜を除去する工程と、
を含む半導体装置の製造方法。 - 前記ハードマスク層が酸化膜、窒化膜の積層を含み、
(e1)工程(d)に続き、前記ハードマスクの酸化膜をサイドエッチし、さらに熱酸化する工程、
を含む請求項8記載の半導体装置の製造方法。 - 前記ハードマスク層が酸化膜、窒化膜の積層を含み、
(e2)工程(a)と(b)の間に、前記ハードマスクの酸化膜をサイドエッチする工程、
を含む請求項8記載の半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102693A JP2006286788A (ja) | 2005-03-31 | 2005-03-31 | 半導体装置とその製造方法 |
US11/220,628 US20060220144A1 (en) | 2005-03-31 | 2005-09-08 | Semiconductor device and its manufacture method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102693A JP2006286788A (ja) | 2005-03-31 | 2005-03-31 | 半導体装置とその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006286788A true JP2006286788A (ja) | 2006-10-19 |
Family
ID=37069306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005102693A Pending JP2006286788A (ja) | 2005-03-31 | 2005-03-31 | 半導体装置とその製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060220144A1 (ja) |
JP (1) | JP2006286788A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009200340A (ja) * | 2008-02-22 | 2009-09-03 | Fujitsu Microelectronics Ltd | 半導体装置及びその製造方法 |
WO2014038683A1 (ja) * | 2012-09-04 | 2014-03-13 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置及びその製造方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8501632B2 (en) * | 2005-12-20 | 2013-08-06 | Infineon Technologies Ag | Methods of fabricating isolation regions of semiconductor devices and structures thereof |
KR100672717B1 (ko) * | 2005-12-28 | 2007-01-24 | 동부일렉트로닉스 주식회사 | 비휘발성 메모리 장치의 제조방법 |
US20070200196A1 (en) * | 2006-02-24 | 2007-08-30 | Lattice Semiconductor Corporation | Shallow trench isolation (STI) devices and processes |
US8936995B2 (en) | 2006-03-01 | 2015-01-20 | Infineon Technologies Ag | Methods of fabricating isolation regions of semiconductor devices and structures thereof |
EP1991422B1 (en) * | 2006-03-03 | 2012-06-27 | Silverbrook Research Pty. Ltd | Pulse damped fluidic architecture |
US7721441B2 (en) * | 2006-03-03 | 2010-05-25 | Silverbrook Research Pty Ltd | Method of fabricating a printhead integrated circuit attachment film |
US7837297B2 (en) | 2006-03-03 | 2010-11-23 | Silverbrook Research Pty Ltd | Printhead with non-priming cavities for pulse damping |
US20070267715A1 (en) * | 2006-05-18 | 2007-11-22 | Sunil Mehta | Shallow trench isolation (STI) with trench liner of increased thickness |
KR100831272B1 (ko) * | 2006-09-06 | 2008-05-22 | 동부일렉트로닉스 주식회사 | 플래시 메모리 소자의 제조 방법 |
US7758177B2 (en) * | 2007-03-21 | 2010-07-20 | Silverbrook Research Pty Ltd | High flowrate filter for inkjet printhead |
JP2012146693A (ja) * | 2011-01-06 | 2012-08-02 | Toshiba Corp | 半導体記憶装置及びその製造方法 |
US8691659B2 (en) * | 2011-10-26 | 2014-04-08 | United Microelectronics Corp. | Method for forming void-free dielectric layer |
US9059243B2 (en) | 2012-06-25 | 2015-06-16 | International Business Machines Corporation | Shallow trench isolation structures |
US9006080B2 (en) * | 2013-03-12 | 2015-04-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Varied STI liners for isolation structures in image sensing devices |
KR102014437B1 (ko) | 2013-10-17 | 2019-10-21 | 에스케이하이닉스 주식회사 | 다원화된 측벽 산화막 구조를 갖는 반도체 장치 및 그 제조 방법 |
US9842903B2 (en) * | 2014-10-20 | 2017-12-12 | Globalfoundries Singapore Pte. Ltd. | Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same |
KR102352157B1 (ko) * | 2015-09-01 | 2022-01-17 | 삼성전자주식회사 | 집적회로 소자 |
KR20180071101A (ko) * | 2016-12-19 | 2018-06-27 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
CN110707087B (zh) * | 2018-09-07 | 2022-02-22 | 联华电子股份有限公司 | 动态随机存取存储器和闪存存储器的制作方法及其结构 |
US20210143275A1 (en) * | 2019-11-11 | 2021-05-13 | Integrated Silicon Solution Inc. | Finfet stack gate memory and mehod of forming thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100346844B1 (ko) * | 2000-12-09 | 2002-08-03 | 삼성전자 주식회사 | 얕은 트렌치 아이솔레이션 구조를 갖는 반도체 디바이스및 그 제조방법 |
KR100382728B1 (ko) * | 2000-12-09 | 2003-05-09 | 삼성전자주식회사 | 얕은 트렌치 아이솔레이션 구조를 갖는 반도체 디바이스및 그 제조방법 |
KR100437462B1 (ko) * | 2001-10-04 | 2004-06-23 | 삼성전자주식회사 | 저전압 모스 트랜지스터 및 고전압 모스 트랜지스터를갖는 반도체소자의 제조방법 |
JP2004095886A (ja) * | 2002-08-30 | 2004-03-25 | Fujitsu Ltd | 半導体装置及びその製造方法 |
DE10259728B4 (de) * | 2002-12-19 | 2008-01-17 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung einer Grabenisolationsstruktur und Verfahren zum Steuern eines Grades an Kantenrundung einer Grabenisolationsstruktur in einem Halbleiterbauelement |
JP2004260073A (ja) * | 2003-02-27 | 2004-09-16 | Seiko Epson Corp | 半導体装置およびその製造方法 |
-
2005
- 2005-03-31 JP JP2005102693A patent/JP2006286788A/ja active Pending
- 2005-09-08 US US11/220,628 patent/US20060220144A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009200340A (ja) * | 2008-02-22 | 2009-09-03 | Fujitsu Microelectronics Ltd | 半導体装置及びその製造方法 |
US8518795B2 (en) | 2008-02-22 | 2013-08-27 | Fujitsu Semiconductor Limited | Method of manufacturing semiconductor device |
WO2014038683A1 (ja) * | 2012-09-04 | 2014-03-13 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置及びその製造方法 |
US9331144B2 (en) | 2012-09-04 | 2016-05-03 | Ps4 Luxco S.A.R.L. | Semiconductor device and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
US20060220144A1 (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006286788A (ja) | 半導体装置とその製造方法 | |
US7511331B2 (en) | Semiconductor device having side wall spacers | |
JP5556490B2 (ja) | 半導体装置の製造方法 | |
JP4659527B2 (ja) | 半導体装置の製造方法 | |
US7670907B2 (en) | Isolation regions for semiconductor devices and their formation | |
US20070155124A1 (en) | Method of manufacturing semiconductor device | |
US7745284B2 (en) | Method of manufacturing flash memory device with conductive spacers | |
US7390716B2 (en) | Method of manufacturing flash memory device | |
US8236679B2 (en) | Manufacturing method of semiconductor memory device using insulating film as charge storage layer | |
KR100766232B1 (ko) | 비휘발성 메모리 소자 및 그 제조 방법 | |
JP2006319202A (ja) | 半導体集積回路装置及びその製造方法 | |
JP2009170781A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
US9530683B2 (en) | Forming source/drain zones with a dielectric plug over an isolation region between active regions | |
CN110164865B (zh) | 一种嵌入式闪存的制作方法 | |
JP2007157927A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
JP2010021493A (ja) | 半導体装置およびその製造方法 | |
JP2010056391A (ja) | 半導体装置およびその製造方法 | |
JP2008166528A (ja) | 半導体装置およびその製造方法 | |
KR100325698B1 (ko) | 플래쉬 메모리 소자의 제조 방법 | |
JP2005142362A (ja) | 半導体装置及びその製造方法 | |
JP2009252820A (ja) | 半導体装置の製造方法 | |
JP2010212506A (ja) | 半導体記憶装置及びその製造方法 | |
JP3196717B2 (ja) | 不揮発性半導体記憶装置及びその製造方法 | |
TW492142B (en) | Fabrication method of novel type of isolation on a nonvolatile memory | |
KR20100074525A (ko) | 플래시 메모리 소자의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081202 |