JP2006184526A - 光走査装置・画像形成装置・走査線変化補正方法 - Google Patents

光走査装置・画像形成装置・走査線変化補正方法 Download PDF

Info

Publication number
JP2006184526A
JP2006184526A JP2004377727A JP2004377727A JP2006184526A JP 2006184526 A JP2006184526 A JP 2006184526A JP 2004377727 A JP2004377727 A JP 2004377727A JP 2004377727 A JP2004377727 A JP 2004377727A JP 2006184526 A JP2006184526 A JP 2006184526A
Authority
JP
Japan
Prior art keywords
scanning
optical
scanning line
change
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004377727A
Other languages
English (en)
Other versions
JP4673056B2 (ja
Inventor
Tomohiro Nakajima
智宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004377727A priority Critical patent/JP4673056B2/ja
Priority to US11/287,473 priority patent/US7684100B2/en
Publication of JP2006184526A publication Critical patent/JP2006184526A/ja
Application granted granted Critical
Publication of JP4673056B2 publication Critical patent/JP4673056B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】走査線の変化(例えば曲がり)に3次以上の高次関数曲線成分が存在していても容易に走査線の曲がりを補正することができ、色ずれや色変わりのない高品位な画像形成を行えるようにする。
【解決手段】走査線変化補正手段としての走査線曲がり補正手段は、走査線の曲がりのうち、主走査方向中央付近のみに頂点を有する湾曲成分(2次関数曲線成分)を調整する第1の走査線曲がり補正手段と、主走査方向に沿った複数箇所に頂点を有する湾曲成分(3次以上の高次関数曲線成分)を調整する第2の走査線曲がり補正手段からなる。結像光学系を構成する光学素子としてのトロイダルレンズ305を支持板301において3点で支持し、上面側では2点で受けるようにする。第1の走査線曲がり補正手段としては実質的に調節ねじ353が機能し、第2の走査線曲がり補正手段としては実質的に調節ねじ308が機能する。
【選択図】図4

Description

本発明は、複写機、プリンタ、ファクシミリ、プロッタ等の画像形成装置、特に複数色のトナー像を重ね合わせてカラー画像を形成する多色画像形成装置、該画像形成装置の書き込み系に用いられる光走査装置及び走査線変化補正方法に関する。
カールソンプロセスを用いた画像形成装置においては、感光体ドラムの回転に従って潜像形成、現像、転写が行われる。従って、複数の感光体ドラムを転写体の搬送方向に沿って配列し、各色の画像形成ステーションで形成したトナー像を重ねるタンデム方式の多色画像形成装置においては、感光体ドラムの偏心や径のばらつきによる潜像形成から転写までの時間、各色の感光体ドラム間隔の異なり、転写体、例えば、転写ベルトや記録紙を搬送する搬送ベルトの速度変動や蛇行によって、各トナー像のレジストずれやスキューを発生し、色ずれや色変わりとなって画像品質を劣化させる。
同様に、光走査装置においても、感光体ドラムに形成する静電潜像同士の走査線の変化(曲がりや傾き、湾曲、変形等の概念を指す)を正確に揃えなければ、各トナー像を形成する走査ラインの曲がりやスキューとなって色ずれや色変わりの要因となる。
従来、上記レジストずれやスキューは、光走査装置によるもの、光走査装置以外によるものの区分けなく、特公平7−19084号公報や特許第3049606号公報で開示されるように、転写体に記録された検出パターンにより装置の立上げ時やジョブ間等で定期的に検出し、レジストずれについては、ポリゴンミラー1面おきで書き出しのタイミングを合わせることにより先頭ラインの位置を可変して補正がなされている。
スキューについては、特許第3049606号公報に開示されるように、折返しミラーを傾ける、あるいは、特開平11−153765号公報や特開2003−262816号公報に開示されるように、副走査方向に収束作用を有する走査レンズを光軸の周りに回転する等により走査線の傾きを可変して補正がなされている。
このように、レジストずれやスキューについては、光走査装置に機械的な補正機能が配備され、パルスモータ等を組み込んで自動的に補正がなされている。
一方、走査ラインの曲がりの補正は、特許第3049606号公報に開示されるように折返しミラーを湾曲させる、特開2002−148551号公報に開示されるように、走査レンズの主走査に沿った形状を副走査方向に矯正する、あるいは、特開2003−255245号公報に開示されるように、走査レンズの姿勢を副走査断面に直交する軸の周りに回転する等により、やはり機械的に補正がなされている。
特開2001−253113号公報 特開2002−148551号公報 特開2003−140070号公報 特開2003−154703号公報 特開平9−058053号公報 特開平10−228148号公報 特公平7−019084号公報
しかしながら、昨今、低コスト化に伴って走査レンズの樹脂化が進み、成形時の反りやレンズ面の歪み、内部屈折率の分布によって、その焦線の真直度が確保し難くなっている。
反面、ユーザーの色ずれや色変わりに対する見方が厳しくなり、上記したレジストずれ、スキュー、走査ラインの曲がりに対する要求精度は向上している。
これらのうち、走査ラインの曲がりについては、上記したような検出パターンによる検出が厄介なことから、温度変動等によって変動する分の補正は困難であり、製造時にいかに精度よく調整しておくかがポイントとなる。
その点で、従来の走査ラインの曲がり補正方法は、上記したように折返しミラーの反りや走査レンズの姿勢を可変するものであり、曲がりを補正できるとは言っても、被走査面における走査線を上記曲がりが相殺するように2次関数曲線状に湾曲させているにすぎず、2次以上の高次関数曲線成分を有する複雑な曲がりが存在する場合には対応できなかった。
特開2004−109761号公報には、板金の間に挟み込むことで走査レンズ外形の反りを矯正しつつ、曲がり、傾きを補正する方法が提案されているが、外形が真直であってもレンズ面の歪み、内部屈折率の分布があると従来の補正方法と同様、複雑な曲がり形状には対応できなかった。
一般に、2次関数曲線成分は、走査レンズの反りや取付基準面に対する光軸の偏心、あるいは転写体の歪み等が要因とされるのに対し、高次関数曲線成分は複数のレンズにおける焦線曲がりの合成が要因とされ、2次関数曲線成分に比べウエイトが低かった。
このため、これまで高次関数曲線成分は補正残差分として扱われてきたが、上記した走査レンズの樹脂化に伴うレンズ面の歪み、内部屈折率の分布等による曲がり形状の複雑化や許容残差の縮小によって無視できなくなってきている。
そこで、本発明は、3次以上の高次関数曲線成分が存在していても容易に走査線の変化を補正することができ、色ずれや色変わりのない高品位な画像形成を行える画像形成装置、該画像形成装置に用いられる光走査装置、走査線変化補正方法の提供を、その主な目的とする。
複数の画像形成ステーションによって形成された画像を重ね合わせるタンデム方式の多色画像形成装置において、例えば走査ラインの曲がりを2次関数曲線成分と3次以上の高次関数曲線成分とに分けて、各々独立して補正できるようにすれば、単純な調整作業で全体としては高精度な曲がり調整が行えることとなる。これが本発明の趣旨である。
上記目的を達成するために、請求項1記載の発明では、光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、上記被走査面上における走査線の変化(例えば曲がり)を補正する走査線変化補正手段を備え、該走査線変化補正手段は、主走査方向に沿った複数部位に頂点を有する変化(例えば湾曲)成分(3次以上の高次関数曲線成分)の走査線の変化を発生させることができ、逆態様の走査線の変化を発生させることにより3次以上の高次関数曲線成を相殺することを特徴とする。
請求項2記載の発明では、光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、上記被走査面上における走査線の変化(例えば曲がり)を補正する走査線変化補正手段を備え、該走査線変化補正手段は、走査線の変化のうち、主走査方向一部位のみに頂点を有する変化(例えば湾曲)成分(2次関数曲線成分)を調整する第1の走査線変化補正手段と、主走査方向に沿った複数部位に頂点を有する変化成分(3次以上の高次関数曲線成分)を調整する第2の走査線変化補正手段からなることを特徴とする。
請求項3記載の発明では、請求項1又は2記載の光走査装置において、上記走査線変化補正手段は、少なくとも走査線の主走査方向一部位と他部位とが同一直線上に揃うように調整することを特徴とする。
請求項4記載の発明では、請求項2記載の光走査装置において、上記第1の走査線変化補正手段は、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の光軸を、入射光線に対して副走査方向に偏心させることにより、走査線を可変とすることを特徴とする。
請求項5記載の発明では、請求項4記載の光走査装置において、上記光学素子の取付姿勢を、副走査断面に直交する軸の周りに調整可能であることを特徴とする。
請求項6記載の発明では、請求項4記載の光走査装置において、上記光学素子への光線入射位置を、上記光軸に対して副走査断面内で調整可能であることを特徴とする。
請求項7記載の発明では、請求項2記載の光走査装置において、上記第2の走査線変化補正手段は、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の焦線を副走査方向に変化(例えば湾曲)させることにより、走査線を可変することを特徴とする。
請求項8記載の発明では、請求項2記載の光走査装置において、上記第1の走査線変化補正手段と第2の走査線変化補正手段が、上記結像光学系を構成する同一の光学素子に対して設けられていることにより走査線を可変とすることを特徴とする。
請求項9記載の発明では、光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の焦線が主走査方向に沿った複数部位で頂点を有するように変化(例えば湾曲)せしめる焦線可変手段を有し、該焦線可変手段により焦線の変化を補正することを特徴とする。
請求項10記載の発明では、請求項9記載の光走査装置において、上記焦線可変手段は、上記光学素子よりも曲げ剛性が高く、上記光学素子の主走査方向一部位と他部位とを副走査方向に支える支持点を有する支持部材と、上記支持点間において上記光学素子に当接し上記支持点間の光学素子の母線形状を副走査方向に変化(例えば湾曲)させる調整部材を有し、上記光学素子に一体的に設けられていることを特徴とする。
請求項11記載の発明では、請求項9記載の光走査装置において、上記焦線可変手段は、上記光学素子よりも曲げ剛性が高く、上記光学素子の主走査方向一部位と他部位とを副走査方向の一方側から支える支持点を有する支持部材と、上記支持点間において上記光学素子を副走査方向の他方側から上記支持点側へ付勢する付勢部材と、上記支持点間において上記光学素子に上記支持点と同一側から当接し上記支持点間の光学素子の母線形状を副走査方向に変化(例えば湾曲)させる調整部材とを有し、上記光学素子に一体的に設けられていることを特徴とする。
請求項12記載の発明では、請求項9記載の光走査装置において、上記光学素子の取付姿勢を、光軸と平行な軸の周りに調整することにより、上記被走査面上における走査線の傾きを補正することを特徴とする。
請求項13記載の発明では、請求項1記載の光走査装置において、上記走査線変化補正手段が、走査線の変化を電気的に調整するものであることを特徴とする。
請求項14記載の発明では、請求項2記載の光走査装置において、上記第1の走査線変化補正手段と第2の走査線変化補正手段のうち、少なくとも一方が走査線の変化(例えば曲がり)を電気的に調整することを特徴とする。
請求項15記載の発明では、請求項13又は14記載の光走査装置において、上記走査線の変化の電気的調整は、基準となる走査線に対するずれ量に応じて主走査領域を分割し、各分割領域毎に書き出しタイミングがずれるように画像データの記録位置をシフトさせることを特徴とする。
請求項16記載の発明では、請求項1乃至15のうちの何れかに記載の光走査装置において、上記結像光学系を構成する光学素子のうち、走査線の変化調整の対象となる光学素子は、該光学素子の近傍で複数の光源からの光ビームが交差するように配置されていることを特徴とする。
請求項17記載の発明では、複数の像担持体上に光走査装置により静電潜像を形成するとともに、該静電潜像を像担持体毎に異なる色トナーで現像し、各像担持体上に形成されたトナー像を転写体上に担持されたシート状記録媒体に順次重ねて転写することによりカラー画像を得る画像形成装置において、上記光走査装置が、請求項1乃至16のうちの何れかに記載のものであることを特徴とする。
請求項18記載の発明では、複数の像担持体上に光走査装置により静電潜像を形成するとともに、該静電潜像を像担持体毎に異なる色トナーで現像し、各像担持体上に形成されたトナー像を順次中間転写体上に重ねて転写した後、シート状記録媒体に一括転写することによりカラー画像を得る画像形成装置において、上記光走査装置が、請求項1乃至16のうちの何れかに記載のものであることを特徴とする。
請求項19記載の発明では、結像光学系により被走査面上に結像する走査線の変化(例えば曲がり)を、上記結像光学系を構成する光学素子に対して機械的に力を加えて補正する走査線変化補正方法において、走査線の変化を、主走査方向一部位のみに頂点を有する変化(例えば湾曲)成分(2次関数曲線成分)と、主走査方向に沿った複数部位に頂点を有する変化(例えば湾曲)成分(3次以上の高次関数曲線成分)とに分け、それぞれ個別に補正することを特徴とする。
請求項20記載の発明では、請求項19記載の走査線変化補正方法において、補正対象となる上記光学素子の母線が、走査線の変化(例えば曲がり)に対して反転した形状になるように調整して変化を相殺することを特徴とする。
請求項1記載の発明によれば、光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、上記被走査面上における走査線の変化を補正する走査線変化補正手段を備え、該走査線変化補正手段は、主走査方向に沿った複数部位に頂点を有する変化成分(3次以上の高次関数曲線成分)の走査線の変化を発生させることができ、逆態様の走査線の変化を発生させることにより3次以上の高次関数曲線成を相殺することとしたので、従来補正が困難であった変化成分(例えば湾曲成分)を確実に補正することができ、生産性を落とすことなく、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項2記載の発明によれば、光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、上記被走査面上における走査線の変化を補正する走査線変化補正手段を備え、該走査線変化補正手段は、走査線の変化のうち、主走査方向一部位のみに頂点を有する変化成分(2次関数曲線成分)を調整する第1の走査線変化補正手段と、主走査方向に沿った複数部位に頂点を有する変化成分(3次以上の高次関数曲線成分)を調整する第2の走査線変化補正手段からなることとしたので、比較的大きな可変範囲が必要であるが、全体的な調整でよい2次関数曲線成分と、可変範囲は小さくてよいが、局所的な調整が必要な高次関数曲線成分とに分けて、各々に最適な補正方法を選択することで、従来、補正が困難であった変化成分(例えば湾曲成分)まで確実に補正が行え、調整作業の効率も向上する。
従って、生産性を落とすことなく、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項3記載の発明によれば、請求項1又は2記載の光走査装置において、上記走査線変化補正手段は、少なくとも走査線の主走査方向一部位と他部位とが同一直線上に揃うように調整することとしたので、2次関数曲線成分が確実に相殺され、例えば曲がり形状をより真直に近づけることができ、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項4記載の発明によれば、請求項2記載の光走査装置において、上記第1の走査線変化補正手段は、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の光軸を、入射光線に対して副走査方向に偏心させることにより、走査線を可変とすることとしたので、確実に2次関数曲線成分の焦線変化(例えば曲がり)を発生することができ、よって例えば曲がり形状をより真直に近づけることができ、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項5記載の発明によれば、請求項4記載の光走査装置において、上記光学素子の取付姿勢を、副走査断面に直交する軸の周りに調整可能であることとしたので、受けの高さ制御のみで実現でき、複雑な調整機構を必要とせず、低コストで、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項6記載の発明によれば、請求項4記載の光走査装置において、上記光学素子への光線入射位置を、上記光軸に対して副走査断面内で調整可能であることとしたので、上流側に配備した折返しミラーの取付け角度制御のみで実現できるので、複雑な調整機構を必要とせず、低コストで、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項7記載の発明によれば、請求項2記載の光走査装置において、上記第2の走査線変化補正手段は、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の焦線を副走査方向に変化させることにより、走査線を可変することとしたので、2次曲線成分を補正して残った局所的な変化成分(例えば曲がり成分)を確実に補正することができ、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項8記載の発明によれば、請求項2記載の光走査装置において、上記第1の走査線変化補正手段と第2の走査線変化補正手段が、上記結像光学系を構成する同一の光学素子に対して設けられていることにより走査線を可変とすることとしたので、補正機構を集約でき、低コストで、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項9記載の発明によれば、光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の焦線が主走査方向に沿った複数部位で頂点を有するように変化せしめる焦線可変手段を有し、該焦線可変手段により焦線の変化を補正することとしたので、高次関数曲線成分が確実に相殺され、例えば曲がり形状を比較的容易に補正できる2次関数曲線状の単純な成分に落とし込むことができるので、より真直に近づけることができ、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項10記載の発明によれば、請求項9記載の光走査装置において、上記焦線可変手段は、上記光学素子よりも曲げ剛性が高く、上記光学素子の主走査方向一部位と他部位とを副走査方向に支える支持点を有する支持部材と、上記支持点間において上記光学素子に当接し上記支持点間の光学素子の母線形状を副走査方向に変化させる調整部材を有し、上記光学素子に一体的に設けられていることとしたので、光学素子の主走査に沿った外形形状を変化(例えば湾曲)させることができ、複雑な形状であっても焦線を簡単、かつ確実に補正することができ、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項11記載の発明によれば、請求項9記載の光走査装置において、上記焦線可変手段は、上記光学素子よりも曲げ剛性が高く、上記光学素子の主走査方向一部位と他部位とを副走査方向の一方側から支える支持点を有する支持部材と、上記支持点間において上記光学素子を副走査方向の他方側から上記支持点側へ付勢する付勢部材と、上記支持点間において上記光学素子に上記支持点と同一側から当接し上記支持点間の光学素子の母線形状を副走査方向に変化させる調整部材とを有し、上記光学素子に一体的に設けられていることとしたので、光学素子の主走査に沿った外形形状を変化(例えば湾曲)させることができ、複雑な形状であっても焦線を簡単、かつ確実に補正することができ、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項12記載の発明によれば、請求項9記載の光走査装置において、上記光学素子の取付姿勢を、光軸と平行な軸の周りに調整することにより、上記被走査面上における走査線の傾きを補正することとしたので、光学素子取付けの傾き成分を同時に補正できるとともに、傾きに伴う曲がり形状の複雑化を排除でき、よって補正残差を最小限にできて色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項13記載の発明によれば、請求項1記載の光走査装置において、上記走査線変化補正手段が、走査線の変化を電気的に調整するものであることとしたので、調整作業上の人為的な優劣(熟練)の存在を極力排除でき、補正の均一化、精度向上、迅速化を図ることができる。
請求項14記載の発明によれば、請求項2記載の光走査装置において、上記第1の走査線変化補正手段と第2の走査線変化補正手段のうち、少なくとも一方が走査線の変化を電気的に調整することとしたので、調整作業上の人為的な優劣(熟練)の存在を極力排除でき、補正の均一化、精度向上、迅速化を図ることができる。
請求項15記載の発明によれば、請求項13又は14記載の光走査装置において、上記走査線の変化の電気的調整は、基準となる走査線に対するずれ量に応じて主走査領域を分割し、各分割領域毎に書き出しタイミングがずれるように画像データの記録位置をシフトさせることとしたので、調整作業上の人為的な優劣(熟練)の存在を極力排除でき、補正の均一化、精度向上、迅速化を図ることができる。
請求項16記載の発明によれば、請求項1乃至15のうちの何れかに記載の光走査装置において、上記結像光学系を構成する光学素子のうち、走査線の変化調整の対象となる光学素子は、該光学素子の近傍で複数の光源からの光ビームが交差するように配置されていることとしたので、補正の一律化による精度の向上を図ることができる。
請求項17記載の発明によれば、複数の像担持体上に光走査装置により静電潜像を形成するとともに、該静電潜像を像担持体毎に異なる色トナーで現像し、各像担持体上に形成されたトナー像を転写体上に担持されたシート状記録媒体に順次重ねて転写することによりカラー画像を得る画像形成装置において、上記光走査装置が、請求項1乃至16のうちの何れかに記載のものであることとしたので、請求項1乃至16のうちの何れかに記載の効果を得ることができることに加え、画像形成ステーション間の走査ラインの変化(例えば曲がり)偏差分が局所的に凹凸をもった複雑な形状であっても、基準となる画像形成ステーションの走査ライン形状に沿うように、偏差分を確実に補正できるので、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項18記載の発明によれば、複数の像担持体上に光走査装置により静電潜像を形成するとともに、該静電潜像を像担持体毎に異なる色トナーで現像し、各像担持体上に形成されたトナー像を順次中間転写体上に重ねて転写した後、シート状記録媒体に一括転写することによりカラー画像を得る画像形成装置において、上記光走査装置が、請求項1乃至16のうちの何れかに記載のものであることとしたので、請求項1乃至16のうちの何れかに記載の効果を得ることができることに加え、画像形成ステーション間の走査ラインの変化(例えば曲がり)偏差分が局所的に凹凸をもった複雑な形状であっても、基準となる画像形成ステーションの走査ライン形状に沿うように、偏差分を確実に補正できるので、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項19記載の発明によれば、結像光学系により被走査面上に結像する走査線の変化を、上記結像光学系を構成する光学素子に対して機械的に力を加えて補正する走査線変化補正方法において、走査線の変化を、主走査方向一部位のみに頂点を有する変化成分(2次関数曲線成分)と、主走査方向に沿った複数部位に頂点を有する変化成分(3次以上の高次関数曲線成分)とに分け、それぞれ個別に補正することとしたので、従来、補正が困難であった変化(例えば湾曲)成分まで確実に補正が行え、調整作業の効率も向上する。
従って、生産性を落とすことなく、色ずれや色変わりのない高品位な画像形成を行うことができる。
請求項20記載の発明によれば、請求項19記載の走査線変化補正方法において、補正対象となる上記光学素子の母線が、走査線の変化に対して反転した形状になるように調整して変化を相殺することとしたので、補正作業が極めて単純、容易となる。
以下、本発明の第1の実施形態を図1乃至図21基づいて説明する。
まず、図19に基づいて光走査装置900を搭載したカラー画像形成装置920の構成の概要を説明する。
カラー画像形成装置920は、中間転写体としての中間転写ベルト105を有しており、その移動方向に沿って像担持体としての感光体ドラム101、102、103、104を備えた各画像形成ステーションが並列配置されている。
感光体ドラム101を有する画像形成ステーションではイエロー(Y)のトナー画像が、感光体ドラム102を有する画像形成ステーションではマゼンタ(M)のトナー画像が、感光体ドラム103を有する画像形成ステーションではシアン(C)のトナー画像が、感光体ドラム104を有する画像形成ステーションではブラック(Bk)のトナー画像がそれぞれ形成される。
イエローのトナー画像を形成する画像形成ステーションを代表して説明すると、感光体ドラム101の周囲には、感光体ドラム101の表面を一様に帯電する帯電チャージャ902Y、光走査装置900により形成された静電潜像に帯電したトナーを付着して顕像化する現像ローラ903Yを備えた現像装置904Y、中間転写ベルト105の内側に設けられ、感光体ドラム101上のトナー画像を中間転写ベルト105に一次転写するための図示しない一次転写ローラ、転写後感光体ドラム101上に残ったトナーを掻き取り備蓄するクリーニング手段905Yが配置されている。他の画像形成ステーションにおいても同様の構成を有しているので、色別の欧文字を付して区別し、説明は省略する。なお、以下の説明においては色別の欧文字を付さずに共通構成として説明する。
感光体ドラム101、102、103、104へは、後述するように、ポリゴンミラー1面毎の走査により複数ライン(本実施形態では4ライン)同時に潜像形成が行われる。
中間転写ベルト105は、3つのローラ906a、906b、906c間に掛け回されて支持されており、反時計回り方向に回転される。イエロー、マゼンタ、シアン、ブラックの各トナー画像が中間転写ベルト105上にタイミングを合わせて順次転写され、重ね合わされてカラー画像が形成される。
シート状記録媒体としての記録紙10は、給紙トレイ907から給紙コロ908により最上のものから順に1枚ずつ給紙され、レジストローラ対909により副走査方向の記録開始のタイミングに合わせて転写部位へ送り出される。
中間転写ベルト105上の重ね合わされたカラー画像は、転写部位で2次転写手段としての2次転写ローラ913により記録紙10上に一括転写される。カラー画像を転写された記録紙10は、定着ローラ910aと加圧ローラ910bを有する定着装置910へ送られ、ここでカラー画像を定着される。定着を終えた記録紙10は排紙ローラ対912により画像形成装置本体の上面に形成された排紙トレイ911に排出されてスタックされる。
図1に示すように、光走査装置900は、イエローとマゼンタの画像形成ステーションに対応する光走査ユニット900Aと、シアンとブラックの画像形成ステーションに対応する光走査ユニット900Bから構成され、走査方向を揃えて並置した方式となっている。
4つの感光体ドラム101、102、103、104は中間転写ベルト105の移動方向に沿って等間隔で配列され、順次異なる色のトナー像を転写して重ね合わせることでカラー画像を形成する。
図示するように各感光体ドラム101、102、103、104を走査する光走査装置900は光走査ユニット900A、900Bとしてそれぞれ一体的に構成され、回転多面鏡としてのポリゴンミラー106により光ビームを走査する。
ポリゴンミラー106の回転方向は同一であるので、各々の書き出し開始位置が一致するように画像を書き込んでいく。
本実施形態では、各感光体ドラム101、102、103、104に対して後述する半導体レーザをそれぞれ一対配備し、副走査方向に記録密度に応じて1ラインピッチ分ずらして走査することにより、2ラインずつ同時に走査するようにしている。
各光走査ユニット900A、900Bの構成は同一であるので、ここでは、その一方について説明する。各光源ユニット107、108からのビーム201、202は、光源ユニット毎に射出位置が副走査方向に異なる部位、本実施形態では光源ユニット107と108との射出位置が所定高さ(ここでは6mm)だけ異なるよう配備し、光源ユニット108からのビームは入射ミラー111により折り返し、直接ポリゴンミラー106へと向かう光源ユニット107からのビームに主走査方向を近接させてポリゴンミラー106に入射される。
シリンダレンズ113、114は、一方を平面、もう一方を副走査方向に共通の曲率を有し、ポリゴンミラー106の偏向点までの光路長が等しくなるように配備してあり、各光ビーム201、202は偏向面で主走査方向に線状となるように収束され、後述するトロイダルレンズとの組み合わせで、偏向点と感光体面上とが副走査方向に共役関係とすることで面倒れ補正光学系をなす。
液晶偏向素子117は、副走査方向に電位分布を与えることで液晶の配向が変化し、屈折率分布を発生することで光線の方向を傾け、基準となる光源ユニット107からのビーム201に対する相対的な走査位置を調整する。
ポリゴンミラー106は6面ミラーで、本実施形態では2段に構成され、偏向に用いていない中間部をポリゴンミラー106の内接円より若干小径となるように溝を設けて風損を低減した形状としている。
ポリゴンミラー106の1層の厚さは約2mmである。なお、上下のポリゴンミラー106の位相は同一である。fθレンズ120も2層に一体成形、または接合され、各々、主走査方向にはポリゴンミラー106の回転に伴って感光体面上でビームが等速に移動するようにパワーを持たせた非円弧面形状となし、各ビーム毎に配備されるトロイダルレンズ122、123とにより各ビームを感光体面上にスポット状に結像し、潜像を記録する。
各色ステーション(画像形成ステーション)は、ポリゴンミラー106から被走査面としての感光体面に至る各々の光路長が一致するように、また、等間隔で配列された各感光体ドラム101、102、103、104に対する入射位置、入射角が等しくなるように複数枚、本実施形態では1ステーションあたり3枚ずつの折り返しミラーが配置される。
各色ステーション毎に光路を追って説明すると、基準となる光源ユニット107からのビーム201は、シリンダレンズ113を介し、ポリゴンミラー106の上段で偏向された後、fθレンズ120の上層を通過し、折り返しミラー126で反射されてトロイダルレンズ122を通過し、折り返しミラー127、128で反射されて感光体ドラム102に導かれ、第2の画像形成ステーションとしてマゼンタ画像を形成する。
光源ユニット108からのビーム202は、液晶偏向素子117、シリンダレンズ114を介して入射ミラー111で反射され、ポリゴンミラー106の下段で偏向された後、fθレンズ120の下層を通過し、折り返しミラー129で反射されてトロイダルレンズ123を通過し、折り返しミラー130、131で反射されて感光体ドラム101に導かれ、第1の画像形成ステーションとしてイエロー画像を形成する。
もう一方の光走査ユニット900Bも同様な構成で、説明は省くが、基準となる光源ユニット109からのビームは感光体ドラム104に導かれ、第4の画像形成ステーションとしてブラック画像を、また、光源ユニット110からのビームは感光体ドラム103に導かれ、第3の画像形成ステーションとしてシアン画像を形成する。
図3には、トロイダルレンズに保持される支持筐体の構成を示す。
トロイダルレンズ305(上記トロイダルレンズ122、123と同一)は、樹脂製でレンズ部を囲うように上下にリブ306a、306bが形成され、中央部の上下には位置決め用の突起307a、307bが形成されている。
トロイダルレンズ305を支持する支持部材としての支持板301は板金でコの字状に形成され、トロイダルレンズ305の下側の突起307bを立曲げ部に形成した切欠311に係合し、また、下側のリブ306bの下面を主走査における一部位(又は一箇所)としての中央付近(中央部)と他部位(又は他箇所)としての両端部との3点で支持点としての立曲げ部310で受けている。
付勢部材としての一対の板ばね303により上側のリブ306aの上面から付勢して両端部を押圧し、また、付勢部材としての板ばね302により下側のリブ306bの内側(上面)に引っ掛けて中央部を押圧している。これにより、上記受け部としての3つの立曲げ部310にトロイダルレンズ305の下面が確実に当接して保持される。
板ばね303は、トロイダルレンズ305を支持板301に重ね合わせた状態で外側より嵌め込み、一端を開口313から内側に出して開口314に挿入して固定する。板ばね302は曲げ部318の庇部を、図5に示すように、下側のリブ306bの後側に引っ掛け、曲げ部317の開口を下側の突起307bに係合して固定する。
中間部にはねじ穴312に調整部材としての調節ねじ308を螺合し、板ばね302を同様に外側より嵌め込んで下側のリブ306bの内側に引っ掛けて同様に固定し、調節ねじ308の先端に下側のリブ306bの下面が当接するように付勢する。板ばね302の穴319は調節ねじ308を挿通する穴である。
トロイダルレンズ305は長尺で、剛性が低いため、僅かな応力が加わるだけで変形(反り)を生じ易く、また、周囲温度の変化に伴って上下に温度分布があると熱膨張差によっても変形してしまうが、このように支持板301に沿わせることで形状を安定的に保ち、後述する傾け調整の際に局部的に応力が加わってもトロイダルレンズ305を変形させることがないように、すなわち母線の直線性を保持するようにしている。
なお、本実施形態では板金による塑性加工により支持板301を形成したが、曲げ剛性がトロイダルレンズ305より大きければ材質はいかようであっても良い。
支持板301を装着したトロイダルレンズ305は、レンズ中央部に形成された上側の突起307aをハウジング200の底面に設けられた凹部250に嵌合主走査方向での位置決めをなされている。
ハウジング200の底面から突出した副走査方向の支持点251及び底面に螺合した調整部材としての調節ねじ353の先端を支持板301とは反対側の上側のリブ306aの上面に突き当てている。主走査方向の他端側では、ハウジング200側に固定されたステッピングモータ315のシャフトに形成された送りねじ323に螺合した可動筒316の先端が支持板301に突き当てられている。
つまり、支持板301を装着したトロイダルレンズ305は、トロイダルレンズ305上面のP1、P2、支持板301の上面のP3の3点で受け、板ばね322、325で付勢されて保持される。
従って、ステッピングモータ315の回転により可動筒316が副走査方向(トロイダルレンズの高さ方向)に変位し、ステッピングモータ315の正逆回転に追従してトロイダルレンズ305をP1、P2を結ぶ線を回転軸として傾けることができる。
ここで、P1からP2までの主走査方向における距離がP3までの距離に対し十分小さければ、ほぼ光軸と平行な軸を回転軸として回動調節(図4に示すγ方向の回動調節)しているとみなせ、それに伴って副走査方向におけるトロイダルレンズ305の母線354が傾いてトロイダルレンズ305の結像位置としての走査ラインが傾けられる。
本実施形態では、上記調整構成が、第1、第3の画像形成ステーションのトロイダルレンズに回転支点端の方向を揃えて配備され、光走査ユニット毎に基準となる第2、第4画像形成ステーションの走査ラインにもう一方の走査ラインが平行となるように傾き調整が行われる。
さらに、P1とP2とを光軸方向に隔てて配備していることで(間隔j)、調節ねじ353を出し入れ(回転操作)すれば、副走査断面に直交する軸を回転軸として回動調節(図5に示すβ方向の回動調節)でき、トロイダルレンズ305の光軸が傾いて、従来例にも開示されているように、被走査面において2次関数曲線状の走査線の変化の一態様としての曲がりを発生させることができる。
図4は、トロイダルレンズ305の装着状態を光軸方向からみた図である。トロイダルレンズ305はハウジング200の下面から組み込まれるため、図面上、上側がハウジング200の底面となっている。
トロイダルレンズ305は、主走査(長手)方向における中央部と両端部を立曲げ部310の縁で、その中間部を調節ねじ308の先端で支持されている。調節ねじ308の突出し量が立曲げ部310に足りない場合には、トロイダルレンズ305の母線354は、板ばね302で下側に引っ張られることで、見かけ上W型となる。
逆に突出し量が立曲げ部310を超えるとM型となる。なお、調節ねじ308の突出し量が立曲げ部310と等しいときには、母線354は真直である。従って、これらの調節ねじ308を調整することによってトロイダルレンズ305の焦線が副走査方向に湾曲され、3次関数曲線成分、4次関数曲線成分の走査線の曲がりを発生させることができる。
このことは、裏を返せば、3次関数曲線成分、4次関数曲線成分の走査ラインの曲がりが発生している場合には、これを相殺するように走査線の曲がりを発生させることで、走査ラインを真っ直ぐにすることができるということになる。
上記した支持板301、ハウジング200、調節ねじ353、板ばね302、板ばね303、板ばね322、325等により第1の走査線変化補正手段としての第1の走査線曲がり補正手段が構成され、実質的に調節ねじ353によりその機能が果たされる。
また、上記した支持板301、ハウジング200、調節ねじ308、板ばね302、板ばね303、板ばね322、325等により第2の走査線変化補正手段又は焦線可変手段としての第2の走査線曲がり補正手段又は焦線湾曲手段が構成され、実質的に調節ねじ308によりその機能が果たされる。
図14は、本実施形態における走査ラインの曲がり補正の様子を示すものである。太い実線で示す走査線の初期の曲がりは、図14(a)に示すように、2次関数曲線成分とそれ以上の高次関数曲線成分とを含んだ形状となっている。
ここで、上記したように調節ねじ353を調節すると中央部が下がり、両端部が上がるように曲がり形状が変化し、W型またはM型となるので(ここではM型を例示)、図14(b)に示すように、両端部と中央部とが同一直線にのるまで補正する。この補正は2次関数曲線成分に対する補正である。
さらに、調節ねじ308により、図14(b)に示すように、左右の出っ張った部分が下がるように補正する。左右の出っ張った部分は、2次関数曲線成分調整後の走査ラインの曲がり(高次関数曲線成分)である。この際、中央部と両端部とは、立曲げ部310で固定されているので調節ねじ308を出し入れしてもほとんど変位しない。図14(b)において、固定点は立曲げ部310に相当し、可変点は調節ねじ308が作用する位置に対応する。
従って、トロイダルレンズ305の母線354を図14(b)で破線に示すように、曲がりと反転した形状になるよう調節すれば、元の曲がりは相殺され、走査ラインを直線に近づけることができる。この補正は3次以上の高次関数曲線成分に対する補正である。
このように、走査線の曲がりを、2次関数曲線成分と3次以上の高次関数曲線成分とに分けて捉え、それぞれに対応した手段により個別に補正することにより、複雑さを招くことなく容易且つ確実に補正を行うことができ、結果として補正全体においては精度を高めることができる。
補正(調整)に要する時間を短縮できるので、製造ラインにおいては画像形成装置1台当たりの生産に要するエネルギー消費を削減することができ、ひいては製造コストの低減に寄与する。
製造ラインの特性により2次関数曲線成分が無視できる程度のものである場合には、3次以上の高次関数曲線成分に対応した第2の走査線曲がり補正手段のみを搭載してもよい。
本実施形態では製造現場での補正を念頭においているが、走査線の曲がりを検出することが製造現場と同レベルでできる携帯用ないし可搬性の検出装置がある場合には、製造後においてもサービスマンの対応により補正が可能であり、製品出荷後に使用環境条件等の変動により走査線の曲がりが生じても対応でき、色ずれや色変わりのない高品位な画像形成を長期に亘って行うことができる。
本実施形態では、同一のトロイダルレンズ305に作用して、2次関数曲線状の走査線の曲がり発生、及び3次以上の高次関数曲線状の走査線の曲がり発生が可能な構成とし、全てのトロイダルレンズに配備され、組付時に各画像形成ステーションの走査ラインが真直になるように合わせている。
これに限らず、例えば、2次関数曲線状の走査線の曲がり発生を、fθレンズ120に作用して行うようにし、高次関数曲線状の走査線の曲がり発生とは別のレンズに作用するように分離してもよい。
また、上記のように、レンズに入射する光線に対して光軸を副走査方向に偏心させるのではなく、レンズの光軸に対して入射する光線を偏心させても同様な効果が得られる。
つまり、図1でいえば、トロイダルレンズ122、123の上流側に配備される折返しミラー126、129を副走査断面に直交する軸を回転軸として回動調節(図5に示すβ方向の回動調節)すればよい。
図16は、上記した光学系の副走査断面を示す図であるが、トロイダルレンズ123の近傍で、光源ユニット107の各光源501、502からのビーム201が交差する光路となっている。
これは、各ビームがトロイダルレンズ123で副走査方向に離れた部位を通過すると、上記した傾き補正によりトロイダルレンズ123を傾けられた際、ビーム間で主走査倍率の差が発生したり、曲がりの形状がビーム間で異なることで上記したレンズ形状を操作する方法では一律に補正するのが難しくなるためで、トロイダルレンズ123で各ビームを近接させることでビーム間の差異をなるべく発生させないよう配慮している。
図13は、走査ラインの傾きを電気的に揃える(調整する)例を示す。各光走査ユニット内では上記したように、基準となる画像形成ステーションに対し他の画像形成ステーションの傾きを機械的な補正機構により合わせているが、光走査ユニット間では各光走査ユニットの基準となる画像形成ステーション同士の傾きを電気的に合わせるようにしている。
いま、基準となる画像形成ステーション同士の傾きの差がSだけあったとすると、走査ラインピッチPで割った余りΔSが最小となるように係数kを定めて主走査領域をk+1分割し、各分割領域毎に書き出しタイミングがずれるよう画像データの記録位置をシフトする。
例えば、実施例ではk=3であるから、1ラインに相当する主走査に沿った画像データを、図13(b)に示すように4等分し、ラインバッファに記憶する際に、左から第2の領域では1ライン分、第3の領域では2ライン分、第4の領域では3ライン分というように記録するタイミングを順次ずらして入力する。
つまり、元々のラインにおける画像データは、第2の領域では1ライン前の走査で記録され、第4の領域では3ライン前の走査で記録されるように、画像データの構成を組替える。
なお、この境界部で発生するジャギー(階段状のギザギザ)は徐々にパルス幅を可変する等のスムージング技術により目立ち難くすることができる。
同様に、走査線曲がりの補正にも適用できる。
つまり、発生している走査線曲がりを折れ線で近似すれば傾き成分となるので、上記実施例と同様に扱うことができ、各傾き成分毎に分割数を設定してやればよい。
従って、上述した第1の走査線曲がり補正手段と第2の走査線曲がり補正手段の少なくとも一方を上記電気的調整方式に代えてもよい。すなわち、1つの光走査ユニット内において、機械的補正手段と電気的補正手段を混在させてもよい。
図1に示すように、画像記録領域の走査開始側及び走査終端側には、光走査ユニット毎にフォトセンサを実装した基板138、139及び140、141が配備され、各画像形成ステーションにおいて走査されたビームを検出する。
本実施形態では、基板138、140は同期検知センサとなし、この検出信号を基に各々書き込み開始のタイミングを図るように共用している。
一方、基板139、141は終端検知センサをなし、同期検知センサとの検出信号の時間差を計測することで走査速度の変化を検出し、検出された走査速度の変化に対して、各半導体レーザを変調する画素クロックの基準周波数を反比例倍して再設定することで、各画像形成ステーションによって記録された画像の中間転写ベルト105上での全幅倍率を安定的に保持することができる。
また、いずれかのセンサを図7に示すように、主走査方向に垂直なフォトダイオード152と非平行なフォトダイオード153とで構成することにより、フォトダイオード152からフォトダイオード153に至る時間差Δtを計測することで、光ビームの副走査位置のずれΔyを検出できる。
副走査位置のずれΔyはフォトダイオード153の傾斜角γ、光ビームの走査速度Vを用いて
Δy=(V/tanγ)・Δt
で表され、実施例では、Δtが常に一定となるように、後述する光軸偏向手段、またはポリゴンミラー106同士の回転位相を制御することで、各色画像の副走査レジストがずれないよう照射位置を保持することができる。
さらに、上記センサを走査開始側と走査終端側のいずれにも配備するようにすれば、各端の副走査位置ずれの差、つまり走査線の傾きが検出できる。
図2は、光源ユニットの斜視図を示す。全ての光源ユニットは同一構成である。半導体レーザ501、502及びカップリングレンズ503、504は、各色走査手段毎に射出軸に対して主走査方向に対称に配備され、半導体レーザ501、502はパッケージの外周を嵌合して各々ベース部材505、506に裏側より圧入される。
そして、ホルダ部材507の裏面に、各々3点を表側から挿通したねじ515を螺合して当接させて保持し、カップリングレンズ503、504はホルダ部材507に相反する方向に開くよう形成したV溝部508、509に外周を突き当て、板ばね510、511により内側に寄せてねじ516で固定される。
この際、半導体レーザ501、502の発光点がカップリングレンズ503、504の光軸上になるようベース部材505、506の当接面(光軸に直交する面)上での配置を、また、カップリングレンズ503、504からの射出光が平行光束となるようV溝上(光軸上)での位置を調節して固定している。
各々の射出光の光軸は射出軸に対して互いに交差する方向となるよう傾けられ、本実施形態ではこの交差位置をポリゴンミラー106の反射面の近傍となるように支持部材としてのプリント基板512の傾斜を設定している。
駆動回路が形成されたプリント基板512は、ホルダ部材507に立設した台座にネジ固定により装着し、各半導体レーザ501、502のリード端子をスルーホールに挿入してハンダ付けすることで光源ユニット107、108、109、110が一体的に構成される。
光源ユニットは、ハウジング200の壁面に高さを異ならしめて形成した係合穴に各ホルダ部材507の円筒部513を挿入して位置決めし、当接面514を突き当ててネジ止めされる。
この際、円筒部513を基準として傾け量γを調整することで、ビームスポット間隔を記録密度に応じた走査ラインピッチPに合わせることができる。
図17、図18は光走査装置が収容されるハウジング200の構成を示す。
上記した光源ユニット109、110、ポリゴンミラー106、fθレンズ120等の光学系を構成する光学素子は各々ハウジング201の所定の部位に配置を保って装着され、カバー202で密閉される。
図示しないが、トロイダルレンズ等はハウジング200の下側より装着され、ユニットに一体的に設けられている。本実施形態ではイエロー、マゼンタのステーションを1ユニット、シアン、ブラックのステーションを1ユニットとして、別々のハウジング200に収容される。
ハウジング200は樹脂で成形され、外壁には4箇所の支持部が形成される。前側の一対の支持部205には、位置決めピン203とねじの挿通穴204が形成され、本体フレームを構成する支持部材208に位置決めピン203を基準として装着され、ねじ止めされる。
一方、ポリゴンモータ側の一対の支持部206は板ばね207で上から押え付けるのみで設置平面上で拘束しない。
従って、中間転写ベルト105の搬送方向に自由膨張を可能とし、ポリゴンモータの発熱に伴うハウジング200の変形が発生し難くしている。支持部材208は各光源ユニットに共通であり、板金で形成され、感光体ドラム101、102、103、104との間を仕切るように配置され、各ビームは開口209を通して感光体ドラム101、102、103、104を照射する。
次に、図8に基づいて書込制御回路の動作について説明する。まず、画素クロック生成部401であるが、カウンタ403では、高周波クロック生成回路402で生成された高周波クロックVCLKをカウントし、比較回路404ではこのカウント値と、デューティ比に基いて予め設定される設定値L、及び画素クロックの遷移タイミングとして外部から与えられ、位相シフト量を指示する位相データHとを比較し、カウント値が上記設定値Lと一致した際に画素クロックPCLKの立下りを指示する制御信号lを、位相データHと一致した際に画素クロックPCLKの立上がりを指示する制御信号hを出力する。
この際、カウンタ403は制御信号hと同時にリセットされ再び0からカウントを行うことで、連続的なパルス列が形成できる。
こうして、1クロック毎に位相データHを与え、順次パルス周期が可変された画素クロックPCLKを生成する。本実施形態では、画素クロックPCLKは、高周波クロックVCLKの8分周とし、1/8クロックの分解能で位相が可変できるようにしている。
図9は、1/8クロックだけ位相を遅らせた例を示している。
デューティ50%とすると、設定値L=3が与えられ、カウンタ403で4カウントされ、画素クロックPCLKを立ち下げる。1/8クロック位相を遅らせるとすると、位相データH=6が与えられ、7カウントで立上げる。同時にカウンタ403がリセットされるので、4カウントで再び立ち下げる。
つまり、隣接するパルス周期が1/8クロック分縮められたことになる。
こうして生成された画素クロックPCLKは、光源駆動部405に与えられ、画素クロックPCLKを基準に、画像処理部406により読み出された画像データを各画素に割り当てて変調データを生成し、半導体レーザ501、502を駆動する。
このように位相をシフトする画素を所定間隔で配置することによって、走査方向に沿った部分的な倍率誤差の歪を補正することができる。
上述した電気的走査ラインの補正は、画像処理部406によって制御される。ここでは、ベクタ画像をラスタ展開し、展開された画像を主走査方向に分割してシフトさせ、新たなラスタ画像を形成することにより補正を行う。
本実施形態では、図11に示すように、主走査領域を複数の区間に分割し、分割区間毎に位相をシフトする画素の間隔とシフト量を以下に示す如く設定し位相データとして与えている。
いま、主走査位置xに対する倍率の変化をL(x)とすると、ビームスポット位置ずれの変化M(x)はその積分値で表される。
M(x)=∫L(x)dx
分割区間の始点と終点でビームスポット位置ずれが0となるように補正することを想定すると、任意の分割区間の倍率の変化に伴う分割区間幅のずれをΔm、位相シフトの分解能をσ(一定)、分割区間内の画素数をNとすると、位相をシフトする画素の間隔は、
D≒N/(Δm/σ) 但し、Dは整数
で示され、D画素毎にσずつ位相をシフトすればよい。本実施形態では、σは1/8画素となる。
従って、この場合、分割区間のちょうど中間位置でビームスポット位置ずれ残差が最大となるが、この残差が許容範囲内となるように各分割位置、分割区間の数を決めてやればよい。
図10は、本実施形態におけるビームスポット位置ずれ制御を示すブロック図である。
上記したように、各光走査ユニット内では基準となる画像形成ステーションに対し他の画像形成ステーションの走査位置を合わせ、光走査ユニット間では各光走査ユニットの基準となる画像形成ステーション同士の画像の重なり具合を検出し、一方の光走査ユニットについて書き出しのタイミングや画素クロックの周期を一律に補正するようにしている。
画像の重なり具合は、各光走査ユニットの基準ステーションで中間転写ベルト105上に形成したトナー像の検出パターンを読み取ることで、主走査倍率、副走査レジスト、走査ラインの傾きを一方のステーションを基準として相対的なずれとして検出し、定期的に補正制御が行なわれる。
補正制御は、例えば、装置の立ち上げ時やジョブ間等のタイミングで行ない、1ジョブのプリント枚数が多くなる場合には、その間の温度変化によるずれを抑えるために、途中で割り込みをかけて補正がかけられる。
検出手段は、図1に示すように、照明用のLED素子154と反射光を受光するフォトセンサ155、及び一対の集光レンズ156とからなり、本実施形態では、画像の中央と左右両端2ヵ所に配備されている。
各光走査ユニットで基準となるブラックとマゼンタとのトナー像により、主走査ラインと約45°傾けたラインパターン141を形成し、中間転写ベルト105の移動に応じて検出時間差を読み取っていく。
図12にその一例を示す。中間転写ベルト105の移動に沿って検出ライン上のトナー像を読み取る。
紙面上下が主走査方向に相当し、検出時間差tkmの理論値t0との差より各色の副走査レジストを、また、検出時間差tk、tmの差より各色の主走査レジストのずれを求める。
ここで、光源数が複数(本実施形態では2ビーム)でこのパターンが形成されるので、図15に示すように、主走査方向では光源間の波長差によりdだけ凹凸が発生し、副走査方向ではピッチ誤差によりD1とD2に示すように、組み合わせによりライン幅が異なる。
2ビームの場合、ポリゴンミラー106の1面で走査されるライン間隔が狭まると、隣接面で走査される次のラインとの間隔は広がってしまう。
そこで、本実施形態では、光源を全て用い、いずれかの光源からのビームがポリゴンミラー106の隣接する2面以上で走査されるように、検出位置に沿って少なくとも3ライン以上にかかるようなライン幅を設定してラインパターン141を形成し、検出位置に沿ってラインの両縁を検出してその中間点を求めるようにしている。
これにより、ピッチ誤差を全て含めた形で平均化されたずれが検出でき、各光源毎に個別に検出して平均値を求めるのと同様な効果があり、ピッチ変動や主走査倍率変動の影響を受けない。
ところで、この際、ラインパターン141をどの光源から書き始めるかによって、検出毎にライン幅が変わってしまう可能性があるため、ラインパターン141の先頭行は常に特定の光源で形成するようにしておく必要がある。
こうして検出された副走査レジストについては、ポリゴンミラー106の1面おき、つまり光源数をnとするとnラインピッチn・P、本実施形態では2Pを単位として面位相を選択し、各光源の走査ラインのうち、最もレジストずれが小さくなる走査ラインを通常プリント時の先頭行として選択することで一方の光走査ユニットの副走査方向における書き出しタイミングを各画像形成ステーション共通に補正し、ポリゴンミラー106同士の回転位相を所定値に制御することで、トナー像によって検出された副走査レジストずれのうち、書き出しタイミングによって補正できない1走査ラインピッチP以下の余分ΔPをも補正できるようにしている。
また、傾きについては、上記した画素データの組替えにより一方の光走査ユニットにおける各ス画像形成ステーション共通に補正する。
一方、光走査ユニット内においては、上記したようにフォトダイオード152、153を用いて画像形成ステーション間の走査位置ずれを常に監視することができる。
本実施形態では、このフォトダイオード152、153を主走査方向における走査領域の両端に配備することで走査線の傾きも検出できるようにし、フィードバック補正によりレジスト位置と傾きとを機械的に補正して、基準となるステーションの走査位置に合わせ込むように制御される。
主走査倍率については、上記したように同期検知信号と終端検知信号との検出時間をもとに、画像形成ステーション間の倍率変化を常に監視し、基準となる画像形成ステーションの倍率に合うように各半導体レーザ501、502を変調する画素クロックの基準周波数を補正しているので、各光走査ユニット間の基準となる画像形成ステーションにおける画像の重なり具合さえ合わせれば、全ての画像形成ステーションの色ずれが補正できる。
このように、本実施形態では、トナー像検出による定期的な補正を最小限で済ませることで、プリント動作を中断する時間をかけることなく各色画像の重ね合わせ精度が保たれるようにしている。
また、4つの画像形成ステーションを2つの画像形成ステーションずつに分け、同一方向に回転するポリゴンミラー106で走査するようにして各画像形成ステーションの走査方向を揃え、主走査方向の倍率変動があってもレジストずれが発生し難くするとともに、光走査ユニット間の補正を電気的な補正のみで対応できるようにすることで、より補正にかける時間が短くなるよう配慮している。
なお、主走査方向においては、上記したように主走査領域を複数に分割した各区間毎に画素クロックの周期を可変することで中間像高における倍率の歪みを低減し、主走査方向の全域に渡って倍率が均一になるようにしている。
従って、各分割位置毎にレジストずれを検出するセンサを設ければ良いのだが、コストアップとなるうえ、補正時間もかかる。本実施形態では、センサ数を最小限とするため、予め、温度変化に伴って生じる各分割区間毎の倍率変化を予測して重み付けられた位相データを、所定区間の倍率の変化量に対応してデータテーブルに記憶させておくことで対処している。
そのため、センサを主走査領域における中央と両端の3箇所に配置して主走査領域を2分した各区間の倍率の変化量を検出し、上記3箇所で基準となる画像形成ステーションとのレジストずれがゼロとなるように、各分割区間毎の倍率変化を予測する。
図6には、光軸変更手段としての液晶偏向素子117の概要を示す。
液晶偏向素子117は、図6(d)に示すように、液晶117aを透明なガラス板117b間に封入した構成であり、一方のガラス板117bの表面の上下に電極117cが形成されている。
この電極117c間に電位差を与えると、図6(c)に示すように、電位の傾斜が発生し、図6(b)に示すように、液晶117aの配向が変化して屈折率分布を発生させる。
従って、プリズムと同様にビームの射出軸を僅かに傾けることができる。液晶117aとしては誘電異方性を有するネマティック液晶等が用いられる。従って、副走査方向に電極117cを設ければ、印加電圧に応じて感光体面での走査位置を可変できる。
なお、この動作に伴って、上記したトロイダルレンズへの入射位置が微少量変化するが、走査位置の可変量は数十μm程度であるため、曲がりを発生させるに至る変化量ではない。
図20は、ポリゴンミラー106の位相を制御する回路のブロック図である。
各ポリゴンミラー106はロータ403に装着され、回路基板404に回転自在に支持される。
一般に、ロータマグネットは円周方向に等分するようにS極とN極が配列され、また、回路基板404上には、回転位置検出手段としてのホール素子405が設けられており、ポリゴンモータの回転につれ各極の境目がホール素子405上を通過する毎に、一定周期の回転位置検出信号が発生される。
ポリゴンミラー106は、回転数に応じて一定の周波数のパルス信号f0が外部から入力され回転するが、このパルス信号f0と上記した回転位置検出信号とをPLL回路に入力することで、回転位置検出信号が一定周期となるように位相を制御した駆動周波数fdを生成してポリゴンミラー106を等速で回転する。
各ポリゴンミラー106には同一周波数のパルス信号f0が入力され、回転数は等しい。一方、ポリゴンミラー106により偏向された光ビームは、各走査の開始端で同期検知センサ138、140で検出され、各面毎に同期検知信号が発生される。
各面の分割角度は一定であるので、こちらも一定周期のパルス信号となる。従って、ポリゴンミラー106の面数と1回転に対応した回転位置検出信号とのパルス数が等しくなるように極数を設定すれば、周波数が等しくなるので位相制御が容易になる。
通常、ホール素子405の配置とポリゴンミラー106の各面とは周方向に角度を合わせて取り付けているわけではないので、ホール素子405からの回転位置検出信号と同期検知信号とは各々位相が異なる。
本実施形態では、各々の光走査ユニット900A、900Bでのポリゴンミラー106において、光ビームが同期検知センサ138、140を通過する際のポリゴンミラー106の回転角が合うように、同一像高に同期検知センサ138、140を配置してある。
また、いずれか一方、ここでは図中上部に記載のポリゴンミラー106を基準としたもう一方の同期検知信号の位相差を加算器に入力することで、PLL回路から出力された駆動周波数fdの位相を制御し、同期検知信号同士の検知タイミングが所定値となるようにポリゴンミラー106の回転位相tを制御している。
本実施形態では、この際の回転位相tを以下のように設定している。上記中間転写ベルト105の移動速度をv(mm/s)、中間転写ベルト105上で検出されたレジストずれをd(mm)、ポリゴンミラー106の走査周波数をf(Hz)とすると、回転位相tは
t=d/v−k/f ここで、kはtを最小とする整数
常に、この条件を満たすように制御することにより、各光走査ユニット間のレジストずれdは、1ライン以下まで良好に補正できる。
なお、走査周波数fは、記録密度DPIを用いて表すと、
f=v・DPI/25.4
であり、ポリゴンミラー106の回転数Rは、面数nを用いて、
R=60×f/n
となる。
上記実施形態では、液晶偏向素子117のプリズム作用を利用したが、以下にはプリズム(非平行平板)を用いた例(第2の実施形態)について、図21を用いて説明する。
非平行平板621は、円筒状のホルダ部材622の中央枠内に固定され、軸受部623を形成した支持部材624にホルダ部材622に形成した一対の鍔部626を切欠に合わせて挿入し、水平に戻すことで鍔部626が裏側に引っ掛かり、支持部材624に密着した状態で嵌合部625を基準に回転可能に保持される。
支持部材624は、上記したように底面を基準にハウジング200にねじ止めされ、軸受部623の回転中心が光源ユニットの射出軸と中心が合うように高さHが各々設定されており、回転によってビームの射出軸を僅かに傾けることができる。
ホルダ部材622の一端にはレバー部627が形成され、支持部材624に形成した挿通穴630に係合されて固定されているステッピングモータ628の軸先端に形成した送りネジを螺合しており、その上下動に伴って非平行平板621を回動可能としている。
なお、この際のバックラッシュをとるため、ホルダ部材622のピン631と支持部材624のピン632との間にスプリング629により引張力を掛け、一方向に片寄せする構成としている。いま、この回転角をγ、非平行平板の頂角をε、カップリングレンズの焦点距離をfc、光学系全系の副走査倍率をζとすると、感光体面での副走査位置の変化は、
Δy=ζ・fc・(n−1)ε・sinγ nは非平行平板の屈折率
で与えられ、微小回転角の範囲では回転角にほぼ比例して可変できる。
以上をまとめると、各実施形態においては、各光走査ユニット900A、900Bに収められた2色間の色ずれ補正を各々行い、その基準となる色同士の色ずれを電気的な補正により一律に行うことで、補正の手順を単純化することができる。
このように、2色毎に分割することで、共通の光走査ユニットを2セット用意すれば良い。上記実施形態では4色であるが、既にインクジェットプリンタで実施されているような中間色を加えた6色等への展開も容易に行うことができる(第3の実施形態)。
図22にその実施形態を示す。本実施形態における多色画像形成装置950は、イエロー、マゼンタ、シアン、ブラックに対応した感光体ドラム101、102、103、104の他に、階調性向上のためのグレーに対応した感光体ドラム951、光沢性向上のための透明トナーに対応した感光体ドラム952を備えている。
本実施形態では、イエローとマゼンタに対応して光走査ユニット900Aが、シアンとグレーに対応して光走査ユニット900Bが、ブラックと透明トナーに対応して光走査ユニット900Cがそれぞれ配置されている。
画像形成動作、光走査機能等については上記実施形態と同様であるので説明は省略する。
上記各実施形態では、中間転写体に転写した後シート状記録媒体に一括転写するタンデム型の画像形成装置を例示したが、エンドレスベルトでシート状記録媒体を搬送しながら順次転写して重ね合わせる直接転写方式のタンデム型カラー画像形成装置においても同様に実施することができる。
本発明の第1の実施形態における光走査装置の概要斜視図である。 光源ユニットの分解斜視図である。 トロイダルレンズと支持板との係合関係を示す斜視図である。 トロイダルレンズに対する第1の走査線変化補正手段としての第1の走査線曲がり補正手段、第2の走査線変化補正手段としての第2の走査線曲がり補正手段、焦線可変手段としての焦線湾曲手段を示す概要正面図である。 図4におけるA−A線での断面図である。 液晶偏向素子及びその特性を示す図である。 同期検知センサ又は終端検知センサにおけるセンサ配置構成を示す図である。 制御ブロック図である。 1/8クロックだけ位相を遅らせたタイミングチャートである。 ビームスポット位置ずれ制御を示すブロック図である。 走査方向に沿った部分的な倍率誤差の歪を補正する方法を示す図である。 トナー像の検出パターンを読み取る検出手段の態様を示す図である。 電気的調整を示す図である。 走査ラインの曲がりの補正を示す図である。 光源数が複数の場合のパターンの検出ずれを示す図である。 トロイダルレンズでビームを近接させる配置関係を示す図である。 光走査装置が収容されるハウジングの構成を示す斜視図である。 光走査装置が収容されるハウジングの構成を示す斜視図である。 カラー画像形成装置の全体概要図である。 ポリゴンミラーの位相を制御する回路のブロック図である。 第2の実施形態におけるプリズム(非平行平板)を用いた調整構成を示す図である。 第3の実施形態における画像形成装置の全体概要図である。
符号の説明
10 シート状記録媒体としての記録紙
101、102、103、104 像担持体としての感光体ドラム
105 中間転写体としての中間転写ベルト
106 回転多面鏡としてのポリゴンミラー
301 支持部材
302 付勢部材としての板ばね
303 付勢部材としての板ばね
305 光学素子としてのトロイダルレンズ
308 調整部材としての調節ねじ
308 第2の走査線変化補正手段の一要素としての調節ねじ
308 焦線可変手段としての調節ねじ
310 支持点としての立曲げ部
353 第1の走査線曲がり補正手段の一要素としての調節ねじ
501、502 光源としての半導体レーザー

Claims (20)

  1. 光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、
    上記被走査面上における走査線の変化を補正する走査線変化補正手段を備え、該走査線変化補正手段は、主走査方向に沿った複数部位に頂点を有する変化成分(3次以上の高次関数曲線成分)の走査線の変化を発生させることができ、逆態様の走査線の変化を発生させることにより3次以上の高次関数曲線成を相殺することを特徴とする光走査装置。
  2. 光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、
    上記被走査面上における走査線の変化を補正する走査線変化補正手段を備え、該走査線変化補正手段は、走査線の変化のうち、主走査方向一部位のみに頂点を有する変化成分(2次関数曲線成分)を調整する第1の走査線変化補正手段と、主走査方向に沿った複数部位に頂点を有する変化成分(3次以上の高次関数曲線成分)を調整する第2の走査線変化補正手段からなることを特徴とする光走査装置。
  3. 請求項1又は2記載の光走査装置において、
    上記走査線変化補正手段は、少なくとも走査線の主走査方向一部位と他部位とが同一直線上に揃うように調整することを特徴とする光走査装置。
  4. 請求項2記載の光走査装置において、
    上記第1の走査線変化補正手段は、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の光軸を、入射光線に対して副走査方向に偏心させることにより、走査線を可変とすることを特徴とする光走査装置。
  5. 請求項4記載の光走査装置において、
    上記光学素子の取付姿勢を、副走査断面に直交する軸の周りに調整可能であることを特徴とする光走査装置。
  6. 請求項4記載の光走査装置において、
    上記光学素子への光線入射位置を、上記光軸に対して副走査断面内で調整可能であることを特徴とする光走査装置。
  7. 請求項2記載の光走査装置において、
    上記第2の走査線変化補正手段は、上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の焦線を副走査方向に変化させることにより、走査線を可変することを特徴とする光走査装置。
  8. 請求項2記載の光走査装置において、
    上記第1の走査線変化補正手段と第2の走査線変化補正手段が、上記結像光学系を構成する同一の光学素子に対して設けられていることにより走査線を可変とすることを特徴とする光走査装置。
  9. 光源からの光ビームを回転多面鏡により走査し、被走査面上に結像光学系により結像する光走査装置において、
    上記結像光学系を構成する光学素子のうち、少なくとも副走査方向に収束作用を有する光学素子の焦線が主走査方向に沿った複数部位で頂点を有するように変化せしめる焦線可変手段を有し、該焦線可変手段により焦線の変化を補正することを特徴とする光走査装置。
  10. 請求項9記載の光走査装置において、
    上記焦線可変手段は、上記光学素子よりも曲げ剛性が高く、上記光学素子の主走査方向一部位と他部位とを副走査方向に支える支持点を有する支持部材と、上記支持点間において上記光学素子に当接し上記支持点間の光学素子の母線形状を副走査方向に変化させる調整部材を有し、上記光学素子に一体的に設けられていることを特徴とする光走査装置。
  11. 請求項9記載の光走査装置において、
    上記焦線可変手段は、上記光学素子よりも曲げ剛性が高く、上記光学素子の主走査方向一部位と他部位とを副走査方向の一方側から支える支持点を有する支持部材と、上記支持点間において上記光学素子を副走査方向の他方側から上記支持点側へ付勢する付勢部材と、上記支持点間において上記光学素子に上記支持点と同一側から当接し上記支持点間の光学素子の母線形状を副走査方向に変化させる調整部材とを有し、上記光学素子に一体的に設けられていることを特徴とする光走査装置。
  12. 請求項9記載の光走査装置において、
    上記光学素子の取付姿勢を、光軸と平行な軸の周りに調整することにより、上記被走査面上における走査線の傾きを補正することを特徴とする光走査装置。
  13. 請求項1記載の光走査装置において、
    上記走査線変化補正手段が、走査線の変化を電気的に調整するものであることを特徴とする光走査装置。
  14. 請求項2記載の光走査装置において、
    上記第1の走査線変化補正手段と第2の走査線変化補正手段のうち、少なくとも一方が走査線の変化を電気的に調整することを特徴とする光走査装置。
  15. 請求項13又は14記載の光走査装置において、
    上記走査線の変化の電気的調整は、基準となる走査線に対するずれ量に応じて主走査領域を分割し、各分割領域毎に書き出しタイミングがずれるように画像データの記録位置をシフトさせることを特徴とする光走査装置。
  16. 請求項1乃至15のうちの何れかに記載の光走査装置において、
    上記結像光学系を構成する光学素子のうち、走査線の変化調整の対象となる光学素子は、該光学素子の近傍で複数の光源からの光ビームが交差するように配置されていることを特徴とする光走査装置。
  17. 複数の像担持体上に光走査装置により静電潜像を形成するとともに、該静電潜像を像担持体毎に異なる色トナーで現像し、各像担持体上に形成されたトナー像を転写体上に担持されたシート状記録媒体に順次重ねて転写することによりカラー画像を得る画像形成装置において、
    上記光走査装置が、請求項1乃至16のうちの何れかに記載のものであることを特徴とする画像形成装置。
  18. 複数の像担持体上に光走査装置により静電潜像を形成するとともに、該静電潜像を像担持体毎に異なる色トナーで現像し、各像担持体上に形成されたトナー像を順次中間転写体上に重ねて転写した後、シート状記録媒体に一括転写することによりカラー画像を得る画像形成装置において、
    上記光走査装置が、請求項1乃至16のうちの何れかに記載のものであることを特徴とする画像形成装置。
  19. 結像光学系により被走査面上に結像する走査線の変化を、上記結像光学系を構成する光学素子に対して機械的に力を加えて補正する走査線変化補正方法において、
    走査線の変化を、主走査方向一部位のみに頂点を有する変化成分(2次関数曲線成分)と、主走査方向に沿った複数部位に頂点を有する変化成分(3次以上の高次関数曲線成分)とに分け、それぞれ個別に補正することを特徴とする走査線変化補正方法。
  20. 請求項19記載の走査線変化補正方法において、
    補正対象となる上記光学素子の母線が、走査線の変化に対して反転した形状になるように調整して変化を相殺することを特徴とする走査線変化補正方法。
JP2004377727A 2004-11-26 2004-12-27 光走査装置・画像形成装置・走査線変化補正方法 Expired - Fee Related JP4673056B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004377727A JP4673056B2 (ja) 2004-12-27 2004-12-27 光走査装置・画像形成装置・走査線変化補正方法
US11/287,473 US7684100B2 (en) 2004-11-26 2005-11-28 Optical-element holding device, method of adjusting shape of optical element, optical-element shape adjusting device, method of correcting scanning line variation, optical scanning device, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377727A JP4673056B2 (ja) 2004-12-27 2004-12-27 光走査装置・画像形成装置・走査線変化補正方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010226777A Division JP2011053700A (ja) 2010-10-06 2010-10-06 光走査装置・画像形成装置・走査線変化補正方法

Publications (2)

Publication Number Publication Date
JP2006184526A true JP2006184526A (ja) 2006-07-13
JP4673056B2 JP4673056B2 (ja) 2011-04-20

Family

ID=36737702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377727A Expired - Fee Related JP4673056B2 (ja) 2004-11-26 2004-12-27 光走査装置・画像形成装置・走査線変化補正方法

Country Status (1)

Country Link
JP (1) JP4673056B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065184A (ja) * 2006-09-08 2008-03-21 Ricoh Co Ltd 走査光学系、光走査装置、及び画像形成装置
JP2008139346A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139343A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008209580A (ja) * 2007-02-26 2008-09-11 Ricoh Co Ltd 光走査装置および画像形成装置
JP2008233197A (ja) * 2007-03-16 2008-10-02 Ricoh Co Ltd 光学素子ユニット、光走査装置、及び画像形成装置
JP2010020238A (ja) * 2008-07-14 2010-01-28 Kyocera Mita Corp 板状部材、光学部品固定機構、光走査ユニット、および画像形成装置
JP2010085963A (ja) * 2008-09-05 2010-04-15 Ricoh Co Ltd 光走査装置及び画像形成装置
US8031220B2 (en) 2007-12-04 2011-10-04 Canon Kabushiki Kaisha Image forming apparatus
JP2012008445A (ja) * 2010-06-28 2012-01-12 Ricoh Co Ltd 画像形成装置
US8553062B2 (en) 2010-05-14 2013-10-08 Sharp Kabushiki Kaisha Optical scanner and image forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US606450A (en) * 1898-06-28 davis
JPH07120693A (ja) * 1993-10-26 1995-05-12 Dainippon Screen Mfg Co Ltd 光ビーム走査装置
JPH09292580A (ja) * 1996-04-24 1997-11-11 Ricoh Co Ltd 光学書込み装置
JPH10148779A (ja) * 1996-11-18 1998-06-02 Minolta Co Ltd 画像形成装置
US6064505A (en) * 1998-11-16 2000-05-16 Eastman Kodak Company Method and apparatus for movably supporting a reflecting member of a focusing apparatus
JP2001166235A (ja) * 1999-12-10 2001-06-22 Asahi Optical Co Ltd 走査光学装置
JP2002182145A (ja) * 2000-12-15 2002-06-26 Ricoh Co Ltd 光走査装置及びそれを搭載した画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US606450A (en) * 1898-06-28 davis
JPH07120693A (ja) * 1993-10-26 1995-05-12 Dainippon Screen Mfg Co Ltd 光ビーム走査装置
JPH09292580A (ja) * 1996-04-24 1997-11-11 Ricoh Co Ltd 光学書込み装置
JPH10148779A (ja) * 1996-11-18 1998-06-02 Minolta Co Ltd 画像形成装置
US6064505A (en) * 1998-11-16 2000-05-16 Eastman Kodak Company Method and apparatus for movably supporting a reflecting member of a focusing apparatus
JP2001166235A (ja) * 1999-12-10 2001-06-22 Asahi Optical Co Ltd 走査光学装置
JP2002182145A (ja) * 2000-12-15 2002-06-26 Ricoh Co Ltd 光走査装置及びそれを搭載した画像形成装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065184A (ja) * 2006-09-08 2008-03-21 Ricoh Co Ltd 走査光学系、光走査装置、及び画像形成装置
JP2008139346A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139343A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008209580A (ja) * 2007-02-26 2008-09-11 Ricoh Co Ltd 光走査装置および画像形成装置
JP2008233197A (ja) * 2007-03-16 2008-10-02 Ricoh Co Ltd 光学素子ユニット、光走査装置、及び画像形成装置
US8031220B2 (en) 2007-12-04 2011-10-04 Canon Kabushiki Kaisha Image forming apparatus
JP2010020238A (ja) * 2008-07-14 2010-01-28 Kyocera Mita Corp 板状部材、光学部品固定機構、光走査ユニット、および画像形成装置
JP2010085963A (ja) * 2008-09-05 2010-04-15 Ricoh Co Ltd 光走査装置及び画像形成装置
US8553062B2 (en) 2010-05-14 2013-10-08 Sharp Kabushiki Kaisha Optical scanner and image forming apparatus
JP2012008445A (ja) * 2010-06-28 2012-01-12 Ricoh Co Ltd 画像形成装置

Also Published As

Publication number Publication date
JP4673056B2 (ja) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4868841B2 (ja) 光走査装置及び画像形成装置
JP2007206653A (ja) 光走査装置、及び画像形成装置
JP2011186420A (ja) 光走査装置および画像形成装置
JP4574477B2 (ja) 光走査装置及び画像形成装置
JP4673056B2 (ja) 光走査装置・画像形成装置・走査線変化補正方法
JP4965142B2 (ja) 光走査装置および画像形成装置
JP4322703B2 (ja) 光走査装置、および多色画像形成装置
JP2006251513A (ja) 光源装置、光走査装置および画像形成装置
JP4523440B2 (ja) 多色画像形成装置
JP2006198896A (ja) 多色画像形成装置
JP2010169829A (ja) 光走査装置及び画像形成装置
JP4949633B2 (ja) 光走査装置及び画像形成装置
JP4903455B2 (ja) 光走査装置および画像形成装置
JP5879898B2 (ja) アクチュエータ、光走査装置及び画像形成装置
JP2007114518A (ja) 光走査装置、画像形成装置及び副走査位置補正方法
JP2008070580A (ja) 光走査装置と光走査装置を用いた画像形成装置
JP2011053700A (ja) 光走査装置・画像形成装置・走査線変化補正方法
JP2008076458A (ja) 光走査装置と画像形成装置
JP2008191582A (ja) 多色画像形成装置
JP2005091927A (ja) 光走査装置および画像形成装置
JP2010054960A (ja) 光走査装置及び画像形成装置
JP5659659B2 (ja) 光走査装置及び画像形成装置
JP2010217200A (ja) 光走査装置および画像形成装置
JP4596942B2 (ja) 光走査装置および画像形成装置
JP4919680B2 (ja) 光走査装置、画像形成装置、カラー画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees