JP2006185895A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006185895A
JP2006185895A JP2005223326A JP2005223326A JP2006185895A JP 2006185895 A JP2006185895 A JP 2006185895A JP 2005223326 A JP2005223326 A JP 2005223326A JP 2005223326 A JP2005223326 A JP 2005223326A JP 2006185895 A JP2006185895 A JP 2006185895A
Authority
JP
Japan
Prior art keywords
water
hydrogen
fuel cell
power generation
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005223326A
Other languages
English (en)
Other versions
JP5239045B2 (ja
Inventor
Toru Ozaki
徹 尾崎
Tsuneaki Tamachi
恒昭 玉地
Takashi Sarada
孝史 皿田
Fumiharu Iwasaki
文晴 岩崎
Kazutaka Yuzurihara
一貴 譲原
Takamasa Yanase
考応 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005223326A priority Critical patent/JP5239045B2/ja
Publication of JP2006185895A publication Critical patent/JP2006185895A/ja
Application granted granted Critical
Publication of JP5239045B2 publication Critical patent/JP5239045B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】 電気化学反応で発生した水を内部エネルギーにより安定して排出する。
【解決手段】 水素と酸素の電気化学反応により発電を行う固体高分子型燃料電池システム101において、アノード極に水素を供給する水素発生部103と、電気化学反応により発生した水を水素の圧力により回収する回収手段とを備え、電気化学反応で発生した水を内部エネルギーにより安定して排出する。
【選択図】 図1

Description

本発明は、燃料電池システム、特に、固体高分子型燃料電池システムに関し、更に詳しくは、燃料電池セルで生成されてセル内部に滞留した水をセル外部に回収することができる燃料電池システムに関する。
固体高分子電解質膜を挟んでアノード極とカソード極を有する燃料電池において、電極反応や逆拡散によりアノード極とカソード極の何れからも水が発生する。この水は、適量であれば固体高分子電解質膜を湿潤させることで電子の解離を促進するため燃料電池の出力を向上させることができる。しかし、この水が過多になる場合は燃料の流路や空気の流通路を閉塞させて燃料電池の出力の低減や発電停止を引き起こす問題があった。特にアノード極が閉鎖系(燃料の水素が循環されて燃料タンク等に回収される系)の燃料電池システムにおいては、アノード極に滞留する水を排出する必要があった。水の排出には別途動力(電力)を利用することは、限られた電力源を使用することになるため、好ましくはなく、無動力(パッシブ)で水を排出することが求められている。
このような状況から、ポンプを用いて流通させた燃料ガスを圧送することで、流路上に存在する水を押し流すようにし、水をアノード極外に排出することが従来から提案されている(例えば、特許文献1参照)。また、特許文献1の技術では、燃料ガスを圧送する流路を設けると同時にアノード極の排気ガスを再度燃料ガスと混和して循環させることで、アノード極の排気ガス中に含まれる未反応ガスを再利用することができる。更に、特許文献1の技術は、ガス循環部の一部に水を回収する機構を設けることで水を分離することができる構造としている。
同様に、前述した状況から、燃料の圧送に連動してカソード極の水を吸引する技術が提案されている(例えば、特許文献2参照)。特許文献2の技術は、燃料タンクと水回収タンクが隣接して設置され、燃料タンクと水回収タンクはそれぞれ内部にピストンを備え、それぞれのピストンが連結ロッドにより連結されて同期してタンク内を摺動する構成となっている。そして、予め封入された圧縮ガスによって燃料タンク側のピストンが押され、燃料が発電セルへ供給されると共に、連結ロッドにより連結された水回収タンク側のピストンが引かれることで水タンク内の圧力が減圧され、発電セルのカソード極で発生した水が吸引されて発電セルから水が除去される。
しかし、前述した特許文献1の技術では、補機として水透過膜式除湿器やポンプを必要とするため、燃料電池システム全体の体積及び重量が大型となり、特に小型携帯用の燃料電池システムには不適である。また電力を供給して駆動する補機を搭載することにより燃料電池システム全体の体積エネルギー密度の点からも不利である。
一方、特許文献2の技術では補機は用いられていないため、小型化あるいは高体積エネルギー密度化の観点からは有利ではあるものの、燃料供給あるいは水回収のためにピストンを動作させる駆動力が圧縮ガスであり、動作及び停止の制御が困難であるという問題がある。また、ピストンが移動すると圧縮ガスの内圧が減退するため、燃料電池の運転初期と終期ではピストンを動作させる駆動力にばらつきが生じて安定的な水回収能力を確保できないことが予想される。また、カソード極側で発生した水は回収できるが、アノード極側で滞留する水を排出することができないため、特に水素ガスを燃料として用いる燃料電池システムではアノード極側の水が電極触媒を閉塞させ、発電が停止する虞があった。
特開2004−71348号公報 特開2004−247136号公報
本発明は上記状況に鑑みてなされたもので、アノード極あるいはカソード極で発生した水を安定して排出することができる燃料電池システムを提供することを目的とする。
特に、アノード極が閉鎖系となっている燃料電池システムにおいて、無動力で水を排出することができ、排出した水を燃料に導入する水循環機構が構築された燃料電池システムを提供することを目的とする。
上記目的を達成するための本発明の第1の態様は、水素と酸素の電気化学反応により発電を行う燃料電池システムにおいて、アノード極に水素を供給する水素供給手段と、電気化学反応により発生した水を内部エネルギーにより回収する水回収手段とを備えたことを特徴とする燃料電池システムにある。
本発明の第1の態様では、電気化学反応で発生した水を内部エネルギーにより安定して排出することができる。
本発明の第2の態様は、第1の態様において、水回収手段は、少なくともアノードの水を回収することを特徴とする燃料電池システムにある。
第2の態様では、アノードの水を安定して回収することができる。
本発明の第3の態様は、第1または2の態様において、水素供給手段は、閉鎖系の水素貯留部位を備え、水素貯留部位に存在する水を回収する水回収手段を備え、系内で水を回収することを特徴とする燃料電池システムにある。
第3の態様では、アノード極が閉鎖系となっている燃料電池システムにおいて内部エネルギーにより安定して水を回収することができる。
本発明の第4の態様は、第1〜3のいずれかの態様において、水素供給手段は、加水分解反応によって発生させた水素を供給することを特徴とする燃料電池システムにある。
第4の態様では、加水分解で得られた水素を供給することができる。
本発明の第5の態様は、第1の態様において、水素供給手段は、水素吸蔵合金を用いて水素を供給すると共に、水回収手段は水素の供給圧力により水を外部に排出して回収することを特徴とする燃料電池システムにある。
第5の態様では、燃料の水素を直接供給することができる。
本発明の第6の態様は、第3または第4の態様において、水を回収する内部エネルギーは、半透膜を用いた浸透圧により水を移動させるエネルギーであることを特徴とする燃料電池システムにある。
第6の態様では、浸透圧により水の循環を行うことができる。
本発明の第7の態様は、第3〜第5のいずれかの態様において、水を回収する内部エネルギーは、発電による状態差に基づく温度勾配を用いた温度差により水を移動させるエネルギーであることを特徴とする燃料電池システムにある。
第7の態様では、発電の状態差に基づく温度差により水の凝集・循環を行うことができる。
本発明の第8の態様は、第3または第4の態様において、水を回収する内部エネルギーは、発電による状態差に基づくアノード極に供給される水素の圧力状態に応じて水を移動させるエネルギーであることを特徴とする燃料電池システムにある。
第8の態様では、発電による状態差に基づく水素の圧力状態により水の循環及び移送を行うことができる。
本発明の第9の態様は、第1〜第4のいずれかの態様において、水を回収する内部エネルギーは、発電による状態差に基づくアノード極に供給される水素の圧力状態と、発電による状態差に基づく温度勾配を用いた温度差とにより水を移動させるエネルギーであることを特徴とする燃料電池システムにある。
第9の態様では、発電による状態差に基づく水素の圧力状態により水の循環及び移送を行うことができると共に、発電による状態差に基づく温度差により水の凝集・循環を行うことができる。
本発明の第10の態様は、第1〜第4のいずれかの態様において、内部エネルギーは、発電による状態差に基づくアノード極に供給される水素の圧力状態と、半透膜を用いた浸透圧とにより水を移動させるエネルギーであることを特徴とする燃料電池システムにある。
第10の態様では、発電による状態差に基づく水素の圧力状態により水の循環及び移送を行うことができると共に、浸透圧により水の循環を行うことができる。
本発明の第11の態様は、触媒水溶液を貯留する触媒槽と、燃料電池によって生成された生成水を貯留する貯水槽と、前記触媒槽と前記貯水槽の間に設けられ浸透圧により前記生成水を前記触媒槽から前記貯水槽へ移動させる半透膜とからなる液体タンクと、水素を発生させる反応器と、前記液体タンクと前記反応器を接続し、前記触媒水溶液を前記反応器に送る送液管と、前記水素により発電を行う固体高分子型燃料電池と、前記反応器と前記燃料電池とを接続し、前記水素を前記燃料電池に供給するガス供給管と、前記燃料電池と前記貯水タンクとを接続し、前記燃料電池で生成した前記生成水を前記燃料電池から前記貯水槽への一方向に送り、前記生成水の逆流を防止する逆止弁を有する導水管とを有することを特徴とする燃料電池システムにある。
本発明の第12の態様は、発電素子としてプロトン導電性の樹脂からなる電解質層の一方の面にアノード極と他方の面にカソード極を有する固体高分子型燃料電池において、前記アノード極もしくは前記カソード極は前記電解質層側から順に、触媒層、ガス拡散層、集電体を有し、前記アノード極に水素が供給されるアノード室を備え、前記アノード室を構成する部材の一部に冷却部を設け、前記冷却部と前記発電素子の間に温度勾配をもたせたことを特徴とする燃料電池システムにある。
本発明の第13の態様は、プロトン導電性を有する樹脂からなる電解質、前記電解質の両面に配置される触媒層からなる膜電極接合体と、それぞれガス拡散層、集電体層からなるアノード極及びカソード極とから構成される発電部と、前記発電部と接続され、該発電部に導入される水素ガスを供給する水素供給手段とを備えた固体高分子型燃料電池システムにおいて、前記水素供給手段が、前記アノード極の内部圧力状態と水素供給系の圧力状態との差によって水素を供給する受動型水素発生機構を具備し、前記受動型水素発生機構により発生した水素ガスのガス圧により、発電によって生じた水を前記アノード極に備えられた排出口からアノード極の外部に排出する水排出機構を具備することを特徴とする燃料電池システムにある。
本発明の第14の態様は、プロトン導電性を有する樹脂からなる電解質、前記電解質の両面に配置される触媒層からなる膜電極接合体と、それぞれガス拡散層、集電体層からなるアノード極及びカソード極とから構成される発電部と、発電部と接続され、発電部に導入する水素ガスを発生し、触媒水溶液を貯留する触媒槽と金属水素化物を貯蔵し、触媒水溶液と反応させて水素を発生させる反応器から構成される水素発生部とを備えた固体高分子型燃料電池システムにおいて、発電部外部に設置され発電部のアノード極と接続された貯水部と、前記貯水部と水素発生部の触媒槽と接続する導水路と、前記導水路に設置された逆止弁と、前記触媒槽に設置された圧調整構造とを備えたことを特徴とする燃料電池システムにある。
第14の態様では、前記固体高分子型燃料電池システムにおいて、発電部外部に設置され発電部のアノード極と接続された貯水部と、前記貯水部と水素発生部の触媒槽と接続する導水路と、前記導水路に設置された逆止弁と、前記触媒槽に設置された圧調整構造を備え、アノード極から貯水部にいたる水あるいは水蒸気の排出路が断熱構造とすることにより、発電部で生成されアノード極に滞留した水あるいは水蒸気は貯水部で凝縮する。さらに水素発生部にて発生した水素ガス圧で導水路を介して触媒槽まで移送される。導水路は逆止弁構造が具備されているので触媒槽の内部液体が貯水部へ逆流することを防止する。また触媒槽には圧調整構造が具備され、その内圧は大気圧相当に保持される。
本発明の第15の態様は、第14の態様において、発電部の外部に設置された貯水部を冷却する冷却手段と、発電部のアノード極/カソード極の少なくともいずれかから貯水部へ水あるいは水蒸気を排出する排出路とを備えたことを特徴とする燃料電池システムにある。
第15の態様では、前記固体高分子型燃料電池システムにおいて、発電部の外部に設置された貯水部を冷却する冷却手段と、発電部のアノード極/カソード極の少なくともいずれかから貯水部へ水あるいは水蒸気を排出する排出路を備え、前記発電部と排出路が断熱構造である場合、アノード極の水あるいは水蒸気だけでなく、カソード極から放出される水蒸気の一部も貯水部で凝縮する。貯水部に凝縮して保持された水は、上述したように発生水素のガス圧により、触媒槽へ移送される。
本発明の第16の態様は、第14または第15の態様において、前記アノード極から貯水部にいたる水あるいは水蒸気の排出路が断熱構造であることを特徴とする燃料電池システムにある。
本発明の第17の態様は、プロトン導電性を有する樹脂からなる電解質、前記電解質の両面に配置される触媒層からなる膜電極接合体と、それぞれガス拡散層、集電体層からなるアノード極及びカソード極とから構成される発電部と、発電部と接続され、発電部に導入する水素ガスを発生し、触媒水溶液を貯留する触媒槽と金属水素化物を貯蔵し、触媒水溶液と反応させて水素を発生させる反応器から構成される水素発生部とを備えた固体高分子型燃料電池システムにおいて、発電部外部に設置され発電部のアノード極と接続された貯水部と、発電部のアノード極/カソード極の少なくともいずれかから貯水部へ水あるいは水蒸気を排出する排出路と、前記貯水部から移送された水が溜められる、前記触媒槽と隣接して設置される貯水槽と、触媒槽と貯水槽の間に設けられ浸透圧により生成水を貯水槽から触媒槽へ移動させる半透膜と、前記排出路に設けられた逆止弁とを備え、前記貯水部と発電部に温度勾配が保持されることを特徴とする燃料電池システムにある。
第17の態様では、前記固体高分子型燃料電池システムにおいて、発電部外部に設置され発電部のアノード極と接続された貯水部と、前記貯水部と水素発生部の触媒槽と接続する導水路と、前記導水路に設置された逆止弁と、前記触媒槽に設置された圧調整構造を備え、アノード極から貯水部にいたる水あるいは水蒸気の排出路が断熱構造とすることにより、発電部で生成されアノード極に滞留した水あるいは水蒸気は貯水部で凝縮する。さらに水素発生部にて発生した水素ガス圧で導水路を介して貯水槽まで移送される。貯水槽は、燃料タンクと隣接されており、その境界に半透膜が備えられていることから、浸透圧によって、貯水槽に貯留された水は、タンクへ循環される。
本発明の燃料電池システムは、アノード極あるいはカソード極で発生した水を安定して排出することができる燃料電池システムとなる。特に、アノード極が閉鎖系となっている燃料電池システムにおいて、無動力で水を排出することができ、排出した水を燃料に導入する水循環機構が構築された燃料電池システムとなる。
図1に基づいてアノード極に供給される水素の圧力状態により水を移動させる実施形態例(第1実施形態例)を説明する。図1には本発明の第1実施形態例に係る燃料電池システムの全体を表す概略構成を示してある。
図に示すように、固体高分子型燃料電池システム101は、発電部102と水素発生部103から構成される。
発電部102は、カソード極104、MEA105、アノード極106から構成され、カソード極104はカソードエンドプレート107と図示しないガス拡散層、集電体層を備え、MEA105は図示しない電解質の両面に触媒層がそれぞれ配置される構成である。またアノード極106はアノードエンドプレート108とアノード室109と図示しないガス拡散層から構成される。アノード極106には図示しない集電体層が含まれていても良い。アノード極106に集電体層を含まない構成とする場合は、アノードエンドプレート108に導線を接続して集電する構成としても良い。アノード室109には、水素発生部103から水素リッチガスを供給する供給口111が設けられている。
また、アノード極106の滞留水を水素発生部103に導水するための導水路110を備えている。アノード極106の滞留水を外部に排出する構成にすることも可能である。
水素発生部103は、水素発生物質112が格納される第1の容器113と、水素発生促進物質114が格納される第2の容器115と、第1の容器113と第2の容器115を接続し第1の容器113側の先端にノズル116を備えた管117から構成される。
導水路110はアノード室109の内部と第2の容器115の内部とに亘って設けられ、導水路110のアノード室109側の端部は中空ボルト118及びナット119により発電部102に固定されている。尚、中空ボルト118及びナット119はMEA105、カソードエンドプレート107、アノードエンドプレート108等を締結するためのボルトを中空状態にしたものである。導水路110の固定は中空ボルト118及びナット119を用いた構造に限定されるものではない。
導水路110の第2の容器115側の管口120は水素発生促進物質114に向けて開口し、導水路110には逆止弁121が設けられている。逆止弁121によりアノード室109側から第2の容器115側にのみ流体の流通が許容されている。つまり、アノード室109の内圧が、第2の容器115の内圧よりも低くなったときに、水素発生促進物質114がアノード室109内へ逆流することを防ぐ構成とされている。
尚、図中の符号で122は、アノード室109内の水を導水路110に排出するために導水路110に形成された排出口である。
逆止弁121は、アノード室109の内圧が第2の容器115の内圧よりも減圧状態となったときに閉じられる構造であれば、全て適用可能であるが、好ましくは2枚の板バネ先端を重ね合わせた構成である。板バネのバネ係数は、水素発生時のアノード室109の内圧と大気圧の差圧で逆止弁121が開かれるよう調整され、好ましくは、5kPa以上の差圧で開かれるよう調整されたバネ係数である。またバネの材質は、耐食性、耐酸性に優れた材質であれば全て適用可能であるが、好ましくはステンレス鋼を用いる。
尚、逆止弁121に代えて、管口120の形状を逆止構造にすることも可能である。
また、第2の容器115には圧力調整機構として、ガス抜きの貫通孔123が備えられ、貫通孔123には伸張性に富む膜体124が設置されている。膜体124が設置されることで、第2の容器115の内圧が高圧になる場合は、膜体124が膨らむことで第2の容器115の内圧を大気圧相当に維持することができる。膜体124は伸張性に優れた材料であれば全て適用可能であるが、好ましくは低弾性ゴム、シリコンゴム、ブチルゴム等のゴム材料を用いる。
尚、膜体124を設けない構成とすることも可能である。
圧調整機構としては、アノード室109の内圧が規定の圧力以上となったときに開いて水素を逃がすベント構造として、通常のシール性は、ベントと第2の容器115にそれぞれ備えられた磁石の引力によって確保される構造としても良い。また通常のシール性を、ベントと第2の容器115に接続されたバネによって確保される構造としても良い。
水素発生物質112としては、好ましくは水素化ホウ素ナトリウムであり、水素発生促進物質114としては、好ましくはリンゴ酸水溶液であり、以下で水素化ホウ素ナトリウムとリンゴ酸水溶液を用いる例を記載するが、水素発生物質は加水分解型の金属水素化物であれば全て適用可能で、水素発生促進物質は有機酸および無機酸あるいはルテニウムなど、水素発生触媒であれば全て適用可能である。さらに、水素発生物質112が水素化ホウ素ナトリウム水溶液で水素発生促進物質114がリンゴ酸粉末というように、水素発生物質112と水素発生促進物質114の組み合わせは、混合することによって水素を発生する物質であれば全て適用可能である。
また、水素発生部に用いられる反応としては、金属と塩基性あるいは酸性水溶液の組み合わせであっても良い。さらに水素発生部においては、アルコール、エーテル、ケトン類を水蒸気改質して水素を得るメタノール改質型や、ガソリン、灯油、天然ガスといった炭化水素を水蒸気改質して水素を得る炭化水素改質型など、加水により水素を発生する構成であれば全て適用可能である。
水素発生部103で発生した水素は発電部102のアノード室109に備えられた供給口111を介してアノード室109に導入され、発電のために消費される。水素が消費されるとアノード室109と、アノード室と接続される第1の容器113の内圧が減圧され、第2の容器115の内圧との差圧によって第2の容器115に格納される水素発生促進物質114(リンゴ酸水溶液)が第1の容器113に導入されて次の水素発生が生じる。
ノズル116のノズル径は、前回発生した水素により発電が持続中に次の水素発生が生じる周期で水素発生促進物質114(リンゴ酸水溶液)が第1の容器113に導入されるように調整され、好ましくは差圧が5kPa以下で水素発生促進物質114(リンゴ酸水溶液)が導入されるように調整される。
発電時にアノード室109にはカソード側の触媒層で発生した水が逆拡散して凝縮される水、MEA105を透過した酸素とアノード室109に存在する水素がアノード側の触媒層で反応して生成した水、水素発生部103から発生した水素に含まれる水蒸気が凝縮した水等をあわせたアノード極滞留水が蓄積される。アノード室109の底面は、図に示すように平面であってもよいし、アノード極滞留水を一箇所に収集するために勾配を持っていても良い。
導水110には逆止弁121が設けられているので、アノード室109の内圧が第2の容器115の内圧よりも低くなったときに水素発生促進物質114(リンゴ酸水溶液)がアノード室109内へ逆流することを防ぐ構成とされる。第2の容器115はガス抜きの貫通孔123を備えるため、常に大気圧相当に保たれるのに対し、アノード室109は発電で水素が消費され減圧状態となるが、このとき逆止弁121は閉じられるので水素を発生するために必要な、第2の容器115とアノード室109の差圧が得られ、水素発生部103は正常に駆動する。
従って、上述した第1実施形態例では、内部エネルギー(発電により発生する水素の圧力差)により、燃料を循環させる系で水を回収することができる。
図2に基づいて温度勾配を用いた温度差により水を移動させる実施形態例(第2実施形態例)を説明する。図2には本発明の第2実施形態例に係る燃料電池システムの概略断面を示してある。
プロトン導電性の樹脂からなる電解質層131の両面にそれぞれアノード極及びカソード極を配置する。アノード極は電極の電解質層131側からアノード極触媒層132、アノード極触媒層132に隣接するガス拡散層133、アノード極集電材134の順で配置される。同様に、カソード極は電極の電解質層131側からカソード極触媒層135、カソード極触媒層135に隣接するガス拡散層136、カソード極集電材137、カソード極集電材137の集電材押さえ138の順で配置される。さらに、カソード極集電材137にはカソード極リード139が接続されている。
また、アノード極およびカソード極にはガスの漏洩の防止のためと、アノード極触媒層132、カソード極触媒層135とガス拡散層133,136の適正な圧縮量を保つためにスペーサーの役目を果たすアノード極パッキン141とカソード極パッキン142を配置する。アノード極パッキン141およびカソード極パッキン142は水素の透過を抑制し、パッキンを夾持する材料と密着性が高い材料が好ましい。パッキンの材料として、各種ゴム材料を用いることができ、特にブチルゴムが好ましい。上述した電解質層131とそれに対峙して配置したアノード極およびカソード極を併せて、発電素子140とする。
本発明において、発電素子140を構成するアノード極に隣接した位置に水素を蓄えるアノード室143を設ける。発電時において、アノード室143は燃料ガスを供給する燃料ガス供給口144から導入された水素等のガスで満たされ、発電または発電以外で生じた不純物を排出する導水路145が接続される。さらに、本発明においては、アノード室143を構成する部材の一部に冷却部146を設け、冷却部146と発電素子140の間に温度勾配を設ける。このアノード室143の冷却部146を積極的に冷却するために、伝導熱緩衝材147を配置する。
本発明の燃料電池で用いるプロトン導電性の樹脂からなる電解質層131は、常温で、プロトン導電性を示すパーフルオロ樹脂膜やエンジニアリングプラスチックの複合化等のグラフト重合膜、部分フッ素化膜を用いることが出来るが、それらの材質に限定されない。
カソード極触媒層135及びアノード極触媒層132に用いる触媒はカーボンに担持した白金を用いることが出来る。また、電極の触媒元素として、白金に限らず各種貴金属やその合金、およびその酸化物を用いる事ができる。カソード極集電材137やアノード極集電材134として金属多孔質体を用いることができる。特に、カソード極集電材137として発泡金属体が優れる。
アノード極のガス拡散層133及びカソード極のガス拡散層136として、電子伝導性と耐食性とガス透過性を兼ね備えた多孔質体を用いることができる。例えば、紙状の“カーボンファイバーペーパー(以下、CFPと略す)”や複数本の炭素繊維が集合してなる緯糸と経糸とで構成された織物、つまり、布状の“カーボンクロス(以下、CLと略す)”を用いることができる。
アノード室143の冷却部146と発電素子140の間に伝熱を抑制するために、伝導熱緩衝材147を配置することができる。伝導熱緩衝材147としては、例えば、(I)熱硬化性樹脂として、エポキシ樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂や、(II)熱可塑性樹脂として、アイオノマー樹脂、EEA樹脂、AAS(ASA)樹脂、AS樹脂、ACS樹脂、エチレン酢ビコポリマー、エチレンビニルアルコール共重合樹脂、ABS樹脂、塩化ビニル樹脂、塩素化ポリエチレン、酢酸繊維素樹脂、フッ素樹脂、ポリアセタール樹脂、ポリアミド樹脂(6ナイロン,66ナイロン)、ポリアリレート樹脂、熱可塑性ポリウレタンエラストマー、熱可塑性エラストマー、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリサルホン、ポリエーテルサルホン樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリエチレンテレフタレー卜(PET)、ポリカーボネート樹脂、ポリスチレン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂(PPS)、ポリブタジエン樹脂、ポリブチレンテレフタレー卜樹脂、ポリプロピレン樹脂(PP)、メタクリル樹脂(アクリル樹脂)、メチルペンテンポリマー、生分解性プラスチック、や(III)ゴム類として天然ゴム (NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)、エチレンプロピレンゴム(EPDM)、ウレタンゴム(U)、シリコーンゴム(Q)、クロロスルフォン化ゴム(CSM)、塩素化ポリエチレン(CM)、アクリルゴム(ACM)、エピクロルヒドリンゴム(ECO)、フッ素ゴム(FKM)(IV)各種セラミック材料の中からいずれかの単体または、複合物を用いることができる。また、ゴムや樹脂中にガス等の気泡を混入させ、熱伝導度を低減することができる。特に、アノード室143からの水素の漏洩を抑制することを考慮するとブチルゴムやその複合体が好ましい。
冷却部146の材質は各種金属材料の単体、合金、または、複合物や、積層物を用いることができる。金属材料としては高い熱伝導率を持つ材料としては、ステンレス、アルミニウム、チタン、マグネシウム合金、金、銀、銅などの金属やグラファイト、アルミナ、シリコンなどの非金属やその酸化物が挙げられる。モバイル機器を考慮すると軽量化が重要で、加工性や強度なども考慮すると、アルミニウムが最も好ましく、次いで、ステンレスなどが好ましい。
アノード室143に接するアノード極集電材134の表面の一部を撥水処理することが好ましい。これによって、水の結露を抑制し、アノード室143に接する冷却部146で水蒸気は結露する。また、冷却部146のアノード室143に接する面の表面を“親水処理”することが好ましい。これによって、結露した水が局在化せず、水滴にならずにアノード室143の底部に集められる。
撥水化処理は純金をメッキまたはコートする方法、黒鉛等のカーボンを塗布またはコートする方法、フッ素を含有する有機物を塗布またはコートする方法を用いることで可能となる。金をコートする方法は電解メッキ、無電解メッキ、溶射、蒸着、スパッタリング等のいずれの方法を用いることができる。
カーボンの場合は前述の方法のほかにバインダーと混合した溶液やスラリーを塗布することも可能である。フッ素を含有する有機物をコートの方法として、フッ素含有物を加熱炉中に配置し、前記のフッ素を含有する有機物の分解温度近傍(400℃未満)まで熱処理し、その分解蒸気を当てることで被覆することができる。
または、おおよそ粒径が1〜15μmに揃ったフッ素を含有する有機物の微粒子を水、アルコール又はその他の有機溶剤に分散させた分散溶剤中にアノード極触媒層132(金属製多孔質体)を浸漬後、金属製多孔質体を引き上げ、金属製多孔質体の表面に付着した余分な溶剤を除去後、金属製多孔質体にコートされたフッ素を含有する有機物の分散溶剤の溶媒の沸点以上の温度に加熱することにより乾燥除去し、その後、フッ素を含有する有機物の分解温度近傍以下の温度(400℃未満)を用い加熱炉内で、熱処理することが出来る。
ここで、フッ素を含有する有機物として、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、エチレン−テトラフルオロエチレンコポリマー(ETFE)、パーフルオロエチレン−プロペンコポリマー(FEP)、ポリビニリデンフルオライド(PVdF)、エチレン−クロロトリフルオロエチレンコポリマー(ECTFE)などを用いることができる。フッ素を含有する有機物のコートに伴う熱処理は大気中、または、真空中の何れかで実施することが出来るが、真空中で行なうことがより望ましい。
アノード室143の底部に導水路145を配置することが出来る。アノード室143の底部に蓄積された水をTiOとナフィオンによって構成された導水材により、セルの外に水を排出することが出来る。また、樹脂の表面を防湿コートすることが好ましい。
燃料とする水素は水素発生物質と発生を促進する物質を組み合わせることで発生させる。ここに、水素発生物質と発生を促進する物質の組み合わせの例をそれぞれ括弧で括り、次に列挙する。(水酸化ナトリウム、金属アルミニウム)、(水素化ホウ素ナトリウム、水)、(水素化ホウ素ナトリウム、硫酸)、(水素化ホウ素ナトリウム、リンゴ酸)、(水素化ホウ素ナトリウム、クエン酸)、(水素化ホウ素ナトリウム、シュウ酸)、(水素化ホウ素ナトリウム)、(水素化ホウ素ナトリウム、塩化コバルト)、(水素化ホウ素ナトリウム、塩化ニッケル)、(水素化ホウ素ナトリウム、金属コバルト粉末)、(水素化ホウ素ナトリウム、ニッケル粉末)、(水素化ホウ素ナトリウム、ホウ酸)、(水素化リチウム、水)、(水素化ナトリウム、水)、(水素化マグネシウム、水)、(水素化カルシウム、水)、(水素化アルミリチウム、水)。
これらの水素発生物質として水素化ホウ素ナトリウムを用いる場合、水以外に、各種無機酸、有機酸、遷移金属の塩化物等を用いることができる。上述した水素は場合によっては、水素発生物質または発生を促進する物質の溶液を含むミストを発生させることがあり、それらのミストを除去するフィルターを設置することが出来る。また、これらの組み合わせで生じた水素は反応の初期において、反応に伴う熱によって水溶液の溶媒として存在する水が蒸気となって含まれることがある。また、水素吸蔵合金を用いることもできる。
本発明の電源を応用が可能な機器を下記の通り、分類して例示する。(I)2〜20Wの機器として、ノートパソコン,タッチパネル入力パソコン,映像機器用外付け電源,照明機器,ハンディクリーナをあげることができ、(II)1〜2W程度を必要とする機器として、デジタルスチルカメラ,ヘルス機器,携帯電話,ウェアラブル携帯電話,オーダーエントリーシステム端末,携帯プリンタ,電動工具,自動車電話,トランシーバ,ペン入力パソコン,電子ブックプレーヤ,液晶テレビ,ウェアラブルテレビ,電気シェーバ,を上げることができる。更に、(III)1W未満で動作できる機器、ウェアラブルパソコン,腕型PHS,電子辞書,玩具,医療機器,ウェアラブル医療機器,ページャ,ウェアラブル電卓,ウェアラブルGPSシステム,音声入力機器,メモリカード,テープレコーダ,ラジオ,ヘッドホンステレオ,ポータブルDVD,電子手帳,コードレスフォン子機,ポータブルMD,ポータブルCD,カムコーダー,ゲーム機器,を例示することができる。特に、本発明は(II)、(III)に示す小型または薄型が求められ、さらに軽量であることが必要なアプリケーションにおいて、有効な電源として最も寄与する。
本発明に基づき、カソード極触媒層135及びアノード極触媒層132が予め電解質層131に形成された市販の膜電極接合体の両側から繊維状のガス拡散層133及びガス拡散層136を用いて挟持した。そのとき、カソード極触媒層135とガス拡散層136の外周部にスペーサーの役目を兼ねたカソード極パッキン142を配置する。同様にアノード極触媒層132とガス拡散層133の外周部にスペーサーの役目を兼ねたアノード極パッキン141を配置する。
この電解質層131の厚みは30μmである。この電解質層131のカソード極側及びアノード極側の両極は共に触媒として白金を0.3mg/cmで担持させたカーボン粒子とプロトン導電性のフッ素系固体電解質によりアノード極触媒層132又はカソード極触媒層135が構成されている。アノード極触媒層132又はカソード極触媒層135の寸法は20mm×25mmとした。アノード極パッキン141及びカソード極パッキン142に用いたゴム硬度は約50%のブチルゴム製で、厚さ約200μmを所望の寸法に切り出して使用した。
このMEAの両側から挟持するガス拡散層133又はガス拡散層136の厚さは300〜440μmの厚さを有した。このガス拡散層133又はガス拡散層136の表面に撥水性を有する導電性のカーボンを含む層を予め形成し、撥水性を有する導電性のカーボンを含む層とアノード極触媒層132及びカソード極触媒層135が電気的に接続するように配置した。カソードのカーボン製のガス拡散層136に電子的接続がされるようにカソード極集電材137を配置した。
このカソード極集電材137として、厚さ2.0mmのニッケル製の発泡金属体(富山住友電工製、セルメット、品番#4)を所定の寸法(30mm×42mm)に切り出して用いた。このカソード極集電材137は、セル数が27〜33個/インチ、孔径が0.8mm、比表面積が約2500m/mの特性を有する。このカソード極集電材137に電子を取り出すために厚さ0.1mm、幅7.0mmのニッケル製の帯び状のカソード極リード139を抵抗溶接により直接溶接した。カソード極集電材137のリード溶接部は予め圧延し、平滑な面を作製する。リードの溶接は3.0mm間隔で、約30mmに渡って行なった。発電素子140を構成する各部材はカソード極に配置した集電材押さえ138とアノード極集電材134により挟持し、適度な外力で圧迫することで電気的接続を保つ。
さらに、アノード室143の冷却部146は伝導熱緩衝材147を介してアノード極集電材134に隣接する様に配置する。アノード室143の冷却部146はアルミニウム製で厚さ2mmであり、伝導熱緩衝材147は厚さ2mmのブチルゴムを切り出して用いた。この時、燃料ガス供給口144は伝導熱緩衝材147とアノード室143の冷却部146に挟まれた位置にある。導水路145は中空のチューブを用い、アノード室143に接続した。
このように作成したセルに純度99.99%で、24℃なる水素を単位面積あたり、5cc/min・cmの流量で、ほぼ大気圧近く極低圧になるように調整供給した。カソード側は約40%RH、25℃の大気に暴露した。
予め酸化チタン(IV)(アナターゼ型、和光純薬)とナフィオン溶液(ALDRICH製、5%溶液)を1:20の体積比で十分混合し、ナイロン製のチューブに流し込み、その後、ナフィオン溶液に含まれる溶媒(IPA)を乾燥させることで、TiOを混入させたナフィオン製の導水路145を作成し、アノード室143に接続する導水路145として使用することも可能である。
冷却部146として、切削による凹凸状や山切り状の溝加工を施すことも可能であり、表面積を高めることができる。また、図3に示したように、アルミニウム製の板状フィン148を取り付けた冷却部146とすることで飛躍的に冷却部146の表面積を高めることができる。さらに、冷却部146にペルチェを設けたり、冷却部146付近に送風するための吸気口及び排気口を設け、それぞれが接続できる位置に送風ファンを接続し、アノード室143の冷却部146の冷却を促進し、温度勾配を際立たせることもできる。送風ファンによって冷却部を空冷し、冷却に使われた後の風をカソード極側から排気することができる。
また、アノード室143の冷却部146とカソード極の大気に開放される部分を除き発電部を伝熱抑制物質で覆い、アノード室143の冷却部146と発電素子140の間に温度勾配を付けることも可能である。また、アノード室143の燃料ガス供給口144を発電素子140の近傍に配置したり、アノード室143内に保水材を配置することも可能である。また、発電素子140の複数個を同一平面上に配置し、アノード極を同一面に配置することで、複数個のアノード室143の冷却部146を熱的に接続することも可能である。
プロトン導電性の樹脂からなる電解質層131の両面にそれぞれアノード極及びカソード極を有し、各電極は電解質層131から触媒層、ガス拡散層、集電体の順で配置し構成され、これらをまとめて発電素子140と称する固体高分子型燃料電池において、アノード極に隣接した位置に水素を蓄えるアノード室143を設け、アノード室143を構成する部材の一部に冷却部146を設け、冷却部146と発電素子140の間に温度勾配を設けた構造とすることで、アノード極電極部及びその近傍で凝縮による水滴を作りにくくなるため、流路の一部に液体の水が滞留することによる水素ガスの拡散パスの閉塞は無くなり、水素の安定的な供給が可能となる。
上述したように発電素子140と冷却部146の温度勾配を設けることで、カソード極とアノード極の水の濃度勾配を付けて発電に伴う電気化学反応によってカソード極で生成した水や水蒸気をアノード極側で回収することも可能となる。アノード極で水を回収することはカソード極で水を蒸発乾燥させる際の負荷を低減できる。また、アノード極側からカソード極側へプロトンを移動させる際の同伴水を確保する効果が期待できる。
従って、上述した第2実施形態例では、内部エネルギー(冷却部146を設けて発電による状態差に基づく温度勾配を用いた温度差)により、水を回収することができる。水素の供給系は特に限定されず、閉鎖系により水を循環させることができる。
図4に基づいて半透膜を用いた浸透圧により水を移動させる実施形態例(第3実施形態例)を説明する。図4には本発明の第3実施形態例に係る燃料電池システムの全体を表す概略構成を示してある。
図に示すように、燃料電池システム150は、水素と酸素を反応して発電する燃料電池151、水素を発生させるための物質を貯蔵する物質貯蔵部として、触媒水溶液152を貯蔵する液体タンク153及び金属水素化物154を貯蔵する反応器155、燃料電池151で発生する生成水を貯蔵する貯水槽156を具備している。
そして、触媒水溶液152を液体タンク153から反応器155に送液するための送液管157にて液体タンク153と反応器155とを連結し、水素を反応器155から燃料電池151に送るためのガス供給管158にて反応器155と燃料電池151とを連結し、更に、燃料電池151で発生する生成水を貯水槽156に送液するために導水管159にて燃料電池151と貯水槽156とを連結している。
ここで、導水管159には生成水が燃料電池151に逆流しないようにするために逆止弁160を設けた。そして半透膜161を液体タンク153と貯水槽156の間に備え、半透膜161の対向する面に、液体タンク153に貯蔵する触媒水溶液152と貯水槽156に至った生成水とが接するように配置した。また導水管159には吸水性を有する綿繊維を挿入した。
システムの構成としては、反応器と貯水槽を一体にして半透膜を設けたり、液体状の燃料(直接メタノールを供給する燃料電池を含む)を用いる構成とすることが可能である。また、燃料電池として、固体高分子電解質膜の両側に負極と正極を配し、負極側に負極室を備えて負極室に水素を一旦保持する構成とすることも可能である。
図示の実施形態例においては、金属水素化物154として水素化ホウ素ナトリウムを10g、及び、触媒水溶液152としてリンゴ酸水溶液を20g用いた。触媒水溶液152を反応器155に供給すると、金属水素化物154と接触して加水分解反応が起き水素を発生する。この水素が燃料電池151に移動し、燃料電池151で反応して発電する。触媒水溶液152の反応器155への供給は、燃料電池151における水素消費に伴い反応器155内が減圧するため、液体タンク153から触媒水溶液152を反応器155側に引き込む現象を用いた。これによれば、触媒水溶液152の送液に電力が必要なくなるためである。また半透膜161にはNafion(商標)、膜厚210μmを用いた。
燃料電池151での反応により生成した生成水は、導水管159内に挿入した綿繊維にしみ込みながら貯水槽156に至り、半透膜161に接触した。ここで、生成水と対向する半透膜161の面に液体タンク153の触媒水溶液152が存在するため浸透圧が生じ、生成水が触媒水溶液152に移動する現象が発生した。最終的に生成水は17g程度回収されたため、触媒水溶液152が不足することなく反応器155に移動し、水素発生反応に供された。
これまでの実験から、効率的に水素化ホウ素ナトリウムから水素を発生するためには、水素化ホウ素ナトリウム10gに対し、リンゴ酸水溶液を少なくとも35g程度必要とする事が分かっている。それに対し本実施形態例においては、リンゴ酸水溶液の重量が20gであったことから、リンゴ酸水溶液を15g減量しても反応が効率的に進行する事が示された。従って、液体タンク20の体積を10cc程度小型化でき、重量及び体積のエネルギー密度を向上することができた。
従って、上述した第3実施形態例では、内部エネルギー(半透膜161を用いた浸透圧)により、水を回収することができる。水素の供給系は特に限定されず、閉鎖系により水を循環させることができる。
図5乃至図8に基づいて本発明の第4実施形態例乃至第7実施形態例を説明する。第4実施形態例乃至第7実施形態例は、温度差により水を凝縮・収集し、差圧により水の移送・循環を行うものである。尚、基本的な構成は図1に示した構成であるため、図1に示した部材と同一部材には同一符号を付して重複する説明は省略してある。
図5には本発明の第4実施形態例に係る燃料電池システムの全体を表す概略構成、図6には本発明の第5実施形態例に係る燃料電池システムの全体を表す概略構成、図7には本発明の第6実施形態例に係る燃料電池システムの全体を表す概略構成、図8には本発明の第7実施形態例に係る燃料電池システムの全体を表す概略構成を示してある。
図5に示した第4実施形態例の固体高分子型燃料電池システム164は、導水路110中に貯水部165を設置する。発電部102の温度が好ましくは、25℃〜80℃の範囲で運転されるのに対し、貯水部165は室温25℃程度なので、その温度差により貯水部165に水が凝縮する。
図6に示した第5実施形態例の固体高分子型燃料電池システム166は、図5に示した第4実施形態例の構成に加え、発電部102のアノード室109に断熱層167を設置したものである。断熱層167を設置することで、貯水部165と発電部102との温度差が大きく保たれ、貯水部165における水の凝縮・収集能力を向上することができる。
図7に示した第6実施形態例の固体高分子型燃料電池システム168は、図6に示した第6実施形態例の構成に加え、貯水部165に冷却部169を備えると共に、カソード極104側に一部開口している押さえ部材170を設置し、押さえ部材170と貯水部165を連通したものである。
貯水部165に冷却部169を備えたので、水の凝縮・収集能力を向上させることができる。また、カソード極104側に一部開口している押さえ部材170を設置して押さえ部材170から貯水部165に水を導入させるようにしたので、従来は、カソード極104で発生した水は全て大気に開放されていたところが、一部水に凝縮して燃料に循環することができる。
図8に示した第7実施形態例の固体高分子型燃料電池システム171は、図7に示した第6実施形態例の断熱層167に代えて、発電部102全体を覆う断熱層172を設けたものである。発電部102の全体を覆う断熱層172を設けたことにより、発熱するMEA105を含めて発電部102の全体が断熱層172で覆われるので水の蒸発が促進される。
図5乃至図8に示した実施形態例のいずれの構成においても、差圧により水素発生部103へ水を移送する構成である。水の移送の動作に関しては図1に示した第1実施形態例と同一である。アノード室109の部材表面を撥水処理することにより水回収能力を向上することもできる。撥水処理としては特に限定されるものではないが、加工の容易さ等を鑑みると、PTFE処理が好ましい。
図9、図10に基づいて本発明の第8実施形態例、第9実施形態例を説明する。第8実施形態例、第9実施形態例は、温度差により水を凝縮・収集し、差圧により水の移送を行い、浸透圧により水の循環を行うものである。尚、基本的な構成は図1及び図5に示した構成であるため、図1及び図5に示した部材と同一部材には同一符号を付して重複する説明は省略してある。
図9には本発明の第8実施形態例に係る燃料電池システムの全体を表す概略構成、図10には本発明の第9実施形態例に係る燃料電池システムの全体を表す概略構成を示してある。
図9に示した第8実施形態例の固体高分子型燃料電池システム175は、導水路110の末端には、水溶液タンク115と隣接した貯水槽176が設置され、貯水槽176と水溶液タンク115の境界に半透膜177が設置されている。
図10に示した第9実施形態例の固体高分子型燃料電池システム178は、導水路110の末端には、第1の容器113と隣接した貯水槽176が設置され、貯水槽176と第1の容器113の境界に半透膜177が設置されている。
尚、図9、図10の例は一例であり、貯水槽176と水素発生部103との接続、位置関係については、特に限定されるものではない。
図11、図12に基づいて本発明の第10実施形態例、第11実施形態例を説明する。第10実施形態例、第11実施形態例は、水素発生源が水素吸蔵合金であり、高圧水素ボンベを開閉して水素を供給するものである。
図11には本発明の第10実施形態例に係る燃料電池システムの全体を表す概略構成、図12には本発明の第11実施形態例に係る燃料電池システムの全体を表す概略構成を示してある。
図11に示した第10実施形態例に係る固体高分子型燃料電池システム181は、基本的な構造は図1に示した構造であるが、図1において、水素発生部103の構成が、水素化ホウ素ナトリウムなどの水素発生物質112とリンゴ酸水溶液などの水素発生促進物質114をそれぞれ内包する第1の容器113、第2の容器115から構成されるのに対し、図11では水素発生部182は、水素吸蔵合金183を内包するボンベ184と、バルブ185と、接続管186から構成される。また、本実施形態例の固体高分子型燃料電池システム181は、導水路188を介してアノード室109から排出された水を貯水する貯水部187を備えている。
水素吸蔵合金183とは、水素雰囲気下で加圧することにより水素を吸蔵し、減圧することで可逆的に水素を放出することのできる合金であり、水素は金属格子中に主に原子状またはイオンの状態で、金属結合またはイオン結合している。
バルブ185は、その前後の圧力について予め定められた圧力差となったときに開く構成となっている。バルブ185の構成は、前記特性を満たすものであれば全て適用可能であるが、例えば2枚の板バネ状の弁で構成され前記板バネの剛性によって開閉する圧力差を設定することができる構成であってよい。
第10実施形態例の固体高分子型燃料電池システム181におけるアノード室109に滞留した水を排出する作用について説明する。
発電部102で生成された水は一部がアノード室109内部に滞留し、液面がアノード室109と貯水部187とを接続する導水路188の先端に備えられた排出口122よりも高くなる。一方、水素吸蔵合金183から発生した水素は、接続管186を介してアノード室109の内部に導入され、このときのアノード室109の内圧と水素吸蔵合金183を内包するボンベ184の内圧は同一となり、バルブ185は閉弁する。
アノード室109の内部の水素は発電部102にて発電のために消費され、アノード室109の内圧は減少し、ある一定圧まで下がるとボンベ184の内圧との差圧によりバルブ185が開弁して水素が再びアノード室109の内部に導入される。
従って、ボンベ184とアノード室109の内圧差によりバルブ185が開閉することで、アノード室109の内圧は圧力変動するので、加圧状態となるときに、水素圧が上述した水の液面を押し、水は貯水部187へ送られてアノード室109から排出される。
尚、本実施形態例は、ボンベ184に水素吸蔵合金183が備えられている構成であるが、これに限定されず、ボンベ184に水素ガスが封入されている構成であっても良い。またこの水素ガスが10MPa以上の高圧であっても良い。
図12に示した第11実施形態例に係る固体高分子型燃料電池システム191は、貯水部187とアノード室109を接続する導水路188に逆止弁192が備えられている。これにより、貯水部187に移送された水がアノード室109へ逆流することが防止されている。
本発明は、燃料電池システム、特に、固体高分子型燃料電池システムに関し、更に詳しくは、燃料電池セルで生成されてセル内部に滞留した水をセル外部に回収することができる燃料電池システムの産業分野で利用することができる。
本発明の第1実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第2実施形態例に係る燃料電池システムの概略断面図である。 冷却部の他の実施形態例を説明する燃料電池システムの概略断面図である。 本発明の第3実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第4実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第5実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第6実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第7実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第8実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第9実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第10実施形態例に係る燃料電池システムの全体を表す概略構成図である。 本発明の第11実施形態例に係る燃料電池システムの全体を表す概略構成図である。
符号の説明
101、164,166、168、171、175、178、181、191 固体高分子型燃料電池システム
102 発電部
103 水素発生部
104 カソード極
105 MEA
106 アノード極
107 カソードエンドプレート
108 アノードエンドプレート
109、143 アノード室
110、145、188 導水路
111 供給口
112 水素発生物質
113 第1の容器
114 水素発生促進物質
115 第2の容器
116 ノズル
117 管
118 中空ボルト
119 ナット
120 管口
121、160、192 逆止弁
122 排出口
123 貫通孔
124 膜体
131 電解質層
132 アノード極触媒層
133、136 ガス拡散層
134 アノード極集電材
135 カソード極触媒層
137 カソード極集電材
138 集電材押さえ
139 カソード極リード
140 発電素子
141 アノード極パッキン
142 カソード極パッキン
144 燃料ガス供給口
146、169 冷却部
147 伝導熱緩衝材
148 板状フィン
150 燃料電池システム
151 燃料電池
152 触媒水溶液
153 液体タンク
154 金属水素化物
155 反応器
156、176 貯水槽
157 送液管
158 ガス供給管
159 導水管
161、177 半透膜
162 触媒水溶液
165、187 貯水部
167、172 断熱層
170 押さえ部材
182 水素発生部
183 水素吸蔵合金
184 ボンベ
185 バルブ
186 接続管

Claims (17)

  1. 水素と酸素の電気化学反応により発電を行う燃料電池システムにおいて、
    アノード極に水素を供給する水素供給手段と、
    電気化学反応により発生した水を内部エネルギーにより回収する水回収手段と
    を備えたことを特徴とする燃料電池システム。
  2. 請求項1において、水回収手段は、少なくともアノードの水を回収することを特徴とする燃料電池システム。
  3. 請求項1または2において、
    水素供給手段は、閉鎖系の水素貯留部位を備え、水素貯留部位に存在する水を回収する水回収手段を備え、系内で水を回収することを特徴とする燃料電池システム。
  4. 請求項1〜3のいずれかにおいて、
    水素供給手段は、加水分解反応によって発生させた水素を供給することを特徴とする燃料電池システム。
  5. 請求項1において、
    水素供給手段は、水素吸蔵合金を用いて水素を供給すると共に、水回収手段は水素の供給圧力により水を外部に排出して回収することを特徴とする燃料電池システム。
  6. 請求項3または4のいずれかにおいて、
    水を回収する内部エネルギーは、半透膜を用いた浸透圧により水を移動させるエネルギーであることを特徴とする燃料電池システム。
  7. 請求項3〜5のいずれかにおいて、
    水を回収する内部エネルギーは、発電による状態差に基づく温度勾配を用いた温度差により水を移動させるエネルギーであることを特徴とする燃料電池システム。
  8. 請求項3または4のいずれかにおいて、
    水を回収する内部エネルギーは、発電による状態差に基づくアノード極に供給される水素の圧力状態に応じて水を移動させるエネルギーであることを特徴とする燃料電池システム。
  9. 請求項1〜4のいずれかにおいて、
    水を回収する内部エネルギーは、発電による状態差に基づくアノード極に供給される水素の圧力状態と、発電による状態差に基づく温度勾配を用いた温度差とにより水を移動させるエネルギーであることを特徴とする燃料電池システム。
  10. 請求項1〜4のいずれかにおいて、
    内部エネルギーは、発電による状態差に基づくアノード極に供給される水素の圧力状態と、半透膜を用いた浸透圧とにより水を移動させるエネルギーであることを特徴とする燃料電池システム。
  11. 触媒水溶液を貯留する触媒槽と、
    燃料電池によって生成された生成水を貯留する貯水槽と、
    前記触媒槽と前記貯水槽の間に設けられ浸透圧により前記生成水を前記触媒槽から前記貯水槽へ移動させる半透膜とからなる液体タンクと、
    水素を発生させる反応器と、
    前記液体タンクと前記反応器を接続し、前記触媒水溶液を前記反応器に送る送液管と、
    前記水素により発電を行う固体高分子型燃料電池と、
    前記反応器と前記燃料電池とを接続し、前記水素を前記燃料電池に供給するガス供給管と、
    前記燃料電池と前記貯水タンクとを接続し、前記燃料電池で生成した前記生成水を前記燃料電池から前記貯水槽への一方向に送り、前記生成水の逆流を防止する逆止弁を有する導水管と
    を有することを特徴とする燃料電池システム。
  12. 発電素子としてプロトン導電性の樹脂からなる電解質層の一方の面にアノード極と他方の面にカソード極を有する固体高分子型燃料電池において、
    前記アノード極もしくは前記カソード極は前記電解質層側から順に、触媒層、ガス拡散層、集電体を有し、
    前記アノード極に水素が供給されるアノード室を備え、
    前記アノード室を構成する部材の一部に冷却部を設け、
    前記冷却部と前記発電素子の間に温度勾配をもたせたことを特徴とする燃料電池システム。
  13. プロトン導電性を有する樹脂からなる電解質、前記電解質の両面に配置される触媒層からなる膜電極接合体と、それぞれガス拡散層、集電体層からなるアノード極及びカソード極とから構成される発電部と、
    前記発電部と接続され、該発電部に導入される水素ガスを供給する水素供給手段と
    を備えた固体高分子型燃料電池システムにおいて、
    前記水素供給手段が、前記アノード極の内部圧力状態と水素供給系の圧力状態との差によって水素を供給する受動型水素発生機構を具備し、
    前記受動型水素発生機構により発生した水素ガスのガス圧により、発電によって生じた水を前記アノード極に備えられた排出口からアノード極の外部に排出する水排出機構を具備することを特徴とする燃料電池システム。
  14. プロトン導電性を有する樹脂からなる電解質、前記電解質の両面に配置される触媒層からなる膜電極接合体と、
    それぞれガス拡散層、集電体層からなるアノード極及びカソード極とから構成される発電部と、
    発電部と接続され、発電部に導入する水素ガスを発生し、触媒水溶液を貯留する触媒槽と金属水素化物を貯蔵し、触媒水溶液と反応させて水素を発生させる反応器から構成される水素発生部とを備えた固体高分子型燃料電池システムにおいて、
    発電部外部に設置され発電部のアノード極と接続された貯水部と、
    前記貯水部と水素発生部の触媒槽と接続する導水路と、
    前記導水路に設置された逆止弁と、
    前記触媒槽に設置された圧調整構造と
    を備えたことを特徴とする燃料電池システム。
  15. 請求項14において、
    発電部の外部に設置された貯水部を冷却する冷却手段と、
    発電部のアノード極/カソード極の少なくともいずれかから貯水部へ水あるいは水蒸気を排出する排出路と
    を備えたことを特徴とする燃料電池システム。
  16. 請求項14または15において、
    前記アノード極から貯水部にいたる水あるいは水蒸気の排出路が断熱構造であることを特徴とする燃料電池システム。
  17. プロトン導電性を有する樹脂からなる電解質、前記電解質の両面に配置される触媒層からなる膜電極接合体と、
    それぞれガス拡散層、集電体層からなるアノード極及びカソード極とから構成される発電部と、
    発電部と接続され、発電部に導入する水素ガスを発生し、触媒水溶液を貯留する触媒槽と金属水素化物を貯蔵し、触媒水溶液と反応させて水素を発生させる反応器から構成される水素発生部とを備えた固体高分子型燃料電池システムにおいて、
    発電部外部に設置され発電部のアノード極と接続された貯水部と、
    発電部のアノード極/カソード極の少なくともいずれかから貯水部へ水あるいは水蒸気を排出する排出路と、
    前記貯水部から移送された水が溜められる、前記触媒槽と隣接して設置される貯水槽と、
    触媒槽と貯水槽の間に設けられ浸透圧により生成水を貯水槽から触媒槽へ移動させる半透膜と、
    前記排出路に設けられた逆止弁とを備え、
    前記貯水部と発電部に温度勾配が保持される
    ことを特徴とする燃料電池システム。
JP2005223326A 2004-09-16 2005-08-01 燃料電池システム Expired - Fee Related JP5239045B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223326A JP5239045B2 (ja) 2004-09-16 2005-08-01 燃料電池システム

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2004270402 2004-09-16
JP2004270402 2004-09-16
JP2004330442 2004-11-15
JP2004330442 2004-11-15
JP2004349754 2004-12-02
JP2004349754 2004-12-02
JP2005223326A JP5239045B2 (ja) 2004-09-16 2005-08-01 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2006185895A true JP2006185895A (ja) 2006-07-13
JP5239045B2 JP5239045B2 (ja) 2013-07-17

Family

ID=36738828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223326A Expired - Fee Related JP5239045B2 (ja) 2004-09-16 2005-08-01 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5239045B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044499A1 (fr) * 2006-10-06 2008-04-17 Yukinobu Mori Dispositif de génération d'hydrogène
JP2010033979A (ja) * 2008-07-31 2010-02-12 Hitachi Maxell Ltd 燃料電池発電システム
JP2011018615A (ja) * 2009-07-10 2011-01-27 Toyota Boshoku Corp 燃料電池システム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185792A (ja) * 1997-12-25 1999-07-09 Toyota Autom Loom Works Ltd 燃料電池装置
JP2000149971A (ja) * 1998-11-11 2000-05-30 Nippon Telegr & Teleph Corp <Ntt> 固体高分子電解質型燃料電池
JP2001006704A (ja) * 1999-06-18 2001-01-12 Toyota Central Res & Dev Lab Inc 燃料電池システム
JP2001135338A (ja) * 1999-11-04 2001-05-18 Toyota Motor Corp 燃料電池装置および燃料電池の運転方法
JP2002184440A (ja) * 2000-10-04 2002-06-28 Honda Motor Co Ltd 燃料電池用加湿装置および燃料電池システム
JP2003036879A (ja) * 2001-07-19 2003-02-07 Casio Comput Co Ltd 電源システム
JP2003173811A (ja) * 2001-12-05 2003-06-20 Aisin Seiki Co Ltd 燃料電池発電システム
JP2003331850A (ja) * 2002-05-10 2003-11-21 Mitsubishi Electric Corp 電極およびそれを用いた燃料電池
JP2004071348A (ja) * 2002-08-06 2004-03-04 Honda Motor Co Ltd 燃料循環式燃料電池システム
JP2004111268A (ja) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd 燃料電池システム
JP2004185944A (ja) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 固体高分子形燃料電池
WO2004075375A2 (en) * 2003-02-19 2004-09-02 Honeywell International Inc. Electrical power generator
JP2004253185A (ja) * 2003-02-18 2004-09-09 Nissan Motor Co Ltd 燃料電池

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185792A (ja) * 1997-12-25 1999-07-09 Toyota Autom Loom Works Ltd 燃料電池装置
JP2000149971A (ja) * 1998-11-11 2000-05-30 Nippon Telegr & Teleph Corp <Ntt> 固体高分子電解質型燃料電池
JP2001006704A (ja) * 1999-06-18 2001-01-12 Toyota Central Res & Dev Lab Inc 燃料電池システム
JP2001135338A (ja) * 1999-11-04 2001-05-18 Toyota Motor Corp 燃料電池装置および燃料電池の運転方法
JP2002184440A (ja) * 2000-10-04 2002-06-28 Honda Motor Co Ltd 燃料電池用加湿装置および燃料電池システム
JP2003036879A (ja) * 2001-07-19 2003-02-07 Casio Comput Co Ltd 電源システム
JP2003173811A (ja) * 2001-12-05 2003-06-20 Aisin Seiki Co Ltd 燃料電池発電システム
JP2003331850A (ja) * 2002-05-10 2003-11-21 Mitsubishi Electric Corp 電極およびそれを用いた燃料電池
JP2004071348A (ja) * 2002-08-06 2004-03-04 Honda Motor Co Ltd 燃料循環式燃料電池システム
JP2004111268A (ja) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd 燃料電池システム
JP2004185944A (ja) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 固体高分子形燃料電池
JP2004253185A (ja) * 2003-02-18 2004-09-09 Nissan Motor Co Ltd 燃料電池
WO2004075375A2 (en) * 2003-02-19 2004-09-02 Honeywell International Inc. Electrical power generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044499A1 (fr) * 2006-10-06 2008-04-17 Yukinobu Mori Dispositif de génération d'hydrogène
JPWO2008044499A1 (ja) * 2006-10-06 2010-02-12 森 幸信 水素発生装置
JP2010033979A (ja) * 2008-07-31 2010-02-12 Hitachi Maxell Ltd 燃料電池発電システム
JP2011018615A (ja) * 2009-07-10 2011-01-27 Toyota Boshoku Corp 燃料電池システム

Also Published As

Publication number Publication date
JP5239045B2 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
US6924055B2 (en) Fuel delivery cartridge and anodic fuel receptor for a fuel cell
JP2003100315A (ja) 燃料電池発電装置とそれを用いた装置
JP2010517219A (ja) 低空気化学量論比で動作する改良されたカソード拡散媒体を有する直接酸化型燃料電池
JP5519858B2 (ja) 直接酸化型燃料電池システム
CN1604377A (zh) 燃料电池、电子设备和商业方法
US20100167099A1 (en) Membrance electrode assembly (mea) structure and manufacturing method thereof
CN1719651A (zh) 燃料电池
JP4768236B2 (ja) 燃料電池、その燃料供給システム、燃料カートリッジ並びに電子機器
JP5239045B2 (ja) 燃料電池システム
JP4727199B2 (ja) 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法
JP2007265898A (ja) 固体高分子型燃料電池用電解質膜及びこれを備える固体高分子型燃料電池
JP4807643B2 (ja) 固体高分子型燃料電池及び燃料電池システム
JP2003331899A (ja) 液体燃料電池
JP2010027243A (ja) 燃料電池
JP2007299712A (ja) 燃料電池
JPWO2008050640A1 (ja) 燃料電池
JP5207019B2 (ja) 固体高分子型燃料電池およびこれを備えた電子機器
JP2008210752A (ja) 液体燃料供給板、それを用いて成る燃料電池、並びに、液体燃料供給方法
JP4608958B2 (ja) 燃料電池
JP4839625B2 (ja) 燃料電池
JP5142176B2 (ja) 固体高分子型燃料電池システム
JP4321041B2 (ja) 固体高分子型燃料電池
JP4953724B2 (ja) 燃料電池および燃料電池システム
JP2021190358A (ja) 燃料電池スタック
JP5072246B2 (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees